当前位置:文档之家› 薄板结构件焊接变形的控制和矫正

薄板结构件焊接变形的控制和矫正

薄板结构件焊接变形的控制和矫正
薄板结构件焊接变形的控制和矫正

薄板结构件焊接变形的控制和矫正

陈诚贵;仝振;陈彦兵

【期刊名称】《科技与企业》

【年(卷),期】2013(000)006

【摘要】随着我国工业化进程的不断发展,焊接作为一种重要的工业制造手段,正被广泛应用于各行各业之中,并俨然已经成为制作复杂结构件的重要基础加工方法。然而,也正是由于焊接是一种局部不均匀加热与冷却的过程,在焊接过程中及焊后极易造成焊接结构件的变形,严重影响结构件的使用与成品结构件的质量。所以,加强对焊接结构件变形的控制与矫正,早已成为工业企业加工、生产的首要课题。尤其是针对薄板结构件焊接变形而言,对其的控制与矫正更是焊接结构件变形的难点。因此,本文笔者结合个人实践工作经验,对薄板结构件焊接变形的控制和矫正进行粗浅的探讨,以期为广大同行做出有益参考。

【总页数】1页(287-287)

【关键词】薄板结构件;焊接变形;控制;矫正

【作者】陈诚贵;仝振;陈彦兵

【作者单位】玉柴重工常州有限公司江苏常州213167;玉柴重工常州有限公司江苏常州 213167;玉柴重工常州有限公司江苏常州 213167

【正文语种】中文

【中图分类】

【相关文献】

1.浅谈薄板结构件的焊接变形及控制 [J], 毕磊; 田喜平; 王树堂

大面积薄板焊接变形的控制

论文关键词:大面积薄板焊接变形控制 论文摘要:在大面积薄板焊接工程中.焊接变形量的大小是衡量该工程成功与否的重要标志,也是工程质量好环的关键,因此控制焊接变形是人们十分重视而致力于研究的课题。本文就煤气柜底板焊接工程的成功经验和失败教训阐述控制薄板焊接变形的一些行之有效的方法及一些初浅的见解,旨在类似工程中借鉴和参考。 如何控制焊接应力和变形到最小是大面积薄板焊接中最关键的一个环节。控制大面积薄板焊接工程的焊接变形不能单一行事,而应综合治理。试验经验告诉我们,焊接工程中的焊接变形和焊后残余应力并不是两种孤立的现象。两者之间的联系是有机的,它们同时存在于同一焊件,相辅相成而又相互制约。大面积薄板焊接焊缝形式主要为对接和搭接。但这两种焊缝形式产生的变形基本一样,出产生横向收缩和纵向收缩外,如图一、二所示,还会产生失稳翘曲变形如图三所示,即常见的薄板焊接后产生的鼓包。 图一焊接横向收缩图二焊接纵向收缩

图三焊接失稳翘曲变形 在实际工程中要想获得最佳的理想状态。使三种方式的应力和变形合理分布在该结构中,使之相互制约、相互控制,正负压力保持在一个平衡的状态下。这一指导是控制大面积薄板焊接工程中焊接变形的有效途径。本文一工程中常见的曼型煤气柜的底板焊接为例进行分析。 1、以10万立曼型煤气柜的底板为例 煤气柜底板焊接工程是十分典型的大面积薄板焊接工程。底板面积为1586.27m2,焊缝总长为。底板由中心板和内外环板组成。中心板和内环板为δ=5mm厚钢板组成,外环板为δ=8mm钢板组成。钢板材质均为Q235B。底板的结构形式如图四所示。

图四罐底板焊接布置图 2、技术难点 面积大,板比较薄,内外环板厚度不一致,为厚板与薄板对接,规范要求底板的平面度不大于D/500,且不大于60mm。这就要求在施工时根据理论与施工经验来制定严格的施工工艺,稍不注意就会使产生较大的凸起,给后续施工带来很大的麻烦。重新修理难度较大,同时会使生产成本大大地增加。而此问题的产生原因归根到底就是由于焊接工程中由于对焊接应力和变形产生的机理不了解,不能合理地安排施工工艺而导致的结果。因此,合理的施工工艺安排,是在掌握其产生机理原理分析的基础上产生的,也就是要理论与实践要相结合。 3、焊接工艺及剖析 (1)分析焊接应力和变形产生的机理、影响因素及其内在联系 如下图四所示,给出了引起焊接应力和变形的主要因素及其内在联系。

薄板焊接工艺方法

薄板焊接工艺方法公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

薄板焊接变形控制经验 薄板焊接变形的质量控制包括从钢板切割开始到装夹、点固焊、施焊工艺、焊后处理等,其中还要考虑所采用的焊接方法、有效地变形控制措施。 1、焊接方法对焊接变形的影响* 合适的焊接方法需要考虑生产效率和焊接质量,所以焊接方法、焊接工艺和焊接程序显著影响焊接变形的水平。因此所采用的焊接方法必须具有高的熔敷效率和尽量少的焊道。7 R" F: v" @, `8 H5 C7 N 尽可能减少不必要的焊缝; 合理安排焊缝位置:焊缝位置应便于施焊,尽可能对称分布焊缝; 合理地选择焊缝的尺寸和形式,焊缝设计为角焊缝、搭接焊缝(角焊缝焊接变形小于对接焊缝变形); 3 1 `2、点固焊工艺对焊接变形的影响 2 e' }$ [8 l' x! w 1 L- l, {; [. ^% T 点固焊不仅能保证焊接间隙而且具有一定的抗变形能力。但是要考虑点固焊焊点的数量、尺寸以及焊点之间的距离。对于薄板的变形来说,点固焊工艺不合适就有可能在焊接之前就产生相当的残余焊接应力,对随后的焊接残余应力积累带来影响。点焊尺寸过小可能导致焊接过程中产生开裂使焊接间隙得不到保证,如果过大可能导致焊道背面未熔透而影响接头的美观连续性。点固焊的顺序、焊点距离的合理选择也相当重要。 J

# u: e# `$ x$ J& T% 3、装配应力及焊接程序对薄板焊接变形的影响 应尽量减少焊接装配过程中引起的应力,如果该应力超过产生变形的临界应力就可能产生变形。装配程序注意尽量避免强行组装,并核对坡口形式、坡口角度和组装位置, 对接接头焊接: 板厚≤2的无论单面焊还是双面焊都可以不开坡口, 对于板厚~双面焊可以不开坡口,但只能单面焊时,可以将坡口间隙放大到1~2mm或开坡口焊接; 板厚~双面焊时应在背面用小砂轮清根;只能单面焊时都应开坡口;

钢结构焊接变形的控制与矫正

钢结构焊接变形的控制与矫正 一、前言 钢结构离不开焊接,焊接必然产生一定量的焊接变形,焊接变形的控制与矫正尤为重要,其焊接的质量和生产效率直接影响到钢结构的建造周期和使用寿命。 二、焊接变形产生的原因 电弧焊是一个不均匀的快速加热和冷却的过程,焊接过程中及焊后,焊接构件都将产生变形。影响焊接变形最根本的因素是焊接过程中的热变形和焊接构件的刚性条件。在焊接过程中的热变形受到了构件刚性条件的约束,出现了压缩塑性变形,这就产生了焊接残余变形。 (一)影响焊接热变形的因素 1.焊接工艺方法。不同的焊接方法,将产生不同的温度场,形成的热变形也不相同。一般来说,自动焊比手工焊加热集中,受热区窄,变形较小。CO2气体保护焊焊丝细,电流密度大,加热集中,变形小。 2.焊接参数。即焊接电流、电弧电压和焊接速度。线能量愈大,焊接变形愈大。焊接变形随焊接电流和电弧电压的增大而增大,随焊接速度增大而减小。在3个参数中,电弧电压的作用明

显,因此低电压高速大电流密度的自动焊变形较小。 3.焊缝数量和断面大小。焊缝数量愈多,断面尺寸愈大,焊接变形愈大。 4.施工方法。连续焊、断续焊的温度场不同,产生的热变形也不同。通常连续焊变形较大,断续焊变形最小。 5.材料的热物理性能。不同的材料,导热系数、比热和膨胀系数等均不相同,产生的热变形也不相同,焊接变形也不相同。 (二)影响焊接构件刚性系数的因素 1构件的尺寸和形状。随着构件刚性的增加,焊接变形愈小。 2胎夹具的应用。采用胎夹具,增加了构件的刚性,从而减少焊接变形。 3装配焊接程序。装配焊接程序能引起构件在不同装配阶段刚性的变化和重心位置的改变,对控制构件的焊接变形有很大的影响。 一般来说,焊接构件在拘束小的条件下,焊接变形大,反之,则变形小。 三、钢结构焊接变形的种类 任何钢结构的焊接变形,可分为整体变形和局部变形。整体变形就是焊接以后,整个构件的尺寸或形状发生的变化,包括纵向和横向收缩(总尺寸缩短),弯曲变形(中拱、中垂)和扭曲变形等。局部变形是指焊接以后构件的局部区域出现的变形,包括角变形和波浪变形等。

薄板件焊接变形计算公式

薄板件中焊接焊接焊接变形量大,容易变形 焊接变形收缩始终是一个比较复杂的问题,对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。 为了给设计人员提供一定的参考,贴几个公式: 1、单V对接焊缝横向收缩近似值及公式: y = 1.01*e^(0.0464x) y=收缩近似值 e=2.718282 x=板厚 2、script id=text173432>双V对接焊缝横向收缩近似值及公式: y = 0.908*e^(0.0467x ) y=收缩近似值 e=2.718282 x=板厚

3、

5、

1、预热处理是为了防止裂纹,同时兼有一定改善接头性能的作用,但是预热也恶化劳动条件,延长生产周期,增加制造成本。过高预热温度反会使接头韧性下降。 预热温度确定取决于钢材的化学成分、焊件结构形状、约束度、环境温度和焊后热处理等。随着钢材碳当量、板厚、结构约束度增大和环境温度下降,焊前预热温度也需相应提高。焊后进行热处理的可以不预热或降低预热温度。 Q345焊接的预热温度板厚≤40mm,可不预热; 板厚>40mm,预热温度≥100度(以上为理论参考) 2、焊接变形收缩始终是一个比较复杂的问题,对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。具体经验公式见附件! 3、低合金钢接头焊接区的清理是一项不可忽视的工作,是建立低氢环境的主要环节之一。 若直接在焊件切割边缘和切割坡口上的焊接接头,则焊前必须清理干净切割面得氧化皮盒熔化金属的毛刺,必要时可用砂轮打磨。 如果焊件表面未经喷丸、喷砂等预处理,则在焊缝两侧的内外表面必须用砂轮打磨至露出金属光泽。焊条电弧焊接头的打磨区要求每侧为20mm,埋弧焊为30mm。

薄板焊接变形控制工艺

M 管理与控制 anagement & Control 65 薄板焊接变形控制工艺 马钢重型机械设备制造公司 (安徽马鞍山243000) 袁有轩 【摘要】在大面积薄板焊接工程中,焊接变形量的大小是衡量该铆焊件成功与否的重要标志,因此, 控制焊接变形是技术人员重视并致力于研究的课题。本文就夏顺项目焊接件驱动侧门的成功焊接制作经验,阐述控制薄板焊接变形的一些有效的方法。 驱动侧门是夏顺项目除磷导卫中典型的薄板焊接件,在常规工艺方法下焊接会产生较大面积的薄板(δ=3mm )变形,整个面板部分平面度,最高点1cm ,最低边也有7 8mm 扭曲变形,不能满足图样位置公差的要求,因此,我们要制定详细的焊接工艺,通过严格控制各焊接参数来保证变形量。 1.结构件及变形基本形态分析 驱动侧门是由两块4400mm ?870mm ?3mm 主面板,并且在板反面焊接纵横向板条做骨架支撑结构,然后在通过之前做好的立柱在现场通过铰链焊接在一起,可自由开合的门体结构,其结构如图1所示 。 图1 大面积薄板焊接焊缝形式主要为对接和搭接。但这两种焊缝形式产生的变形基本一样,除产生横向收缩和纵向收缩外(见图2、3),还会产生失稳翘曲变形(见图4),即常见的薄板焊接后产生的鼓包。 2.焊接变形原因分析 (1)面积大,板比较薄,背面板条与薄板对接, 根据焊接件通用技术条件规定面板的平面度≤4mm ,这就要求在施工时根据理论与施工经验来制定严格的施工工艺,稍不注意就会使面板产生较大的凸起,给后续施工带来很大的麻烦。重新返修难度较大,同时会使生产成本大大地增加。问题产生原因主要

S 现场解决方案 olutions 66 是在焊接工程中由于对焊接应力和变形产生的机理不了解,焊接应力释放不完全,因此要合理的进行施工工艺安排,从而控制焊接应力。 (2)钢板受热不均产生变形,造成钢板扭曲。 3.焊接工艺剖析 图5给出了引起焊接应力和变形的主要因素及其内在联系。由图5可以看出,焊接时局部不均匀的热输入是产生焊接应力与变形的决定因素。而热输入是通过材料、制造和结构因素所构成的内外拘束度而影响热源周围的金属运动,最终形成焊接应力的变形。材料因素主要为材料特性、热物理常数及力学性能。制造因素(工艺措施、夹持状态)和结构因素(构件形状、厚度及刚性等)则更多地影响着热源金属的外拘束度。随焊接热过程而变化的内应力场和构件变形,称为焊接瞬态应力与变化。而焊后,在室温条件下残留于构件中的内应力场和宏观变化,称为焊接残余应力与焊接残余变形。 图5引起焊接应力与变形的主要因素及其内在联系 4.优化焊接工艺确保焊接变形 (1)焊接方法先焊短焊缝后焊长焊缝,采取分段退焊,由内向外依次进行。如图1中的背面板条短缝,将其由内向外焊接为一体,可自由收缩为一整体长条。同理,焊完所有短缝,所有中心板都成为焊接后得到自由收缩、基本无应力的若干长条,然后再将每个长条由内向外连接起来,也属于在自由收缩状态下成形,这样焊接应力很小,变形也很小。 (2)分段退焊基本原理分段退焊的原理与间 歇焊和减少焊接热输入的原理基本是一样的,主要是缩小焊接区与结构整体之间的温差,从而减少变形;同时由于头尾相接的焊接顺序,前一段焊缝刚冷却下来,后一段焊缝的热量就会给前一段一部分,使其得到一次退火的机会,同时减小了前后的温差,因而消除应力、减少变形。根据实践经验,背面板条分段退焊,应以一根焊条为一个循环,一根焊条约焊200mm ,这样要比500 600mm 一个循环变形要小的多。这样焊的缺点是接头增加,降低美观程度,但比变形后再去处理变形要合算的多。 (3)由内向外依次进行的基本原理 如图1中 先焊中间部位横短板条再焊纵的长板条,因为两板相焊,焊缝会产生横向收缩和纵向收缩,又因内部是封闭部位,外部属自由端(越往外越明显),由内向外可使焊缝的横、纵焊缝自由收缩;反之,若先焊外部,自由端被固定,再焊内部时,焊缝的横、纵向收缩都会受到限制,因而产生较大应力,从而产生较大变形。 (4)由多名焊工均布对称施焊的基本原理 由 于不对称受热而引起变形,长条板不对称受热而引起变形。在面板的焊接中也要由多名焊工均布对称施焊,这样可以防止由于不对称受热引起偏心力而引起变形,若对称受热,即使有应力存在,也不会引起变形,且越往外越明显,这是因为两侧的应力相等而又有足够的宽度,不会使中心板产生弯曲。 5.结语 优化焊接方法后,整个门面板看上去很平整,通过检验整个面板高低差只有3mm 左右,顺利通过夏顺方面检验交付装配现场。 (20110230) 櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧 李万君荣获“中华技能大奖” 继2010年底荣获中国北车长客股份公司“特等劳模”称号后,2011年2月22日,电焊工李万君又登上了我国“中华技能大奖”的领奖台。 “中华技能大奖”是国家对一线技术工人的最高褒奖,素有“工人院士”之称。之所以能从全国数十万技术工人中脱颖而出,因为李万君“代表了车辆转向架构架焊接的世界最高水平” 。(中工网—《工人日报》)

船体结构焊接变形的控制与火工矫正研究

船体结构焊接变形的控制与火工矫正研究 发表时间:2018-11-26T09:45:17.063Z 来源:《基层建设》2018年第29期作者:王海峰 [导读] 摘要:在船舶制造过程中,船体结构变形十分常见,在焊接船体结构的过程中,受结构熔化不均的影响,加剧了结构内部的应力反应,进而导致变形。 沪东中华造船(集体)有限公司 摘要:在船舶制造过程中,船体结构变形十分常见,在焊接船体结构的过程中,受结构熔化不均的影响,加剧了结构内部的应力反应,进而导致变形。本研究在对船体结构焊接变形的原因进行综合阐述的基础上,论述了船体结构焊接变形的防控办法,并介绍了船体结构焊接变形的火工矫正措施,以期为相关人士提供借鉴和参考。 关键词:船体结构;焊接变形;火工矫正 前言:通常情况下,完整的船舶是由多个船体结构焊接而成的,通过对焊剂和母材的充分利用,有助于实现对船体结构的整合。但在实际的焊接过程中,船体在受热不均的影响下,会产生较强的焊接应力,诱发船体结构变形,进而会导致船体结构的稳定性欠佳。因此,做好船体结构焊接变形的防控工作,具有十分重要的现实意义。 一、船体结构焊接变形的原因 与古老的船舶建造不同,在进行现代化的船舶建造时,大量的钢结构应用在其中,进行钢结构的拼装时自然而然的就需要用到焊接工艺,将焊接工艺在应用到船舶焊接的工作中,应重视做好变形防控工作,形成经济效益的保障。实践调查结果表明,在焊接过程中,热量传输不均是导致船体变形的主要原因。受所输入热量差异性的影响,容易诱发船体内部结构发生金属运动,从而加速局部变形和整体变形的产生。其中、结构因素、材料因素以及制造因素是导致金属运动发生的主要原因。材料因素是指材料性能指标发生改变,排除人为引发改变的可能性。制造因素和结构因素均建立在人为活动的基础上,在可控范围内。工作人员应将控制焊接构件的刚性条件和热变形作为主要途径,防止船体结构发生塑性改变,对焊接工艺进行合理选择,科学设置焊接参数,并促进胎夹具的合理使用,为实现对变形的有效控制奠定良好的前提条件[1]。 二、防范船体结构焊接变形的有效对策 众所周知,船体结构一旦发生变形,会引发极为严重的后果,对社会民众的财产和生命安全构成了严重威胁。因此,在建造船舶的过程中,应注重完善对船体变形的防控工作,严格依据相关图纸进行建造,严禁出现超标准行为。 第一,工作人员应重视做好焊接方向和顺序的电流大小的选择工作,为焊缝的横向和纵向伸缩留出较大的空间,针对对接焊缝,则应确保焊接方向与自由端保持一致,在角焊缝和对接焊缝的收缩量均较大的情况下,应首先焊接对接焊缝。同时,护理人员确保焊缝的应力分布良好,将焊缝铲除干净,从根本上预防裂纹的产生。第二,焊缝的尺寸与船体变形之间具有十分密切的联系。若焊缝尺寸低于标准要求,会导致船体结构的承载力降低,进而产生裂纹。因此,工作人员应在确保承载力不受影响的同时,合理设置焊缝的尺寸,尽量降低焊缝的数量,防止对校正结果产生不利影响,将压型机构作为肋板结构的替代品,实现对变形现象的科学防范。同时,工作人员应着力提升焊缝位置选择的合理性,预留合适的收缩余量,并预留焊夹具的位置,形成防控变形的重要依托。第三,工作人员应充分发挥反变形法的重要价值,将板厚设置为8-12mm,在焊接前,对上下盖板进行反变形处理,之后执行焊接操作,从根本上防控焊后角变形的产生。同时,船舶的管接头大多集中于船舶的上方,因此,需要借助于反变形夹具进行控制,实现对弯曲变形的有效消除。第四,在焊接开始前,工作人员应对船体构件施加刚性束缚,防止其因缺乏约束发生自由变形。例如,在法兰的焊接过程中,通过对两个法兰进行背对背处理,能够实现对角变形的有效预防。在焊接薄板时,在四周设置压铁,能够有效防控波浪变形。尽管有学者指出,采用刚性固定法焊接,其焊件仍会存有一定的变形,但与未实施该方法前相比,仍具备明显的优越性。但需要引起注意的是,针对容易发生开裂的材料,应谨慎使用该方法[2]。 三、船体结构焊接变形的火工矫正方法分析 火工矫正是指通过局部加热、手工敲击或强迫冷却等手段,使零部件或船体某部位获得正确形状的方法。火工矫正和机械矫正是焊后常见的变形矫正方法。在船体构件焊接完毕后,只能够通过火工矫正的方法,实现对残余变形的消除。本文所探讨的火工矫正方法,通常针对局部火工矫正法,原因是受涂装工艺选择差异性的影响,采用整体火工矫正方法在面积上存在一定束缚,采用局部火工矫正方法对焊接构件进行加热,能够实现对焊后变形的抵消,提升船体构件焊接的科学性。 现阶段,我国常用的火工矫正方法通常包括以下几种:第一种,圆正法。圆正法是指在焊接构件发生变形的区域进行环形加热,使其在焊件表面形成火圈,待温度升至800℃,在火圈上方撒入冷水,在将变形区调平后停止加热。采用圆正法矫正,应由变形较小的地方开始矫正,防止因产生应力过大而导致的龟裂现象。第二,条状加热矫正法也是矫正焊件变形的常用方法,条状加热矫正法是指将焊件的加热轨迹转变为粗线条状,并沿着该方向进行单向移动加热,使其形成粗条状的火圈,这种矫正方法有助于增加焊件的收缩量,对加热面积不存在限制,因而工作效率较高。第三,螺旋带状火圈加热矫正方法也是火工矫正方法的典型代表,这种方法促使焊件形成螺旋状的加热轨迹,待加热温度升至800℃后再进行冷却处理。实践研究证实,该方法对板材厚度8mm以上的变形具有良好的矫正效果。第四,在火工矫正的过程中,格状加热方法也十分常见。格状加热矫正法是指通过促使加热轨迹形成网格,并执行冷却操作,实现对变形角的科学矫正。 结论:综上所述,在建造船舶的过程中,受多种因素的综合作用,极容易诱发船体的变形。工作人员在研究的过程中发现,运输因素、焊接因素和吊装因素是导致焊件变形的罪魁祸首。因此,相关人员应注重对物理矫正和火工矫正方法的综合利用,实现对焊件变形的科学控制和处理,从整体上提升传播的使用性能,提升船舶建造的经济性。 参考文献: [1]张珍强.船舶焊接变形的形成研究与控制方法[J].建材与装饰,2017(46):246-247. [2]王江超,史雄华,赵宏权.基于固有变形的薄板船体结构焊接失稳变形研究综述[J].中国造船,2017,58(02):230-239.

薄板焊接变形的影响因素及控制措施探微

薄板焊接变形的影响因素及控制措施探微 发表时间:2018-09-04T14:40:06.387Z 来源:《防护工程》2018年第9期作者:魏栓张沛[导读] 但受到自身特性影响,薄板的焊接过程中经常会发生形变和收缩现象,基于此,本文主要对薄板焊接变形的影响因素进行了分析,并在此基础上替代了一定的控制措施,旨在提升薄板焊接水平,为技术创新提供工艺参数以及方案参考魏栓张沛 中车青岛四方机车车辆股份有限公司山东青岛 266000 摘要:工业建造过程中为减轻自重,提升结构强度,时常会选择工艺拘束较小,结构稳定易加工成型的材料进行焊接,薄板焊接结构由于构造简单,工艺性能好,在工业建造过程中得到广泛应用?但受到自身特性影响,薄板的焊接过程中经常会发生形变和收缩现象,基于此,本文主要对薄板焊接变形的影响因素进行了分析,并在此基础上替代了一定的控制措施,旨在提升薄板焊接水平,为技术创新提供工艺参数以及方案参考? 关键词:薄板焊接;变形;影响因素;控制措施 引言 造船?车辆等制造行业在进行薄板焊接时,会出现形态各异的局部变形,这不仅影响外观,降低结构的承载能力,而且极不容易校正,往往耗费大量的人力物力,还达不到要求?薄板结构焊接变形具有复杂性?多元性,要成功实现薄板焊接变形的控制,必需了解薄板焊接变形质量影响因素? 1薄板焊接变形的影响因素 1.1焊缝的结构位置 焊缝在船体结构中的位置错误是导致焊缝形变的原因之一,应保持焊缝与焊接截面中和轴的贴近,如距离较远则会产生幅度较高的变形。 1.2焊接结构的刚性 薄板焊接的结构稳定性和刚性决定了抗侧力水平,在水体航行过程中薄板承受的水平作用力不变的前提下,刚性强度的降低会降低使用寿命,提升形变程度? 1.3焊接装焊顺序 焊接装焊顺序会影响到构建装配的稳定性和刚性,甚至引发结构重心的偏移? 1.4工艺方法和焊接参数 焊接方法会影响到结构的热变形幅度,建议采用变形度小的断续焊;焊接参数(电流?电压?和焊接速度)应符合施工标准,焊接时电压和电流的增大都将诱发变形,焊接速度的滞后会加深变形幅度,保障焊接速度是控制变形的方案之一? 1.5焊接面 由于焊接面的大小会影响到变形幅度,焊缝的数量应在符合设计标准的前提下尽可能保持控制在合理范围内;焊接的材料要符合热物理性能指标,其比热容?导热系数都会影响到变形区间,膨胀系数也应当控制在质量标准内,降低变形几率? 1.6焊接方向 焊缝位置的变化会随着焊接方向的不同而变动,从而改变航行应力状态?此外,在进行预处理时应综合考虑形变条件,对变形原因进行深入调研,多方面制订合理措施控制焊接变形? 2薄板焊接变形控制措施 2.1整体加工流程 2.1.1基准孔的加工 零件数控加工时,通常采用两孔一面作为基准(利用零件本身具有的两个通孔作为加工基准孔)?此零件不算厚,在加工孔时,将其钻通即可,而且都是借用孔(先借用钻个定位小孔,后期铣切掉,按数模铣成两个大通孔)?在钻借用定位孔时,没有高精度尺寸的严格要求,容易加工?如果毛料很厚,在加工基准孔时加工成盲孔,避免孔太深导致孔垂直度不合格? 2.1.2内形粗加工 根据实际零件状态选用大直径刀具( 63R3)进行粗加工去除余量?为了减少零件控制变形,粗加工采用快进刀片浅切,每层切深1mm,并且需要跨槽加工,即不按顺序铣每一个槽,要先1槽?3槽?5槽……再铣2槽?4槽?6槽……?内外形的加强筋预留通过辅助夹具来控制加工变形?3.3精加工及闭角残留的处理在半精加工时,根据槽宽的大小,采用 40R3或 30R3刀具加工腹板?腹板加工到位后,再保证筋条和缘条的厚度尺寸?筋条与缘条相连接处的R角需要用 16R3的刀具保证,避免大直径刀具加工后的残留量,此零件在内形局部存在闭角?为了保证零件的重量要求,用 8R3刀具行切加工闭角残留处理,以满足设计需要?这样既保证加工后重量又保证数控加工后接刀光顺? 2.1.3刀具的选择及切削参数 整个切削过程中刀具的选择非常重要?粗加工时,要选择大直径刀具进行快进浅切,大直径刀具能提高加工速度;而后选用常用的 40R3或 30R3的刀具进行半精加工,更换刀具后,由于大直径刀具加工后转角的残留比较大,精加工时选择小直径的刀具加工时,转角处要提前处理—转角进行插铣?如不处理,粗加工后直接用小刀进行精加工,在转角处的吃刀量较大,容易打刀切伤零件? 2.2CO2气体保护自动焊对焊接变形的控制 2.2.1CO2气体保护自动焊的特点及施工工艺 1)由于焊接电流密度较大,电弧热量利用率较高,焊丝又是连续送进,焊后清渣比碱性焊条容易,因此提高了生产效率?2)CO2气体价格便宜,电能消耗小,所以焊接成本低?3)电弧加热集中,工作受热面积小,同时CO2气流有较强的冷却作用,焊接变形和应力小?4)焊缝含氢量少,抗裂性能好,焊接接头的力学性能良好,焊缝质量高?5)焊接过程可以观察到电弧和熔池的情况,故操作容易掌握,不易焊偏,有利于实现机械化和自动焊焊接?CO2气体保护焊是一种高效焊接方法,适用范围广,厚度不限,可进行全位置焊,可焊1mm以下薄板?根据内河船厂的实际情况,使用Φ1.2mm细丝,国产CO2焊机加辅助装置,焊接上层建筑薄板,获得理想的效果?

焊接变形的影响因素与控制

焊接变形的影响因素及控制 摘要 焊接过程是对焊件的局部进行高温加热使其达到融化状态,随后快速冷却结晶形成焊缝,由于急剧的非平衡加热及冷却,结构将不可避免地产生焊后残余变形、应力以及金属组织的变化。焊接应力与变形直接影响焊件的尺寸精度、强度、刚度、稳定性以及耐腐蚀性能等。是影响结构设计完整性、制造工艺合理性和结构使用可靠性的关键因素。焊接应力与变形过大时,不仅给产品制造工艺增加困难,还会因焊接裂纹或变形过大无法矫正而导致构件报废,造成巨大经济损失。本文主要阐述焊接变形的影响因素、控制措施和方法。 关键词:焊接变形;影响因素;控制措施 目录 摘要 (1) 关键字 (1) 第一章引言 (2) 第二章系统总体设计 (2) 2.1 单片机的选择 (2) 2.2 物位传感器的选择 (2) 第3章自动送料小车主电路设计 (3) 3.1 系统结构原理图 (3) 3.2 主机电路核心器件介绍 (3) 3.3 AT89C51主要性能参数 (3) 3.3.1 AT89C51 功能特性概述 (3) 3.3.2 AT89C51 引脚功能说明 (3) 3.3.3 时钟振荡器 (4) 第4章系统软件设计 (4) 4.1 系统的抗干扰及可靠性 (4) 4.2 软件设计 (5) 结论 (8) 参考文献 (9) 第一章焊接应力 在没有外力的情况下,物体内部存在的应力称为内应力,内应力在物体内部自相平衡,即物体内部各方向的内应力总和等于零,内应力对于任何一点的力矩总和等于零。常见的内应力有以下几种: 1、热应力:又称温度应力。它是在不均匀加热及冷却过程中所产生的应力,它与加热温度和加热不均匀程度、焊件的钢度以及焊件材料的热物理性能等因素有关。 2、相变应力:金属发生相变时,由于体积发生变化而引起的应力。 3、装配应力:在装配和安装过程中产生的应力。例如:紧固螺栓、热套结构等均匀有内应力产生。 4、残余应力:当构件上承受局部荷载或经受不均匀加热时,都会在局部地区产生塑性应变。当局部外载撤去后或热源离去,构件温度恢复到原始的均匀状态时,由于构件内部发生了不能恢复的塑性变形,因而产生了内应力,即残余应力。残留下来的变形即残余变形。 焊接过程中焊件的热应力是随时间而变化的瞬时应力,焊后残余下来,即为残余应力。按照焊接应力在空间的方向可以分为单项应力、双向应力和三项应力。薄板对接时,可以认为是双向应力。大厚度焊件的焊缝,三个焊缝的交叉处以及存在裂缝、加渣等缺陷通常出现三向应力,三相应力使材料的塑性降低、容易导致脆性断裂,它是一种最危险的应力状态。

解决薄板不锈钢焊接变形、烧穿的方法要点

解决薄板不锈钢焊接变形、烧穿的方法要点 不锈钢薄板拘束度较小?在焊接过程中受到局部加热、冷却作用?形成了不均匀的加热、冷却?焊件会产生不均匀的应力和应变?焊缝的纵向缩短对薄板边缘的压力超过一定值时?即会产生较严重的波浪式变形?影响工件的外形质量。 解决不锈钢薄板焊接时烧穿、变形的主要措施有: 1、严格控制焊接接头上的热输入量?选择合适的焊接方法和工艺参数(主要有焊接电流、电弧电压、焊接速度)。 2、通常对薄板焊接一般采用较小的喷嘴,但我们建议尽量采用大的喷嘴直径,这样使焊接时的焊缝保护面大一些,能有效且较长时间隔绝空气,使焊缝形成较好的抗氧化能力强。 3、用φ1.5铈钨极棒,磨削的尖度要更尖,且使钨极棒伸出喷嘴的长度应尽量长些,这样会使母材更快的熔化,也就是说熔化温度上升更快,温度会更集中,能使我们对需要熔化的位置尽可能快的熔化,且不会让更多的母才温度上升,这样使材料的内应力发生变化的区域变小,最终也使材料的变形也会减少。 4、装配尺寸力求精确?接口间隙尽量小。间隙稍大容易烧穿?或形成较大的焊瘤。

5、必须采用精装夹具?夹紧力平衡均匀。焊接不锈钢薄板关键要注意:严格控制焊接接头上的线能量?力求在能完成焊接的前提下尽量减小热量输入?从而减小热影响区?避免上述缺陷的出现。 6、选择合理的焊接顺序,对于控制焊接残余变形尤为重要,对于对称焊缝的结构,应尽量采用对称焊接;不对称的结构,则采用先焊焊缝少的一则,后焊焊缝多的一侧。使后焊的变形足以拟消前一侧的变形,以使总体变形减小。 7、不锈钢薄板最好的是激光焊0.1MM都可以焊接?激光光点大小任意调节?能够很好的把控。变形比本上也是没有的。

薄板焊接工艺方法

薄板焊接工艺方法-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

薄板焊接变形控制经验 薄板焊接变形的质量控制包括从钢板切割开始到装夹、点固焊、施焊工艺、焊后处理等,其中还要考虑所采用的焊接方法、有效地变形控制措施。 1、焊接方法对焊接变形的影响 合适的焊接方法需要考虑生产效率和焊接质量,所以焊接方法、焊接工艺和焊接程序显著影响焊接变形的水平。因此所采用的焊接方法必须具有高的熔敷效率和尽量少的焊道。 1.1尽可能减少不必要的焊缝; 1.2合理安排焊缝位置:焊缝位置应便于施焊,尽可能对称分布焊缝;1.3 合理地选择焊缝的尺寸和形式,焊缝设计为角焊缝、搭接焊缝(角焊缝焊接变形小于对接焊缝变形); 2、点固焊工艺对焊接变形的影响 点固焊不仅能保证焊接间隙而且具有一定的抗变形能力。但是要考虑点固焊焊点的数量、尺寸以及焊点之间的距离。对于薄板的变形来说,点固焊工艺不合适就有可能在焊接之前就产生相当的残余焊接应力,对随后的焊接残余应力积累带来影响。点焊尺寸过小可能导致焊接过程中产生开裂使焊接间隙得不到保证,如果过大可能导致焊道背面未熔透而影响接头的美观连续性。点固焊的顺序、焊点距离的合理选择也相当重要。

3、装配应力及焊接程序对薄板焊接变形的影响 应尽量减少焊接装配过程中引起的应力,如果该应力超过产生变形的临界应力就可能产生变形。装配程序注意尽量避免强行组装,并核对坡口形式、坡口角度和组装位置, 对接接头焊接: 板厚≤2的无论单面焊还是双面焊都可以不开坡口, 对于板厚2.5~3.0mm双面焊可以不开坡口,但只能单面焊时,可以将坡口间隙放大到1~2mm或开坡口焊接; 板厚3.0~4.5mm双面焊时应在背面用小砂轮清根;只能单面焊时都应开坡口;

造船焊接变形和反变形控制

造船中的焊接变形和反变形控制 1.研究背景 船舶工业是传统的劳动密集型装配制造业,焊接操作是其中主要的作业形式之一,焊接水平的高低在很大程度上决定了船体的质量和生产效率,而焊接变形又是焊接过程中最难控制的一环。焊接变形的存在不仅造成了焊接结构形状变异,尺寸精度下降和承载能力降低,而且在工作荷载作用下引起的附加弯矩和应力集中现象是船舶结构早期失效的主要原因,也是造成船舶结构疲劳强度降低的原因之一[1]。焊接变形对现代造船技术的应用产生了障碍。由于焊接变形对船舶建造质量、成本和周期都具有重要影响,工业界一直对其非常重视,对焊接变形从实验和理论上进行了大量研究,希望能够对焊接过程进行有效预测和控制。反变形可以控制焊接变形,降低残余应力,且方法简单易行,在船舶行业有广泛的应用。 2.背景内容 针对造船中的焊接变形,国内外专家进行大量的研究。焊接过程是一个非平衡的、时变的、带有随机因素影响的物理化学过程,它涉及电弧物理、传质传热和力学等方面。至今对焊接过程变形的实时检测与监控仍是困难的,不仅需要特殊的方法,而且对设备的要求也很高。随着计算机软、硬件技术的快速发展,使得焊接热加工过程的数值模拟应运而生,实践证明数值模拟对于研究焊接现象是一种非常有用的方法。 2.1国外专家的预测和研究 20世纪30年代以来,许多苏联学者就开始了焊接变形计算与控制研究。如C.A.库兹米诺夫[2]研究了典型船体结构总变形和局部变形的计算方法,提出了减少和补偿焊接变形以及矫正主船体结构的解决方案。Greene和Holzbaur[3]开展了降低焊接残余应力和变形的研究,目前降低残余应力和焊接变形技术大多数由他们制定的法则演变而来。法国的国际焊接研究所对“焊接结构中残余

焊接变形校正(火焰法)、

钢结构焊接变形的火焰校正方法 钢结构焊接变形的火焰校正方法 目前,钢结构已在厂房建筑中得到广泛的应用。而钢结构厂房的主要构件是焊接H型钢柱、梁、撑。这些构件在制作过程中都存在焊接变形问题,如果焊接变形不予以矫正,则不仅影响结构整体安装,还会降低工程的安全可靠性。 焊接钢结构产生的变形超过技术设计允许变形范围,应设法进行矫正,使其达到符合产品质量要求。实践证明,多数变形的构件是可以矫正的。矫正的方法都是设法造成新的变形来达到抵消已经发生的变形。 在生产过程中普遍应用的矫正方法,主要有机械矫正、火焰矫正和综合矫正。但火焰矫正是一门较难操作的工作,方法掌握、温度控制不当还会造成构件新的更大变形。因此,火焰矫正要有丰富的实践经验。本文对钢结构焊接变形的种类、矫正方法作了一个粗略的分析。 1 钢结构焊接变形的种类与火焰矫正 钢结构的主要构件是焊接H型钢柱、梁、撑。焊接变形经常采用以下三种火焰矫正方法:(1)线状加热法;(2)点状加热法;(3)三角形加热法。下面介绍解决不同部位的施工方法。 以下为火焰矫正时的加热温度(材质为低碳钢) 低温矫正500度~600度冷却方式:水 中温矫正600度~700度冷却方式:空气和水 高温矫正700度~800度冷却方式:空气 注意事项:火焰矫正时加热温度不宜过高,过高会引起金属变脆、影响冲击韧性。16M n在高温矫正时不可用水冷却,包括厚度或淬硬倾向较大的钢材。 1.1翼缘板的角变形 矫正H型钢柱、梁、撑角变形。在翼缘板上面(对准焊缝外)纵向线状加热(加热温度控制在650度以下),注意加热范围不超过两焊脚所控制的范围,所以不用水冷却。线状加热时要注意:(1)不应在同一位置反复加热;(2)加热过程中不要进行浇水。这两点是火焰矫正一般原则。 1.2柱、梁、撑的上拱与下挠及弯曲 一、在翼缘板上,对着纵长焊缝,由中间向两端作线状加热,即可矫正弯曲变形。为避免产生弯曲和扭曲变形,两条加热带要同步进行。可采取低温矫正或中温矫正法。这种方法有利于减少焊接内应力,但这种方法在纵向收缩的同时有较大的横向收缩,较难掌

薄板变形控制(焊接工艺)

板,如上层建筑采用δ=2.5 -4毫米较高强度的903钢板,加工、装配后有较大的内应力,焊接后会比普通钢板产生更大的变形;同时, 上层建筑在设计中不参与总强度计算。这样对上层建筑的建造来说,防止薄板焊接变形便成了主要的质量 问题。 导致薄板焊接变形的影响因素很多,目前对薄板焊接防变形技术的研究,主要侧重于工艺技术的研 究。在进行了大量的调查研究和工艺试验后,在生产中摸索出一套行之有效的控制方法,主要措施如下。 优化板缝布置,精确控制余量 优化板缝布置在施工设计图纸上,板缝的布置是根据船舶结构设计和板材的规格来决定的。实际 采购的板材规格往往与设计的规格有所不同,需要重新布置板缝;同时设计图纸中的板缝布置往往对工 艺性考虑不周,容易引起焊接变形。所以开工前必须仔细分析板缝布置情况,将实际的数据进行优化排 列,以减少焊接引起的弯曲变形。优化板缝布置的四个原则为:尽量把焊缝布置成与中心轴相对称;在 满足规范的前提下,把板缝设置在结构件附近,借助结构件的刚性来减少焊缝变形;在多板组成的壁板 和平台尽量使用大板,减少焊缝数量;在焊缝相交中尽量布置成“十”字接头,避免“T”字接头的出现。 讲究余量分布,提高无余量下料装配率为了保证薄板结构装配的尺寸,在传统的施工工艺中,一般 结构都留有一定的余量,留待装配时再进行切割。这样的施工方法,虽然能保证分段尺寸的质量,但由

于在装配过程中的二次切割,增加了受热的变形和内应力,对分段变形的控制和后续工序的施工都带来 了不利的影响。经分析确定,改变传统做法,采取在分段接头处单边留有余量,其它位置一律改为不留 下料余量,使大部分板材下料剪切一次成功。采取这样的措施,在施工中可减少加热次数和加热量,有 效控制装配过程薄板的变形。 实行焊后滚平和无码焊接技术 板缝焊后滚平薄板焊接无论事前采取何种预防措施都只能减少变形量而不能消除变形,焊接后变 形是难免的。按传统工序拼板焊后安装构架,这样板部位变形很难处理,靠火工校正,一方面很难收到 理想效果,另一方面火工多了又会出现橘子皮现象。采取构架安装前先消除拼板焊接变形的措施,把切 割好的薄板放在固定平台上装焊,焊后用十三星滚平机滚压消除焊接变形。由于用机械的方法消除焊缝 的焊接变形,减少了火工工作量,也为构架安装和最终减少总体变形打下了基础。 推行无码焊接在以往的造船中,焊了许多拉码把钢板固定于胎架上是保证线型和防止变形的主要 工艺,这种方法给薄板带来的码脚印和弧坑,需进行大量的割、批、补、磨等工作。既增加了变形又损 伤了钢板,为改变这一状况,采用无码焊接技术,可有效控制薄板焊接变形。现行施工工艺采用的无码 焊接工艺是: 使用磁吸码,用磁力把钢板固定于胎架上,不至损伤钢板,也避免了繁杂的修补工作。 以压代拉,在平台或胎架上安装板材时采用压铁压紧来实现线型吻合和防止变形。 先装构架后焊板缝,确实需要在胎架上焊接的板缝,也要改变传统的先焊板缝后装构架的做法,采 用拼板后先进行构架安装,装好构架后一起烧焊,利用构架来限制板的焊接变形。 限制使用工艺拉条,在上层建筑分段、总段装配中不轻易采用焊拉条和支撑,尽量利用纵横壁板自 身相互的支持来实现定位,必须要焊支撑或拉条时也只能焊在构架上,绝不允许焊在板中。 实施全方位CO2气体保护焊 薄板的焊接变形是因为板材受到不均匀的局部加热和冷却的影响,内部产生了不均衡应力所引起的, 变形的大小与输入的热量有密切的关系,减少热量的输入是控制变形的有效措施。采用下面公式计算手 工焊和CO2保护焊的能量输入,分析对比发现,采用CO2气体保护焊可大大地减少热量的输入。 Q=0.2ηUI/V 式中:

薄板结构件焊接变形的控制与矫正

薄板结构件焊接变形的控制与矫正 一、前言 薄板结构件一般指由厚度不大于4毫米的钢板(包括不锈钢板、镀锌板、白铁皮)组焊而成的结构件。在焊接过程中,不可避免会产生一些变形,下面就针对变形控制与矫正进行探讨。 二、焊接变形产生的原因 电弧焊是一个不均匀的快速加热和冷却的过程,焊接过程中及焊后,焊接构件都将产生变形。影响焊接变形最根本的因素是焊接过程中的热变形和焊接构件的刚性条件。在焊接过程中的热变形受到了构件刚性条件的约束,出现了压缩塑性变形,这就产生了焊接残余变形。 二、焊接变形产生的原因 电弧焊是一个不均匀的快速加热和冷却的过程,焊接过程中及焊后,焊接构件都将产生变形。影响焊接变形最根本的因素是焊接过程中的热变形和焊接构件的刚性条件。在焊接过程中的热变形受到了构件刚性条件的约束,出现了压缩塑性变形,这就产生了焊接残余变形。 二、焊接变形产生的原因 电弧焊是一个不均匀的快速加热和冷却的过程,焊接过程中及焊后,焊接构件都将产生变形。影响焊接变形最根本的因素是焊接过程中的热变形和焊接构件的刚性条件。在焊接过程中的热变形受到了构件刚性条件的约束,出现了压缩塑性变形,这就产生了焊接残余变形。 (一)影响焊接热变形的因素 1.焊接工艺方法。不同的焊接方法,将产生不同的温度场,形成的热变形也不相同。一般来说,自动焊比手工焊加热集中,受热区窄,变形较小。CO2气体保护焊焊丝细,电流密度大,加热集中,变形小。 2.焊接参数。即焊接电流、电弧电压和焊接速度。线能量越大,随焊接速度增大而减小。在3个参数中,电弧电压的作用明显,

因此低电压高速大电流密度的自动焊变形较小。3.焊缝数量和断面大小。焊缝数量越多,断面尺寸越大,焊接变形越大。4.施工方法。连续焊、断续焊的温度场不同,产生的热变形也不同。通常连续焊变形较大,断续焊变形最小。5.材料的热物理性能。不同的材料,导热系数、比热和膨胀系数等均不相同,产生的热变形也不相同,焊接变形也不相同。 (二)影响焊接构件刚性系数的因素 1构件的尺寸和形状。随着构件刚性的增加,焊接变形越小。2胎夹具的应用。采用胎夹具,增加了构件的刚性,从而减少焊接变形。3装配焊接程序。装配焊接程序能引起构件在不同装配阶段刚性的变化和重心位置的改变,对控制构件的焊接变形有很大的影响。一般来说,焊接构件在拘束小的条件下,焊接变形大,反之,则变形小。 三、薄板结结构焊接变形的种类 任何钢结构的焊接变形,可分为整体变形和局部变形。整体变形就是焊接以后,整个构件的尺寸或形状发生的变化,包括纵向和横向收缩(总尺寸缩短),弯曲变形(中拱、中垂)和扭曲 变形等。局部变形是指焊接以后构件的局部区域出现的变形,包括角变形和波浪变形等。 四、控制薄板结结构焊接变形的原则与方法 焊接过程中的热变形和施焊时焊接构件的刚性条件是影响焊接残余变形的两个主要因素。根据这两个主要因素可以认为焊接残余变形是不可避免的,即完全消除焊接变形是不太可能的。控制焊接残余变形必须从薄板结构件设计和施工工艺两个方面同时采取措施。

如何防止焊接变形

如何防止焊接变形 1、焊接变形的种类: 焊接过程中焊件产生的变形称为焊接变形。焊后,焊件残留的变形称为焊接残余变形。焊接残余变形有纵向收缩变形、横向收缩变形、角变形、弯曲变形、扭曲变形和波浪变形等共六种,见图1,其中焊缝的纵向收缩变形和横向收缩变形是基本的变形形式,在不同的焊件上,由于焊缝的数量和位置分布不同,这两种变形又可表现为其它几种不同形式的变形。 2、如何利用合理的装配焊接顺序来控制焊接残余变形? 不同的构件形式应采用不同的装配焊接方法。 1)结构截面对称、焊缝布置对称的焊接结构,采用先装配成整体,然后再按一定的焊接顺序进行生产,使结构在整体刚性较大的情况下焊接,能有效地减少弯曲变形。 例如,工字梁的装配焊接过程,可以有两种不同方案,见图4。若采用图4b所示的边装边焊顺序进行生产,焊后要产生较大的上拱弯曲变形;若采用图4c所示的整装后焊顺序,就可有效地减少弯曲变形的产生。

2)结构截面形状和焊缝不对称的焊接结构,可以分别装焊成部件,最后再组焊在一起见图5。图5b所示的方案由于焊缝1离中性轴距离较大,所以弯曲变形较大,而图5a所示的焊缝1 的位置几乎与上盖板截面中性轴重合,所以对整个结构的弯曲变形没有影响。 3、如何利用合理的焊接顺序来控制焊接残余变形? ⑴对称焊缝采用对称焊接当构件具有对称布置的焊缝时,可采用对称焊接减少变形。如 图4所示工字梁,当总体装配好后先焊焊缝1、2,然后焊接3、4,焊后就产生上拱的弯曲变形。 如果按1、4、2、3的顺序进行焊接,焊后弯曲变形就会减小。但对称焊接不能完全消除变形, 因为焊缝的增加,结构刚度逐渐增大,后焊的焊缝引起的变形比先焊的焊缝小,虽然两者方向 相反,但并不能完全抵消,最后仍将保留先焊焊缝的变形方向。 ⑵不对称焊缝先焊焊缝少的一侧因为先焊焊缝的变形大,故焊缝少的一侧先焊时,使它 产生较大的变形,然后再用另一侧多的焊缝引起的变形来加以抵消,就可以减少整个结构的变 形。

相关主题
文本预览
相关文档 最新文档