当前位置:文档之家› 单向运行能耗制动

单向运行能耗制动

单向运行能耗制动
单向运行能耗制动

电气控制与PLC课程设计报告

题目单向运行能耗制动

学院信息科学与工程学院

专业电气自动化技术

学生毅

学号 3 年级 2014 级

指导教师黄建刚职称高级工程师

二0一六年六月三日

课程设计题目:单向运行能耗制动设计

学生:毅

设计报告成绩(按4照优、良、中、及格、不及格评定)

指导教师评语:

指导教师(签名)年月日说明:指导教师评分后,设计报告交院实验室保存。

单向运行能耗制动

摘要:能耗制动是电动机在脱离三相交流电源后,立即使其两相定子绕组加上一个直流电源,即通入直流电源,利用转子感应电流与精致磁场的相互作用来达到制动目的的一种制动方法。该制动方法将电动机旋转的动能转换为电能,消耗在制动电阻上,故称为能耗制动。能耗制动可按时间原则又时间继电器来控制,也可按速度原则由速度继电器来控制。能耗制动的优点是制动准确、平稳且能量消耗较小,缺点是需要附加直流电源装置,制动效果不及反接制动明显。在本次课程设计中我负责的容是按照要求绘图以及分析,并仿真,最后将两人成果整合并制作文件。

关键词:能耗制动;速度原则;

Unidirectional operation energy consumption braking

Abstract:Energy consumption braking motor from the three-phase AC power supply immediately, so that the two phase stator windings and a DC power supply, namely the DC power supply, the induced current in the rotor and delicate magnetic field interaction to achieve braking method for the purpose of brake. The rotation of the motor braking method and the kinetic energy is converted to electrical energy consumed by braking resistor, so called dynamic braking. The energy consumption braking can be controlled according to the time principle and time relay, and can be controlled by the speed relay. The advantages of energy consumption braking is accurate, stable and less energy consumption, the disadvantage is that the need to add DC power supply device, the braking effect is not obvious.In the course design is I am responsible for the contents of the drawing and in accordance with the requirements analysis, simulation, and finally to integrate both results and make files.

Key words: Energy consumption braking;Principle of speed.

目录

绪论 0

1. 课程背景 0

2. 选题的目的和意义 0

3. 国外研究现状 (1)

4. 主要的研究容 (1)

第1章电气电路设计 (2)

1.1 能耗制动原理 (2)

1.1.1 主电路设计 (2)

1.1.2 控制电路设计 (3)

1.2 电路元件设计 (4)

1.2.1 电动机 (4)

1.2.2 接触器 (4)

1.2.3 熔断器 (4)

1.2.4 热继电器 (4)

1.2.5 速度继电器 (5)

1.3 元件清单 (5)

第2章控制系统设计 (6)

2.1 CPU模块的选择 (6)

2.2 I/O分配 (6)

2.3 I/O接线图 (7)

2.4 时序图 (7)

2.5 顺序功能图 (8)

2.6 梯形图 (8)

第3章测试与仿真 (10)

3.1 仿真 (10)

3.1.1 导入梯形图 (10)

3.1.2 测试 (11)

3.2 问题的分析与解决 (11)

第4章结论 (12)

致 (13)

参考文献 (14)

附录1 JR20系列热继电器的技术指标 (15)

附录2 CPU224的技术指标 (16)

附录3 Y系列电机常用型号对照表 (19)

绪论

长期以来,能耗制动始终处于工业自动化控制领域的主战场,为各种各样的自动化控制设备提供了非常可靠的控制应用。它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业企业对自动化的需要。由于能耗制动综合了计算机和自动化技术,所以它发展日新月异,大大超出其出现时的技术水平。它不但可以很容易地完成逻辑、顺序、定时、计数、数字运算、数据处理等功能,而且可以通过输入输出接口建立与各类生产机械数字量和模拟量的联系,从而实现生产过程的自动控制。

1.课程背景

在20世纪60~70年代,为了适应计算机、数字控制、机器人、大规模集成电路等高新技术的发展,美国通用汽车公司(GM)为适应汽车型号的不断翻新,提出了“结合计算机灵活、通用、功能完备以及继电控制[1]简单、易懂、操作方便、为大家所熟悉”的优点,面向工业现场、面向控制过程、面向实际问题,即使是不熟悉计算机的人,经过简单训练也可直接编程的一种新型电子化的自动控制装置来代替传统继电-接触控制[2]的设想。

1969年,美国数字设备公司(DEC)率先研制出PDP-14可编程控制器,成功地用在GM公司的自动装配线上。

1987年,国际电工委员会(IEC)对它定义如下:一种数字运算操作的电子系统装置,专为在工业现场应用而设计。它采用可编程序的储存器,用来在其部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。

在早期,主要用于替代继电-接触的顺序控制,因此,又称为可编程逻辑控制器(Programmable logic controller PLC)。

随着电子技术、计算技术的迅速发展,可编程控制器的功能已远远超出了顺序控制的围。被称为可编程控制器[3](Programmable Controller PC)。为区别于个人计算机(Personal Computer PC),故沿用PLC[4] 这个缩写。

2.选题的目的和意义

本课程设计是PLC课程课堂教学的延伸和发展,是理论知识与工程实践之间的衔接。课程设计的主要目的是通过某一生产设备的电气控制装置的设计实践,了解一般电气控制系统设计过程、设

计要求、应完成的工作容和具体设计方法。通过设计也有助于复习、巩固以往所学的知识,达到灵活应用的目的。设计必须满足生产设备和生产工艺的要求,因此,设计之前必须了解设备的用途、结构、操作要求和工艺过程,在此过程中培养从事设计工作的整体观念。

课程设计应强调能力培养为主,在独立完成设计任务的同时,还要注意其他几方面能力的培养与提高,如独立工作能力与创造力;综合运用专业及基础知识的能力,解决实际工程技术问题的能力;查阅图书资料、产品手册和各种工具书的能力;工程绘图的能力;书写技术报告和编制技术资料的能力。在专业知识与研究方法方面为日后的毕业设计乃至毕业后的工作奠定良好的基础。

3.国外研究现状

PLC自问世以来,经过40多年的发展,在美、德、日等工业发达国家以成为重要的产业之一。世界总销售额不断上升、生产厂家不断涌现、品种不断翻新。产量产值大幅度上升而价格则不断下降。目前,世界上有200多个厂家生产PLC,较有名的:美国:AB通用电气、莫迪康公司;日本:三菱、富士、欧姆龙、松下电工等;德国:西门子公司;法国:TE施耐德公司;国:三星、LG公司等[5]。

我国PLC产品的研究和生产经历了三个阶段[6]:

1)顺序控制器(1973~1979)

2)以微处理器为主的工业控制器(1979~1985)

3)以微处理器为主的可编程序控制器(1985以后)。

在对外康的政策的推动下,国外PLC产品大量进入我国市场,一部分随成套设备进口。随着不断学习与不断开拓的精神,现在,我国自主生产的PLC在国的各行各业也有了极大的应用,技术含量也越来越高[7]。

4.主要的研究容

三相异步电动机的制动方法有很多种,本课程设计将重点说明用PLC来实现对三相异步电动机能耗制动的控制的设计与仿真。分析能耗制动的工作原理。使用STEP7-MICRO/WIN对PLC编程,控制电动机能耗制动。完成对PLC的程序设计[8]以及仿真。

第1章电气电路设计

随着现代信息科技的日益发展,人们对电力电子行业的需求也日益增多。如何在现有的经济及科学技术支持下不断满足人们对其的需求成为制约当今社会进步的一大问题。本文主要介绍了单向运行能耗控制电路,分析了能耗制动控制电路的相关问题,并着重了解和分析单向运行能耗控制电路并且按照速度原则由速度继电器来控制。

1.1 能耗制动原理

根据左手定则确定出转子电流和恒定磁场作用所产生的转矩方向与转子转速方向相反,故为制动转矩,此时电机把原来储存的动能或重物的位能吸收后变成电能消耗在转子电路中。能耗制动就是将运行中的电动机[9],从交流电源上切除并立即接通直流电源,在定子绕组接通直流电源时,直流电流会在定子产生一个静止的直流磁场,转子因惯性在磁场旋转,并在转子导体中产生感应电势有感应电流流过,并与恒定磁场相互作用消耗电动机转子惯性能量产生制动力矩,使电动机迅速减速,最后停止转动。

1.1.1 主电路设计

本次课程设计按速度原则实现可逆运行能耗制动控制电路[10]。通过速度继电器对速度的检测,从而控制电动机的运行。主电路电路图如1-1所示。停止时,电动机定子绕组脱离三相电源的同时,接触器KM2线圈通电,KM2主触点闭合,使桥式整流器VC能将交流电变为直流电送入定子绕组,进行能耗制动,电动机转子转速迅速下降,当时间继电器KT的延时时间一到,电动机转速接近零,延时触点断开,使KM2和KS的线圈断电,电动机脱离直流电源,制动过程结束。

图1-1 主电路1.1.2 控制电路设计

图1-2 控制电路

1.2 电路元件设计

一个成功的系统都是由恰到好处的电路元件组成,选择合适的电路元件尤为重要,好的电路选择具有可靠的安全保证,还能在经济上具有一定的节省。

1.2.1 电动机

电动机应满足安全稳定,安装简单。选择Y系列电动机。具体参数见附录3.

1.2.2 接触器

接触器[4] ( Contactor) 分直流接触器、交流接触器两大类选择依据是:主触头数、辅助触头数目、额定电流、线圈控制电压的类型、等级等。我们以我们选择为KM1、KM2为CJ20-25 系列交流接触器。其额定工作电流为25A,额定电压为380V。

1.2.3 熔断器

当电路发生故障或异常时,伴随着电流不断升高,并且升高的电流有可能损坏电路中的某些重要器件或贵重器件,也有可能烧毁电路甚至造成火灾。若电路中正确地安置了熔断器,那么,熔断器就会在电流异常升高到一定的高度和一定的时候,自身熔断切断电流,从而起到保护电路安全运行的作用。

如果电路中安装了断路器就可以不用熔断器,热继电器需要与交流接触器配合使用,因过载时热继电器上的触点断开切断控制回路,目前一般多用于控制回路。本次设计中在控制电路中用到熔断器。选择RL1-60型熔断器,其额定电流为60A

1.2.4 热继电器

热继电器是利用电流的热效应原理和发热元件的热膨胀原理,在出现电动机不能承受的过载时,断开电动机的控制电路,实现电动机断电停车的保护电路。

目前使用最多的、最普遍的是双金属片式热继电器。根据设计需要,选择JR20-10型热继电器。具体参数见附录1。

1.2.5 速度继电器

速度继电器[9]是利用速度原则对电动机进行控制的自动电器,常用语笼型异步电动机的反接制动控制,因此亦称为反接制动电器。

感应式速度继电器主要是由转子、定子和触点三部分组成,其原理如下:当电动机转动时,速度继电器的转子随之转动,这样就在速度继电器的转子和定子圆环之间的气隙中产生旋转磁场而感应出电动势,并产生电流,此电流与旋转磁场作用产生转矩,使定子随转子到一定的角度。转子转速越高,定子偏转角度越大。

一般速度继电器的动作速度为120r/min,触点的复位速度在100r/min以下,转速在

3000~3600r/min以下能可靠的工作,允许操作频率每小时不超过30次。

根据设计需要,选择JY1型速度继电器。其工作围在700—3600r/min。

1.3 元件清单

根据上述器件选择原则,可以列出所选用的器件清单如表1-1所示。

表1-1 元件清单

第2章控制系统设计

PLC控制系统设计是指用户根据编写程序的设计思路,通过发送指令,配合被控制对象工艺过程的现场信号和操控要求,参照PLC继电器编号,绘出梯形图程序。一般利用顺序功能图法和经验设计法对PLC应用程序进行设计。

2.1 CPU模块的选择

本次设计需要两个输入接口,两个输出接口。CPU224集成了14点输入10点输出,共有24个数字量I/O。它可连接7个扩展模块,最大扩展至168点数字量I/O点或35路模拟量I/O点。CPU224有13K字节程序和数据存贮空间,6个独立的30KHz高速计数器,2路独立的20KHz高速脉冲输出,具有PID控制器[12]。CPU224[4]配有1个RS-485通讯口,具有PPI通讯、MPI通讯和自由方式通讯能力,是具有较强控制能力的中型PLC。

附录2 CPU224的主要技术指标。

2.2 I/O分配

根据控制电路的工作原理,PLC需要以下的输入输出作为与外部电路的控制接点,如表2-1所示。其中SB1是停止按键,SB2是起动按键。

表2-1 I/O分配表

2.3 I/O接线图

图2-1 I/O接线图

当SB2按下时,I0.0置1,使Q0.1置1,KM1线圈通电,主电路接触器闭合,电动机转动。当速度达到一定时KM2线圈得电,主电路的KM2闭合,KM1断开。

2.4 时序图

图2-2 时序图

当I0.0置1时,Q0.0也置1线圈KM1通电主电路接触器KM1闭合电动机运转,由于Q0.0Q一直置1因此电动机会连续运转,当速度达到一定程度时Q0.1置1、Q0.0置0,线圈KM2通电电动机继续运转。当按钮SB1按下时,I0.1置0,所有电路全部复位,电动机停止运转。

2.5 顺序功能图

图2-3 顺序功能图

当I0.2置1时,使Q0.0置1 电动机运转,当I0.1按下时使Q0.0Q置1使电动机连续运转,当速度达到一定值时,速度继电器通电,是开关KS闭合,Q0.1通电,使得电动机运转。

2.6 梯形图

用所学的绘图变成软件将电气功能图用梯形图绘制出来,如图2-3所示。

图2-4 梯形图

第3章测试与仿真

将梯形图语言编写好后,下一步就是去实验室进行仿真、测试,需要将仿真的结果与仿真中出现的问题进行总结,并且将这些问题一一解决再记录。

3.1 仿真

先把程序的梯形图先画好然后用编程软件进行仿真,看一下程序是否有误(如果有错误就应该及时检查,查出问题所在之后及时修改,然后再次进行仿真,直至没有错误为止),检测一遍后确认程序毫无问题后,就可以准备下一步了。接下来,要做的就是需要去现场进行测试,看看这个程序在导入到PLC后,电动机是否能够按照计划中制动。

3.1.1 导入梯形图

图3-1 初始态

3.1.2 测试

当进行测试时,首先要对这个PLC 要熟悉,先要对PLC进行观察,PLC哪些地方是输入,哪些地方是输出,然后要对所编写的程序进行实物的连接,然后按照步骤一次进行。因为程序是验证过了,如果出现错误应该首先排查是不是接线出现了错误。

图3-2 运行状态

3.2 问题的分析与解决

在编写程序时就遇到了问题,首先,速度继电器就不知道符号是怎样的,可能是上课不专心,对此也根本没有什么印象。先是上网想要找到答案,但是却依然没有结果。只好向同学求助,最后在同学的帮助下最后还是成功完成了。

第4章结论

此次课程设计对我而言,无疑是收获巨大的。首先,通过这次课程设计,我对软件的学习以及对硬件的学习让自己对PLC程序的设计有了更加深层次的了解,比如如何使用各种指令我变得更加熟练了,对于流程图、PLC I/O分配表、PLC 接线图、顺序功能框图、梯形图等绘图方面的技巧我也有了相当大的提升。其次,通过这次课程设计,我们相当于是对知识进行了一次复习,并且用于实际,将其利用了起来实现了真正的运用,使得我真正的更深入的通过课程设计了解了我们的电气控制与PLC这门学科。再有,这次课程设计也充分培养了我们的团队意识,加强了我们团队合作的能力,这不仅仅对我们学习生涯有着好处,对于我们的以后的人生和工作也是有着极大帮助的。最后,这次的课程设计暴露出了自己太多的问题。拿到课程设计的题目是,我都看不懂是什么,一下子给自己敲响了警钟,是因为自己平时学习不认真,所以才在这次课程设计上磕磕绊绊,不知道怎么做才好。这警示了自己在学习上应该踏踏实实,认真上进。同时,在学习上我们有问题自己思考后仍然无法解决就应该向老师求助,不要不好意思或者因为自己学得不好怕被老师骂就不问老师,如果这次我在自己思考问题还是没有有效办法的时候选择问老师,我的课程设计一定也会完成得更好,所以在以后的学习生涯中我会勇于发问,改掉学习上的坏毛病。

在这次课程设计的撰写过程中,我得到了许多同学的帮助。因为自己之前学得并不怎么样,所以有很多地方都是半懂不懂的,甚至是完全不懂,一个人看书也看不出来怎么一回事,多亏了同学的帮助,不耐其烦的帮我讲解,我才搞懂了很多关键性的知识点。尤其是廖毅同学,我正在为如何绘图感到十分疑惑时,他向我推荐了visio绘图软件并给我详细讲解了如何使用,是我可以快速上手绘制各种图。与此同时,还帮我指出了很多关于此次实验报告被我所以遗漏的格式错误,帮我省却了很多麻烦。同时,感黄老师给我的课程设计指出了很多问题,并专门列出告诉我如何修改,同时还很体谅我们,给我们宽限了时间,不然以我的水平实在是很难在规定时间完成此次课程设计。最后再一次感所有在设计中曾经帮助过我的良师益友和同学。

参考文献

[1].顺禧平气控制技术[M]. :理工大学,2000

[2].郁汉琪,等. 电气控制与可编程序控制器应用技术[M].2版

[3].廖常初S7-200PLC编程及应用[M] :机械工业,2007东南大学 2009

[4].龚仲华S7-200/300/400PLC 应用技术——通用篇[M],:人民邮电。2010

[5].王永华。现代电气控制及PLC 应用技术[M].2版。:航空航天大学 2008

[6].龚运新,厚玉,戚本志。PLC技术及应用[M]. :清华大学,2009

[7].何强,单启兵。可编程序控制器应用:S7-200 [M]. :中国水利水电,20l0.

[8].何献忠。可编程控制器应用技术:西门子57-200系列[M]. :清华大学,2007

[9].何衍庆,等可编程序控制器原理及应用技巧[M] :化学工业,2000

[10].建明.电气控制与PLC应用.:电工工业,2010年11月

[11].平.可编程控制器原理及应用(第2版).:高等教育,2008年4月版

[12].林小峰.可编程控制器原理及应用. :高等教育,1994

[13].于庆广.可编程控制器原理及系统设计..:清华大学,2004

[14].胡幸鸣。电机及拖动基础[M]. 2版。:机械工业,2008

6-6 三相异步电动机的制动控制电路(可打印修改)

电工学(第四版)教案 Ⅰ.复习提问 1、行程开关在自动往返控制电路中的作用是什么? 2、简述自动往返的正反转控制电路的工作过程。 Ⅱ.导入新课 三相异步电动机从切断电源到完全停转,由于惯性的作用,总要经过一段时间。许多生产机械,如铣床、镗床和组合机床都要求迅速停车及准确定位,这就要求对电动机进行强迫停车,即制动。 Ⅲ.讲授新课 §6-6 三相异步电动机的制动控制电路 制动目的:准确、迅速停车;工作安全。 机械制动:机械抱闸 制动分类 电气制动:反接制动、能耗制动、回馈制动等 机械制动:用电磁铁操纵机械机构进行制动(电磁抱闸制动、电磁离合器制动等)。 电气制动:用电气的办法,使电动机产生一个与转子原转动方向相反的力矩进行制动。 一、机械制动(电磁抱闸) 1、电磁抱闸的结构:制动电磁铁、闸瓦制动器 2、机械制动控制电路 1)断电制动控制电路:

特点:断电时制动闸处于“抱住”状态。 适用场合:升降机械 SB2↓—→ KM+ —→ YA+ —→松闸起动 SB1↓—→ KM- —→ YA- —→抱闸制动 2)通电制动控制电路: 特点:断电时制动闸处于“松开”状态。 适用场合:加工机械 SB2↓—→ KM1+———→起动 SB1↓—→ KM1- KM2+ —→ YA+ —→抱闸制动 SB1↑—→ KM2- ——→ YA- —→松闸停止 二、电气制动 原理:制动时使电动机产生与转子原转向相反的制动转矩。 1、能耗制动 原理:制动时,切除定子绕组三相电源的同时接通直流电源,产生静止磁场,使惯性转动的转子在静止磁场的作用下产生制动转矩。 特点:能耗小,需直流电源,设备费用高。 (制动准确度较高,制动转矩平滑,但制动力较弱,制动转矩与转速成比例减小)

能耗制动的控制线路原理

模块一 能耗制动的控制线路原理 一、工作任务 分析图2-2工作原理 二、相关实践性知识 (一)元器件认识 教学目标:能分析机床电机能耗制动控制线路原理。 主电路 控制电路 图2-2 机床电机能耗制动电气控制线路(时间原则)

1.时间继电器 当吸引线圈通电或断电后其触点经过一定延时再动作的继电器。 (1)结构(图2-3) (2)时间继电器的符号(图2-4) (3)时间继电器认识 类型认识:电磁式、空气阻尼式、电动式、电子式 ①直流电磁式时间继电器——用于直流电气控制电路中,只能直流断电延时动作。 优点:结构简单、运行可靠、寿命长;缺点:延时时间短。 ②空气阻尼式时间继电器——利用空气阻尼作用获得延时。 分:通电延时、断电延时两种。 通电延时型 断电延时型 图2-3 空气阻尼式时间继电器 1—线圈 2—铁心 3—衔铁 4—反力弹簧 5—推板 6—活塞杆 7—杠杆 8—塔形弹簧 9—弱弹簧 10—橡皮膜 11—空气室壁 12—活塞 13—调节螺杆 14—进气孔 15、16—微动开关 图2-4 时间继电器电气符号

③电子式时间继电器——分R-C式晶体管和数字式时间继电器。 优点:延时范围宽、精度高、体积小、工作可靠。 晶体管式时间继电器以RC电路电容充电时电容器上的电压逐步上升的原理为基础。电路有单结晶体管电路和场效应管电路两种。 分类:断电延时、通电延时、带瞬动触点延时三种。 结构认识:空气阻尼式时间继电器 组成认识:电磁系统、延时机构、工作触点 动作原理分析:空气阻尼式时间继电器(通电延时型) 当线圈1通电后,衔铁3吸合,微动开关16受压其触点动作无延时,活塞杆6在塔形弹簧8的作用下,带动活塞12及橡皮膜10向上移动,但由于橡皮膜下方气室的空气稀薄,形成负压,因此活塞杆6只能缓慢地向上移动,其移动的速度视进气孔的大小而定,可通过调节螺杆13进行调整。经过一定的延时后,活塞杆才能移动到最上端。这时通过杠杆7压动微动开关15,使其常闭触头断开,常开触头闭合,起到通电延时作用。 当线圈1断电时,电磁吸力消失,衔铁3在反力弹簧4的作用下释放,并通过活塞杆6将活塞12推向下端,这时橡皮膜10下方气室内的空气通过橡皮膜10、弱弹簧9和活塞12肩部所形成的单向阀,迅速地从橡皮膜上方的气室缝隙中排掉,微动开关15、16能迅速复位,无延时。 总结:时间继电器的触点动作情况 通电延时型——当吸引线圈通电后,其瞬动触点立即动作;其延时触点经过一定延时再动作。 当吸引线圈断电后,所有触点立即复位。 断电延时型——当吸引线圈通电后,所有触点立即动作。 当吸引线圈断电后,其瞬动触点立即复位;其延时触点经过一定 延时再复位。 (二)能耗制动的工作原理 能耗制动:电动机脱离三相交流电源后,定子绕组加一直流电压,即定子绕组通以直流电流,利用转子感应电流与静止磁场的作用达到制动目的。 能耗制动控制方式又分: 时间原则控制——利用时间继电器控制 速度原则控制——利用速度继电器控制 1.识图:(见图2-2) (1)电路组成:主电路、控制电路 (2)主要元器件:转换开关、熔断器、交流接触器、热继电器、电源变压器、按钮、时间继电器、二极管整流桥 (3)原理分析: 主回路:合上QS→主电路和控制线路接通电源→变压器需经KM2的主触头接入电源(原边)和定子线圈(副边) 控制回路:

典型案例:三相异步电动机能耗制动控制线路的安装

《三相异步电动机能耗制动控制线路的安装》“理实一体化” 课堂教学案例 电气工程系郝玉英 一、概述 (一)课程概述 《电机维修与控制》课程是根据农村电气化、电子电器应用与维修专业工作过程的实际需要来设计。三相异步电动机在各种电动机的应用中最广,需求量最大,在工业生产,农业机械化交通运输,国防工业等电力拖动装置中占有很大的比重,这是因为三相异步电动机具有结构简单,制造方便,价格低廉运行可靠等一系列优点,另外还具有较高的运行效率和较好的工作特性,能满足各行各业大多数生产机械的转动要求。因此,三相异步电动机的技术在我国有极为广泛的发展前景。 本课程是电气专业的核心课程。主要内容有“常用低压电器的拆装与检测”、“三相异步电动机启动控制”、“三相异步电动机制动、调速控制”、“典型机床电气控制电路适读与检修”、“单相异步电动机的启动与调速控制”共五个项目的学习。每一个项目学习以典型的工作任务为基础,按照企业工作流程进行,包括接受工作任务——信息收集(知识补充)——制定计划——实施过程——任务评价五个环节,使学生既掌握了知识和技能,又实现了学生职业能力的培养,最终达到本课程的教学目的。 (二)本次学习任务简介 通过本节课的学习,使学生了解能耗制动的有关知识,知道能耗制动的优点和缺点,以及能耗制动在生产、生活中的应用。学会设计三相异步电动机能耗制动的控制电路安装,并且对此电路进行研究。了解能耗制动在社会生产过程中以及生活中的应用。对学生将来从事电气维修工作具有重大意义。 二、“理实一体化”教学设计思路 (一)设计理念 《三相异步电动机能耗制动控制线路的安装》运用行动导向教学的理念,遵循理实一体化的教学要求,通过查阅电工维修手册确认操作标准,严格遵循企业实际的工作流程标准,突出实践教学,始终贯穿以学生为主体、教师为主导的教学思想。通过电工维修手册和教师根据实训室情况自行拍摄的视频,融知识的学习为解决实操过程的问题,为实训提供理论依据和有效分工。通过理论与实践一体化的学习,学生在实际操作中变知识的学习为运用知识解决实际工作问题,达到学以致用的学习效果。 (二)设计思路

电动机全波能耗制动控制电路(附图)

电动机全波能耗制动控制电路(附图) 电动机全波能耗制动控制电路原理图 很多生产机械都希望在停车时有适当的制动作用,使运动部件迅速停车。停车制动有机械制动和电气制动等多种方法。能耗制动是一种应用很广泛的一种电气制动方法。 能耗制动就是将运行中的电动机,从交流电源上切除并立即接通直流电源,在定子绕组接通直流电源时,直流电流会在定子内产生一个静止的直流磁场,转子因惯性在磁场内旋转,并在转子导体中产生感应电势有感应电流流过。并与恒定磁场相互作用消耗电动机转子惯性能量产生制动力矩,使电动机迅速减速,最后停止转动。 1、合上空气开关QF接通三电源

2、按下启动按钮SB2,接触器KM1线圈通电并自锁,主触头闭合电动机接入三相电源而启动运行。 3、当需要停止时,按下停止按钮SB1,KM1线圈断电,其主触头全部释放电动机脱离电源。 4、此时,接触器KM2和时间继电器KT线圈通电并自锁,KT开始计时KM2主触点闭合将直流电源接入电动机定子绕组,电动机在能耗制动下迅速停车。 另外,时间继电器KT的常闭触点延时断开时接触器KM2线圈断电,KM2常开触点断开直流电源,脱离电源及脱离定子绕组,能耗制动及时结束,保证了停止准确。 5、该电路的过载保护由热继电器完成 6、互锁环节: ⑴ KM2常闭触点与KM1线圈回路串联,KM1常闭触点与KM2线圈回路串联。保证了KM1与KM2线圈不可能同时通电,也就是在电动机没脱离三相交流电源时,直流电源不可能接入定子绕组。 ⑵按纽SB1的常闭触点接入KM1线圈回路,SB1的常开触点接入KM2线圈回路,这是按纽互锁也保证了KM1、KM2不可能同时通电,与上面的互锁触点起到同样作用。 7、直流电源采用二极管单相桥式整流电路,电阻R用来调节制动电流大小,改变制动力的大小。 电动机全波能耗制动控制接线示意图

电机控制线路图大全

电机控制线路图大全 Y-△(星三角)降压启动控制线路-接触器应用接线图 Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。 Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。 OX3—13型Y-△自动启动器的控制线路如图11—11所示。(https://www.doczj.com/doc/b9905957.html,) 合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl 主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I 星形—三角形降压起动控制线路

星形——三角形降压起动控制线路 星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。 Y —△起动只能用于正常运行时为△形接法的电动机。 1.按钮、接触器控制 Y —△降压起动控制线路 图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。 2.时间继电器控制 Y —△降压起动控制线路 图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。 图2定子串电阻降压起动控制线路

目前制动现状及制动方式比较

机械制动的优点就是简单,实用,电制动一般都是反向制动。 机械制动一般采用电磁抱闸制动,体积大,占用一定空间,抱闸阻力材料容易磨损。选用能耗制动效果较佳,制动晨间极短。 能耗制动与反接制动都属于电动机快速停车的电气制动方法,它们都是当电动机停止时,在电动机上外接一个电源,产生一个与原转动方向相反的电磁制动转矩,迫使电动机迅速停转。 区别: (1)定义:能耗制动是在切除三相交流电源之后,定子绕组通入直流电流,在定转子之间的气隙中产生静止磁场,惯性转动导体切割该磁场,形成感应电流,产生与惯性转动方向相反的电磁力矩而制动。制动结束后将直流电源切除。 反接制动靠改变定子绕组中三相电源的相序,产生一个与转子惯性转动方向相反的电磁转矩,使电动机迅速停下来,制动到接近零转速时,再将反相序电源切除。 (2)优缺点: 反接制动制动转矩大,制动效果显著,但制动时有冲击,制动不平稳,而且能量损耗大。 能耗制动与反接制动相比,制动平稳,准确,能量消耗小,但制动力矩较弱,特别在低速时制动效果差,并且还需要提供直流电源。 太原煤炭气化公司是一个大型煤化工企业,移动的生产设备使用的比

较多。例如3座焦炉就有14台大型电机车,且走行机构均为双电机进行,由于生产工艺的要求,这些生产设备均需要制动迅速、对位准确,但现行的停车手段有机械制动和电气制动,以后者居多,却只有电磁抱闸和反接制动,实际生产中制动的效果与工艺的要求存在着差距,有必要对电气制动进行研究改进。 制动方式的比较分析 机械制动:机械制动的优点是它的安全性和可靠性较高,不会因电网电源的中断或电气线路的故障而影响到制动;缺点是制动装置的体积比较大,要求制动时间愈短,冲击振动就愈大,停位准确性低。反接制动:反接制动的优点是没有抱闸机构,制动转矩大且迅速,实现制动比较容易;缺点是制动时冲击大,对机构的传动部件损坏大,且制动电流是电机额定电流的3-5倍,对定子绕组、接触器主触头和配电线路的危害很大,增加维护量并严重缩短电器设备使用寿命,频繁制动对位时能量损耗也相当大。 能耗制动:能耗制动的优点是制动转矩平滑,能随时改变制动转矩,可以使生产机械可靠停止,最适合用于经常起动、频繁逆转并要求迅速停车的生产机械;缺点是能量不能回馈电网,还需增加一直流电源。 据测试结果,电动机能耗制动过程的电能损耗仅为反接制动过程的三分之一左右,对于起制动频繁的异步电机,如果采用反接制动时会发热严重,甚至能烧毁电机,而能耗制动和机械制动能保证电机在正常运转时的发热在允许范围之内。综合比较后知道,能耗制动具有机械

三相异步电动机的制动控制线路(一)

三相异步电动机的制动控制线路(一) 许多机床,如万能铣床、卧式镗床、组合机床等,都要求能迅速停车和准确定位。三相异步电动机从切断电源到安全停止旋转,由于惯性的关系总要经过一段时间,这样就使得非生产时间拖长,影响了劳动生产率,不能适应某些生产机械的工艺要求。在实际生产中,为了保证工作设备的可靠性和人身安全,为了实现快速,准确停车,缩短辅助时间,提高生产机械效率,对要求停转的电动机采取措施,强迫其迅速停车,这就叫“制动”。制动停车的方式有两大类:即机械制动和电气制动。机械制动有电磁抱闸制动、电磁离合器制动等;电气制动有反接制动、能耗制动、回馈制动等,它实质是使电动机产生一个与原来转子的转动方向相反的制动转矩。机床中经常应用的电气制动是反接制动和能耗制动。 一、机械制动控制线路 1、电磁抱闸制动线路 电磁抱闸制动是机械制动,其设计思想是利用外加的机械作用力,使电动机迅速停止转动。由于这个外加的机械作用力,是靠电磁制动闸紧紧抱住与电动机同轴的制动轮来产生的,所以叫做电磁抱闸制动。电磁抱闸制动又分为两种,即断电电磁抱闸制动和通电电磁抱闸制动。 (1) 断电电磁抱闸制动 制动闸平时一直处于“抱住”状态。 图1 断电电磁抱闸制动控制线路 图1是断电电磁抱闸制动的控制线路原理图。图中1是电磁铁,2是制动闸,3是制动轮,4是弹簧。制动轮通过联轴器直接或间接与电动机主轴相连,电动机转动时,制动轮也跟着同轴转动。

线路工作原理为: ?合上电源开关QS。 ?按下起动按钮SB,接触器KM1得电吸合,电磁铁绕组接入电源,电磁铁芯向上移动,抬起制动闸,松开制动轮。 ?KM1得电后,KM2顺序得电,吸合,电动机接入电源,起动运转。 ?按下停止按钮SB1,接触器KM1、KM2失电释放,电动机和电磁铁绕组均断电,制动闸在弹簧作用下紧压在制动轮上,依靠磨擦力使电动机快速停车。 ?由于在电路设计时是使接触器KM1和KM2顺序得电,使得电磁铁线圈YA先通电,待制动闸松开后,电动机才接通电源。这就避免了电动机在起动前瞬时出现的“电动机定子绕组通电而转 子被掣住不转的短路运行状态”。这种断电抱闸制动的结构形式,在电磁铁线圈一旦断电或 未按通时电动机都处于制动状态,故称为断电抱闸制动方式。 ?这种控制线路不会因网络电源中断或电气线路故障而使制动的安全性和可靠性受影响。但电动机制动时,其转轴不能转动,也不便调整;而当电机正常运转时,KM1和电磁线圈长期通电。 (2)通电电磁抱闸制动 制动闸平时一直处于“松开”状态。图2是通电电磁抱闸制动控制线路原理图。 图2通电电磁抱闸制动控制线路 线路工作原理为: ?按下起动按钮SB2,接触器KM1线圈得电吸合,电动机起动运行。 ?按停止按钮SB1,接触器KM1失电复位,电动机脱离电源。 ?接触器KM2线圈得电吸合,电磁铁线圈通电,铁芯向下移动,使制动闸紧紧抱住制动轮,同时时间继电器KT得电。 ?当电动机惯性转速下降至零时,时间继电器KT的常闭触点经延时断开,使KM2和KT线圈先后失电,从而使电磁铁绕组断电,制动闸又恢复了“松开”状态。 电磁抱闸制动的优点是制动力矩大,制动迅速,安全可靠,停车准确。其缺点是制动愈快,冲击振动就愈大,对机械设备不利。由于这种制动方法较简单,操作方便,所以在生产现场得到广泛应用,电磁抱闸制动装置体积大,对于空间位置比较紧凑的机床一类的机械设备来说,由于安装困难,故采用较少。至

反接制动

反接制动 图 制动问题 在生产过程中,经常需要采取一些措施使电动机尽快停转,或者从某高速降到某低速运转,或者限制位能性负载在某一转速下稳定运转,这就是电动机的制动问题。 实现制动有两种方法,机械制动和电磁制动。 电磁制动是使电机在制动时使电机产生与其旋转方向相反的电磁转矩,其特点是制动转矩大,操作控制方便。 现代通用电机的电磁制动类型有能耗制动、反接制动和回馈制动。 电机反接制动 (1)电压反接制动 电动机拖动恒转矩负载运行。 通过反接闸刀把电源突然反接,同时在电枢支路串入限流电阻R,限制并消耗由于制动产生的大电流。 n=-UN/(CeΦN)-(Ra+R)T/(CeCTΦN2) 如图所示,工作点A→B→C,在C点时,n=0。这时应将电源切掉。在B→C 的过程中转速为正,电磁转矩为负,起制动作用。 如果在C点时,电动机的转矩大于负载转矩(绝对值)而没有切除电源,则电动机在电磁转矩作用下将反向起动,作为反转的电动机运行。如图中的D点。 对于频繁正反转的电力拖动系统,常采用这种先反接制动停车,再反向起动的运行方式,达到迅速制动并反转的目的。对于要求准确停车的系统,采用能耗制动较为方便。

(2)电势反接制动(倒拉反转运行) 他励电动机拖动位能性恒转矩负载运行。 电枢支路突然串入较大的电阻,则工作点A→B→C→D,D点位于第iv 象限,转速为负,电磁转矩为正,属于制动运行。 在C点后,负载转矩大于电磁转矩,转速反向,感应电势也反向,所以称为电势反接制动。 这种运行方式通常用在起重设备低速下放物体的场合。电动机的电磁转矩起制动作用,限制了重物的下放速度。 三相异步电机反接制动 在电动机切断正常运转电源的同时改变电动机定子绕组的电源相序,使之有反转趋势而产生较大的制动力矩的方法。反接制动的实质:使电动机欲反转而制动,因此当电动机的转速接近零时,应立即切断反接转制动电源,否则电动机会反转。实际控制中采用速度继电器来自动切除制动电源。 反接制动控制电路如图所示。其主电路和正反转电路相同。由于反接制动时转子与旋转磁场的相对转速较高,约为启动时的2倍,致使定子、转子中的电流会很大,大约是额定值的10倍。因此反接制动电路增加了限流电阻R。KM1为运转接触器,KM2为反接制动接触器,KV为速度继电器,其与电动机联轴,当电动机的转速上升到约为100转/分的动作值时.KV 常开触头闭合为制动作好准备。 反接制动分析:停车时按下停止按钮SB2,复合按钮SB2的常闭先断开切断KM1线圈,KM1主、辅触头恢复无电状态,结束正常运行并为反接制动作好准备,后接通KM2线圈(KV常开触头在正常运转时已经闭合),其主触头闭合,电动机改变相序进入反接制动状态,辅助触头闭合自锁持续制动,当电动机的转速下降到设定的释放值时,KV触头释放,切断KM2线圈,反接制动结束。 一般地,速度继电器的释放值调整到90转/分左右,如释放值调整得太大,反接制动不充分;调整得太小,又不能及时断开电源而造成短时反转现象。 反接制动制动力强,制动迅速,控制电路简单,设备投资少,但制动准确性差,制动过程中冲击力强烈,易损坏传动部件。因此适用于l0kw以下小容量的电动机制动要求迅速、系统惯性大,不经常启动与制动的设备,如铣床、镗床、中型车床等主轴的制动控制。

电动机反接制动

技工学校生产实习课教案纸(首页)共14页第 1 页 课题电动机反接制动控制线路审阅签名审阅日期 授课日期 年月日至年月日 第周星期第节至第周星期第节 授课时数18学时 教学目的1.让学生了解什么是制动、为什么要制动、制动的场合要求;; 1.让学生了解速度继电器的结构、动作特点及应用; 2.使学生掌握电动机反接制动控制线路的安装与调试。 教学方法讲授法、演示法、练习法教学重点电路安装与调试 教学难点速度继电器的动作与应用特点 预习 及 课后作业 预习《电力拖动控制线路与技能训练第四版》P175~P193 小题分析实习电路的工作原理,思考:P192习题2-6<1、2> 课前准备内容图 样 电动机双向反接制动控制线路原理图 器 材 电力拖动控制板(每个学生一套)、BV-1/1.13线、电动机、低压电器备件 工 量 具 万用表、测电笔、旋具、钳子

技工学校生产实习课教案纸(次页) 第2 页教学环节内容要点时间 组织教学 检查学生出勤、佩戴校卡、教室卫生情况;检查实习器材、工具仪表准备情况; 安全用电教育。 全程 入门指导 讲 解 要 点 1.电动机制动的应用场合 2.电动机制动方式及原理分析 3.反接制动与能耗制动的比较 4.反接制动的特点分析 5.速度继电器的构造、原理及使用 6.实习电路及安装要求 3学时 演 示 模拟速度继电器触头的动作,反接制动的过程10min 布置 练习 见教案P135min 巡回指导1.布线与接线工艺。 2.速度继电器的电路接入点。 3.线路检查方法。 4.通电操作监护及指导。 14学时 结束指导书面作业及实操作业质量分析1学时

技工学校生产实习课教案纸(续页)第3 页 时间分配 及备注 入门指导内容及步骤 复习、总结:10min 新课课前提问:10min 新课引入:2min 举例说明制动应用场合:5min 复习: 时间继电器自动控制Y--△降压启动线路 总结:Y--△降压启动线路的要点 新课:课堂提问:电动机为什么要采取制动? 引入: 三相异步电动机切断电源后,由于惯性,总要经过一段时间才能完全停止。为缩短时间,提高生产效率和加工精度,要求生产机械能迅速准确地停车。采取一定措施使三相异步电动机在切断电源后迅速准确地停车的过程,称为三相异步电动机制动。三相异步电动机的制动方法分为机械制动和电气制动两大类. 一、电动机制动的应用场合 电机制动是电机控制中经常遇到的问题,一般电机制动会出现在两种不同的场合,一是为了达到迅速停车的目的,以各种方法使电机旋转磁场的旋转方向和转子旋转方向相反,从而产生一个电磁制动转矩,使电机迅速停车转动;另一是在某些场合,当转子转速超过旋转磁场转速时,电机也处于制动状态。

三相异步电动机能耗制动系统设计

课程设计说明书 作者: hh 学号:jj 学院: kk 专业: pp 题目: 三相异步电动机能耗制动系统设计指导者:hh hh

目录 1、引言 (1) 1.1课程研究背景 (1) 1.2课程研究的价值 (1) 1.3课程设计的任务 (2) 2、三项异步电动机的基本结构和工作原理 (2) 2.1三项异步电动机的基本结构 (2) 2.1.1定子 (2) 2.1.2转子 (3) 2.2三项异步电动机的工作原理 (4) 3、三相异步电动机的能耗制动 (5) 3.1能耗制动的原理 (5) 3.2能耗制动的设计 (6) 3.2.1电器元件的选择 (6) 3.2.2计算与校验 (6) 3.2.3能耗制动原理图 (7) 3.3能耗制动的分析 (7) 3.3.1能耗制动特点[9] (7) 3.3.2能耗制动控制线路 (8) 结论 (8) 参考文献: (9)

1、引言 1.1课程研究背景 三相异步电动机又称三项感应电动机,它的应用非常广泛,几乎涵盖了农业生产和人类生活的各个领域。随着电气化、自动化技术的发展,三项异步电动机得到了越来越好的控制。 而电气化控制相较其他控制方法而言,更简洁便于操作,所以应用比较广泛。本课题的控制是采用PLC的梯形图编程语言来实现的。梯形图语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能、使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路。 三相异步电动机切断电源后,由于惯性作用,转子需要经过一定时间才能停止旋转,这往往不能满足有些机械设备的工艺要求,造成运动部件的停机位置不准确,同时也影响生产效率的提高,因此必须对电动机采取有效的制动措施。停机制动方法有两大类,即机械制动和电气制动。机械制动是采用机械制动装置来强迫电机迅速停止,常用的有电磁抱闸制动和电磁离合器制动等。电气制动是使电动机产生一个与原来转子转动方向相反的制动转矩而使其迅速停止常用的有反接制动能、耗制动等[2]。 长期以来,能耗制动始终处于工业自动化控制领域的主战场,为各种各样的自动化控制设备提供了非常可靠的控制应用。它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业企业对自动化的需要。由于能耗制动综合了计算机和自动化技术,所以它发展日新月异,大大超出其出现时的技术水平。它不但可以很容易地完成逻辑、顺序、定时、计数、数字运算、数据处理等功能,而且可以通过输入输出接口建立与各类生产机械数字量和模拟量的联系,从而实现生产过程的自动控制[10]。 1.2课程研究的价值 特别是超大规模集成电路的迅速发展以及信息、网络时代的到来,扩大了能耗制动的功能,使其具有很强的的联网通讯能力,从而更广泛地应用于众多行业,不管是农业还是工业,都有着举足轻重的作用。 随着科学技术的发展与不断进步,电气工程与自动化技术正以令人瞩目的发展快速的改变着我国的工业基础整体面貌。 与此同时,该技术的不断发展,对社会的生产方式、人们的生活方式和思想观念也产生了重大的影响,并在现代化建设中发挥着越来越重要的作用,它

电力拖动理论教案23能耗制动

教学过程与内容要点: (一)复习 讲评作业 (二)新课讲授 一、能耗制动原理 当电动机切断电源后,立即在定子绕组的任意两相中通入直流电,迫使电动机立即停转的方法叫能耗制动。 制动原理: 能耗制动原理图如下所示。 当电动机停转后,立即在定子绕组的任意两相中通入直流电,惯性运转的电动机转子切割直流电产生的静止磁场的磁力线而在转子绕组中产生感应电流,感应电流与静止磁场相互作用产生与电动机转动方向相反的电磁力矩,使电动机受制动迅速停转。 二、能耗制动特点 能耗制动虽然制动准确、平稳,且能量消耗较小,但需附加直流电源装置,制动力较弱,在低速时制动力矩小。能耗制动一般用于要求制动准确、平稳的场合。 三、单向启动能耗制动控制电路 1、无变压器单相半波整流控制电路

电路组成:电路图如下所示。 工作原理: 1)启动原理:(由学生分析)。 2)制动原理:(学生分析后老师归纳)。 按下停止按钮,常闭先分断,KM1失电触头复位,电动机断电惯性运行。常开后闭合,KM2、KT得电,KM2常开触头与主触头闭合,KT瞬时动作常开触头闭合,电动机能耗制动迅速停转。制动结束后,KT延时分断常闭触头延时分断,切断能耗制动直流电源。 无变压器单相半波整流单向启动能耗制动控制电路 KT常开触头的作用:KT出现线圈断线或机械卡住不会动作时,能使电动机制动结束后脱离直流电源。(强调) (2)有变压器单向桥式整流控制电路 电路性能特点:制动力矩比半波整流平稳,且大小可在一定范围内调节,

整流变压器的一次侧与直流侧同时切换,有利于提高触头的使用寿命。 课堂练习: 1、设计单向启动能耗制动控制线路(不能看书抄) 2、课堂问答相关知识 1)简述能耗制动与反接制动的区别与联系 联系:能耗制动与反接制动都属于电动机快速停车的电气制动方法,它们都是当电动机停止时,在电动机上外接一个电源,产生一个与原转动方向相反的电磁制动转矩,迫使电动机迅速停转。 区别: (1)定义:能耗制动是在切除三相交流电源之后,定子绕组通入直流电流,在定转子之间的气隙中产生静止磁场,惯性转动导体切割该磁场,形成感 应电流,产生与惯性转动方向相反的电磁力矩而制动。制动结束后将直流电源 切除。 反接制动靠改变定子绕组中三相电源的相序,产生一个与转子惯性转动方向相反的电磁转矩,使电动机迅速停下来,制动到接近零转速时,再将反相 序电源切除。 (2)优缺点: 能耗制动制动平稳,并且可以准确停车,应用广泛。反接制动的优点是制动转矩大,制动效果显著,但制动不平稳,而且能量损耗大。 课堂小结:归纳能耗制动原理及实现方法、适用场合、制动特点。

三相异步电动机的制动控制线路

三相异步电动机的制动控制线路 某些生产机械,如车床等要求在工作时频繁的起动与停止;有些工作机械,如起重机的吊勾需要准确定位,这些机械都要求电动机在断电后迅速停转,以提高生产效率和保护安全生产。电动机断电后,能使电动机在很短的时间内就停转的方法,称作制动控制。制动控制的方法常用的有二类,即机械制动与电力制动,下面将这两种制动方法介绍如下。 一、机械制动 机械制动是利用机械装置,使电动机迅速停转的方法,经常采用的机械制动设备是电磁抱闸,电闸抱闸的外形结构如图21801所示。 电磁抱闸主要由两部分构成:制动电磁铁和闸瓦制动器。制动电磁铁由铁芯和线圈组成;线圈有的采用三相电源,有的采用单相电源;闸瓦制动器包括:闸瓦,闸轮,杠杆和弹簧等。闸轮与电动机装在同一根转轴上.制动强度可通过调整弹簧力来改变。 一)电磁抱闸制动控制线路之一 电磁抱闸制动控制线路之一如图21802所示: 电磁抱闸制动控制线路的工作原理简述如下: 接通电源开关QS后,按起动按钮SB2,接触器KM线圈获电工作并自

锁。电磁抱闸YB线圈获电,吸引衔铁(动铁芯),使动、静铁芯吸合,动铁芯克服弹簧拉力,迫使制动杠杆向上移动,从而使制动器的闸瓦与闸轮分开,取消对电动机的制动;与此同时,电动机获电起动至正常运转。当需要停车时,按停止按钮SB1,接触器KM断电释放,电动机的电源被切断的同时,电磁抱闸的线圈也失电,衔铁被释放,在弹簧拉力的作用下,使闸瓦紧紧抱住闸轮,电动机被制动,迅速停止转动。 电磁抱闸制动,在起重机械上被广泛应用。当重物吊到一定高度,如果线路突然发生故障或停电时,电动机断电,电磁抱闸线圈也断电,闸瓦立即抱住闸轮使电动机迅速制动停转,从而防止了重物突然落下而发生事故。 二)电磁抱闸制动控制线路之二 采用图21802控制线路,有时会因制动电磁铁的延时释放,造成制动失灵。 造成制动电磁铁延时的主要原因:制动电磁铁线圈并接在电动机引出线上(参见图2-71)。电动机电源切断后,电动机不会立即停止转动,它要因惯性而继续转动。由于转子剩磁的存在,使电动机处于发电运行状态,定子绕组的感应电势加在电磁抱闸YB线圈上。所以当电动机主回路电源被切断后,YB线圈不会立即断电释放,而是在YB线圈的供电电流小到不能使动、静铁芯维持吸合时,才开始释放。 解决上述问题的简单方法是;在线圈YB的供电回路中串入接触器KM

基于PLC三相异步电动机能耗制动系统设计

1绪论 1.1课程研究背景 三相异步电动机又称三项感应电动机,它的应用非常广泛,几乎涵盖了农业生产和人类生活的各个领域。随着电气化、自动化技术的发展,三项异步电动机得到了越来越好的控制。 而电气化控制相较其他控制方法而言,更简洁便于操作,所以应用比较广泛。本课题的控制是采用PLC的梯形图编程语言来实现的。梯形图语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能、使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路。 在实际运用中,有些生产机械往往要求电动机快速,准确地停车,而电动机在脱离电源后由于机械惯性的存在,完全停止需要一段时间,但是这往往不能适应某些生产机械工艺的要求,如万能铣床、卧床镗床、电梯等。为提高生产效率及准确停位,要求电动机能迅速停车,这就要求对电动机采取有效措施进行制动。 电动机制动分二大类:机械制动和电气制动。机械制动是在电动机断电后利用机械装置对其转抽施加相反的作用力矩(制动力矩)来进行制动.电磁抱闸就是常用方法之一,结构上电磁抱闸由制动电磁铁和闸瓦制动器组成.断电制动型电磁抱闸在电磁线圈断电后,利用闸瓦对电动机轴进行制动;电磁铁线圈得电时,松开闸瓦,电动机可以自由转动.这种制动在起重机械上被广泛采用。电气制动是使电动机停车时产生一个及转子原来的实际旋转方向相反的电磁力矩(制动力矩)来进行制动.常用的电气制动有反接制动和能耗制动等。 机械制动是在电动机断电后利用机械装置对其转抽施加相反的作用力矩(制动力矩)来进行制动.电磁抱闸就是常用方法之一,结构上电磁抱闸由制动电磁铁和闸瓦制动器组成.断电制动型电磁抱闸在电磁线圈断电后,利用闸瓦对电动机轴进行制动;电磁铁线圈得电时,松开闸瓦,电动机可以自由转动.这种制动在起重机械上被广泛采用。电气制动是使电动机停车时产生一个及转子原来的实际旋转方向相反的电磁力矩(制动力矩)来进行制动.常用的电气制动有反接制动和能耗制动等。

电力拖动三相笼型异步电动机机械制动控制线路教案

教案首页 系别数控汽车教师肖振兴班级G12机电课型一体化课时 2 周次 2 日期2016.2.29 地点G12教室/电工实验室课题(章)第二单元电动机的基本控制线路及其安装、调适与维修 子课题(节)课题12 三相笼型异步电动机的机械制动控制线路 教学目标掌握电磁抱闸制动器的构成、工作原理,并能正确熟练地进行安装、调试与维修 教学重点及 难点1、重点:三相笼型异步电动机机械制动的工作原理。 2、难点:三相笼型异步电动机机械制动控制线路安装、调试及故障检修 教学方法讲授、演示、实操 教学器材及设 备低压电器原件(熔断器、接触器、中间继电器、时间继电器、热继电器、按钮、),常用电工工具,导线,万用表 课后小结 审核人:日期:

【新课引入】(时间:2分) 同学们观看图片资料,结合日常生活和实际生产活动展开新课 【新课讲授】(时间:30分) 三相笼型异步电动机的机械制动控制线路 所谓制动,就是给电动机一个与转动方向相反的转矩使它迅速停止转动(或限速),一般采用的方法有电力制动与机械制动两种。 一、电磁抱闸制动 1、电磁抱闸制动器 电磁抱闸制动器 MZD1系列交流单相制动电磁铁 TJ2系列闸瓦制动器 电磁抱闸制动器结构示意图 1-线圈 2-衔铁 3-铁心 4-弹簧 5-闸轮 6-杠杆 7-闸瓦 8-轴教师 活动 讲授 演示 具体 讲述 电气 原理 图工 作原 理 学生 活动 提问 认真 做好 相关 笔记

电磁铁和制动器的型号及其含义: 制动电磁铁由铁芯、衔铁和线圈三部分组成。闸瓦制动器包括闸轮、闸瓦、杠杆和弹簧等部分。电磁抱闸制动器分为断电制动型和通电制动型两种。断电制动型的工作原理是:当制动电磁铁的线圈得电时,制动器的闸瓦与闸轮分开,无制动作用;当线圈失电时,制动器的闸瓦紧紧抱住闸轮制动。通电制动型的工作原理是:当制动电磁铁的线圈得电时,闸瓦紧紧抱住闸轮制动;当线圈失电时,制动器的闸瓦与闸轮分开,无制动作用。 2、电磁抱闸制动器断电制动控制线路 电磁抱闸制动器工作原理示意图 1-弹簧 2-衔铁 3-线圈 4-铁心 5-闸轮 6-闸瓦 7-杠杆教师 活动 讲授 演示 学生 活动 认真 做好 相关 笔记

变频器电路中的制动电路

变频器电路中的制动控制电路 一、为嘛要采用制动电路? 因惯性或某种原因,导致负载电机的转速大于变频器的输出转速时,此时电机由“电动”状态进入“动电”状态,使电动机暂时变成了发电机。一些特殊机械,如矿用提升机、卷扬机、高速电梯等,风机等,当电动机减速、制动或者下放负载重物时,因机械系统的位能和势能作用,会使电动机的实际转速有可能超过变频器的给定转速,电机转子绕组中的感生电流的相位超前于感生电压,并由互感作用,使定子绕组中出现感生电流——容性电流,而变频器逆变回路IGBT两端并联的二极管和直流回路的储能电容器,恰恰提供了这一容性电流的通路。电动机因有了容性励磁电流,进而产生励磁磁动势,电动机自励发电,向供电电源回馈能量。这是一个电动机将机械势能转变为电能回馈回电网的过程。 此再生能量由变频器的逆变电路所并联的二极管整流,馈入变频器的直流回路,使直流回路的电压由530V左右上升到六、七百伏,甚至更高。尤其在大惯性负载需减速停车的过程中,更是频繁发生。这种急剧上升的电压,有可能对变频器主电路的储能电容和逆变模块,造成较大的电压和电流冲击甚至损坏。因而制动单元与制动电阻(又称刹车单元和刹车电阻)常成为变频器的必备件或首选辅助件。在小功率变频器中,制动单元往往集成于功率模块内,制动电阻也安装于机体内。但较大功率的变频器,直接从直流回路引出P、N端子,由用户则根据负载运行情况选配制动单元和制动电阻。 一例维修实例: 一台东元7300PA 75kW变频器,因IGBT模块炸裂送修。检查U、V相模块俱已损坏,驱动电路受强电冲击也有损坏元件。将模块和驱动电路修复后,带7.5kW电机试机,运行正常。即交付用户安装使用了。 运行约一个月时间,用户又因模块炸裂。检查又为两相模块损坏。这下不敢大意了,询问用户又说不大清楚。到用户生产现场,算是弄明白了损坏的原因。原来变频器的负载为负机,因工艺要求,运行三分钟,又需在30秒内停机。采用自由停车方式,现场做了个试验,因风机为大惯性负荷,电机完全停住需接近20分钟。为快速停车,用户将控制参数设置为减速停车,将减速时间设置为30秒。在减速停车过程中,电机的再生电能回馈,使变频器直流回路电压异常升高,有时即跳出过电压故障而停机。用户往往实施故障复位后,又强制开机。正是这种回馈电能,使直流回路电压异常升高,超出了IGBT的安全工作范围,而炸裂了。

能耗制动

本科生课程设计成绩评定表 指导教师签字: 2012年6月日

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 异步电动机能耗制动控制线路 一、初始条件 程序运行设备:WL1型电机拖动试验箱 二、要求完成的主要任务 1.工作原理: 所谓能耗制动,就是在电动机脱离交流电源的瞬间,在定子绕组中通以直流电,产生静止磁场,与转子中感应电流相互作用,产生制动力矩,从而达到使异步电机迅速停转的一种制动方法。试设计一套电机控制系统。要求:能实现系统的自动能耗制动,有短路和过载保护,同时通过实验分析制动时间以及制动电流对于能耗制动的作用。 2.设计要求: (1)实现自动能耗制动; (2)根据电机参数对电阻值和制动时间进行分析计算,并提供理论依据;(3)通过实验调试并验证所选参数,并最终实现迅速制动,同时将制动电流控制在额定电流的2倍以内。 (4)系统包含短路及过载保护机构。 3.课程设计说明书应包括: (1)设计的目的及意义; (2)提出设计思路,机型器件的选型; (3)绘制主电路及控制电路接线图;

(4)调试过程记录及结果分析; (5)画出继电逻辑控制时序图; (6)总结及参考文献。 三、时间安排: 四、主要参考资料 指导教师签名: 2012年6月日系主任(或责任教师)签名: 2012年6月日

目录 第一章设计的目的及意义 (1) 1.1 设计意义 (1) 1.2 设计目的 (1) 第二章设计思路 (2) 2.1设计思路及原理 (2) 第三章主电路及控制电路 (4) 3.1 控制线路分析 (4) 3.2 控制过程分析 (5) 第四章机型器件的选型 (6) 4.1 电动机选型 (6) 4.2 其他主要器件 (6) 第五章继电逻辑电路时序图 (8) 5.1电路时序图 (8) 第六章调试过程记录及结果分析 (9) 6.1调试过程记录 (9) 6.2结果分析 (9) 第七章课程设计小结及体会 (10) 参考文献 (11)

电动机全波能耗制动控制电路(附图)

电动机全波能耗制动控制电路(附图)电动机全波能耗制动控制电路原理图 很多生产机械都希望在停车时有适当的制动作用,使运动部件迅速停车。停车制动有机械制动和电气制动等多种方法。能耗制动是一种应用很广泛的一种电气制动方法。 能耗制动就是将运行中的电动机,从交流电源上切除并立即接通直流电源,在定子绕组接通直流电源时,直流电流会在定子内产生一个静止的直流磁场,转子因惯性在磁场内旋转,并在转子导体中产生感应电势有感应电流流过。并与恒定磁场相互作用消耗电动机转子惯性能量产生制动力矩,使电动机迅速减速,最后停止转动。 1、合上空气开关QF接通三电源 2、按下启动按钮SB2,接触器KM1线圈通电并自锁,主触头闭合电动机接入三相电源而启动运行。 3、当需要停止时,按下停止按钮SB1,KM1线圈断电,其主触头全部释放电动机脱离电源。 4、此时,接触器KM2和时间继电器KT线圈通电并自锁,KT开始计时KM2主触点闭合将直流电源接入电动机定子绕组,电动机在能耗制动下迅速停车。 另外,时间继电器KT的常闭触点延时断开时接触器KM2线圈断电,KM2常开触点断开直流电源,脱离电源及脱离定子绕组,能耗制动及时结束,保证了停止准确。 5、该电路的过载保护由热继电器完成 6、互锁环节: ⑴KM2常闭触点与KM1线圈回路串联,KM1常闭触点与KM2线圈回路串联。

保证了KM1与KM2线圈不可能同时通电,也就是在电动机没脱离三相交流电源时,直流电源不可能接入定子绕组。 ⑵按纽SB1的常闭触点接入KM1线圈回路,SB1的常开触点接入KM2线圈回路,这是按纽互锁也保证了KM 1、KM2不可能同时通电,与上面的互锁触点起到同样作用。 7、直流电源采用二极管单相桥式整流电路,电阻R用来调节制动电流大小,改变制动力的大小。 电动机全波能耗制动控制接线示意图

他励直流电动机的能耗制动

课程设计名称:电机与拖动课程设计 题目:他励直流电动机的能耗制动 学期: 2013-2014学年第2学期 专业: 班级: 姓名: 学号: 指导教师:

课程设计任务书 一、设计题目 他励直流电动机的能耗制动 二、设计任务 对一台已知额定参数的他励直流电动机进行能耗制动,设计求出合适的制动电阻R b , 并设计求出在已知制动电阻R b 采用稳定下放重物时的转速n。 已知一台他励直流电动机P N=22kW,U aN =220V,I aN =115A,n N =1500r/min.I amax =230A,T0 忽略不计。 (1)拖动T L=120N?m的反抗性恒转矩负载运行,采用能耗制动迅速停机,电枢电路 中至少要串联多大的制动电阻R b ? (2)拖动T L=120N?m的位能性恒转矩负载运行,采用能耗制动以1000r/min的速度 稳定下放重物,电枢电路中至少要串联多大的制动电阻R b ? 三、设计计划 第一天,熟悉题目,查阅有关资料,并进行初步的规划。 第二天,进行设计,并记录有关的数据和过程。 第三天,继续完善设计。 第四天,完成课程设计任务书。 第五天,进行答辩。

课程设计成绩评定表

目录 1.直流电动机的基本结构和工作原理 (1) 1.1直流电动机的基本结构 (1) 1.2直流电动机的工作原理 (3) 2.他励直流电动机的制动方法和制动过程 (4) 2.1直流电动机之他励直流电动机 (4) 2.1.1 电流 (5) 2.1.2 转速 (5) 2.2他励直流电动机的制动方法和制动过程 (6) 2.2.1他励直流电动机能耗制动过程之迅速停机 (6) 2.2.2他励直流电动机能耗制动过程之下放重物 (8) 3、参数的设定与计算 (10) 3.1中间参数的计算 (11) 3.2迅速停机时的制动电阻b R (11) 3.3下放重物时的制动电阻b R (11) 3.4迅速停机过程参数与稳定下放重物过程参数的对比 (12)

相关主题
文本预览
相关文档 最新文档