当前位置:文档之家› 光电器件特性实验

光电器件特性实验

光电器件特性实验
光电器件特性实验

实验一光电转换特性测试

光源照度计SSPA

稳流源驱动

示波器V o

R

图3 ~

o H V 光电转换曲线 3、由曲线图可以得到22=os V mV ,9.47=s H Lx 。 (1)记录的积分时间:

(2.5 1.5)0.52=+?=T ms ms 。

(2)饱和曝光量

32int 9.47210 1.89410--=?=??=??s s x E H T L s

(3)灵敏度

32

22

1.16110()

1.89410

-=

==???os

s

V mV

S E Lx s

4、通过H ~o V 曲线,简要分析SSPA 工作特性。

由H ~o V 曲线得出,当

os V ,且不再变化,这时称s H 为饱和曝光量,os V 称为饱和电压。

实验二不均匀性、暗信号及动态范围测试

SSPA 稳流源示波器

驱动放大

V o1

实验五 光电二极管的特性测试

一、实验目的

1.了解光电二极管的工作原理。

2.掌握光电二极管基本性能的测试方法。

3.掌握光电二极管的使用方法。 二、实验原理

光电二极管的基本特性分为以下三方面:

1.光照特性:在一定工作偏压下,光电二极管的输出电流I φ和照度v E 之间的关系。测试电路如图1。

2.伏安特性:指在一定照度下,光电二极管的光电流与偏压的关系。测试如图1。

图1 光照、伏安特性测试电路

三、实验器材:

白炽灯1台,光电二极管2CU 1支,照度计1台,万用表1台,电阻若干,实验板1块,导线若干。 四、实验步骤:

1.光电二极管光照特性的测试。

错误!未找到引用源。判断光电二极管的极性,按图1连接电路。

②选择适当的偏压c V ,和负载电阻L R 。按表1的要求将测试换算结果逐点填入表 中。

③改变偏压c V 或负载L R ,观察光电二极管光照特性的变化。 2.光电二极管伏安特性的测试。

错误!未找到引用源。按图1接线,将电流计串入回路中。 ②调定合适的L R ,记录结果。

五、实验过程原始记录(数据、图表、计算等)

1.光电二极管的光照特性测试的实验记录

表1 光电二极管在=10c V V ,=3L R K Ω条件下的光照特性实验记录

光电二极管 在=10c V V ,=3L R K Ω条件下

()V E Lx

133 209 303 415 532 635 800 929 1065 1234

0()V mv

5.0 10.2 24 39.9 57.4 67.9 77.6 8

6.4 101.2 110.4

()I A μΦ 1.67

3.4

8

13.3 19.13 22.63 25.87 28.8 33.73

36.8

光电二极管的光照特性测试数据所得-E V 、-E I 曲线如图:

图2 光电二极管在=10c V V ,=3L R K Ω条件下的光照特性测试结果 表2 光电二极管在=10c V V ,=75L R Ω条件下的光照特性实验记录

光电二极管 在=10c V V ,=75L R Ω条件下 ()V E Lx

13 -217

217 307 426 554 856 1039 1232 1775

0()V mv

0 0.2 0.4 0.6 0.8 1.3 1.5 1.9 3.1

()I A μΦ

2.67 5.33 8.0 10.67 17.33 20

25.33 41.33

图3 光电二极管在=10c V V ,=75L R Ω条件下的光照特性测试结果

表3 光电二极管的光照特性实验记录 光电二极管 在=10c V V ,=3L R K Ω条件下 ()I mA φ ()c V V

()v E Lx

0 2 4 6 8 10 12 14

500 10 10 11 11 11 11 12 12 1000

19 20 20 21 21 21 22 22

1500 24 25 25 25 26 26 26 26 2000 28 29 30 30 30 31 31 31 2500

33 34 35 35 36 36 36 37

光电二极管伏安特性曲线如下:

图4 光电二极管伏安特性曲线

3、回答下列问题:

(1)L R 固定,c V 改变,光照特性曲线变化否?c V 固定,L R 改变,光电二极管光照特性曲线变化否?

答:L R 固定,c V 改变时,光电二极管耗尽层厚度随着c V 改变而改变,c V 增大时光电流也将变大,最后趋于一个稳定值。故光照特性曲线随着的c V 减小而上移,最终趋于一条稳定的曲线;c V 固定,L R 改变时,负载电阻L R 增大,电阻的时间常数变大,光电二极管的响应速度变慢,即单位时间流过的载流子减少,导致光电流减小。在光照不变情况下,曲线斜率变小,即曲线变得较平缓。 (2)光电二极管偏压为零时,为什么有光电流输出?

由于光电二极管PN 结存在内建电场,即使光电二极管偏压为零,光照时产生的电子-空穴对,仍然能在内建电场的作用下形成漂移电流以及形成与漂移电流相同方向的扩散电流。对于反偏的二极管,总有一定的电流流过它,即暗电流,其随温度升高而增大。

(3)光电二极管反向偏压进一步加大后,为什么光电流趋于饱和,与所加电压几乎无关,而仅取决于光照强度?

在低反向电压下,光电流随电压变化很敏感,这是由于反向偏置电压使耗尽层加宽并使电场强度加强,从而提高了光吸收率及对载流子的搜集。电压进一步加大,对光生载流子收集已达极限,光生电流趋于饱和,这样光生电流与外加反向电压大小几乎无关,仅取决于光照强度。

实验六 光电三极管的特性测试

一、实验目的

1.了解光电三极管的工作特点。

2.掌握光电三极管基本性能的测试。

3.学会使用光电三极管。 二、实验原理

光电三极管的基本特性分为以下三个方面:

1.光照特性:光电三极管在一定偏压下,受光的照度V E 与产生的光电流s I 之间的关系。

2.伏安特性:光电三极管在一定照度下,光电流s I 随偏压的变化。

图1 光电三极管工作电路

三、实验器材:

白炽灯1台,光电三极管1个,照度计1台,万用表1台,电阻若干,实验板1块,导线若干。 四、实验步骤:

1.光电池光照特性的测试。

1按图1连接线路; ○2选择适当的偏压c V 和负载电阻L R ,测试当照度v E 变化时,o

V 和I φ相对应的值。 2.伏安特性的测试:

1按图1连接线路,将电流计串入回路中; ○

2记录实验结果。 五、实验记录:

1.光电三极管的光照特性测试的实验记录 光电三极管的光照特性测试数据:

表1 光电三极管在=10c V V ,=3L R K Ω条件下的光照特性实验记录 光电三极管 在=10c V V ,=3L R K Ω条件下 ()v E Lx 145 207 306

406 501 615 742 830 929 1129

()o V mV 0.9 1.8 6.2 15.2 23.5 28.7 30.8 31.7 32.8 36

()I mA Φ 0.3

0.6

2.07 5.07 7.83 9.57 10.27 10.57 10.93 12.0

光电三极管的光照特性测试数据曲线:

图2 光电三极管在=10c V V ,=3L R K Ω条件下的光照特性测试结果 表2 光电三极管在=10c V V ,=75L R Ω条件下的光照特性实验记录 光电三极管 在=10c V V ,=75L R Ω条件下 ()v E Lx 143

196 242 282 400 500 624 815 954 1164 ()o V mV 0.05 0.09 0.15 0.2

0.37 0.47 0.72 0.81 0.86

0.93

()I mA Φ 0.67 1.2

2.0 2.67 4.93 6.27 9.6 10.8 11.47 12.4

光电三极管的光照特性测试数据曲线:

图3 光电三极管在=10c V V ,=75L R Ω条件下的光照特性测试结果

2.光电三极管伏安特性的实验记录

表3 光电三极管在=10c V V ,=75L R Ω条件下的光照特性实验记录

光电三极管 在=10c V V ,=3L R K Ω条件下 ()I mA φ ()c V V

()v E Lx

0 2 4 6 8 10 12 14

500

3.0 8.1 9.3 10.9 12.2 1

4.2 17.2 20.4

1000 7.2 18.5 21.2 23.9 27.6 31.4 37.8 45.4

1500 14.1 48.2 55.2 62.2 69.4 80.2 95.2 111.2 光电三极管伏安特性测试数据曲线:

图4 光电三极管伏安特性测试数据曲线

六、思考

1.总结光电三极管与光电二极管各有什么优缺点。

它们都具有高频性能好、量子效率高、灵敏度高、偏置电压低、功耗小、线性范围大、体积小、质量轻和价格便宜等优点。两者比较而言,

(1)光电二极管光照特性的线性比较好,而光电三极管光照特性曲线的线性比较差。(2)由于光电三极管有放大作用,在相同照度下,它的光电流和灵敏度要比光电二极管的大几十倍。

(3)在零偏值时,光电二极管能产生光生电动势,电路中有电流,而这时光电三极管的集电结虽然也能产生光生电动势,但因为集电结无反向偏压,就没有电流放大作用。(4)光电三极管响应时间要比光电二极管长,频率响应较低,一般不易在宽带的光通信等系统中作探测器。

2.光电三极管若采用较小的发射区面积,是有利于对弱光的检测还是强光的检测?反之则如何?

光电三极管若采用较小的发射区面积,则有利于对强光的检测。因为发射区面积小,PN结获得的光能少,弱光可能无法激励出足够的空穴-电子对。反之,光电三极管若采用较大的发射区面积,则有利于对弱光的检测。

实验七 光电池的特性测试

一、实验目的

1.了解光电池的工作特点。

2.掌握光电池基本性能的测试方法。

3.学会使用光电池。 二、实验原理

光照特性:光电池的光生电动势和光电流与照度的关系。

图1 光电池工作电路

三、使用仪器、材料

白炽灯1台,光电池1块,照度计1台,万用表1台,不同阻值的电阻2-3个 ,实验板1块,导线若干。 四、实验步骤

1.光电池光照特性的测试

○1光电池的两端不接负载,测试V

E 变化时,开路电压的值。 ○2按图1接线路,选择适当的L R ,一般取很小,测试V E 变化时,短路电流的值。 ○3增大L

R ,观察短路电流的变化情况。 五、实验记录:

光电池光照特性的测试: 1.开路电压测试

表1 光电池的两端不接负载,V E 变化开路电压的值 光电池 在10

C V V 条件下 ()

v E Lx

159 230 320 422 550 771 1112 1440 ()V mV

151.9

173

189

206

221

246

270

296

开路电压测试数据曲线:

图2 光电池的两端不接负载,V E 变化时开路电压与照度的关系

2.按图1接线路,选择=75L R Ω,测试V E 变化时,短路电流的值如下表。

表2 短路电流数据记录

光电池 在=10C V V ,=75L R Ω 条件下 ()V E lx

130 465 864 1185 1430

()I A μ 3.72 8.66 13.18 16.36 18.58

图3 照度与短路电流之间的关系

3.增大L R ,短路电流的变化数据见表3。

表3 短路电流数据记录

光电池 在V V C 10=,3L R K =Ω 条件下 ()V E lx

130 465 864 1185 1430

()I A μ 38.6 91.06 138.23 170.6 192.71

图3 增大L R 后,照度与短路电流之间的关系

3、回答下列问题

(1)根据实验说明,负载电阻的大小,对光电流与照度之间的线性度有什么影响? 答:负载电阻越小,光电流与光照度的线性越好。 (2)光电池的响应速度与负载电阻R L 有什么关系?

答:负载L R 越大频率特性越差,负载电阻越大,响应时间越长。

光电器件测试

光电器件性能测试与应用 一、实验目的: 1.了解光敏二极管、三极管的结构及工作原理。 2.掌握常用光敏器件的性能和极限参数。 3.体验光敏器件的具体应用。 二、光敏器件的工作原理 2.1 光敏二极管是一种光伏效应器件。由于势垒区内建电场的作用。PN 结、肖特基结(即金属半导体结)等在受光照时会产生一个光生电动势,这就是光伏效应。以光伏效应为工作机理的器件通称为光伏效应器件。因此,光敏二极管、光敏三极管及均效应光敏管,光激可控硅等特种光敏器件,都属于光伏效应器件。 在光照下,若入射光子的能量大于禁带宽度,则PN 结内会产生光生电子空穴对,这些光生载流子存在了一段长短不同的时间后,又会因复合而消失。如图2-1所示,势垒区两边 产生的载流子中总有一部分能在复合前扩散到 势垒区的边界,基中少子受势垒区电场的吸引被扫向对面区域,多子则受势垒区电场的排斥而留在本区。势垒区内产生的光生电子和光生空穴一经产生使受到电场的作用。分别被扫向N 区和P 区,这样,就产生出由势垒区中产生的电子空穴对及势垒区两边能运动到势垒区的少子所构成的光电流I L ,它的方向是由N 区经势垒区流向P 区,即与光照对PN 结的反向饱和电流方向相同,因此,若I L 仅表示光电流的数值,则这个光电流应写为﹣I L ,以保持PN 结电流的习惯方向。 当PN 结短路时,这个光电流将全部流过 短接回路,即从势垒区和P 区流入N 区的光生电子将通过短接回路全部流到P 区电极处,与P 区流出的光生空穴复合,因此,短路时外接回路中的电流是I L ,方向由P 端(“端”指外端电极处,下同)流向N 端,即I =﹣I L ,这时,PN 结中的载流子浓度维持平衡值,势垒高度亦无变化。 当PN 结开路或接有负载时,势垒区电场收集的光生载流子便不能或不能全部流出,P 区和N 区就分别出现光生空穴和光生电子的积累,它使P 区电位升高,N 区电位降低,造成 了一个光生电动势,这电动势使势垒高度下降,相当于加在PN 结上的正向偏压,只不过这是光照造成的而不是用电源馈送的,故称为光生电压。它使P 区光生空穴和N 区光生电子分别向N 区和P 区回注,并分别在N 区与P 区与电子和空穴复合,形成了由P 区以势垒区指向N 区的正向注入电流I J ,若PN 结开路,则流过势垒区的总电流应为零,I J 有最大值,即 max max ()0,J L J L I I I I +?==

光电实验报告.

长春理工大学 光电信息综合实验—实验总结 姓名:赵儒桐 学号:S1******* 指导教师:王彩霞 专业:信息与通信工程 学院:电子信息工程 2016年5月20号

实验一:光电基础知识实验 1、实验目的 通过实验使学生对光源,光源分光原理,光的不同波长等基本概念有具体认识。 2、实验原理 本实验我们分别用了普通光源和激光光源两种。普通光源光谱为连续光谱,激光光源是半导体激光器。在实验中我们利用分光三棱镜可以得到红橙黄绿青蓝紫等多种波长的光辐射。激光光源发射出来的是波长为630纳米的红色光。 3、实验分析 为了找到光谱需要调节棱镜,不同的面对准光源找出光谱,棱镜的不同面对准光源产生的光谱清晰度不同,想要清晰的光谱就需要通过调节棱镜获得。 实验二:光敏电阻实验 1、实验目的 了解光敏电阻的光照特性,光谱特性和伏安特性等基本特性。2、实验原理 在光线的作用下,电子吸收光子的能量从键和状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。光电导效应是半导体材料的一种体效应。光照越强,器件自身的电阻越小。光敏电阻无极性,其工作特性与入射光光强,波长和外加电压有关。 3、实验结果

当光敏电阻的工作电压(Vcc )为+5V 时,通过实验我们看出来改变光照度的值,光源的电流值是发生变化的。光照度增加电流值也是增加的。测得实验数据如表2-1: 表2-1 光敏电阻光照特性实验数据 得到的光敏电阻光照特性实验曲线: 图2.1 光敏电阻光照特性实验曲线 表2-2 光敏电阻伏安特性实验数据

通过实验我们看出光敏电阻的光电流值随外加电压的增大而增大,在光照强度增大的情况下流过光敏电阻的电流值也是增大的,得到数据如表2-2。 得到的伏安特性如下: 图2.2 光敏电阻伏安特性曲线 由光敏电阻的光谱特性可知光敏电阻对不同波长的光,接收的光灵敏度是不一样的,测量对应各种颜色的光透过狭缝时的电流值,得到数据如下表: 得到的光谱特性曲线如图:

光敏电阻的物理特性

Ⅰ.光敏电阻的物理特性 光敏电阻:常用的制作材料为硫化镉,另外还有硒、硫化铝、硫化铅和硫化铋等材料。这些制作材料具有在特定波长的光照射下,其阻值迅速减小的特性。这是由于光照产生的载流子都参与导电,在外加电场的作用下作漂移运动,电子奔向电源的正极,空穴奔向电源的负极,从而使光敏电阻器的阻值迅速下降。Ⅱ.组成特性 光敏电阻器是利用半导体的光电导效应制成的一种电阻值随入射光的强弱而改变的电阻器,又称为光电导探测器;入射光强,电阻减小,入射光弱,电阻增大。还有另一种入射光弱,电阻减小,入射光强,电阻增大。 Ⅲ.作用 光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)。常用的光敏电阻器硫化镉光敏电阻器,它是由半导体材料制成的。光敏电阻器对光的敏感性(即光谱特性)与人眼对可见光(0.4~0.76)μm的响应很接近,只要人眼可感受的光,都会引起它的阻值变化。设计光控电路时,都用白炽灯泡(小电珠)光线或自然光线作控制光源,使设计大为简化。 根据光敏电阻的光谱特性,可分为三种光敏电阻器:紫外光敏电阻器、红外光敏电阻器、可见光光敏电阻器。 Ⅳ.参数特性 (1)光电流、亮电阻。光敏电阻器在一定的外加电压下,当有光照射时,流过的电流称为光电流,外加电压与光电流之比称为亮电阻,常用“100LX”表示。(2)暗电流、暗电阻。光敏电阻在一定的外加电压下,当没有光照射的时候,流过的电流称为暗电流。外加电压与暗电流之比称为暗电阻,常用“0LX”表示。(3)灵敏度。灵敏度是指光敏电阻不受光照射时的电阻值(暗电阻)与受光照射时的电阻值(亮电阻)的相对变化值。 (4)光谱响应。光谱响应又称光谱灵敏度,是指光敏电阻在不同波长的单色光照射下的灵敏度。若将不同波长下的灵敏度画成曲线,就可以得到光谱响应的曲线。 (5)光照特性。光照特性指光敏电阻输出的电信号随光照度而变化的特性。从光敏电阻的光照特性曲线可以看出,随着的光照强度的增加,光敏电阻的阻值

光电探测器特性测试实验

光电探测器特性测试实验 光电探测器是一种将辐射能转换成电讯号的器件,是光电系统的核心组成部分,在光电系统中的作用是发现信号、测量信号,并为随后的应用提取某些必要的信息。光电探测器的种类很多,新的器件也不断出现,按探测机理的物理效应可分为两大类:一类是利用各种光子效应的光子探测器,另一类是利用温度变化的热探测器。 1、光敏电阻 光敏电阻是用光电导体制成的光电器件,又称光导管.它是基于半导体光电效应工作的。光敏电阻没有极性,纯粹是一个电阻器件,使用时可加直流电压,也可以加交流电压。当无光照时,光敏电阻值(暗电阻)很大,电路中电流很小。当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减少,因此电路中电流迅速增加。 光敏电阻的暗电阻越大.而亮电阻越小.则性能越好,也就是说,暗电流要小,光电流要大,这样的光敏电阻的灵敏度就高。实际上,大多数光敏电阻的暗电阻往往超过1M欧,甚至高达100MΩ,而亮电阻即使在正常白昼条件下也可降到1kΩ以下,可见光敏电阻的灵敏度是相当高的。 频率特性:非平衡载流子的产生与复合都有一个时间过程,在一定程度上影响了光敏电阻对变化光照的响应。

光谱响应特性:由所用半导体材料的禁带宽度决定。PbS 2、 光敏二极管 光敏二极管是一种光伏探测器,主要利用了PN 结的光伏效应。对光伏探测器总的伏安特性可表达为 s kT qV s s D I e I I I I --=-=)1(0 式中I 中是流过探测器总电流,I so 二极管反向饱和电流,I s 是光照时的光电流,q 是电子电荷,V 是探测器两端电压,k 为玻耳兹曼常数,T 器件绝对温度。 当入射光的强度发生变化,通过光敏二极管的电流随之变化,于是在光敏二极管的二端电压也发生变化。光照时导通,光不照时,处于截止状态,并且光电流和照度成线性关系。 光照特性:输出的饱和光电流与光照度之间的关系。 光谱特性:取决于所采用材料的禁带宽度,同事也与结构工艺有着密切的关系。 频率特性:由光生载流子的渡越时间和L R j C 的乘积决定。 伏安特性:在零偏压下,光电二极管仍有光电流,这是光生伏特效应所产生的短路电流。 3、 光敏三极管 在光敏二极管的基础上,为了获得内增益,就利用了晶体三极管的电流放大作用,用Ge 或Si 单晶体制造NPN 或PNP 型光敏三极管。 光敏三极管可以等效一个光电二极管与另一个一般晶体管基极和集电极并联:集电极-基极产生的电流,输入到三极管的基极再放大。不同之处是,集电极电流(光电流)由集电结上产生的I φ控制。集电极起双重作用:把光信号变成电信号起光电二极管作用;使光电流再放大起一般三极管的集电结作用。一般光敏三极管只引出E 、C 两个电极,体积小,光电特性是非线性的,广泛应用于光电自动控制作光电开关应用。

光电实验报告

长春理工大学 光电信息综合实验一实验总结 姓名:__________ 学号:S1******* 指导教师:__________ 专业:信息与通信工程 学院:电子信息工程 2016年5月20号

实验一:光电基础知识实验 1、实验目的 通过实验使学生对光源,光源分光原理,光的不同波长等基本概念有具体认识。 2、实验原理 本实验我们分别用了普通光源和激光光源两种。普通光源光谱为连续光谱,激光光源是半导体激光器。在实验中我们利用分光三棱镜可以得到红橙黄绿青蓝紫等多种波长的光辐射。激光光源发射出来的是波长为630纳米的红色光。 3、实验分析 为了找到光谱需要调节棱镜,不同的面对准光源找出光谱,棱镜的不同面对准光源产生的光谱清晰度不同,想要清晰的光谱就需要通过调节棱镜获得。 实验二:光敏电阻实验 1、实验目的 了解光敏电阻的光照特性,光谱特性和伏安特性等基本特性。 2、实验原理 在光线的作用下,电子吸收光子的能量从键和状态过渡到自由状态,弓I起电导率的变化,这种现象称为光电导效应。光电导效应是半导体材料的一种体效应。光照越强,器件自身的电阻越小。光敏电阻无极性,其工作特性与入射光光强,波长和外加电压有关。 3、实验结果

当光敏电阻的工作电压(Vcc)为+5V时,通过实验我们看出来改变光照度的值,光源的电流值是发生变化的。光照度增加电流值也是增加的。测得实验数据如表2-1 : 表光敏电阻光照特性实验数据 得到的光敏电阻光照特性实验曲线: 光敏电阻伏安特性实验数据 型号:G5528 电压 (U) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 照度 (Lx) 50 电流 (mA 0 0.05 0 .11 0. 17 0.2 4 0.29 0.35 0 .42 0. 48 0.5 4 0.6 100 电流 (mA 0 0.09 0 .19 0.: 28 0.3 8 0.48 0.58 0 .67 0. 77 0.8 7 0.95 150 电流 (mA 0 0.12 0 .24 0.: 37 0.4 9 0.62 0.74 0 |.87 0. 98 1.1 2 1.19 表2-2光敏电阻伏安特性实验数据 光敏电阻光照 特 光照度 (Lx) 20 40 60 80 电流mA 0.37 0.52 0.68 0.78 寺性实验数据 100 120 140 160 180 0.88 1.00 1.07 1.18 1.24

光电二三极管特性测试实验报告

光敏二极管特性测试实验 一、实验目的 1.学习光电器件的光电特性、伏安特性的测试方法; 2.掌握光电器件的工作原理、适用范围和应用基础。 二、实验内容 1、光电二极管暗电流测试实验 2、光电二极管光电流测试实验 3、光电二极管伏安特性测试实验 4、光电二极管光电特性测试实验 5、光电二极管时间特性测试实验 6、光电二极管光谱特性测试实验 7、光电三极管光电流测试实验 8、光电三极管伏安特性测试实验 9、光电三极管光电特性测试实验 10、光电三极管时间特性测试实验 11、光电三极管光谱特性测试实验 三、实验仪器 1、光电二三极管综合实验仪 1个 2、光通路组件 1套 3、光照度计 1个 4、电源线 1根 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1、概述

随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。 光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具胡不同的光电特性和检测性能。例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。因此,在使用光敏二极管进要了解其类型及性能是非常重要的。 光敏二极管和光电池一样,其基本结构也是一个PN结。与光电池相比,它的突出特点是结面积小,因此它的频率特性非常好。光生电动势与光电池相同,但输出电流普遍比光电池小,一般为数微安到数十微安。按材料分,光敏二极管有硅、砷化铅光敏二极管等许多种,由于硅材料的暗电流温度系数较小,工艺较成熟,因此在实验际中使用最为广泛。 光敏三极管与光敏二极管的工作原理基本相同,工作原理都是基于内光电效应,和光敏电阻的差别仅在于光线照射在半导体PN结上,PN结参与了光电转换过程。 2、光电二三极管的工作原理 光生伏特效应:光生伏特效应是一种内光电效应。光生伏特效应是光照使不均匀半导体或均匀半导体中光生电子和空穴在空间分开而产生电位差的现象。对于不均匀半导体,由于同质的半导体不同的掺杂形成的PN结、不同质的半导体组成的异质结或金属与半导体接触形成的肖特基势垒都存在内建电场,当光照射这种半导体时,由于半导体对光的吸收而产生了光生电子和空穴,它们在内建电场的作用下就会向相反的方向移动和聚集而产生电位差。这种现象是最重要的一类光生伏特效应。均匀半导体体内没有内建电场,当光照射时,因眼光生载流子浓度梯度不同而引起载流子的扩散运动,且电子和空穴的迁移率不相等,使两种载流

光电阴极实验报告..

光电阴极实验报告 院系:电子工程与光电技术学院 专业:真空电子技术 班级: 09046201 姓名:李子龙(0904620114) 唐少拓(0904620119) 张伦(0904620124) 完成时间: 2013.1.10 指导老师:张俊举

实验一 光电阴极光谱响应测试 1. 实验目的 通过本实验,了解光电阴极工作原理,掌握相关实验器件的使用方式,学会测试光电阴极的光谱响应 实验原理 光电阴极的光谱响应,或者光谱响应特性,是阴极的光谱灵敏度随入射光谱的分布。具体来说,若照射到阴极面上的单色入射光的辐射功率为()λW ,阴极产生的光电流为()λI ,则阴极的光谱灵敏度为 将阴极对应入射光谱中每一单色光的光谱灵敏度连成一条曲线,便得到了光谱响应曲线。 本实验采用图2所示的实验装置,实验基本框图如图1。用单色仪对光源辐射进行分光,用光电阴极测量单色光,得到输出电流()λI ,根据表标定的光功率用公式) () ()(λλλW I S = 计算后得到光电阴极的光谱响应度,最后画出光谱响应曲线。 图1 光电阴极光谱响应度测试装置 2. 实验仪器简介 1. 由光源(氙灯、氘灯和溴钨灯) 2. 电源 3. 光栅单色仪 4. 光电流计 5. 工控机等组成

实验器件及其相关: a)光源 在进行光谱响应测试时,首先要选取合适的辐射源。本测试辐射源选用GY-9型氢氘灯(GY-10高压球形氙灯)和GY-1型溴钨灯,以获得相应范围的单色光,通过组合使用,能够在200~1600nm范围内有合适的光功率。实物如图3.1所示: 图2 测试所需光源及其电源外形图 氘灯/氙灯用来产生近紫外光谱,溴钨灯则产生可见及近红外范围内的光谱,测试时,根据测试要求选用其中的一种或几种。 b)光栅单色仪 光栅单色仪的作用是将复色光色散,从而得到光谱范围内的单色光,其突出的优点是波段范围宽广,在全波段色散均匀,单色光的波长可以达到非常精确的程度。本测试实验所采用的是北京赛凡光电公司的71SW301型光栅单色仪。实物如图3所示:

光电探测技术实验报告

光电探测技术实验报告 班级:08050341X 学号:28 姓名:宫鑫

实验一光敏电阻特性实验 实验原理: 光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。由于半导体在光照的作用下,电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。 实验所需部件: 稳压电源、光敏电阻、负载电阻(选配单元)、电压表、 各种光源、遮光罩、激光器、光照度计(由用户选配) 实验步骤: 1、测试光敏电阻的暗电阻、亮电阻、光电阻 观察光敏电阻的结构,用遮光罩将光敏电阻完全掩 盖,用万用表测得的电阻值为暗电阻 R暗,移开遮光罩,在环境光照下测得的光敏电阻的 阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光 电阻越大,则灵敏度越高。 在光电器件模板的试件插座上接入另一光敏电阻, 试作性能比较分析。 2、光敏电阻的暗电流、亮电流、光电流 按照图(3)接线,电源可从+2~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮则暗电流L暗=V暗/R L,亮电流L亮=V亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 分别测出两种光敏电阻的亮电流,并做性能比较。 图(2)几种光敏电阻的光谱特性 3、伏安特性: 光敏电阻两端所加的电压与光电流之间的关系。 按照图(3)分别测得偏压为2V、4V、6V、8V、10V、12V时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果填入表格并作出V/I曲线。 注意事项: 实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。

光电探测器特性测量实验报告

实验1 光电探测器光谱响应特性实验 实验目的 1. 加深对光谱响应概念的理解; 2. 掌握光谱响应的测试方法; 3. 熟悉热释电探测器和硅光电二极管的使用。 实验内容 1. 用热释电探测器测量钨丝灯的光谱特性曲线; 2. 用比较法测量硅光电二极管的光谱响应曲线。 实验原理 光谱响应度是光电探测器对单色入射辐射的响应能力。电压光谱响应度 ()v R λ定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号 电压,用公式表示,则为 () ()() v V R P λλλ= (1-1) 而光电探测器在波长为λ的单位入射辐射功率的作用下,其所输出的光电流叫做探测器的电流光谱响应度,用下式表示 () ()() i I R P λλλ= (1-2) 式中,()P λ为波长为λ时的入射光功率;()V λ为光电探测器在入射光功率 ()P λ作用下的输出信号电压;()I λ则为输出用电流表示的输出信号电流。为简 写起见,()v R λ和()i R λ均可以用()R λ表示。但在具体计算时应区分()v R λ和()i R λ,显然,二者具有不同的单位。 通常,测量光电探测器的光谱响应多用单色仪对辐射源的辐射功率进行分光来得到不同波长的单色辐射,然后测量在各种波长的辐射照射下光电探测器输出的电信号()V λ。然而由于实际光源的辐射功率是波长的函数,因此在相对测量中要确定单色辐射功率()P λ需要利用参考探测器(基准探测器)。即使用一个光

谱响应度为()f R λ的探测器为基准,用同一波长的单色辐射分别照射待测探测器和基准探测器。由参考探测器的电信号输出(例如为电压信号)()f V λ可得单色辐射功率()=()()f P V R λλλ,再通过(1-1)式计算即可得到待测探测器的光谱响应度。 本实验采用单色仪对钨丝灯辐射进行分光,得到单色光功率()P λ ,这里用响应度和波长无关的热释电探测器作参考探测器,测得()P λ入射时的输出电压为()f V λ。若用f R 表示热释电探测器的响应度,则显然有 ()()f f f V P R K λλ= (1-3) 这里f K 为热释电探测器前放和主放放大倍数的乘织,即总的放大倍数。在本实验中=100300f K ?,f R 为热释电探测器的响应度,实验中在所用的25Hz 调制频率下,=900/f R V W 。 然后在相同的光功率()P λ下,用硅光电二极管测量相应的单色光,得到输出电压()b V λ,从而得到光电二极管的光谱相应度 ()() ()()()b b f f f V K V R P V R K λλλλλ= = (1-4) 式中b K 为硅光电二极管测量时总的放大倍数,这里=150300b K ?。 实验仪器 单色仪、热释电探测器组件、光电二极管探测器组件、选频放大器、光源。

光敏电阻特性测试实验(精)

光敏电阻特性测试实验 一、实验目的 1、学习掌握光敏电阻工作原理 2、学习掌握光敏电阻的基本特性 3、掌握光敏电阻特性测试的方法 4、了解光敏电阻的基本应用 三、实验内容 1、光敏电阻的暗电阻、暗电流测试实验 2、光敏电阻的亮电阻、亮电流测试实验 3、光敏电阻光电流测试实验; 4、光敏电阻的伏安特性测试实验 5、光敏电阻的光电特性测试实验 6、光敏电阻的光谱特性测试实验 7、光敏电阻的时间响应特性测试实验 三、实验仪器 1、光电探测综合实验仪 1个 2、光通路组件 1套 3、光敏电阻及封装组件 1套 4、光照度计 1台 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1. 光敏电阻的结构与工作原理 光敏电阻又称光导管,它几乎都是用半导体材料制成的光电器件。光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。无光照时,光敏电阻值(暗电阻)很大,电路中电流(暗电流)很小。当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减小,电路中电流迅速增大。一般希望暗电阻越大越好,亮电阻越小越好,此时光敏电阻的灵敏度高。实际光敏电阻的暗电阻值一般在兆欧量级,亮电阻值在几千欧以下。 光敏电阻的结构很简单,图1-1(a)为金属封装的硫化镉光敏电阻的结构图。在玻璃底板上均匀地涂上一层薄薄的半导体物质,称为光导层。半导体的两端装有金属电极,金属电极与引出线端相连接,光敏电阻就通过引出线端接入电路。为了防止周围介质的影响,在半导体光敏层上覆盖了一层漆膜,漆膜的成分应使它在光敏层最敏感的波长范围内透射率最

光电管特性研究

光电管特性的研究 光电效应是指在光的作用下,从物体表面释放电子的现象,所逸出的电子称为光电子。这种现象是1887年赫兹研究电磁波时发现的。在光电效应中,光不仅在被吸收或发射时以能量h 的微粒出现,而且以微粒形式在空间传播,充分显示了光的粒子性。 1905年爱因斯坦引入光量子理论,给出了光电效应方程,成功地解释了光电效应的全部实验规律。1916年密立根用光电效应实验验证了爱因斯坦的光电效应方程,并测定了普朗克常量。爱因斯坦和密立根都因为光电效应方面的杰出贡献,分别获得1921年和1923年诺贝尔物理学奖。而今光电效应已经广泛地应用于各科技领域,例如利用光电效应制成的光电管、光电倍增管等光电转换其间,把光学量转换成电学量来测量。光电元件已成为石油钻井、传真电报、自动控制等生产和科研中不可缺少的元件。 一、教学目的 1、了解光电效应实验的基本规律和光的量子性。 2、测定光电管的伏安特性,研究光电流强度与加在光电管两极间电压的关系。 3、测定光电管的光电特性,研究光电流强度与照在光电管阴极上光通量的关系。 二、教学要求 1、实验三小时完成。 2、观察光电管结构和光电效应现象,理解光的量子性。 3、测定光电管的伏安特性,研究光电流强度与加在光电管两极间电压的关系。 4、测定光电管的光电特性,研究光电流强度与照在光电管阴极上光通量的关系。 5、用所学过的知识解释本次实验所测得的曲线,并对实验结果进行评价,写出合格的实验报告。 三、教学重点和难点 1、重点:通过光电管的伏安特性和光电特性,掌握光电效应迈的实验原理。

2、难点:最小二乘法处理数据。 四、讲授内容(约20分钟) 采用讲授、讨论、演示相结合的教学方法。 1、光电效应的实验原理。 2、与学生们共同探讨光电效应在现代生产生活中的应用。 (1)光电管 利用饱和电流与照射光强的线性关系,实现光信号和电信号之间的转换。如:光控继电器、自动控制、自动计数、自动报警等。 (2)光电倍增管 光电倍增管可使光电阴极发出的光电子增至48 10~10倍,在探测弱光方面得到广泛的应用。 (3)光电成像器件 光电导摄像管等,可以将辐射图像转换成或增强为可观察、记录、传输、存储和进行处理的图像,广泛地应用于天文学、空间科学、电视等领域。 3、光电管的伏安特性曲线的特点和光电特性的特点,留给学生思考如何用所学知识解释这些特点,并在实验报告中回答。 4、结合仪器演示实验的主要步骤。 (1)测光电管的伏安特性曲线 ⑴按教材图5.12-4接好线路,使光电管阳极为高电势,检查正负极插线无误后,打开光电效应仪的电源开关,并预热10分钟。 ⑵选取合适的小灯电流值。测量前先测出小灯泡与光电管阴极间的初始间 r,并记录。 距0 ⑶研究光电管正向伏安特性。由于光电管的伏安特性为非线性曲线,因此,在非线性区域,测试点应多一些。 ⑷测临界截止电压。将光电管接线的极性对调,即在光电管两极加上反向电压,使光电管阳极为负电势,慢慢增大反向电压,记下使光电流刚好为零的电压值,即为临界截止电压。 ⑸研究光电管在不同光强照射下的伏安特性,采用两种方法。

光伏探测器光电特性实验讲义

光伏探测器光电特性实验 光电二极管与光电池是根据光伏效应制成的pn 结光电器件,短路电流与入射光强成正比是其一个突出优点,在精确测量光强时常用作光探测器。光敏电阻是基于光电导效应原理工作的半导体光电器件,灵敏度高,体积小,重量轻,常用于自动化技术中的光控电路。 【实验目的】 1. 观测光电二极管的光电特性; 2. 观测光电池的光电特性。 【仪器仪器】 光电二极管,光电池,直流电源,小灯泡(6V ,0.15A ),数字万用电表两块(其中一块表有直流电流200A μ量程),电阻箱,实验暗箱等。如图1所示。 图1 光伏探测器光电特性实验仪实验装置 技术指标 1.直流电源 0-4V 连续可调,显示分辨率0.01V ; 2.电阻箱 0-99999.9Ω可调,分辨率0.1Ω; 3.数字万用表 电流测量分辨率0.01A μ(20A μ档); 4.光敏电阻 暗电阻大于4M Ω; 5.小灯泡 额定电压6.3V ,额定电流0.1A 。 6. 传感器移动范围 约17cm

【实验原理】 1. 光伏效应 当光照射在pn 结上时,由光子所产生的电子与空穴将分别向n 区和p 区集结,使pn 结两端产生 电动势。这一现象称为光伏效应,如图2所示。利用半导体pn 结光伏效应可制成光伏探测器,常用的光伏探测器有光电池、光电二极管、光电三极管等。 光电池是根据光伏效应制成的pn 结光电器件。不需要加偏压就可以把光能转化为电能。光电池的用途,一是用作 探测器;二是作为太阳能电池,将太阳能转化为电能。光电池的结构示意图及应用电路如图3所示。 光电池的光照特性主要有伏安特性、入射光强-电流(电压)特性和入射光功率-负载特性。 2. 光照下的pn 结特性 光照下pn 结的伏安特性曲线如图4所示。无光照时,pn 结的伏安特性曲线和普通二极管的一样。有光照时,pn 结吸收光能,产生反向光电流,光照越强,光电流越大。 光伏器件用作探测器时,需要加反偏压或是不加偏压。不加偏压时,光伏器件工作在图4的第四象限,称为光伏 图2 pn 结光伏效应原理图 (b ) (a ) 图3 光电池的结构示意图(a )及基本应用电路(b ) 图4 光伏探测器的伏安特性曲线

光电探测实验报告

光电探测技术 实验报告 班级:10050341 学号:05 姓名:解娴

实验一光敏电阻特性实验 一、实验目的 1.了解一些常见的光敏电阻的器件的类型; 2.了解光敏电阻的基本特性; 3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。 二、实验原理 伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。 光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。各种光敏电阻的非线性程度都是各不相同的。 大多数场合证明,各种光敏电阻均存在着分析关系。这一关系为 式中,K为比例系数;是永远小于1的分数。 光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。 这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。 光照的非线性特性并不是一切光敏半导体都必有的。目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。

三、实验步骤 1、光敏电阻的暗电流、亮电流、光电流 按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 2、伏安特性 光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。按照图1接线,分别测得偏压为2V、4V、6V、8V、10V时的光电流,并尝试高照度光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果 填入表格并做出V/I曲线。 图1光敏电阻的测量电路 偏压2V4V6V8V10V12V 光电阻I 四、实验数据 实验数据记录如下: 光电流: E/V246810 U/V0.090.210.320.430.56 I/uA1427.54255.270.5 暗电流:0.5uA 实验数据处理:

大物实验报告 光电效应

试验名称:光电效应法测普朗克常量h 实验目的:是了解光电效应的基本规律。并用光电效应方法测量普朗克常量和测定光电管的 光电特性曲线。 实验原理 光电效应实验原理如图8.2.1-1所示。其中S 为真空光电管,K 为阴极,A 为阳极。当无光照射阴极时,由于阳极与阴极是断路,所以检流计G 中无电流流过,当用一波长比较短的单色光照射到阴极K 上时,形成光电流,光电流随加速电位差U 变化的伏安特性曲线如图8.2.1-2所示。 1. 光电流与入射光强度的关系 光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后,光电流达到饱和值和值I H ,饱和电流与光强成正比,而与入射光的频率无关。当U= U A -U K 变成负值时,光电流迅速减小。实验指出,有一个遏止电位差U a 存在,当电位差达到这个值时,光电流为零。 2. 光电子的初动能与入射频率之间的关系 当U=U a 时,光电子不再能达到A 极,光电流为零。所以电子的初动能等于它克服电场力作用的功。即 a eU mv =2 2 1 (1) 根据爱因斯坦关于光的本性的假设,每一光子的能量为hv =ε,其中h 为普朗克常量,ν为光波的频率。所以不同频率的光波对应光子的能量不同。光电子吸收了光子的能量h ν之后,一部分消耗于克服电子的逸出功A ,另一部分转换为电子动能。由能量守恒定律可知 A mv hv += 22 1 (2) 式(2)称为爱因斯坦光电效应方程。

3. 光电效应有光电存在 实验指出,当光的频率0v v <时,不论用多强的光照射到物质都不会产生光电效应,根据式(2), h A v = 0,ν0称为红限。 爱因斯坦光电效应方程同时提供了测普朗克常量的一种方法:由式(1)和(2)可得: A U e hv +=0,当用不同频率(ν1,ν2,ν3,…,νn )的单色光分别做光源时,就有 A U e hv +=11 A U e hv +=22 ………… A U e hv n n += 任意联立其中两个方程就可得到 j i j i v v U U e h --= )( (3) 由此若测定了两个不同频率的单色光所对应的遏止电位差即可算出普朗克常量h ,也可由ν-U 直线的斜率求出h 。 因此,用光电效应方法测量普朗克常量的关键在于获得单色光、测得光电管的伏安特性曲线和确定遏止电位差值。 实验内容 通过实验了解光电效应的基本规律,并用光电效应法测量普朗克常量。 1. 在577.0nm 、546.1nm 、435.8nm 、404.7nm 四种单色光下分别测出光电管的伏安特性曲线,并根据此曲线确定遏止电位差值,计算普朗克常量h 。 本实验所用仪器有:光电管、单色仪(或滤波片)、水银灯、检流计(或微电流计)、直流电源、直流电压计等. j i j i v v U U e h --= )(,求斜率,得到普朗克常量h. 入射光波长λ/nm 365nm

实验五-光无源器件特性测试实验(精)

常用光纤器件特性测试实验 实验五光无源器件特性测试实验 一、实验目的 1、了解光无源器件, Y 型分路器以及波分复用器的工作原理及其结构 2、掌握它们的正确使用方法 3、掌握它们主要特性参数的测试方法 二、实验内容 1、测量 Y 型分路器的插入损耗 2、测量 Y 型分路器的附加损耗 3、测量波分复用器的光串扰 三、预备知识 1、光无源器件的种类,有哪些?重点学习几个特性。 四、实验仪器 1、 ZY12OFCom13BG3型光纤通信原理实验箱 1台 2、 FC 接口光功率计 1台 3、万用表 1台 4、 FC-FC 法兰盘 1个 5、 Y 型分路器 1个 6、波分复用器 2个 7、连接导线 20根 五、实验原理

光通信系统的构成, 除需要光源器件和光检测器件之外, 还需要一些不用电源的光通路元、部件,我们把它们统称为无源器件。它们是光纤传输系统的重要组成部分。 光无源器件包括光纤活动连接器 (平面对接 FC 型、直接接触 PC 型、矩形SC 型、光衰减器、光波分复用器、光波分去复用器、光方向耦合器(例如:Y 型分路器、星型耦合器、光隔离器、光开关、光调制器…… 本实验重点介绍 Y 型分路器和光波分复用器,下一实验重点讲光纤活动连接器。 在应用这些无源器件时必须考虑无源器件的各项指标,如 Y 型分路器 (1分 2的光耦合器的插入损耗, 分光比, 波分复用器的光串扰等。下面对 Y 型分路器插入损耗及附加损耗及其分光比、波分复用器的光串扰分别进行测试。 Y 型分路器的技术指标一般有插入损耗(Insertion Loss 、附加损耗(Excess Loss 、分光比和方向性、均匀性等, 在实验中主要测试 Y 型分路器的插入损耗, 附加损耗及分光比。 就 Y 型分路器而言, 插入损耗定义为指定输出端口的光功率相对全部输入光功率的减少值。插入损耗计算公式为 5-1式。 lg(10. IN outi P P Li I -= (5-1 其中, I.Li 为第 i 个输出端口的插入损耗, P outi 是第 i 个输出端口测到的光功率值, P IN 是输入端的光功率值。 Y 型分路器的附加损耗定义为所有输出端口的光功率总和相对于全部输入光功率的减小值。附加损耗计算公式为 9-2式。

光电效应物理实验报告

光电效应 实验目的: (1)了解光电效应的规律,加深对光的量子性的理解 (2)测量普朗克常量h。 实验仪器: ZKY-GD-4 光电效应实验仪 1 微电流放大器 2 光电管工作电源 3 光电管 4 滤色片 5 汞灯 实验原理: 原理图如右图所示:入射光照射到光电管阴极K上,产生 的光电子在电场的作用下向阳极A迁移形成光电流。改变外加 电压V AK,测量出光电流I的大小,即可得出光电管得伏安特性曲线。 1)对于某一频率,光电效应I-V AK关系如图所示。从图中 可见,对于一定频率,有一电压V0,当V AK≤V0时,电流为0, 这个电压V0叫做截止电压。 2)当V AK≥V0后,电流I迅速增大,然后趋于饱和,饱和光电流IM的大小与入射光的强度成正比。 3)对于不同频率的光来说,其截止频率的数值不同,如右图:

4) 对于截止频率V0与频率的关系图如下所示。V0与成正比关系。当入射光的频率低于某极限值时,不论发光强度如何大、照射时间如何长,都没有光电流产生。 5)光电流效应是瞬时效应。即使光电流的发光强度非常微弱,只要频率大于,在开始照射后立即就要光电子产生,所经过的时间之多为10-9s的数量级。 实验内容及测量: 1 将4mm的光阑及365nm的滤光片祖昂在光电管暗箱光输入口上,打开汞灯遮光盖。从低到高调节电压(绝对值减小),观察电流值的变化,寻找电流为零时对应的V AK值,以其绝对值作为该波长对应的值,测量数据如下: 波长/nm365577 频率 / 截止电压/V 频率和截止电压的变化关系如图所示:

由图可知:直线的方程是:y= 所以: h/e=× , 当y=0,即时,,即该金属的 截止频率为。也就是说,如果入射光如果频率低于上值时,不管光强多大 也不能产生光电流;频率高于上值,就可以产生光电流。 根据线性回归理论: 可得:k=,与EXCEL给出的直线斜率相同。 我们知道普朗克常量, 所以,相对误差: 2 测量光电管的伏安特性曲线 1)用的滤色片和4mm的光阑 实验数据如下表所示: 4mm光阑 I-V AK的关系 V AK I V AK I V AK I V AK I V AK I V AK I

光敏电阻特性研究

光敏电阻特性研究 【实验目的】 1.了解和掌握光敏电阻的特性 2.掌握产生和检验偏振光的原理和方法。  3.进一步学习和掌握调节复杂光路的方法; 【实验仪器与装置】 1000)、光敏电阻、导轨、检偏器、凸透镜(mm f60 =)、光源(光通量lx 磁性滑块、稳压电源、万用电表、导线等  【实验原理】 一、光电效应与光电器件 1.1 光电效应 光电效应可以分为以下三种类型:  (1)外光电效应 在光的作用下,物体内的电子逸出物体表面,向外发射的现象叫外光电效应。 只有当光子能量大于逸出功时,即时,才有电子发射出来,即有光 电效应,当光子的能量等于逸出功时,即时,逸出的电子初速度为0, 此时光子的频率为该物质产生外光电效应的最低频率,称为红限频率。 利用外光电效应制成的光电器件有真空光电管、充气光电管和光电倍增管。 (2)光电导效应 在光的作用下,电子吸收光子能量从键合状态过渡到自由状态,引起物体电 阻率的变化,这种现象称为光电导效应。由于这里没有电子自物体向外发射,仅 改变物体内部的电阻或电导,有时也称为内光电效应。与外光电效应一样,要产 生光电导效应,也要受到红限频率限制。 利用光电导效应可制成半导体光敏电阻。 (3)光生伏特效应 在光的作用下,能够使物体内部产生一定方向的电动势的现象叫光生伏特效 应。利用光生伏特效应制成的光电器件有光敏二极管、光敏三极管和光电池等。 各种光电器件都有下述特性:

(1)光电流 光敏元件的两端加一定偏置电压后,在某种光源的特定照度下产生或增加的电流称为光电流。 (2)暗电流 光敏元件在无光照时,两端加电压后产生的电流称为暗电流。 (3)光照特性 当光敏元件加一定电压时,光电流I与光敏元件上光照度E之间的关系,称为光照特性。一般可表示为。 (4)光谱特性 当光敏元件加一定电压时,如果照射在光敏元件上的是一单色光,当入射光功率不变时,光电流随入射光波长变化而变化的关系,称为光谱特性。 光谱特性对选择光电器件和光源有重要意义,当光电器件的光谱特性与光源的光谱分布协调一致时,光电传感器的性能较好,效率也高。在检测中,应选择最大灵敏度在需要测量的光谱范围内的光敏元件,才有可能获得最高灵敏度。 (5)伏安特性 在一定照度下,光电流I与光敏元件两端的电压U的关系称为伏 安特性。 (6)频率特性 在相同的电压和相同幅值的光强度下,当入射光以不同的正弦交变频率调制时,光敏元件输出的光电流I和灵敏度S随调制频率f变化的关系:、称为频率特性。 (7)温度特性 环境温度变化后,光敏元件的光学性质也将随之改变,这种现象称为温度特性。 二、光敏电阻 ①光敏电阻工作原理和结构 光敏电阻是利用光电导效应制成的。制造光敏电阻的材料一般由金属的硫化物、硒化物、碲化物组成。由于光电导效应只限于光照的表面薄层,因此光电导体一般都做成薄层。为了获得高的灵敏度,光敏电阻的电极常采用梳状图案,如图一所示。它是在一定的掩膜下向光电导薄膜上蒸镀金或铟等金属形成的。 为了避免外来干扰,光敏电阻外壳的入射孔上盖有一种能透过所要求光谱范围的透明保护窗(如玻璃)。为了避免光敏电阻的灵敏度受潮湿等因素的影响,将电导体严密封装在金属壳中。如图二所示。

光敏电阻的主要参数与特性(精)

光敏电阻的主要参数与特性 1.光敏电阻的主要参数 (1)暗电阻 ◆光敏电阻在不受光时的阻值称为暗电阻,此时流过的电流称为暗电流。 (2)亮电阻 ◆光敏电阻在受光照射时的电阻称为亮电阻,此时流过的电流称为亮电流。(3)光电流 ◆亮电流与暗电流之差称为光电流。 2.光敏电阻的基本特性 (1)伏安特性 ◆在一定照度下,流过光敏电阻的电流与光敏电阻两端的电压的关系称为光敏电阻的伏安特性。 硫化镉光敏电阻的伏安特性 (2)光谱特性 ◆光敏电阻的相对光敏灵敏度与入射波长的关系称为光谱特性,亦称为光谱响应。 下图为几种不同材料光敏电阻的光谱特性。对应于不同波长,光敏电阻的灵敏度是不同的。 光敏电阻的光谱特性 (3)光照特性 ◆光敏电阻的光照特性是光敏电阻的光电流与光强之间的关系,如图8-10所示。 ◆由于光敏电阻的光照特性呈非线性,因此不宜作为测量元件,一般在自动控制系统中常用作开关式光电信号传感元件。

光敏电阻的光照特性 (4)温度特性 ◆光敏电阻受温度的影响较大。当温度升高时,它的暗电阻和灵敏度都下降。 ◆温度变化影响光敏电阻的光谱响应,尤其是响应于红外区的硫化铅光敏电阻受温度影响更大。下图为硫化铅光敏电阻的光谱温度特性曲线。 硫化铅光敏电阻的光谱温度特性曲线 (5)光敏电阻的响应时间和频率特性 ◆实验证明,光电流的变化对于光的变化,在时间上有一个滞后,通常用时间常数t来描述,这叫做光电导的弛豫现象。所谓时间常数即为光敏电阻自停止光照起到电流下降到原来的63%所需的时间,因此,t越小,响应越迅速,但大多数光敏电阻的时间常数都较大,这是它的缺点之一。下图所示为硫化镉和硫化铅的光敏电阻的频率特性。 光敏电阻的频率特性

相关主题
文本预览
相关文档 最新文档