当前位置:文档之家› 2012版物理一轮精品复习学案:9.2 法拉第电磁感应定律、互感和自感(选修3-2)

2012版物理一轮精品复习学案:9.2 法拉第电磁感应定律、互感和自感(选修3-2)

2012版物理一轮精品复习学案:9.2 法拉第电磁感应定律、互感和自感(选修3-2)
2012版物理一轮精品复习学案:9.2 法拉第电磁感应定律、互感和自感(选修3-2)

第2节 法拉第电磁感应定律、互感和自感

【考纲知识梳理】

一、感应电动势

1、发生电磁感应现象的这部分电路就相当于电源,在电源的内部电流的方向是从低电势流向高电势。(即:由负到正)

2、 感应电动势与感应电流的关系:遵守闭合电路欧姆定律 二、法拉第电磁感应定律 1、法拉第电磁感应定律

(1)定律内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比. (2)公式:t

N

E ??Φ

=,N 为线圈匝数 2、 导体切割磁感线的情形

(1)一般情况:运动速度v 与磁感应线方向夹角为

时则

(2)E=BL v (垂直平动切割) L 是导线的有效切割长度 (v 为磁场与导体的相对切割速度......) (B 不动而导体动;导体不动而B 运动) (3)22

1

2l B l

Bl

v Bl E ωω=

==. (直导体绕一端转动切割) 三、自感和涡流

1.自感现象:由于导体本身电流发生变化而产生的电磁感应现象.

2.自感电动势

(1)定义:自感现象中产生的感应电动势叫自感电动势. (2)表达式:t i

L E ??= L 为自感系数,

①.L 跟线圈的形状、长短、匝数等因素有关系.线圈越粗,越长、单位长度上的匝数越密,横截面积越大,它的自感系数越大,另外有铁芯的线圈自感系数大大增加

②.自感系数的单位是亨利,国际符号是L ,1亨=103

毫亨=106

微亨

【要点名师透析】

一、 对法拉第电磁感应定律的理解

1.磁通量、磁通量的变化量、磁通量的变化率的区别

3.感应电荷量的求法

在电磁感应现象中有电流通过电路,那么也就有电荷量通过,由电流的定义I=可知q=IΔt.必须注意

I应为平均值,而 =,所以要通过求感应电动势的平均值再求其电荷量,即:q= Δt=Δt=n . 由此可知,感应电荷量q由磁通量变化大小ΔΦ及电路的电阻R决定,与变化时间无关.

【例1】(13分)半径为a的圆形区域内有均匀磁场,磁感应强度为B=0.2 T,磁场方向垂直纸面向里,半径为b的金属圆环与磁场同心地放置,磁场与环面垂直,其中a=0.4 m,b = 0.6 m,金属环上分别接有灯L1、L2,两灯的电阻均为R0 = 2 Ω,一金属棒MN与金属环接触良好,棒与环的电阻均忽略不计.

(1)若棒以v0=5 m/s的速率在环上向右匀速滑动,求棒滑动到圆环直径OO′的瞬时(如图所示),MN中的电动势和流过灯L1的电流.

(2)撤去中间的金属棒MN将右面的半圆环OL2O′以OO′为轴向上翻转90°,若此时磁场随时间均匀变化,

其变化率为=T/s,求L2的功率.

【答案】(1)0.8 V 0.4A

(2)1.28×10-2W

【详解】(1)棒滑过圆环直径OO′的瞬时,MN中的电动势E1=B·2av0=0.2×0.8×5 V=0.8 V (3分)

等效电路如图所示,流过灯L1的电流I1==0.4A (3分)

二、导体切割磁感线产生感应电动势的计算

1.导体平动切割磁感线

对于导体平动切割磁感线产生感应电动势的计算式 E=Blv,应从以下几个方面理解和掌握.

(1)公式使用条件:本公式是在一定条件下得出的,除了磁场是匀强磁场外,还需B、l、v三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进行计算,公式可为E=Blvsinθ,θ为B与v方向间的夹角.

(2)使用范围:导体平动切割磁感线时,若v为平均速度,则E为平均感应电动势,即=Bl.若v为瞬时速度,则E为相应的瞬时感应电动势.

(3)有效性:公式中的l为有效切割长度,即导体与v垂直的方向上的投影长度.图中有效长度分别为:

甲图:l=cdsinβ;

乙图:沿v1方向运动时,l=MN

沿v2方向运动时,l=0.

丙图:沿v1方向运动时,l= R

沿v2方向运动时,l=0

沿v3方向运动时,l=R

(4)相对性:E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.

2.导体转动切割磁感线

当导体棒在垂直于磁场的平面内,绕其一端为轴,以角速度ω匀速转动时,产生的感应电动势为

E=Bl=Bl2ω,如图所示.

【例2】(12分)金属杆MN和PQ间距为l,MP间接有电阻R,磁场如图所示,磁感应强度为B.金属棒AB长为2l,由图示位置以A为轴,以角速度ω匀速转过90°(顺时针).求该过程中(其他电阻不计):

(1)R上的最大电功率.

(2)通过R的电量.

【详解】AB转动切割磁感线,且切割长度由l增至2l以后AB离开MN,电路断开. (2分)

(1)当B端恰至MN上时,E最大.

三、通电自感和断电自感的比较

【例3】(2010·北京高考)在如图所示的电路中,两个相同的小灯泡L1和L2分别串联一个带铁芯的电感线圈L和一个滑动变阻器R.闭合开关S后,调整R,使L1和L2发光的亮度一样,此时流过两个灯泡的电流为I.然后,断开S.若t′时刻再闭合S,则在t′前后的一小段时间内,正确反映流过L1的电流i1、流过L2的电流i2随时间t变化的图象是( )

【答案】选B.

【详解】闭合开关S后,调整R,使两个灯泡L1、L2发光的亮度一样,电流为I,说明R L=R.若t′时刻再闭合S,流过电感线圈L和灯泡L1的电流迅速增大,使电感线圈L产生自感电动势,阻碍了流过L1的电流i1增大,直至到达电流I,故A错误,B正确;而对于t′时刻再闭合S,流过灯泡L2的电流i2立即达到电流I,故C、D错误.

【感悟高考真题】

1.(2011·北京高考·T19)某同学为了验证断电自感现象,自己找来带铁心的线圈L、小灯泡A 、开关S

和电池组E ,用导线将它们连接成如图所示的电路。检查电路后,闭合开关s ,小灯泡发光;再断开开关S ,小灯泡仅有不显著的延时熄灭现象。虽经多次重复,仍未见老师演示时出现的小灯泡闪亮现象,他冥思苦想找不出原因。你认为最有可能造成小灯泡未闪亮的原因是

A .电源的内阻较大

B .小灯泡电阻偏大

C .线圈电阻偏大

D .线圈的自感系数较大 【答案】选C.

【详解】根据实物连线图画出正确的电路图,当闭合电键S ,电路稳定之后,小灯泡中有稳定的电流A I ,电感线圈中有稳定的电流L I ,当电键S 突然断开时,电流A I 立即消失,但是,由于自感电动势的作用,流过线圈的电流L I 不能突变,而是要继续流动,于是,电感线圈和小灯泡构成了回路,如果A L I I >,则能观察到小灯泡闪亮一下再熄灭,线圈的自感系数越大,小灯泡延时闪亮的时间就越长.如果不满足

A L I I >的条件,小灯泡只是延时熄灭,不会观察到闪亮一下再熄灭.可见灯泡未闪亮的根本原因是不满足A L I I >的条件,这是线圈电阻偏大造成的L I 偏小。所以本题正确选项是C.

2.(2011·四川理综·T20)如图所示,在匀强磁场中匀速转动的矩形线圈的周期为T,转轴O 1O 2垂直于磁场方向,线圈电阻为2Ω.从线圈平面与磁场方向平行时开始计时,线圈转过60°时的感应电流为1A.那么

A.线圈消耗的电功率为4W

B.线圈中感应电流的有效值为2A

C.任意时刻线圈中的感应电动势为e = 4cos 2t T π

D.任意时刻穿过线圈的磁通量为Φ=T

πsin 2t

T π

【答案】选AC.

【详解】由于线圈垂直于中性面启动,则瞬时表达式可记为θcos m E e =,代入数据可知o

m E 60cos 2=,

得最大值V E m 4=,即有效值V E 22=以及A R E I 2==,功率为W

R E P 42

==,瞬时值表达式为t

T e π2cos

4=.故A 、C 正确,B 错误。再由于ωNB S

E m =,则任意时刻穿过线圈的磁通量为t

T N T T N N E BS m π

πθπθωθ2sin 2sin 24sin sin ===

=Φ,可知D 错误.

3.(2011·广东理综·T15)将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,关于线圈中产生的感应电动势和感应电流,下列表述正确的是 A.感应电动势的大小与线圈的匝数无关 B.穿过线圈的磁通量越大,感应电动势越大 C.穿过线圈的磁通量变化越快,感应电动势越大

D.感应电流产生的磁场方向与原磁场方向始终相同

【答案】选C.

【详解】由法拉第电磁感应定律知:

t n

E ??Φ

=,可见感应电动势的大小与线圈的匝数有关,A 错误;感

应电动势的大小取决于磁通量的变化快慢,而与磁通量的变化大小无关,B 错误,C 正确;

感应电流产生的磁场阻碍原磁场的变化,当原磁场增大时,感应电流产生的磁场与其相反,D 错误。 4.(2011·福建理综·T17)如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计。金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中

A.运动的平均速度大小为12ν

B.下滑的位移大小为qR

BL

C.产生的焦耳热为qBL ν

D.受到的最大安培力大小为22sin B L R ν

θ

【答案】选B.

【详解】由E=BLV 、

R E I =

、F 安=BIL 可得棒的速度为V 时的安培力为R V

L B 22,D 错;对导体棒受力分

析如图所示

据牛顿运动定律判断可得导体棒的运动情况如图所示由图可知导

体棒这一过程的平均速度大于v 21,A 错;由法拉第电磁感应定律得到导体棒这一过程的电量

R BLS

q =

,因此导体棒下滑的位移BL qR S =

,B 对;由能量关系可得这一过程产生的焦耳热2

21

sin mv BL qR mg Q -=θ,

C 错,故选B.

5.(2011·江苏物理·T2)如图所示,固定的水平长直导线中通有电流I ,矩形线框与导线在同一竖直平面内,且一边与导线平行。线框由静止释放,在下落过程中 A .穿过线框的磁通量保持不变 B .线框中感应电流方向保持不变 C .线框所受安培力的合力为零 D .线框的机械能不断增大 【答案】选B.

【详解】线框下落中距离直导线越来越远,磁场越来越弱,但磁场方向不变,所以磁通量越来越小,根据楞次定律可知感应电流的方向不变,A 错B 对,线框左边和右边所受安培力总是大小相等,方向相反,但上下两边磁场强弱不同安培力大小不同,合力不为零,C 错,下落过程中机械能越来越小,D 错。 8.(2011·江苏物理·T5)如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。匀强磁场与导轨平面垂直。阻值为R 的导体棒垂直于导轨静止放置,且与导轨接触良好。t=0时,将开关S 由1掷到2。q 、i 、v 和a 分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度。下列图象正确的是

【思路点拨】解答本题时要注意理解:(1)导体棒电容器放电时可看作电源(2)导体棒因在磁场中运动而产生感应电动势(3)动态变化的结果是电容器两端的电压等于导体棒两端的电压

【精讲精析】选D.当开关由1掷到2,电容器放电,导体棒因受安培力而向右加速,导体棒向右运动产生感应电动势,最终达到电容器两端电压和导体棒两端电压相等,电容器的带电量保持不变,导体棒的速度不变,但不等于零,AC 错,最终导体棒加速度以及棒中电流为零,B 错,D 对。

6.(2011·江苏物理·T6)美国科学家Willard S.Boyle 与George E.Smith 因电荷耦合器件(CCD)的重要发明荣获2009年度诺贝尔物理学奖。CCD 是将光学量转变成电学量的传感器。下列器件可作为传感器的有 A.发光二极管 B.热敏电阻 C.霍尔元件 D.干电池 【答案】选BC.

【详解】传感器的原理是将非电学量转化为电学量,例如热敏电阻阻值随温度而变化,可将温度这个量转化为电压电流等电学量,霍尔元件可将磁感应强度这个量转化为电压电流等电学量,而发光二极管以及干电池都不能将非电学量转化为电学量,选BC.

7、 (2010·江苏卷)2、一矩形线框置于匀强磁场中,线框平面与磁场方向垂直,先保持线框的面积不变,将磁感应强度在1 s 时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在1 s 时间内,再将线框的面积均匀地减小到原来的一半,先后两个过程中,线框中感应电动势的比值为 (A )

1

2

(B )1 (C )2 (D )4 .【答案】B 难度:易 本题考查电磁感应定律的应用

【解析】 1B 2B-B BS

E =S

=S t t t = 22S B S

E B t t

?==-,大小相等,选B 。 8、 (2010·江苏卷)4.如图所示的电路中,电源的电动势为E,内阻为r,电感L 的电阻不计,电阻R 的阻值大于灯泡D 的阻值,在t=0时刻闭合开关S ,经过一段时间后,在t=t 1时刻断开S,下列表示A 、B 两点间电压U AB 随时间t 变化的图像中,正确的是

选B 考查自感和电压图象。难度:难

【解析】开关闭合时,线圈的自感阻碍作用,可看做电阻,线圈电阻逐渐减小,并联电路电阻逐渐减小。

U逐渐减小;开关闭合后再断开时,线圈的感应电流与原电流方向相同,形成回路,灯泡的电流与电压

AB

原来相反,并逐渐减小到0,所以本题选B。

9、(2010·广东卷)16. 如图5所示,平行导轨间有一矩形的匀强磁场区域,细金属棒PQ沿导轨从MN 处匀速运动到M'N'的过程中,棒上感应电动势E随时间t变化的图示,可能正确的是

答案:A

解析:MN只有进入磁场中才切割磁感线,因而只有中间过程有感应电动势,选A。

10、(2010·山东卷)21.如图所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN、PQ为其边界,OO′为其对称轴。一导线折成边长为l的正方形闭合回路abcd,回路在纸面 向右运动,当运动到关于OO′对称的位置时

内以恒定速度

A.穿过回路的磁通量为零

B .回路中感应电动势大小为2B l 0

C .回路中感应电流的方向为顺时针方向

D .回路中ab 边与cd 边所受安培力方向相同 答案:ACD

解析:根据右手定则,回来中感应电流的方向为逆时针方向。

本题考查电磁感应、磁通量、右手定则,安培力,左手定则等基本知识。 难度:易。

11、 (2010·上海物理)19. 如图,一有界区域内,存在着磁感应强度大小均为B ,方向分别垂直于光滑水平桌面向下和向上的匀强磁场,磁场宽度均为L ,边长为L 的正方形框abcd 的bc 边紧靠磁场边缘置于桌面上,使线框从静止开始沿x 轴正方向匀加速通过磁场区域,若以逆时针方向为电流的正方向,能反映线框中感应电流变化规律的是图

解析:在0-1t ,电流均匀增大,排除CD.2t

在1t -2t ,两边感应电流方向相同,大小相加,故电流大。

在32~t t ,因右边离开磁场,只有一边产生感应电流,故电流小,所以选A 。 本题考查感应电流及图象。 难度:难。

12、 (2010·上海物理)21.如图,金属环A 用轻绳悬挂,与长直螺线管共轴,并位于其左侧,若变阻器滑片P 向左移动,则金属环A 将向_____(填“左”或“右”)运动,并有_____(填“收缩”或“扩张”)趋势。

解析:变阻器滑片P 向左移动,电阻变小,电流变大,根据楞次定律,感应电流的磁场方向原电流磁场方向相反,相互吸引,则金属环A 将向右移动,因磁通量增大,金属环A 有收缩趋势。

本题考查楞次定律。难度:易。

13、 (2010·浙江卷)19. 半径为r 带缺口的刚性金属圆环在纸面上固定放置,在圆环的缺口两端引出两根导线,分别与两块垂直于纸面固定放置的平行金属板连接,两板间距为d ,如图(上)所示。有一变化的磁场垂直于纸面,规定向内为正,变化规律如图(下)所示。在t=0时刻平板之间中心有一重力不计,电荷量为q 的静止微粒,则以下说法正确的是

A. 第2秒内上极板为正极

B. 第3秒内上极板为负极

C. 第2秒末微粒回到了原来位置

D. 第3秒末两极板之间的电场强度大小为0.22

/r d 答案:A

14、 (2010·四川卷)19.图甲所示电路中,123A A A 、、 为相同的电流表,C 为电容器,电阻123R R R 、、的阻值相同,线圈L 的电阻不计。在某段时间内理想变压器原线圈内磁场的变化如图乙所示,则在12~t t 时间内

A .电流表1A 的示数比2A 的小

B .电流表2A 的示数比A 3的小

C .电流表1A 和2A 的示数相同

D .电流表的示数都不为零 答案:C

【解析】由B-t 图像知在t 1-t 2时间内,原线圈中磁场先负向减小后正向增大,则副线圈中磁通量是均匀变化的,根据法拉第电磁感应定律在副线圈中产生的感应电流大小不变,再根据楞次定则可判断负向较小时和正向增大时感应电流的方向相同,则在t 1-t 2时间内副线圈中个电流为稳恒电流,所以A 1和A 2的示数相同,A 3的示数为0,正确答案C 。

【考点模拟演练】

1.(2011·福州模拟)如图所示,在x ≤0的区域内存在匀强磁场,磁场的方向垂直于xy 平面(纸面)向里.具有一定电阻的矩形线框abcd 位于xy 平面内,线框的ab 边与y 轴重合.令线框从t=0时刻起由静止开始沿x 轴正方向做匀加速运动,则线框中的感应电流I(取逆时针方向为电流正方向)随时间t 的变化图线I-t 图可能是下图中的( )

【答案】选D.

【详解】线框匀加速向右运动时,cd 边切割磁感线,由右手定则知电流方向为顺时针,方向为负;由E=Blv 知,v 均匀增加,电流成线性增大,故D 项正确.

2.(2011·江门模拟)如图所示,电路中A、B是完全相同的灯泡,L是一带铁芯的线圈.开关S原来闭合,则开关S断开的瞬间( )

A.L中的电流方向改变,灯泡B立即熄灭

B.L中的电流方向不变,灯泡B要过一会儿才熄灭

C.L中的电流方向改变,灯泡A比B熄灭慢

D.L中的电流方向不变,灯泡A比B熄灭慢

【答案】选D.

【详解】当开关S断开时,L与灯泡A组成回路,由于自感,L中的电流由原来数值逐渐减小,电流方向不变,A灯熄灭要慢;B灯电流瞬间消失,立即熄灭,正确的选项为D.

3.(2011·东城区模拟)如图所示的电路,电源电动势为E,线圈L的电阻不计.以下判断正确的是( )

A.闭合S,稳定后,电容器两端电压为E

B.闭合S,稳定后,电容器的a极板带正电

C.断开S的瞬间,电容器的a极板将带正电

D.断开S的瞬间,电容器的a极板将带负电

【答案】选C.

【详解】由题意及自感现象规律可知,当开关S闭合且电路稳定后,电容器与线圈L并联,由于线圈的直流电阻不计,所以两端电压为零,故A、B错误;断开S的瞬间,由自感规律可知,线圈中要产生感应电动势,感应电动势引起的感应电流的方向与原电流的方向一致,因而电容器的a极板将带正电,故C正确.

4.如图所示,平行导轨间距为d,一端跨接一个电阻R,匀强磁场的磁感应强度为B,方向垂直于平行金属导轨所在平面.一根金属棒与导轨成θ角放置,金属棒与导轨的电阻均不计.当金属棒沿垂直于棒的方向以恒定的速度v在金属导轨上滑行时,通过电阻R的电流是

( )

A.Bdv R

B.Bdv sin θ

R

C.

Bdv cos θ

R

D.

Bdv R sin θ

【答案】D

【详解】电流应等于感应电动势除以电阻R ,问题在于感应电动势应如何计算.能够引起感应电流的电动势是MN 间产生的电动势,所以有效切割长度应为MN .而MN 用已知参数表示应为d

sin θ,所以有效切割长

度l =

d sin θ.则E =Blv =Bdv sin θ,I =E R =Bdv

R sin θ

,所以选项D 正确. 5.物理实验中,常用一种叫做“冲击电流计”的仪器测定通过电路的电荷量,如图所示,探测线圈与冲击电流计串联后可用来测定磁场的磁感应强度.已知线圈匝数为n ,面积为S ,线圈与冲击电流计组成的回路电阻为R .若将线圈放在被测匀强磁场中,开始线圈平面与磁场垂直,现把探测线圈翻转180°,冲击电流计测出通过线圈的电荷量为q ,

由上述数据可测出被测磁场的磁感应强度为 ( ) A.qR

2nS B.qR nS C.

qR

2S

D.

qR S

【答案】A

【详解】由E =n ΔΦΔt ,I =E R ,q =I Δt ,得q =n ΔΦR ,当线圈翻转180°时,ΔΦ=2BS ,故B =qR

2nS ,故

选A.

6.如图 (a)、(b)所示的电路中,电阻R 和自感线圈L 的电阻值都很小,且小于灯A 的电阻,接通S ,使电路达到稳定,灯泡A 发光,则 ( )

A .在电路(a)中,断开S 后,A 将逐渐变暗

B .在电路(a)中,断开S 后,A 将先变得更亮,然后逐渐变暗

C .在电路(b)中,断开S 后,A 将逐渐变暗

D .在电路(b)中,断开S 后,A 将先变得更亮,然后渐渐变暗 【答案】AD

【详解】(a )电路中,灯A 和线圈L 串联,电流相同,断开S 时,线圈上产生自感电动势,阻碍原电流的减小,通过R 、A 形成回路,渐渐变暗.(b)电路中电阻R 和灯A 串联,灯A 的电阻大于线圈L 的电阻,电流则小于线圈L 中的电流,断开S 时,电源不给灯供电,而线圈产生自感电动势阻碍电流的减小,通过R 、

A 形成回路,灯A 中电流比原来大,变得更亮,然后渐渐变暗.所以选项AD 正确.

7.如图所示,两块竖直放置的金属板间距为d ,用导线与一匝数为n 的线圈连接.线圈内部分布有方向水平向左的匀强磁场.两板间有一个一定质量、电荷量为+q 的油滴在与水平方向成30°角斜向右上方的恒力F 的作用下恰好处于平衡状态.则线圈内磁场的变化情况和磁通量的变化率分别是( ) A .磁场正在增强,ΔΦΔt =3dF

2q

B .磁场正在减弱,ΔΦΔt =3dF

2nq

C .磁场正在减弱,ΔΦΔt =3dF

2q

D .磁场正在增强,ΔΦΔt =3dF

2nq

【答案】B

【详解】本题涉及带电粒子在电场中的平衡及感应电动势两个问题.由于直流电不能通过电容器,因此,电容器两极板间电压为线圈上感应电动势的大小,带电油滴所受重力竖直向下,恒力F 与水平方向成30°斜向右上方,且带电油滴恰好处于平衡状态,则可知油滴所受电场力方向水平向左,电容器右极板带正电,由楞次定律可知磁场正在减弱;由带电粒子水平方向受力平衡可得F ·cos 30°=n ΔΦq Δtd ,得ΔΦΔt =3dF

2nq .

8.穿过闭合回路的磁通量Φ随时间t 变化的图象分别如图①~④所示,下列关于回路中产生的感应电动势的论述,正确的是( )

A .图①中,回路产生的感应电动势恒定不变

B .图②中,回路产生的感应电动势一直不变

C .图③中,回路在0~t 1时间内产生的感应电动势小于在t 1~t 2时间内产生的感应电动势

D .图④中,回路产生的感应电动势先变小再变大 【答案】BD

【详解】在图①中,ΔΦΔt =0,感应电动势为零,故选项A 错;在图②中,ΔΦ

Δt 为一定值,故感应电动势

不变,选项B 正确;在图③中,0~t 1内的??

????ΔΦΔt 比t 1~t 2内的????

??ΔΦΔt 大,选项C 错;在图④中,图线上

各点切线的斜率绝对值先变小、后变大,故选项D 对.

9.如右图a 是用电流传感器(相当于电流表,其电阻可以忽略不计)研究自感现象的实验电路,图中两个电阻的阻值均为R ,L 是一个自感系数足够大的自感线圈,其直流电阻值也为R .图b 是某同学画出的在t 0时刻开关S 切换前后,通过传感器的电流随时间变化的图象.关于这些图象,下列说法中正确的是( )

a

b

A .图b 中甲是开关S 由断开变为闭合,通过传感器1的电流随时间变化的情况

B .图b 中乙是开关S 由断开变为闭合,通过传感器2的电流随时间变化的情况

C .图b 中丙是开关S 由闭合变为断开,通过传感器2的电流随时间变化的情况

D .图b 中丁是开关S 由闭合变为断开,通过传感器2的电流随时间变化的情况 【答案】 C

【详解】开关S 由断开变为闭合瞬间,流过自感线圈的电流为零,流过传感器1、2的电流均为E

2R ;闭合

电路稳定后,流过传感器1的电流为2E 3R ,流过传感器2的电流为E

3R ;开关断开后,流过传感器1的电流立

即变为零,流过传感器2的电流方向相反,从E

3R 逐渐变为零.由以上分析可知,选项C 正确.

10.如下图所示,一导线弯成半径为a 的半圆形闭合回路.虚线MN 右侧有磁感应强度为B 的匀强磁场,

方向垂直于回路所在的平面.回路以速度v 向右匀速进入磁场,直径CD 始终与MN 垂直.从D 点到达边界开始到C 点进入磁场为止,下列结论正确的是( )

A .感应电流方向发生变化

B .CD 段直导线始终不受安培力

C .感应电动势最大值E m =Bav

D .感应电动势平均值

E =1

2Bav

【答案】C

【详解】根据楞次定律可判定闭合回路中产生的感应电流方向始终不变,A 项错误;CD 段电流方向是D 指向C ,根据左手定则可知,CD 段受到安培力,且方向竖直向下,B 错;当有一半进入磁场时,产生的感应电流最大,E m =Bav ,C 对;由法拉第电磁感应定律得E =ΔΦΔt =πBav

4

,D 错.

11.位于竖直平面内的矩形平面导线框abdc ,ab 长L 1=1.0 m ,bd 长L 2=0.5 m ,线框的质量m =0.2 kg ,电阻R =2 Ω.其下方有一匀强磁场区域,该区域的上、下边界PP ′和QQ ′均与ab 平行.两边界间距离为

H ,H >L 2,磁场的磁感应强度B =1.0 T ,方向与线框平面垂直。如图27所示,令线框的dc 边从离磁场区

域上边界PP ′的距离为h =0.7 m 处自由下落.已知线框的dc 边进入磁场以后,ab 边到达边界PP ′之前的某一时刻线框的速度已达到这一阶段的最大值.问从线框开始下落,到dc 边刚刚到达磁场区域下边界

QQ ′的过程中,磁场作用于线框的安培力所做的总功为多少?(g 取10 m/s 2)

【答案】-0.8 J

【详解】本题中重力势能转化为电能和动能,而安培力做的总功使重力势能一部分转化为电能,电能的多少等于安培力做的功.

依题意,线框的ab 边到达磁场边界PP ′之前的某一时刻线框的速度达到这一阶段速度最大值,以v 0表示这一最大速度,则有

E =BL 1v 0

线框中电流 I =E R =

BL 1v 0

R

作用于线框上的安培力 F =BL 1I =B 2L 21v 0

R

速度达到最大值条件是 F =mg 所以v 0=

mgR

B 2L 21

=4 m/s. dc 边继续向下运动过程中,直至线框的ab 边达到磁场的上边界PP ′,线框保持速度v 0不变,故从线框自

由下落至ab 边进入磁场过程中,由动能定理得:

mg (h +L 2)+W 安=12

mv 20

W 安=12

mv 20-mg (h +L 2)=-0.8 J

ab 边进入磁场后,直到dc 边到达磁场区下边界QQ ′过程中,作用于整个线框的安培力为零,安培力做功

也为零,线框只在重力作用下做加速运动,故线框从开始下落到dc 边刚到达磁场区域下边界QQ ′过程中,安培力做的总功即为线框自由下落至ab 边进入磁场过程中安培力所做的功

W 安=-0.8 J

负号表示安培力做负功.

12.如右图所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻R .一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上.在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B .对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求:

(1)导轨对杆ab 的阻力大小F

f ; (2)杆ab 中通过的电流及其方向; (3)导轨左端所接电阻R 的阻值.

【答案】 (1)F -mv 22d (2)mv 22Bld 方向 a →b (3)2B 2l 2d

mv

-r

【详解】(1)杆进入磁场前做匀加速运动,有

F -F f =ma ① v 2=2ad ②

解得导轨对杆的阻力

F f =F -mv 2

2d

.③

《法拉第电磁感应定律》教学设计

《法拉第电磁感应定律》教学设计 陕西省西安市田家炳中学简波 一、设计思想 法拉第电磁感应定律是电磁学的核心内容。从知识发展来看,它既与电场、磁场和稳恒电流有紧密联系,又是后面学习交流电、电磁振荡和电磁波的基础。它既是本章的教学重点,也是教学难点。 在学习本节内容之前,学生已经掌握了恒定电流、电磁感应现象和磁通量的相关知识,并且也知道了变化量和变化率的概念。学生已经具备了很强的实验操作能力,而且本节课的实验也是上节课所演示过的,只不过研究的侧重点不同。因此,有条件的学校可将本节课的演示实验改为学生分组实验。另外,学生对物理学的研究方法已有较为深刻的认识,在自主学习、合作探究等方面的能力有了较高的水平。 本节课的重点法拉第电磁感应定律的建立过程,设计中采用了让学生自己设计方案,自己动手做实验,思考讨论,教师引导找出规律的方法,使学生能够深刻理解法拉第电磁感应定律的建立过程。对于公式,让学生自己根据法拉第电磁感应定律,动手推导,使学生深刻理解。 本节课的难点是对、、物理意义的理解,在难点的突破上,采用 了类比的方法。把、、、E和υ、Δυ、、a类比起来,使学生更 容易理解、、和E之间的联系。 二、教学目标 (一)知识和能力目标 1.知道感应电动势的概念,会区分Φ、ΔΦ、的物理意义。 2.理解法拉第电磁感应定律的内容和数学表达式,并能应用解答有关问题。 3.知道公式的推导过程及适用条件,并能应用解答有关问题。

4.通过学生对实验的操作、观察、分析,找出规律,培养学生的动手操作能力,观察、分析、总结规律的能力。 (二)过程与方法目标 1.教师通过类比法引入感应电动势,通过演示实验,指导学生观察分析,总结规律。 2.学生积极思考认真比较,理解感应电动势的存在,通过观察实验现象的分析讨论,总结影响感应电动势大小的因素。 (三)情感、态度、价值观目标 1.通过学生之间的讨论、交流与协作探究,培养学生之间的团队合作精神。 2.让学生在探究过程中体验解决问题的成功喜悦,增进学生学习物理的情感。 三、教学重点 法拉第电磁感应定律的建立过程以及对公式E=、的理解。 四、教学难点 对Φ、ΔΦ、物理意义的理解。 五、教学准备 准备实验仪器:电流计、蹄形磁铁、螺线管、铁芯、学生电源、变阻器、开关、导线若干。(若为分组实验,应准备若干组器材) 六、教学过程 (一)引入新课 教师和学生一起回顾第一节中的三个实验。在这三个实验中,闭合电路中都产生了感应电流,则电路中必须要有电源,电源提供了电动势,从而产生电流。在电磁感应现象中产生的电动势叫做感应电动势。那么感应电动势的大小跟哪些因素有关呢?本节课我们就来共同研究这个问题。 (二)讲授新课 *感应电动势

电磁感应现象教学反思

篇一:电磁感应教学反思 《电磁感应》教学反思 —— 一名年轻教师的课后感想 临沧 市一中物理教研组李芳 时光 飞逝,转眼间,我步入教学岗位已经接近三年了,在我从一个学生变成一名教师的巨大角色转 换中,在学校领导和老教师的帮助和指导下,我努力做好每一件事情,注重自己教学业务水平 的提高、注重反思教学中的缺漏、注意做好对学生和引导和与学生之间的沟通,但毕竟经验 不足、能力有限、应变能力还很欠缺,教学中还是经常快乐并失落着。 对于 一名教师来说,每上完一节课,都会有很多感受,有源于 传授 知识的喜悦、有对重点突出和难点突破的成就感、当然也有对课中遗漏每个细节的遗憾、有对 部队学生有厌学情绪的不解、有对没有处理好教学中出现的一些突发事件的沮丧、有对课堂效 率不高的忧虑 本节 课我试图改变这种弊端,在教学过程的总体设计上以学生为探索者,教师做引路人。按照教师 为主导,学生为主体,多媒体演示作手段,问题为线索的构想,采用引导探索式教法来进行教 学。试图教学过程的各个环节不断地为学生创设问题情境,设置悬念,适时点拨。例如在引 入新课时启发学生用逆向思维去提出问题,激发他们探求新知识的兴趣。当探索多次失败时, 启迪学生要持之以恒;当探索成功时,则简明扼要地概括研究问题的思路。把学生从纯知识的 学习导向知识、能力、思想的全面发展。 首 先,开始时没有培养好学生的学习兴趣,让学生由“老师要我学”变为“我要学”这个问题上 我做的还很不够。有学生上课注意力不集中,甚至打瞌睡。 其 次,课堂中还是没做到敢于“放”,善于“引” 。这堂课在学生探究方法上和时间可能不够 的问题上会比较突出,三个探究实验能否收到良好的教学效果,与教师的科学引导密切相关。 如果“放而不引”,流于形式,不仅教学时间不够,学生也可能“玩无所获”,如探究“电磁 感应现象”实验、“感应电流的大小与哪些因素有关”的实验,实验次数较多,操作中易出现 如电路故障、方法不合理等这样那样的问题,没有教师的合理引导,学生不可能在有限时间内 完成学习任务。 最 后,我对初中物理教材和高中物理教材的研究还不够透彻。 篇二:电磁感应教学反思 高二物理《电磁感应现象》教学反思

法拉第电磁感应定律教案

§ 4.3 法拉第电磁感应定律 编写 薛介忠 【教学目标】 知识与技能 ● 知道什么叫感应电动势 ● 知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、t ??Φ ● 理解法拉第电磁感应定律内容、数学表达式 ● 知道E =BLv sin θ如何推得 ● 会用t n E ??Φ=和E =BLv sin θ解决问题 过程与方法 ● 通过推导到线切割磁感线时的感应电动势公式E =BLv ,掌握运用理论知识探究问题的方法 情感态度与价值观 ● 从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想 ● 了解法拉第探索科学的方法,学习他的执著的科学探究精神 【重点难点】 重点:法拉第电磁感应定律 难点:平均电动势与瞬时电动势区别 【教学内容】 [导入新课] 在电磁感应现象中,产生感应电流的条件是什么? 在电磁感应现象中,磁通量发生变化的方式有哪些情况? 恒定电流中学过,电路中产生电流的条件是什么? 在电磁感应现象中,既然闭合电路中有感应电流,这个电路中就一定有电动势。在电磁感应现象中产生的电动势叫感应电动势。下面我们就来探讨感应电动势的大小决定因素。 [新课教学] 一.感应电动势 1.在图a 与图b 中,若电路是断开的,有无电流?有无电动势? 电路断开,肯定无电流,但有电动势。 2.电流大,电动势一定大吗? 电流的大小由电动势和电阻共同决定,电阻一定的情况下,电流越大,表明电动势越大。 3.图b 中,哪部分相当于a 中的电源?螺线管相当于电源。 4.图b 中,哪部分相当于a 中电源内阻?螺线管自身的电阻。 在电磁感应现象中,不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势。有感应电动势是电磁感应现象的本质。

电磁感应定律的应用教案

电磁感应定律应用 【学习目标】 1.了解感生电动势和动生电动势的概念及不同。 2.了解感生电动势和动生电动势产生的原因。 3.能用动生电动势和感生电动势的公式进行分析和计算。 【要点梳理】 知识点一、感生电动势和动生电动势 由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,一般分为两种:一种是磁场不变,导体运动引起的磁通量的变化而产生的感应电动势,这种电动势称作动生电动势,另外一种是导体不动,由于磁场变化引起磁通量的变化而产生的电动势称作感生电动势。 1.感应电场 19世纪60年代,英国物理学家麦克斯韦在他的电磁场理论中指出,变化的磁场会在周围空间激发一种电场,我们把这种电场叫做感应电场。 静止的电荷激发的电场叫静电场,静电场的电场线是由正电荷发出,到负电荷终止,电场线不闭合,而感应电场是一种涡旋电场,电场线是封闭的,如图所示,如果空间存在闭合导体,导体中的自由电荷就会在电场力的作用下定向移动,而产生感应电流,或者说导体中产生感应电动势。 要点诠释:感应电场是产生感应电流或感应电动势的原因,感应电场的方向也可以由楞次定律来判断。感应电流的方向与感应电场的方向相同。 2.感生电动势 (1)产生:磁场变化时会在空间激发电场,闭合导体中的自由电子在电场力的作用下定向运动,产生感应电流,即产生了感应电动势。 (2)定义:由感生电场产生的感应电动势成为感生电动势。 (3)感生电场方向判断:右手螺旋定则。 3、感生电动势的产生 由感应电场使导体产生的电动势叫做感生电动势,感生电动势在电路中的作用就是充当电源,其电路是内电路,当它和外电路连接后就会对外电路供电。 变化的磁场在闭合导体所在的空间产生电场,导体内自由电荷在电场力作用下产生感应电流,或者说产生感应电动势。其中感应电场就相当于电源内部所谓的非静电力,对电荷产生作用。例如磁场变化时产生的感应电动势为cos B E nS t ?θ?= . 知识点二、洛伦兹力与动生电动势 导体切割磁感线时会产生感应电动势,该电动势产生的机理是什么呢?导体切割磁感线产生的感应电动势与哪些因素有关?他是如何将其他形式的能转化为电能的? 1、动生电动势

电磁感应现象教学设计

电磁感应现象教学设计 电磁感应现象教学设计 篇一:电磁感应现象教学设计 一、教材分析 课本从4个层面介绍了电磁感应——定性了解定磁感应现象、掌握感应电动势方向的判定规则和定量计算感应电动势的大小、了解电磁感应的两类情况、了解电磁感应规律在自感涡流电磁阻尼电磁驱动中的应用。 教材对感应电流产生条件、感应电流方向的判定、感应电动势的大小等的处理,全部是从唯象的角度,而且全部是拿磁通量来说事;但实际上,电磁感应存在两种本质完全不同的情况,而且谈论磁通量必须有一个回路,可是一根导体棒切割磁感线却没有回路。这种处理,实际上给学生造成了许多理解和应用上的困难。 不过,教材利用第五节做了一个补充,那么,一轮复习,笔者认为就应该纠回正常思路,先分两种情况说明,然后总结出感应电流产生条件、感应电流方向的判定规则和感应电动势的大小计算的磁通量表述。 另外,一轮复习,第一讲承担着全章知识内容的引领作用,因此本讲可以将本章所涉及的大部分关键模型拿出来与学生见面。 二、学情分析 学生已经自主复习了教材,并自主完成了第一讲资料前后的填空、

辨析和例题、练习,对本章、本讲所涉及的内容和题型都有了较为熟悉的了解。 但是,从练习的完成质量来看,学生对电磁感应的实质、磁通量的变化、楞次定律的综合应用都存在明显困难,这需要老师引导梳理和透彻理解本讲内容、并分类讲解楞次定律的应用思路和技巧。三、教学目标 1、知识与技能:熟练掌握磁通量及其变化的计算方法,理解感应电流的产生条件,深刻理解楞次定律并能够熟练、灵活应用。 2、过程与方法:通过教师的引导,一起重新整理知识脉络,从而加深对本章本节知识内容的理解;同时,通过对练习题的归类分析,从而加深对楞次定律的理解。 3、情感、态度与价值观:培养学生深入学习本章的兴趣和信心。 四、教学重难点 1、磁通量及其变化; 2、感应电流的产生条件; 3、楞次定律、右手定则的理解和应用。五、教学媒体 PPT多媒体课件,《与名师对话》一轮复习资料六、教学时间 七、教学反思 1、本讲第一部分内容——知识串讲部分,结合PPT课件讲快一些,因为特殊原因我的课件未能用成,导致知识串讲部分没有讲完。 2、有教师反映,感生电动势的讲解超纲——高考不考,一轮复习就不应该涉及。 3、楞次定律是电磁感应一章的难点,从后续几讲练习完成情况

法拉第电磁感应定律教学设计

§4.4法拉第电磁感应定律 ——感应电动势的大小 昌吉市第四中学 常志平 【教学依据】 人教版高中物理选修3-2第四章第四节 【教学流程】 1.感应电动势:创设问题情景→设计问题→迁移类比→回答问题→定义概念 2.法拉第电磁感应定律:创设问题情景→提出问题→设计实验→进行实验→分析与论证→交流与评估→总结规律→规律应用 【教材分析】 本节是选修3-2模块的一个二级主题“电磁感应”的一节内容(另外两个二级主题分别是交变电流和传感器)。本模块的大部分内容都要求通过实验、探究与活动来展现。应让学生尽可能多的经历一些探究的过程,领悟物理学研究的思想和方法。结合这一要求,虽然本节教材没有安排实验,然而我认为在本节教学设计中根据教材前后内容的承接关系及学生的认知能力和特点,还是以实验定性探究来突破重难点和落实三维目标。 由于高中阶段电磁感应定律的定量实验很难完成,因而【新课程标准】没有要求通过定量实验来研究,但应通过定性的实验让学生观察磁通量的变化快慢是影响感应电动势的主要因素,从而直接给出法拉第电磁感应定律和公式。要求学生能应用电磁感应定律解释一些生活和技术中的现象,要会应用电磁感应定律计算有关问题。 就本节内容而言,“法拉第电磁感应定律”是电磁学的核心内容,从知识的发展来看,它既能与电场、磁场和恒定电流有紧密的联系,又是学习交流电、电磁振荡和电磁波的重要基础;从能力的发展来看,它既能在与力、热知识的综合应用中培养综合分析能力,又能全面体现能量守恒的观点。因此,它既是教学的重点,又是教学的难点。根据课程标准和学生的接受能力,教学中应着重揭示法拉第电磁感应定律及其公式E=n t ??Φ的建立过程、物理意义及应用,(而公式E =BLv 只作为法拉第电磁感应定律在特定条件下推导出的表达式.这样做可以让学生在这节课的学习中分清主次,减轻学生认知上的负担,又不降低应用上的要求)可选讲。 【学情分析】 此部分知识较抽象,而现在学生的抽象思维能力还比较弱。所以在这节课的教学中,应该注重体现新课程改革的要求,注意新旧知识的联系,同时紧扣教材,通过实验、类比、等效的手段和方法,来化难为简、循序渐进,力求通过引导、启发,使同学们能利用已掌握的旧知识,来理解所要学习的新规律,力求通过明显的实验现象启发同学们主动起来,从而活跃大脑,激发兴趣,变被动记忆为主动认知。 【三维目标】 1.知识与技能: ①知道感应电动势的含义,能区分磁通量、磁通量的变化量和磁通量的变化率; ②理解法拉第电磁感应定律的内容和表达式,会用法拉第电磁感应定律解答有关问题. 2.过程与方法: ①通过演示实验,定性分析感应电动势的大小与磁通量变化快慢之间的关系。培养学生对实验条件的控制能力和对实验的观察能力;

法拉第电磁感应定律总结

法拉第电磁感应定律总结 一·电磁感应是指利用磁场产生电流的现象。所产生的电动势叫做感应电动势。所产生的电流叫做感应电流 注意: 1) 产生感应电动势的那部分导体相当于电源。 2) 产生感应电动势与电路是否闭合无关, 而产生感应电流必须闭合电路。 3) 产生感应电流的两种叙述是等效的, 即闭合电路的一部分导体做切割磁感线 运动与穿过闭合电路中的磁通量发生变化等效。: 二·电磁感应规律 1感应电动势的大小: 由法拉第电磁感应定律确定。 当长L的导线,以速度v,在匀强磁场B中,垂直切割磁感线,其两端间感应电动势的大小为E=BLV(1)。 此公式使用条件是方向相互垂直,如不垂直,则向垂直方向作投影。,电路中感应电动势的大小跟穿过这个电路的磁通变化率成正比——法拉第电磁感应定律。 2在回路中面积变化,而回路跌磁通变化量,又知B S T。 如果回路是n匝串联,则 E=NBS/T(2)。 3公式一:要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直 (l^B )。2)为v与B的夹角。l为导体切割磁感线的有效长度(即l为导体实际长度在垂直 于B方向上的投影) 公式二: 。注意: 1)该式普遍适用于求平均感应电动势。2)只与穿过电路的磁通量的变化率有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关 公式中涉及到磁通量的变化量的计算, 对的计算, 一般遇到有两种情况: 1)回路与 磁场垂直的面积S不变, 磁感应强度发生变化, 由, 此时,此式中的叫磁感应强度的变化率, 若是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则, 线圈绕垂直于匀强磁场的轴匀速转动产生交 变电动势就属这种情况。 4严格区别磁通量, 磁通量的变化量磁通量的变化率, 磁通量, 表示穿过研究平面的 磁感线的条数, 磁通量的变化量, 表示磁通量变化的多少, 磁通量的变化率表示磁通量变 化的快慢, , 大, 不一定大; 大, 也不一定大, 它们的区别类似于力学中的v, 的区别, 另外I、也有类似的区别。 5 当长为L的导线,以其一端为轴,在垂直匀强磁场B的平面内,以角速度匀速转动时,其两端感应电动势为E=1/2BL*LW。 6 三种切割情形的感应电动势

《电磁感应现象》教学设计

《电磁感应现象》教学设计 一、教材分析 电磁感应现象实在学生学习了电学的初步知识和电流能够产生磁场的基础上编排的,是初中电与磁的重点,同时也是电磁学的基础,通过本节课的学习,不仅能加深对电能生磁的理解,同时让学生对电磁学有一个较全面的认识,为下面和以后有关电磁学的学习奠定了基础。此外,电磁感应知识与人们日常生活、生产技术有着密切的联系,因此,学习这部分知识有重要的现实意义。 二、学情分析 初中学生正处于发育、成长阶段,他们对事物存在好奇心,具有强烈的操作兴趣。而且通过前面的学习,已经初步掌握了科学探究的方法,分析问题、应用知识解决问题的能力也有所加强。 三、设计理念 本节课以新课程理念为指导,实施探究式教学,注重培养学生动手、动脑的良好习惯,让学生通过自主探究获得新知识,渗透科学探索的精神。 本节课利用日常生活中的“电”由何而来,引入新课,以激发学生的学习欲望,体现了从生活走向物理。在探究“磁生电”的过程中,采取了“逆向思维”、“科学探究”等方法,使学生始终处于积极的思索之中,把“教学过程”转变为“探究过程”,培养了学生良好的思维习惯和初步的科学实践能力。而在学习发电机的过程中,则以学生自主学习为主,结合图片和模型,解决有关问题,同时通过“三峡工程”和“磁记录”等内容,把所学知识应用与生产实际中,以培养学生的自学能力以及终生的探索乐趣。 四、设计思路 1、三维目标 (1)知识与技能 ①理解电磁感应现象。 ②了解感应电流的方向与导体运动的方向及磁场的方向有关。

③知道发电机的工作原理,知道发电机在工作时能量如何转化。 ④知道我们的生活用电是交流电。 (2)过程与方法 ①通过经历探究“磁生电”的过程,培养学生进行逆向思维和发散思维的能力。 ②通过制作发电机的过程培养学生的动手实践能力,鼓励学生积极开展小 发明、小制作活动。 (3)情感、态度与价值观: ①通过向学生介绍法拉第的生平,培养学生锲而不舍、坚忍不拔的思想品质。 ②通过介绍发电机的发明,是学生了解科技发展是人类社会进步的巨大推动力。 2、教学重点和难点 (1)教学重点:磁如何产生电。 (2)教学难点:电磁感应实验的设计方案和制作小发电机。 3、教学方法 观察实验法、科学猜想、实验探索法、讨论归纳法、多媒体演示、合作探究。 4、学法指导 现代的素质教育有一个更新的观念,就是培养学生的创新精神和实践能力,这其中最主要的因素就是懂得自己去发现问题而不是等别人来提问题,这也是我们以前教学过程中不太注意的,所以,现在我们要注意这些问题的发现。 对现时期的教学来讲,我们不仅要教学生知识,培养学生能力,传播学习的思想方法,重要的是通过这些手段,培养他们的学习能力,为他们今后继续教育或终身教育打下良好的基础。所以教学法部分有:(1)使学生学会发现问题,然后是分析、解决问题的能力。学生只有有了疑问,才有学习的动力,而问题的解决,恰好就是建立新的知识结构的过程,从而培养学生

法拉第电磁感应定律教案新人教版选修Word版

高二物理选修3-2《法拉第电磁感应定律》教案 目的要求 复习法拉第电磁感应定律及其应用。 知识要点 1.法拉第电磁感应定律 (1)电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即t k E ??Φ=,在国际单位制中可以证明其中的k =1,所以有t E ??Φ=。对于n 匝线圈有t n E ??Φ=。(平均值) 将均匀电阻丝做成的边长为l 的正方形线圈abcd 从匀强磁场中向右匀速拉出过程,仅ab 边上有感应电动势E =Blv ,ab 边相当于电源,另3边相当于外电路。ab 边两端的电压为3Blv /4,另3边每边两端的电压均为Blv /4。 将均匀电阻丝做成的边长为l 的正方形线圈abcd 放在匀强磁场 中,当磁感应强度均匀减小时,回路中有感应电动势产生,大小为E =l 2(ΔB /Δt ),这种情况下,每条边两端的电压U =E /4-I r = 0均为零。 (2)感应电流的电场线是封闭曲线,静电场的电场线是不封闭的,这一点和静电场不同。 (3)在导线切割磁感线产生感应电动势的情况下,由法拉第电磁感应定律可推导出感应电动势大小的表达式是:E=BLv sin α(α是B 与v 之间的夹角)。(瞬时值) 2.转动产生的感应电动势 ⑴转动轴与磁感线平行。如图,磁感应强度为B 的匀强磁场方向垂直于纸面向外,长L 的金属棒oa 以o 为轴在该平面内以角速度ω逆时针匀速转动。求金属棒中的感应电动势。在应用感应电动势的公式时,必须注意其中的速度v 应该指导线上各点的平均速度,在本题中 应该是金属棒中点的速度,因此有22 12L B L BL E ωω=?=。 ⑵线圈的转动轴与磁感线垂直。如图,矩形线圈的长、宽分 别为L 1、L 2,所围面积为S ,向右的匀强磁场的磁感应强度为B ,线圈绕图示的轴以角速度ω匀速转动。线圈的ab 、cd 两边切割磁 感线,产生的感应电动势相加可得E=BS ω。如果线圈由n 匝导线 绕制而成,则E=nBS ω。从图示位置开始计时,则感应电动势的瞬时值为e=nBS ωcos ωt 。该结论与线圈的形状和转动轴的具体 位置无关(但是轴必须与B 垂直)。 实际上,这就是交流发电机发出的交流电的瞬时电动势公式。 3.电磁感应中的能量守恒 只要有感应电流产生,电磁感应现象中总伴随着能量的转化。电磁感应的题目往往与能量守恒的知识相结合。这种综合是很重要的。要牢固树立起能量守恒的思想。 例题分析 例1:如图所示,长L 1宽L 2的矩形线圈电阻为R ,处于磁感 L 1 v c B l a b d l v a b d ω o a v b c L 1 L 2 ω

法拉第电磁感应定律教案

第四节法拉第电磁感应定律(教案) 教学目标: (一)知识与技能 1.让学生知道什么叫感应电动势,知道电路中哪部分相当于电源 2.让学生知道磁通量的变化率是表示磁通量变化快慢的物理量。 3.让学生理解法拉第电磁感应定律内容、数学表达式。 4.知道E=BLv sinθ如何推得。 (二)过程与方法 (1)通过实验,培养学生的动手能力和探究能力。 (2)通过推导导线切割磁感线时的感应电动势公式E=BLv,掌握运用理论知识探究问题的方法。 (三)情感、态度与价值观 了解法拉第探索科学的方法,学习他的执著的科学探究精神。 教学重点 1、让学生探究影响感应电动势的因素,并能定性地找出感应电动势与磁通量的变化率的关 系。 2、会推导导线切割磁感线时的感应电动势的表达式。 教学难点 如何设计探究实验定性研究感应电动势与磁通量的变化率之间的关系。 教学用具 多媒体电脑、PPT课件、8组探究实验器材(线圈、蹄形磁铁、导线、电流计等) 教学过程: 课堂前准备 将实验器材提前分组发给学生。以便分组实验。 引入新课 师:在物理学史上,有这样一位科学家,他是一个贫穷的铁匠的儿子,做过订书学徒,干过非常卑贱的工作,但却取得了非凡的成就。他用一个线圈和一个磁铁,改变了整个世界。

今天,从美国的阿拉斯加到中国的青藏高原,从北极附近的格陵兰岛,到南极考察站,都里不开他一百多年前的发现,这位科学家是谁?——英国科学家法拉第。 下面大家各小组在重新做一下这一有着划时代意义的实验:(学生做实验) 在学生组装实验器材做实验的同时,教师进行巡视,指导。学生可能出现的情况: 组装器材缓慢,接触不好,现象不明显等。教师应加以必要的指导。 师:同学们,我们用一个线圈和一个磁铁竟然使闭合电路中产生了电流,这是多么令人惊奇的发现!根据电路的知识,在这个实验电路中哪一部分相当于电源呢?(学生回答) 师:如果你是法拉第,当你发现了电磁感应现象以后,下一步你要进一步研究什么呢?(学生回答) 好,下面我们就来探究一下影响感应电动势的因素。现在大家猜想一下:感应电动势可能由什么因素决定?小组讨论一下。(学生讨论) (可让学生自由回答)情况预测:线圈的大小、匝数、磁通量的大小、磁通量变化的大小、时间、磁通量的变化率、磁感应强度等等…….. 师:大家猜想的都有可能。我们知道产生感应电流的条件是磁通量要变化,那么是不是就意味着感应电动势和磁通量的变化有关,与变化时间有关。下面我们就来探究一下感应电动势E 与磁通量的变化ΔΦ和变化时间Δt 有什么定性关系。 研究三个变量之间的关系,我们采用什么方法? (生答)待定系数法黑板上板书: ΔΦ一定,Δt 增大,则E Δt 一定,ΔΦ增大,则E 师:好,现在就请各组的同学按照学案上的提示,看能不能 设计试验来探究一下: 在这里教师要在巡回中加以指导,对对学生的设计方案进行 必要修改和纠正。可先让学生说一下实验方案。(注意图中 两个电表不应该是电流计) 学生试验完成后,让学生在黑板上填上结论。 精确的定量实验人们得出:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,这就是法拉第电磁感应定律。 表达式:E= t n E ??Φ= 实际上,上式只是单匝线圈所产生的感应电动势的表达式,如果是n 匝线圈,那么表达式应该是怎样的?为什么?可以从理论上得出吗?

《4.4法拉第电磁感应定律教案》

4.4法拉第电磁感应定律 【教学目标】 (1)知道感应电动势,及决定感应电动势大小的因素。 (2)知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、 t ??Φ。 (3)理解法拉第电磁感应定律内容、数学表达式。 (4)知道E =BLv sin θ如何推得。 【教学重点】法拉第电磁感应定律。 【教学难点】感应电流与感应电动势的产生条件的区别。 【教学方法】自主学习 合作探究 巩固延伸 【教学过程】 一、复习提问:1、在电磁感应现象中,产生感应电流的条件是什么? 2、恒定电流中学过,电路中存在持续电流的条件是什么? 3、在发生电磁感应的情况下,用什么方法可以判定感应电流的方向? 二、引入新课 1、问题1:既然会判定感应电流的方向,那么,怎样确定感应电流的强弱呢? 2、问题2:如图所示,在螺线管中插入一个条形磁铁,问 ①、在条形磁铁向下插入螺线管的过程中,该电路中是否都有电流?为什么? ②、有感应电流,是谁充当电源? ③、上图中若电路是断开的,有无感应电流电流?有无感应电动势? 3、产生感应电动势的条件是什么?4、比较产生感应电动势的条件和产生感应电流的条件你有什么发现? 三、进行新课 (一)、探究影响感应电动势大小的因素 (1)猜测:感应电动势大小跟什么因素有关?(2)探究问题: 问题1、在实验中,电流表指针偏转原因是什么? 问题2:电流表指针偏转程度跟感应电动势的大小有什么关系? 问题3:在实验中,快速和慢速效果有什么相同和不同? 实验结论电动势的大小与磁通量的变化快慢有关,磁通量的变化越快电动势越大,磁通量的变化越慢电动势越小。 (二)、法拉第电磁感应定律 a b G E r

《电磁感应》教学设计

《电磁感应》教学设计 (一)引入新课:我们的物理“很美”,它具有“和谐的美”、“规律的美”——如浩瀚的宇宙及我们的太阳系在各就各位的运行着;它还具有“对称美”——如有“正电”就有“负电”、磁体有“南极”就有“北极”、平面镜中的像与物完全对称、还听说有“物质”就有“反物质”??当然物理也具有“奇异的美”,如听说有“磁单极子”,还有什么“宇称不守恒”……随着以后年级的递增,你会逐渐发现物理的各种美。通过奥斯特实验,我们知道:“电”能产生出“磁” ,(老师不妨在30秒内重现这个实验),那么同学猜想,反过来,“磁”能否生产出“电”来呢?(顺便板书逆向箭头并带问号) 几乎所有学生猜:“磁”也能生“电”。(那只是乱猜,无正当 理由,只是思维定势喊的) (二)引导学生确定需要哪些器材(这里,老师起很大主导作用):当然要有磁体,还得有导线(否则,电流在哪流?),我给准备的是2m长的。还得有检验是否生出电流来的电流表(否则,你生出电来 了都还不知道呢)。 (三)这时,老师宣布:“开始试验,我看咱班那位同学把法拉 第憋了10年才发现的电流找出来”:同学们跃跃欲试,摩拳擦掌, 都想第一个发现,情绪激动,但无从下手,不知怎么摆弄好,憋得难

受,我则煞有介事的巡视着??我知道他们几乎发现不了。但我就想让他们憋很长一段时间并且还没书看,急的难受。巡视时,我发现各种各样的做法:1、导线敞开着,放在蹄型磁体上不动(很多学生);2、导线敞开着,在蹄型磁体上随便乱动(很多学生);3、导线敞开着,放在蹄型磁体中间不动(很多学生);4、导线敞开着,放在蹄型磁体中间晃动(部分学生);?? 这时候,我只问学生一句话:“开着的导线里会有电流吗?”只见大部分学生开始把导线闭合。但还是没有同学生产出电流来,我再说:“不急,人家法拉第用了好几年,我们才一节课,不过二班有个同学发现了”(其实没有)。就这样,学生们在好胜心的驱动下,积极的想着办法??我巡视着,开始发现有些学生把导线缠绕到蹄型磁体上。约15——20分钟以后(绝不是浪费),我走上讲台演示,我用的演示器材就是普通导线,我用夸张的慢动作缠绕10圈,快速切割,学生不约而同的:“啊,电流!”,我再用夸张的慢动作缠绕20圈,30圈,学生高呼:“大电流!”;再换正规实验器材——线圈,再做实验,然后,在线圈里接入一个灯泡,也发光。到此,学生一直感叹,后悔,我就差那么一点点!此时,我讲法拉第及科拉顿的故事。发给学生们线圈也感受感受。师生共同总结:产生电流的条件及电流方向与什么有关。

高中物理-法拉第电磁感应定律教案

高中物理-法拉第电磁感应定律教案 教学目标:知识与技能1、知道什么是感应电动势。2、了解什么是磁通量以及磁通量的变化量和磁通量的变化率。3、在实验基础上,了解法拉第电磁感应定律内容及数学表达式,学会用该定律分析与解决一些简单的问题。4、培养类比推理和通过观察、实验、归纳寻找物理规律的能力。 过程与方法通过推导到线切割磁感线时的感应电动势公式t n E ??Φ=,掌握运用理论知识探究问题的方法 情感态度与价值观从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想;了解法拉第探索科学的方法,学习他的执著的科学探究精神 教学重点:法拉第电磁感应定律 教学难点:磁通量的理解 教具:磁铁、螺线管、电流表、学生电源、电键、滑动变阻器、小螺线管A 、大螺线管B 教学过程: 一、感应电动势 说明:既然在闭合电路中产生了感应电流,这个电路中就一定有电动势。我们把电磁感应现象中产生的电动势叫做感应电动势。在闭合电路里,产生感应电动势的那部分导体相当十电源。在同一个电路中,感应电动势越大,感应电流越大。那么,感应电动势的大小跟什么因素有关呢?请看实验 演示实验:实验装置:图3 .1-2 和图3.1-3 实验过程:在图3.1 -2中,使导体捧以不同的速度切割磁感线,砚察电流表指针偏转的幅度。 实验结论:在导线切割磁感线的过程中,切割速度越大,感应电动势越大 实验过程:在图3.1-3 中,使磁铁以不同的速度插入线圈和从线圈中抽出,观察电流表指针偏转的幅度。 实验结论:在磁铁插入和从线圈中拔出的过程中,插入和拔出的速度越大,感应电动势越大 说明:导体捧以较大的速度切割磁感线,和磁体以较大的速度插入线圈和从线圈中抽出,都使线圈中的磁通量发生变化,且磁通量变化的速度比较大 说明:许多实验都表明,感应电动势的大小跟磁通变化的快慢有关。我们用磁通

高中物理11电磁感应现象的发现教案教科版

1.1 电磁感应现象的发现 [要点导学] 1、不同自然现象之间是有相互联系的,而这种联系可以通过我们的观察与思考来发现。例如摩擦生热则表明了机械运动与热运动是互相联系的,奥斯特之所以能够发现电流产生磁场,就是因为他相信不同自然现象之间是互相联系和互相转化的。 2、机遇总是青睐那些有准备的头脑,奥斯特的发现是必然中的偶然。发现中子的历史过程(在选修3-5中学习)也说明了这一点。小居里夫妇首先发现这种不带电的未知射线,他们误认为这是能量很高的射线,一项划时代的伟大发现就与小居里夫妇擦肩而过了。当查德威克遇到这种未知射线时,查德威克很快就想到这种不带电的射线可能是高速运动的中子流,因为查德威克的老师卢瑟神福早已预言中子的存在,所以查德威克的头脑是一个有准备的头脑,查德威克就首先发现了中子,并因此获得诺贝尔物理学奖。所以学会用联系的眼光看待世界,比记住奥斯特实验重要得多。 3、法拉第就是用联系的眼光看待世界的人,他坚信既然电流能够产生磁场,那么利用磁场应该可以产生电流。信念是一种力量,但信念不能代替事实。探索“磁生电”的道路非常艰苦,法拉第为此寻找了10年之久,我们要学习的就是这种百折不挠的探索精神。 4、法拉第为什么走了10年弯路,这个问题值得我们研究。原来自然界的联系不是简单的联系,自然界的对称不是简单的对称,“磁生电”不象“电生磁”那样简单,“磁生电”必须在变化、运动的过程中才能出现。法拉第的弯路应该使我们对自然界的联系和对称的认识更加深刻、更加全面。 [范例精析] 例1奥斯特的实验证实了电流的周围存在磁场,法拉第经过10年的努力终于发现了利用磁场产生电流的途径,法拉第认识到必须在变化、运动的过程中才能利用磁场产生电流。法拉第当时归纳出五种情形,请说出这五种情形各是什么。 解析法拉第把能引起感应电流的实验现象归纳为五类:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。它们都与变化和运动有关。 拓展法国物理学家安培也曾将恒定电流或磁铁放在导体线圈的附近,希望在线圈中看到被“感应”出来的电流,可是这种努力均无收获。因为“磁生电”是在变化或运动中产生的物理现象。 例2 自然界的确存在对称美,质点间的万有引力F=Gm1m2/r2和电荷间的库仑力F=kq1q2/r2就是一个对称美的例子。电荷间的相互作用是通过电场传递的,质点间的相互作用则是通过引力场传递的。点电荷q的在相距为r处的电场强度是E=kq/r2,那么质点m在相距为r 处的引力场强度是多少呢?如果两质点间距离变小,引力一定做正功,两质点的引力势能一定减少。如果两电荷间距离变小,库仑力一定做正功吗?两电荷的电势能一定减少吗?请简述理由。

《法拉第电磁感应定律》教学案例

法拉第电磁感应定律教学设计 鹿城中学理化生教研组田存群 课程背景: “法拉第电磁感应定律”是高二物理选修(3-2)中的第四章第4节内容,是电磁学的核心内容。从知识的发展来看,它既能与电场、磁场和恒定电流有紧密的联系,又是学习交流电、电磁振荡和电磁波的重要基础。从能力的发展来看,它既能在与力、热知识的综合应用中培养综合分析能力,又能全面体现能量守恒的观点。因此,它既是教学的重点,又是教学的难点。 鉴于此部分知识较抽象,而我的学生的抽象思维能力较弱。在这节课的教学中,我注重体现新课程改革的要求,注意新旧知识的联系,同时紧扣教材,通过实验、类比、等效的手段和方法,来化难为简,使同学们利用已掌握的旧知识,来理解所要学习的新概念。力求通过明显的实验现象诱发同学们真正的主动起来,从而激发兴趣,变被动记忆为主动认识。 课程详述: 一.教学目标: 1.知道感应电动势,能区分磁通量的变化Δφ和磁通量的变化率Δφ/Δt。 通过演示实验,定性分析感应电动势的大小与磁通量变化快慢之间的关系。培养学生对实验条件的控制能力和对实验的观察能力。 2.通过法拉第电磁感应定律的建立,进一步定量揭示电与磁的关系,培养学生类比推理能力和通过观察、实验寻找物理规律.使学生明确电磁感应现象中的电路结构,通过对公式E=nΔφ/Δt的理解,引导学生推导出E=BLv,并学会初步的应用。 3.通过介绍法拉第的生平事迹,使学生了解法拉第探索科学的方法和执著的科学研究精神,教育学生加强学习的毅力和恒心。 二.教学重点: 法拉第电磁感应定律的建立过程及规律理解。 三.教学难点: 1.磁通量、磁通量的变化量、磁通量的变化率三者的区别。 2.理解E=nΔφ/Δt是普遍意义的公式,而E=BLv是特殊情况下导线在切割磁感线情况下的计算公式。 四.教具:

电磁感应教学设计

电磁感应教学设计 (一)教学目的 1.知道电磁感应现象及其产生的条件。 2.知道感应电流的方向与哪些因素有关。 3.培养学生观察实验的能力和从实验事实中归纳、概括物理概念与规律的能力。 (二)教具 蹄形磁铁4~6块,漆包线,演示用电流计,导线若干,开关一只。 (三)教学过程 1.由实验引入新课 重做奥斯特实验,请同学们观察后回答: 此实验称为什么实验?它揭示了一个什么现象? (奥斯特实验。说明电流周围能产生磁场) 进一步启发引入新课: 奥斯特实验揭示了电和磁之间的联系,说明电可以生磁,那么,我们可不可以反过来进行逆向思索:磁能否生电呢?怎样才能使磁生电呢?下面我们就沿着这个猜想来设计实验,进行探索研究。 2.进行新课 (1)通过实验研究电磁感应现象 板书:〈一、实验目的:探索磁能否生电,怎样使磁生电。〉 提问:根据实验目的,本实验应选择哪些实验器材?为什么?

师生讨论认同:根据研究的对象,需要有磁体和导线;检验电路中是否有电流需要有电流表;控制电路必须有开关。 教师展示以上实验器材,注意让学生弄清蹄形磁铁的N、S极和磁感线的方向,然后按课本图12—1的装置安装好(直导线先不要放在磁场内)。 进一步提问:如何做实验?其步骤又怎样呢? 我们先做如下设想:电能生磁,反过来,我们可以把导体放在磁场里观察是否产生电流。那么导体应怎样放在磁场中呢?是平放?竖放?斜放?导体在磁场中是静止?还是运动?怎样运动?磁场的强弱对实验有没有影响?下面我们依次对这几种情况逐一进行实验,探索在什么条件下导体在磁场中产生电流。 用小黑板或幻灯出示观察演示实验的记录表格。 教师按实验步骤进行演示,学生仔细观察,每完成一个实验步骤后,请学生将观察结果填写在上面表格里。 实验完毕,提出下列问题让学生思考: 上述实验说明磁能生电吗?(能) 在什么条件下才能产生磁生电现象?(当闭合电路的一部分导体在磁场中左右或斜着运动时) 为什么导体在磁场中左右、斜着运动时能产生感应电流呢? (师生讨论分析:左右、斜着运动时切割磁感线。上下运动或静止时不切割磁感线,所以不产生感应电流。) 通过此实验可以得出什么结论? 学生归纳、概括后,教师板书: 〈实验表明:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就产生电流。这种现象叫做电磁感应,产生的电流叫做感应电流。〉

《电磁感应现象》教学设计(1)

《电磁感应现象》教学设计 一、教学目标: (一)知识与技能 知道电磁感应产生的条件。 会使用线圈以及常见磁铁完成简单的实验。 (三)情感、态度与价值观 渗透物理学方法的教育,通过电磁感应产生条件的探究,体会电和磁间的联系,感悟自然的对称与和谐,激发学生学习物理的兴趣。 二、教学重点: 感应电流的产生条件 通过实验观察,概括总结物理规律的研究方法 三、教学难点: 从大量的不同的实验现象中,引导学生概括总结出感应电流的产生条件 四、教学用具: 条形磁铁,蹄形磁铁,导体棒,电流计,线(粗、细各一个),学生电源(电池),开关,滑动变阻器,演示用电感线圈,演示用变压器,导线若干 , 环保电池。 五、教学流程: 情景引人: 【实验展示】让学生体验变压器通、断瞬间有电流产生这个现象,激发学生探索欲望和兴趣,引入新课。 【板书】课题:电磁感应现象 教学内容 一.磁通量() 1.如果一个面积为的面垂直一个磁感应强度为的匀强磁场放置,我们把与的乘 积叫做穿过这个面的磁通量. 2.几何意义:磁通量就是表示穿过这个面的磁感线条数.

注意:只要知道匀强磁场的磁感应强度和所讨论面的面积,在面与磁场方向垂直的条件下(不垂直可将面积做垂直磁场方向上的投影.)磁通量是表示穿过讨论 面的磁感线条数的多少.在今后的应用中往往根据穿过面的净磁感线条数的多少定性判断穿过该面的磁通量的大小. 二.电磁感应现象 【强调说明】 1820年,奥斯特梦圆‘电生磁’。法拉第心系‘磁生电’,1831年他终于发现了电磁感应现象,今天我们沿着法拉第曾走过的足迹,来探究电磁感应的 产生条件。 【引入实验】演示法拉第最初的设想:将蹄形磁体缠上导线,和电流计组成闭合回路,观察并没有电流产生。 设疑:有磁,又有电,为什么没有产生电流?哪位同学,根据初中知识,上来改进一下。实验1:学生实验——导体在磁场中切割磁力线的运动 观察现象:AB做切割磁感线运动,可见电流表指针偏转. 总结:闭合回路部分导体切割磁感线,能够产生电流。 设疑:有其它方法使磁产生电流呢? 实验2:学生实验——条形磁铁插入线圈

法拉第电磁感应定律练习题集40道

1、彼此绝缘、相互垂直的两根通电直导线与闭合线圈共面,下图中穿过线圈的磁通量可能为零的是 2、伟大的物理学家法拉第是电磁学的奠基人,在化学、电化学、电磁学等领域都做出过杰出贡献,下列陈述中不符合历史事实的是()

A.法拉第首先引入“场”的概念来研究电和磁的现象 B.法拉第首先引入电场线和磁感线来描述电场和磁场 C.法拉第首先发现了电流的磁效应现象 D.法拉第首先发现电磁感应现象并给出了电磁感应定律 3、如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量Φa和Φb大小关系为: A.Φa>Φb B.Φa<Φb C.Φa=Φb D.无法比较 4、关于感应电动势大小的下列说法中,正确的是() A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中磁通量越大,产生的感应电动势一定越大 C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大 D.线圈中磁通量变化越快,产生的感应电动势越大 5、对于法拉第电磁感应定律,下面理解正确的是 A.穿过线圈的磁通量越大,感应电动势越大 B.穿过线圈的磁通量为零,感应电动势一定为零

C.穿过线圈的磁通量变化越大,感应电动势越大 D.穿过线圈的磁通量变化越快,感应电动势越大 6、如图所示,均匀的金属长方形线框从匀强磁场中以匀速V拉出,它的两边固定有带金属滑轮的导电机构,金属框向右运动时能总是与两边良好接触,一理想电压表跨接在PQ两导电机构上,当金属框向右匀速拉出的过程中,电压表的读数:(金属框的长为a,宽为b,磁感应强度为B) A.恒定不变,读数为BbV B.恒定不变,读数为BaV C.读数变大D.读数变小 7、如图所示,平行于y轴的导体棒以速度v向右匀速直线运动,经过半径为R、磁感应强度为B的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x关系的图像是 8、如图所示,一个高度为L的矩形线框无初速地从高处落下,设线框下落过程中,下边保持水平向下平动。在线框的下方,有一个上、下界面都是水平的匀强磁场区,磁场区高度为2L,磁场方向与线框平面垂直。闭合线圈下落后,刚好匀速进入磁场区,进入过程中,线圈中的感应电流I0随位移变化的图象可能是

高中物理《法拉第电磁感应定律(11)》优质课教案、教学设计

?t 物理选修 3-2 第四章电磁感应 第四节:《法拉第电磁感应定律》教学设计 【教学设计】 本节教学设计的总体思路:首先,建立感应电动势概念;其次,通过对实验的定性分析探索感应电动势的大小跟哪些因素有关;随后,得 出感应电动势大小的一般表达式 E =n ?Φ ;最后,再利用法拉第电磁感 应定律对“导线切割磁感线时的感应电动势”和“反电动势”这两种特殊情况进行分析。 引入感应电动势的概念,要注意温故知新。闭合电路中要维持持续电流,其中必有电动势的存在。在电磁感应现象中,闭合电路中有感应 电流,必然存在对应的电动势,即感应电动势。 比较慨念之间的内在联系,使学生深刻理解概念的本质。由感应电流过渡到感应电动势,对学生来说,是从现象到本质的认识深化过程。为了让学生认识到感应电流与感应电动势的区别和联系,教师可以通过演示实验,让学生观察接通与断开闭合电路时的电路电流与路端电压。即当电路断开时,回路中没有感应电流,但路端电压(即感应电动势)仍

然存在,而电路中出现感应电流,是要以电路闭合与电动势的同时存在为前提条件,所以,感应电动势的有无,完全决定于穿过闭合电路的磁通量是否发生变化,与电路的通断,电路的组成情况等无关。在电磁感应现象中,“感应电动势”比“感应电流”更具有本质意义。结合实例进行对 比分析,对巩固和深化概念很有效。 建立感应电动势概念的教学思路可以归纳为: 电磁感应现象→电流→感应电流→感应电动势。 法拉第电磁感应定律教学设计的思路如下: 按上述线索分析教材时,一是要使学生对演示实验的现象观察清楚;二是要结合实验,实例,运用类比等方法,加深学生对磁通量变化率概念的理解。教学中,可以列举速度是由位置的变化率决定,加速度是由速度的变化率决定等,以此来加深对变化率概念的理解。 【教学目标】 1、知识与技能:

相关主题
文本预览
相关文档 最新文档