当前位置:文档之家› 基因结构与表达

基因结构与表达

基因结构与表达

基因结构与表达

1.(06广东生物24)马歇尔和沃伦因对引起胃溃疡的幽门螺杆菌的开创性研究成果,获得了2005年诺贝尔生理学或医学奖。请问幽门螺杆菌与硝化细菌的共同特点是:()A.异养型B.基因编码区由外显子和内含子组成C.厌氧型D.遗传物质主要在拟核区2.(05国)人体神经细胞与肝细胞的形态结构和功能不同,其根本原因是这两种细胞的()

A、DNA碱基排列顺序不同

B、核糖体不同

C、转运RNA不同

D、信使RNA不同3.(2005·上海生物)tRNA与mRNA碱基互补配对现象可出现在真核细胞的()

A、细胞核中

B、核糖体上

C、核膜上

D、核孔处4.(2005·上海生物·14)一段原核生物的mRNA通过翻译可合成一条含有11个肽键的多肽,则此mRNA分子至少含有的碱基个数及合成这段多肽需要的tRNA个数,依次为()A.33 11 B.36 12 C.12 36 D.11 36

5.(06江苏生物15)我国科学家运用基因工程技术,将苏云金芽孢杆菌的抗虫基因导人棉花细胞并成功表达,培育出了抗虫棉。下列叙述不正确的是:()A.基因非编码区对于抗虫基因在棉花细胞中的表达不可缺少

B.重组DNA分子中增加一个碱基对,不一定导致毒蛋白的毒性丧失

C.抗虫棉的抗虫基因可避过花粉传递至近缘作物,从而造成基因污染

D.转基因棉花是否具有抗虫特性是通过检测棉花对抗生素抗性来确定的

6. ( 06全国Ⅰ—5)采用基因工程技术将人凝血因子基因导入山羊受精卵,培育出了转基因羊。但是,人凝血因子只存在于该转基因羊的乳汁中。以下有关叙述,正确的是:()

A.人体细胞中凝血因子基因编码区的碱基对数目,等于凝血因子氨基酸数目的3倍

B.可用显微注射技术将含有人凝血因子基因的重组DNA分子导入羊的受精卵

C.在该转基因羊中,人凝血因子基因存在于乳腺细胞,而不存在于其他体细胞中

D.人凝血因子基因开始转录后,DNA连接酶以DNA分子的一条链为模板合成mRNA 7.(2005·江苏生物·17)下列有关遗传信息的叙述,错误的是()A.可以通过DNA复制传递给后代B.传信息控制蛋白质的分子结构

C.是指DNA分子的脱氧核甘酸的排列顺序D.全部以密码于的方式体现出来8.(06广东生物38)(6分)细胞分裂间期是DNA复制和蛋白质合成等物质积累的过程。

(1)在DNA的复制过程中,DNA在的作用下,双螺旋链解开成为两条单链,并以每一条单链为模板,采用复制方式合成子代DNA分子。

(2)某基因中的一段序列为……TAT GAG CTC GAG TAT……,据下表提供的遗传密码推测其编码的氨基酸序列:。

(3)真核生物的细胞分裂从间期进入前期,除了核膜、核仁消失外,在显微镜下还可

观察到和的出现。

9.(06上海生物37)(8分)请回答下列有关遗传信息传递的问题。

(1)为研究某病毒的致病过程,在实验室中做了如下图所示的模拟实验。

①从病毒中分离得到物质A。已知A是单链的生物大分子,其部分碱基序列为-GAACAUGUU-。将物质A加入试管甲中,反应后得到产物X。经测定产物X的部分碱基序列是-CTTGTACAA-,则试管甲中模拟的是过程。

②将提纯的产物X加入试管乙,反应后得到产物Y。产物Y是能与核糖体结合的单链大分子,则产物Y是,试管乙中模拟的是过程。

③将提纯的产物Y加入试管丙中,反应后得到产物Z。产物Z是组成该病毒外壳的化合物,则产物Z是。

(2)若该病毒感染了小鼠上皮细

胞,则组成子代病毒外壳的化合物

的原料来自,而决定该化合物

合成的遗传信息来自。若该病

毒除感染小鼠外,还能感染其他哺

乳动物,则说明所有生物共用一

套。该病毒遗传信息的传递过程为。

10.(东38)番茄果实成熟过程中,某种酶(PG)开始合成并显著增加。但不利于长途运输和长期保鲜。科学家利用反义RNA技术(见图解),可有效解决此问题。该技术的核心是,从番茄体细胞中获得指导PG合成的信使RNA,以之为模板人工合成反义基因并将之导入番茄体细胞,该基因转录产生的反义RNA与细胞原有mRNA(靶mRNA)互补形成双链RNA,从而阻止靶mRNA进一步翻译形成PG。请结合图解回答:

(1)反义基因像一般基因一样是一段双链的DNA分子,合成该分子的第一条链时,使用的模板是细胞质中的信使RNA,原料是,所用的酶是

(2)开始合成的反义基因第一条链是与模板RNA连在一起的杂交双链,通过加热去除RNA,然后再以反义基因第一条链为模板合成第二条链,这样一个完整的反义基因被合成。若要以完整双链反义基因克隆成百上千的反义基因,所用复制方式为。

(3)如果指导番茄合成PG的信使RNA的碱基序列是-A-U-C-C-A-G-G-U-C-,那么,PG反义基因的这段碱基对序列是。

(4)将人工合成的反义基因导入番茄叶肉细胞原生质体的运输工具是,该目的基因与运输工具相结合需要使用的酶有,在受体细胞中该目的基因指导合成的最终产物是

基因的概念及发展

基因的概念及发展 基因(gene)这个名词是1909年由遗传学家约翰逊(W.Johannsen)提出来的。他用基因这一名词来表示遗传的独立单位,相当于孟德尔在豌豆试验中提出的遗传因子。顾名思义,基因不仅是一个遗传物质在上下代之间传递的基本单位,也是一个功能上的独立单位。 在遗传学发展的早期阶段,基因仅仅是一个逻辑推理的概念,而不是一种已经证实了的物质和结构。由于科学研究水平的不断提高,从浅入深,由宏观到微观,基因的概念也在不断的修正和发展。在20世纪30年代,由于证明了基因是以直线的形式排列在染色体上,因此人们认为基因是染色体上的遗传单位。20世纪50年代以后,随着分子遗传学的发展,1953年在沃森和克里克提出DNA的双螺旋结构以后,人们普遍认为基因是DNA的片段,确定了基因的化学本质。20世纪60年代,本茨(S.Benzer)又提出了基因内部具有一定的结构,可以区分为突变子、互换子和顺反子三个不同单位。DNA分子上的一个碱基变化可以引起基因突变,因此可以看成是一个突变子;两个碱基之间可以发生互换,可以看成是一个互换子;一个顺反子是具有特定功能的一段核苷酸序列,作为功能单位的基因应该是顺反子。从分子水平来看,基因就是DNA分子上的一个个片段,经过转录和翻译能合成一条完整的多肽链。可是,通过近年来的研究,认为这个结论并不全面,因为有些基因在转录出RNA以后,不再翻译成蛋白质,如rRNA和tRNA就属于这种类型。另外,还有一类基因,如操纵基因,它们既没有转录作用,又没有翻译产物,仅仅起着控制和操纵基因活动的作用。特别是近年来发现,在DNA分子上有相当一部分片段,只是某些碱基的简单重复,这类不含有遗传信息的碱基片段,在真核细胞生物中数量可以很大,甚至在50%以上。关于DNA分子中这些重复碱基片段的作用,目前还不十分了解。有人推测可能有调节某些基因活动和稳定染色体结构的作用,其真正的功能尚待研究。因此,目前有的遗传学家认为,应该把基因看作是DNA 分子上具有特定功能的(或具有一定遗传效应的)核苷酸序列。 基因概念的发展 1909年,约翰逊(Johannsen)首次提出了基因(gene)的概念,用以替代孟德尔(Mendel)早年所提出的遗传因子(genetic factor)一词,并创立了基因型(geno-type)和表现型(phenotype)的概念,把遗传基础和表现性状科学地区分开来。随着遗传学的发展,特别是分子生物学的迅猛发展,人们对基因概念的认识正在逐步深化。 1 1个基因1个酶 英国生理生化学家盖若德(Garrod.A.E)研究了人类中的先天代谢疾病,并于1909年出版了《先天代谢障碍》一书。他通过对白化病等疾病的分析,认识到基因与新陈代谢之间的关系,即1个突变基因,1个代谢障碍。这种观点可以说是1个基因1个酶观点的先驱。 比得尔(Beadle.G.W)和塔特姆(Tatum.EL)对红色链孢霉做了大量的研究。他们认为,野生型的红色链孢霉可以在基本培养基上生长,是因为它们自身具有合成一些营养物质的能力,如嘌呤、嘧啶、氨基酸等等。控制这些物质合成的基因发生突变,将产生一些营养缺陷型的突变体,并证实了红色链孢霉各种突变体的异常代谢往往是一种酶的缺陷,产主这种酶缺陷的原因是单个基因的突变。

基因概念的历史演变

课程论文:基础分子生物学 题目:基因概念的历史演变 基因概念的历史演变 摘要: 基因(gene)是遗传学家约翰逊(W.Johannsen)在1909年提出来的。在遗传学发展的早期阶段,基因仅仅是1个逻辑推理的概念,而不是一种已经证实了的物质和结构。在基因遗传学史上,基因概念的发展大概分为以下阶段:孟德尔的遗传因子阶段;摩尔根的基因阶段;顺反子阶段和现代基因阶段。整个演变中人们对基因的认识不断深化和完善。 关键词:基因;概念;阶段;类型 正文: 一、早期的基因概念 遗传物质的早期推测 20世纪20年代,大多数科学家认为,蛋白质是生物体的遗传物质。20世纪30年代,人们才认识到DNA是由许多脱氧核苷酸聚合而成的生物大分子,组成DNA分子的脱 氧核苷酸有四种,每一种有一个特定的碱基。由于对DNA分子的结构没有清晰的了解, 认为蛋白质是遗传物质的观点仍占主导地位。 1.孟德尔的遗传因子阶段 19世纪60年代初,孟德尔对具有不同形态的豌豆作杂交实验,在解释实验中每种性状的遗传行为时,用A代表红花,a代表白花,表明生物的某种性状是由遗传因子 负责传递的,遗传下来的不是具体的性状,而是遗传因子。遗传因子是颗粒性的,在体 细胞内成双存在,在生殖细胞内成单存在。孟德尔所说的“遗传因子”是代表决定某个 性状遗传的抽象符号。 孟德尔在阐明遗传因子在世代中传递规律时,就已经认识到了基因的两个基本属性:基因是世代相传的,基因是决定遗传性表达的。现在所说的“基因是生物体传递遗 传信息和表达遗传信息的基本物质单位”,实际上就是孟德尔所阐明的基因观。 2.摩尔根的基因阶段

1909年,丹麦遗传学家约翰逊创造了“基因”这一术语,用来表达孟德尔的遗传因子,但还只是提出了遗传因子的符号,没有提出基因的物质概念。摩尔根对果蝇的研究结果表明,1条染色体上有很多基因,一些性状的遗传行为之所以不符合孟德尔的独立分配定律,就是因为代表这些性状的基因位于同一条染色体上,彼此连锁而不易分离。这样,代表特定性状的特定基因与某一条特定染色体上的特定位置联系起来。基因不再是抽象的符号,而是在染色体上占有一定空间的实体,从而赋予基因以物质的内涵。3.顺反子阶段 早期的基因概念是把基因作为决定性状的最小单位、突变的最小单位和重组的最小单位,后来,这种“三位一体”的概念不断受到新发现的挑战。 20世纪50年代以后,随着分子遗传学的发展,1953年在沃森和克里克提出DNA 的双螺旋结构以后,人们普遍认为基因是DNA的片段,确定了基因的化学本质。 1957年,本泽尔(Seymour Benzer)以T4噬菌体为材料,在DNA分子水平上研究基因内部的精细结构,提出了顺反子(cistron)概念。 顺反子是1个遗传功能单位,1个顺反子决定1条多肽链。能产生1条多肽链的是1个顺反子,顺反子也就是基因的同义词。1个顺反子可以包含一系列突变单位——突变子。突变子是DNA中构成1个或若干个核苷酸。由于基因内的各个突变子之间有一定距离,所以彼此之间能发生重组,重组频率与突变子之间的距离成正比。重组子代表1个空间单位,有起点和终点,可以是若干个密码子的重组,也可以是单个核苷酸的互换。如果是后者,重组子也就是突变子。 4.现代基因阶段 (1)操纵子 从分子水平来看,基因就是DNA分子上的一个个片段,经过转录和翻译能合成1条完整的多肽链。操纵基因与其控制下的一系列结构基因组成1个功能单位,称为操纵子。 (2)移动基因 移动基因指DNA能在有机体的染色体组内从1个地方跳到另一个地方,它们能从1个位点切除,然后插入同一或不同染色体上的另一个位置。移动基因机构简单,由几个促进移位的基因组成。基因的跳动能够产生突变和染色体重排,进而影响其他基因的表达。 (3)断裂基因 过去人们一直认为,基因的遗传密码子是连续不断地并列在一起,形成1条没有间隔的完整基因实体。但后来通过对真核蛋白质编码基因结构的分析发现,在它们的核苷酸序列中间插入有与编码无关的DNA间隔区,使1个基因分隔成不连续的若干区段。这种编码序列不连续的间断基因被称为断裂基因。 (4)假基因 1977年,G.Jacp根据对非洲爪蟾5S rRNA基因簇的研究,提出了假基因的概念,现已在大多数真核生物中发现了假基因。这是一种核苷酸序列同其相应的正常功能基因基本相同,但却不能合成出功能蛋白质的失活基因。 (5)重叠基因 长期以来,在人们的观念中一直认为同一段DNA序列内,是不可能存在重叠的读码结构的。但是,随着DNA核着酸序列测定技术的发展,人们已经在一些噬菌体和动物病毒中发现,不同基因的核苷酸序列有时是可以共用的。 二基因类型

基因家族的定义

什么是一个基因家族呢由一个共同的祖先基因经过重复(duplication)和突变(mutation)产生的、外显子中具有相似的序列的一组相关基因被称为基因家族(gene family)。基因重复主要有三种方式:片段复制、串联重复和逆转录转座或其他转座事件等,基因重复后可以彼此形成基因簇(gene clusters),同一家族中的成员有时紧密的排列在一起,成为一个基因簇;更多的时候,它们却分散在同一染色体的不同部位,甚至位于不同染色体上,具有各自不同的表达调控模式。基因突变是基因分子进化的第一原因,由核苷酸替代、插入/缺失、重组和基因转换等引发的突变基因或DNA序列,通过群体水平的遗传漂变和/或自然选择进行扩散,并最终在物种基因组中得以固定,这种方式产生的新基因一般拷贝数目不会增加,相对基因重复是非常少的,主要是影响基因的序列以及其编码的蛋白。基因家族主要是指一组功能相似且核苷酸序列具有同源性的基因,是具有显著相似性的一组基因,编码相似的蛋白质产物。 有时定义基因家族,从结构域角度来刻画。如:一类基因,其编码蛋白都含有同一个结构域,这一类基因是一个基因家族。比如MADS-box基因家族,这类基因都含有MADS-box结构域,还有SET结构域基因家族。这个定义信息更偏向功能信息,一般来说结构域决定某种功能,因为结构域序列保守,易形成稳定的三维结构。这与共同祖先的定义有些差别,很多结构域难找得到其共同祖先。另外一个基因的共同祖先定义比较复杂的,越是历史久远的祖先,因为物种的在进化过程中发生了很多丢失和增加事件。共同祖先是个相对的概念,比如植物的共同祖先,一般包括藻类及其它绿色植物,而被子植物共同祖先,根据已经测序的基因组,一般指单双子叶之前就可以。如果从共同祖先定义基因家族,很多已知的基因家族就要被分成很多个基因家族。有很多网站(数据库)专门收集结构域,比如Pfam和InterPro,这两个数据库内容差不多。这些数据库以Hmmer算法为基础,根据Uniprot中包含的蛋白,进行序列连配找到保守的片段(结构域),再以这些序列使用Hmmer构建种子,保存这些种子。一个蛋白拿过来后,与这些种子比对,根据打分能判断出这个蛋白是不是含有这个结构域,这也是判断一个基因编码蛋白是不是属于这个家族。

DNA的结构和复制知识点总结

DNA的结构和复制知识点总结 一、DNA分子的结构 1、 DNA的化学结构: ①组成的基本元素是等。 ② 组成DNA的基本单位——。每个脱氧核苷酸由三部分组成:一个、一个和一个。 ③构成DNA的脱氧核苷酸有四种。DNA在水解酶的作用下,可以得到四种不同的核苷酸,即、、、;组成四种脱氧核苷酸的都是一样的,所不相同的是四种含氮碱基:A TGC。 ④DNA是由四种不同的脱氧核苷酸为单位,聚合而成的脱氧核苷酸链。 2、DNA的双螺旋结构:排列在外侧,形成两条主链(反向平行),构成DNA的基本骨架。两条主链之间的横档是,排列在内侧。相对应的两个碱基通过氢键连结形成碱基对,DNA一条链上的碱基排列顺序确定了,根据碱基互补配对原则(即是),一条链的碱基排列顺序确定了,另一条链的碱基排列顺序也就确定了。 3、DNA的特性: ①:DNA分子两条长链上的脱氧核糖与磷酸交替排列的顺序和两条链之间碱基互补配对的方式是稳定不变的。 ②:DNA中的碱基对的排列顺序是千变万化的。碱基对的排列方式:4n(n为碱基对的数目) ③:每个特定的DNA分子都具有特定的碱基排列顺序,这种特定的碱基排列顺序就构成了DNA分子自身严格的特异性。 4、碱基互补配对原则在碱基含量计算中的应用: ①在双链DNA分子中,不互补的两碱基含量之和是相等的,占整个分子碱基总量的50%。 即是+ =50%,+ =50%。 ②在双链DNA分子中,一条链中的嘌呤之和与嘧啶之和的比值与其互补链中相应的比值互为倒数。A1+G1/T1+C1=m,则A2+G2/T2+C2= 。 ③在双链DNA分子中,一条链中的不互补的两碱基含量之和的比值(A+T/G+C)与其在互补链中的比值和在整个分子中的比值都是一样的,即A1+T1/G1+C1=m,则A2+T2/G2+C2= 5、基因和遗传信息的关系

第三章 基因的概念和结构

第四章基因的概念和结构 ●遗传因子假说(Hypothesis of the inherited factor) ?生物性状由遗传因子控制 ?亲代传给子代的是遗传因子(A,a….) ?遗传因子在体细胞内成双(AA,aa), 在生殖细胞内为单(A,a) ?杂合子后代体细胞内具有成双遗传因子(Aa) ?等位的遗传因子独立分离, 非等位遗传因子间自由组合地分配到配子中。 ●基因的概念的提出 ①.孟德尔:把控制性状的因子称为遗传因子。如:豌豆红花(C)、白花(c)、植株高(H)、矮(h)。 ②.约翰生:基因(gene)取代遗传因子。 ③.摩尔根:对果蝇、玉米等的大量遗传研究,建立了以基因和染色体为主体的经典遗传学。基因是化学实体,以念珠状直线排列在染色体上。基因:是一个最小的单位,不能分割;既是结构单位,又是功能单位,又是突变单位。“三位一体” 。 ?交换单位:基因间能进重组,而且是交换的最小单位。 ?突变单位:一个基因能突变为另一个基因。 ?功能单位:控制有机体的性状。 ●等位基因(Allele, Allomorph)载荷在同源染色体对等座位上的二个基因,这二个成对的基因称为等位基 因。 ●复等位基因(Allele, Allomorph)同一座位存在的两个以上不同状态的基因, 其总和称之为复等位基因 (multiple alleles)如,红细胞血型,白细胞抗原…。 ●拟等位基因:所谓的拟等位基因表型相似,但在位置上并不等位。 ●顺反子:是一个遗传的功能单位,一个顺反子决定一条多肽链,顺反子即是基因。 ●内含子(intron):DNA序列中不出现在成熟mRNA的片段; ●外显子(extron):DNA序列中出现在成熟mRNA中的片段。 ●断裂基因(间隔基因):真核生物的结构基因是由若干exon和intron 相间隔排列的序列组成的间隔基因。 ●重叠基因:指在同一段DNA顺序上,由于阅读框架不同或终止早晚不同,同时编码两个以上基因的现象。 ●转座因子:指染色体组上可以转移(或转坐)的基因。即跳跃基因(jumping gene)或可动基因(mobile gene)。 ●癌基因:癌基因是指其编码的产物与细胞的肿瘤性转化有关的基因。是一类会引起细胞癌变的基因。

基因组的结构与功能习题

第二章基因组的结构与功能 (一)选择题 A 型题 1.原核生物染色体基因组是 A.线性双链DNA分子 B.环状双链DNA分子 C.线性单链DNA分子 D.线性单链RNA分子 E.环状单链DNA分子 2.真核生物染色体基因组是 A.线性双链DNA分子 B.环状双链DNA分子 C.线性单链DNA分子 D.线性单链RNA分子 E.环状单链DNA分子 3.有关原核生物结构基因的转录,叙述正确的是 A.产物多为多顺反子RNA B.产物多为单顺反子RNA C.不连续转录 d.对称转录 E.逆转录4.原核生物的基因组主要存在于 A.质粒 B.线粒体 C.类核 D.核糖体 E.高尔基体 5.下列有关原核生物的说法正确的是 A.原核生物基因组DNA虽然与蛋白结合,但不形成真正的染色体结构 B.结构基因中存在大量的内含子 C.结构基因在基因组中所占比例较小 D.原核生物有真正的细胞核 E.基因组中有大量的重复序列 6.下列有关原核生物的说法不正确的是 A.原核生物的结构基因与调控序列以操纵子的形式存在B.在操纵子中,功能上关联的结构基因串联在一起C.在一个操纵子内,几个结构基因共用一个启动子 D.操纵元件也是结构基因E.基因组中只存在一个复制起点 7.真核生物染色质中的非组蛋白是 A.碱性蛋白质B.序列特异性DNA结合蛋白C.识别特异DNA序列的信息存在于蛋白上 D.不能控制基因转录及表达E.不参与DNA分子的折叠和组装 8.真核生物染色质的基本结构单位是 A.α-螺旋B.核小体 C.质粒 D.?-片层 E.结构域 9.关于真核生物结构基因的转录,正确的说法是 A.产物多为多顺反子RNAB.产物多为单顺反子RNAC.不连续转录D.对称转录E.新生链延伸方向为3'→5' 10.外显子的特点通常是 A.不编码蛋白质B.编码蛋白质C.只被转录但不翻译D.不被转录也不被翻译E.调节基因表达11.下列有关卫星DNA说法错误的是 A.是一种高度重复序列 B.重复单位一般为2~10 bp C.重复频率可达106 D.能作为遗传标记 E.在人细胞基因组中占5%~6%以上 12.下列有关真核生物结构基因的说法不正确的是 A.结构基因大都为断裂基因 B.结构基因的转录是不连续的 C.含有大量的重复序列 D.结构基因在基因组中所占比例较小 E.产物多为单顺反子RNA 13.染色体中遗传物质的主要化学成分是 A.组蛋白 B.非组蛋白 C.DNA D.RNA E.mRNA 14.真核生物染色质中的组蛋白是 A.酸性蛋白质 B.碱性蛋白质 C.一种转录因子 D.带负电荷 E.不带电荷 15.指导合成真核生物蛋白质的序列主要是 A.高度重复序列 B.中度重复序列 C.单拷贝序列 D.卫星DNA E.反向重复序列

基因的结构

第一章基因的结构 第一节基因和基因组 一、基因(gene) 是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5'-端和3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene),外显子不连续。 二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和, 基因组的大小用全部DNA的碱基对总数表示。 人基因组3X1 09(30亿bp),共编码约10万个基因。 每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-Value Paradox)。 人类基因组计划(human genome project, HGP) 基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。 蛋白质组(proteome)和蛋白质组学(proteomics) 第二节真核生物基因组 一、真核生物基因组的特点:, ①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中. ②真核基因组中,编码序列只占整个基因组的很小部分(2—3%), 二、真核基因组中DNA序列的分类· (一)高度重复序列(重复次数>lO5) 卫星DNA(Satellite DNA) (二)中度重复序列 1.中度重复序列的特点 ①重复单位序列相似,但不完全一样, ②散在分布于基因组中. ③序列的长度和拷贝数非常不均一, ④中度重复序列一般具有种属特异性,可作为DNA标记. ⑤中度重复序列可能是转座元件(返座子), 2.中度重复序列的分类 ①长散在重复序列(long interspersed repeated segments.) LINES ②短散在重复序列(Short interspersed repeated segments) SINES SINES:长度<500bp,拷贝数>105.如人Alu序列 LINEs:长度>1000bp(可达7Kb),拷贝数104-105,如人LINEl

基因工程的诞生和发展

第一章基因工程概述 第一节基因工程的诞生和发展 一、基因 1.Mendel的遗传因子阶段 Mendel . (1822-1884). 1856-1864豌豆杂交实验。 1866年发表论文,提出分离规律和独立分配规律 1900年Mendel遗传规律被重新发现遗传学的元年 Mendel提出:生物的某种性状是由遗传因子负责传递的。是颗粒性的,体细胞内成双存在,生殖细胞内成单存在。遗传因子是决定性状的抽象符号。 2.Morgan的基因阶段 1909年丹麦遗传学家Yohannsen (1859-1927) 发表了“纯系学说”首先提出了“基因”的概念,代替了Mendel “遗传因子”的概念。但没有提出基因的物质概念。 1910年以后,Morgan .等提出了基因的连锁遗传规律。说明了基因是在染色体上占有一定空间的实体。基因不再是抽象符号,被赋予物质内涵。 3.顺反子阶段 1957年,本泽尔(Seymour Benzer)以T4噬菌体为材料,在DNA分子水平上研究基因内部的精细结构,提出了顺反子(cistron)概念:顺反子是1个遗传功能单位,1个顺反子决定1条多肽链。 4.现代基因阶段 (1)操纵子 启动基因+操纵基因+结构基因 (2)跳跃基因 指DNA能在有机体的染色体组内从1个地方跳到另一个地方,它们能从1个位点切除,然后插入同一或不同染色体上的另一个位置。 (3)断裂基因 1个基因被间隔区分成不连续的若干区段,这种编码序列不连续的间断基因被称为断裂基因。 (4)假基因 不能合成出功能蛋白质的失活基因。 (5)重叠基因 不同基因的核苷酸序列有时是可以共用的即重叠的。 现代对基因的定义是DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位。 二、基因工程的诞生 一般认为1973年是基因工程诞生的元年 (S. Cohen等获得了卡那霉素和四环素双抗性的转化子菌落) 理论上的三大发现和技术上的三大发明 对于基因工程的诞生起到了决定性的作用。 (一)DNA是遗传物质被证实

基因的概念和结构

基因的概念和结构 一、基因的定义 1、基因:基因是有遗传效应的DNA片段。 2、基因的遗传效应:能控制一种生物性状的表现;能控制一种蛋白质的生物合成;能转录一种信使RNA。 3、知识点拨: 基因与脱氧核苷酸、遗传信息、DNA、染色体、蛋白质、生物性状之间的关系 (1)染色体、DNA、基因、脱氧核苷酸之间的关系: (2)基因、染色体、蛋白质、性状的关系: 4、知识拓展: (1)基因的内涵 ①功能上,是遗传物质的结构和功能的基本单位。 ②本质上,是有遗传效应的DNA片段。 ③结构上,含有特定遗传信息的脱氧核苷酸序列。 ④位置上,在染色体上有特定的位置,呈线性排列。 (2)基因具有遗传效应,即基因能控制生物的性状,基因是控制生物性状的基本单位,特定的基因决定特定的性状。基因的遗传效应反映出来的效果是控制蛋白质合成,从而表现生物性状。 (3)DNA上有许多片段,其中有遗传效应的片段叫基因,没有遗传效应的片段不叫基因。 二、基因的功能 (1)传递遗传信息:是通过DNA的复制来实现的。 (2)表达遗传信息:是通过DNA控制蛋白质的合成来实现的,包括转录、翻译。 (3)基因的表达遵循中心法则,结果合成了蛋白质。 (4)遗传信息流:如图

三、基因的结构 1、原核细胞基因的结构 说明: ①编码区和非编码区 编码区:能转录成相应的mRNA,能编码蛋白质。(结构基因) 非编码区:不能转录成相应的mRNA,不能编码蛋白质。(调控基因) ②启动子和终止子 启动子和终止子是DAN上的调控系列,调控转录。 启动子:是位于编码区上游的一小段核苷酸序列,有RNA聚合酶的结合位点,是转录的起始点,对转录具有调控作用。 终止子:是位于编码区下游的一小段核苷酸序列,是转录的终止点。 ③起始密码子和终止密码子 起始密码子和终止密码子是mRNA上的调控系列,调控翻译。 起始密码子:是位于mRNA上三个相邻的碱基(包括AUG,GUG),是肽链增长的起始信号,是翻译的起始信号。起始密码子编码(对应)相应的氨基酸(甲硫氨酸、缬氨酸)。 终止密码子:是位于mRNA上三个相邻的碱基(包括UAA,UAG,UGA),是肽链增长的终止信号,即翻译的终止信号。3种终止密码子均不编码氨基酸。 ④RNA聚合酶结合位点 RNA聚合酶结合位点是基因启动子的一部分,位于启动子区,原核生物为Pribnow区和TTGACA区,真核生物为TA TA区、CAA T区以及GCbox。这些结合位点的功能可以归纳为:与RNA聚合酶相互识别,且具有很高的亲和力。当RNA聚合酶结合位点发生突变时,转录不能进行,基因无法表达。 RNA聚合酶与RNA聚合酶结合位点结合后,开始转录,RNA聚合酶沿着DNA分子的一条链移动,并以DNA分子的一条链为模板合成RNA,转录完成后,RNA链从DNA分子上释放出来后,紧接着RNA聚合酶也从DNA模板链上脱落下来。 2、真核细胞的基因结构

基因概念的发展

基因概念的发展 摘要:在广泛文献调研的基础上,本文根据遗传学研究的不同时期对基因本质的不同认识,阐述了遗 基因概念的起源,形成,以及经典遗传学,分子遗传学等不同时期的基因概念,及最新发展。 关键词:基因;概念;发展 Development of the Genetic Concept Abstract:On the basis of extensive literature research,this paper summary about genetic studies of different periods and different perceptions of the nature of genes , gene explained the concept of genetic origin, formation, and classical genetics , molecular genetics concepts such as genes in different periods , and the latest developments. Key words: Gene;Genetic;developments 基因概念是现代遗传学的中心慨念,由其演化出来的一系列概念构成了现代遗传学乃 至整个现代生物学概念体系的基本框架[1]。对基因概念的不懈探索推动遗传学不断发展前 进,因此,回顾基因概念的演变和发展,为我们正确理解基因概念,认识其本质和遗传学的发 展历程具有重要的意义。 1 基因概念的起源 人类在长期的农业生产和饲养家畜过程中,早已认识到遗传和变异现象,并根据生产实 践的需要,如动植物育种、品种改良、产量提高等,开始重视遗传变异现象,并进行选择 积累了大量的经验。 从18世纪下半叶起,许多学者对遗传与变异现象进行了系统的研究,提出种种学说(见 表1),推动了遗传学的发展,也为基因概念的提出创造孕育了条件。 表1 关于基因概念起源的代表性学说 学说提出者主要内容贡献文献 泛生论学说达尔文 C.R.Darwi) 动物每个器官里都普遍存在微小 的、流动在体内的泛生粒,以后聚集 在生殖器官里,形成生殖细胞,当受 精卵发育为个体时,各种泛生粒即进 入各器官发生作用,因而表现为遗传 泛生论虽然是混合遗传 的解释,并不正确,但它 第一次肯定有机体内部 有特殊的物质负责传递 遗传性状,这是合理的 [2] [12] 独特分子 E.H.Haeckel 这几个概念都有一个共同的特点,即 认为遗传物质是种极微小的粒子,并 都带有形而上学的成分。这些不成熟的概念, 是 当时不成熟的遗传学状 况的反映 [2] [3] 生殖质K.W.von .Nageeli [12]泛子H. de Vries 种质学说魏斯曼 A.Weismann 生物体可分为体质和种质两大部 分,种质(性细胞和产生性细胞的 那些细胞)在世代繁衍过程中连续 相传,体质有种质产生,体质细胞 变化,不影响体质细胞。 种质学说包含着科学合 理的内核,已识到遗传 物质问题,因此可以说 基因的初步概念已经在 种质学说中开始孕育和 萌动了 [2] [3] [12] 2 基因概念的发展 2.1 经典遗传学阶段 2.1.1 遗传因子学说 孟德尔G.J.Mendel于1854 年到1965 年间对豌豆的遗传性状进行了长期的探索, 发现豌豆的很多性状能够有规律地传给下一代, 总结出生物遗传的两大定律( 分离定律和自

第四章-基因的结构和功能

第四章基因的结构和功能 一、教学目的和要求: 1掌握基因概念及其发展; 2 掌握基因的重组测验 3 理解利用顺反试验、互补试验鉴定两个突变型是否属于同一基因的原理; 4 了解缺失作图的原理 二、教学重点: 1基因概念及其发展; 2 基因的重组测验 三、教学难点: 缺失作图的原理 四、教学方法: 面授并辅以多媒体教学 五、教学内容 基因是一个特定的DNA或RNA片段,但并非一段DNA或RNA都是基因。 第一节基因的概念一、基因概念的发展 (一)遗传“因子”:孟德尔认为,生物性状的遗传由遗传因子所控制,性状本身不遗传。(二)染色体是基因的载体:摩尔根实验证明基因位于染色体上,并呈直线排列,提出了遗传学是连锁交换规律,建立了遗传的染色体学说,为细胞遗传学奠定了重要基础。并由此提出基因既是一个功能单位,是一个突变单位,也是一个交换单位的“三位一体”概念。∴经典遗传学认为:基因是一个最小的单位,不能分割;既是结构单位,又是功能单位。(三)DNA是遗传物质:1928年Griffith首先发现了肺炎球菌的转化,证实DNA是遗传物质而非蛋白质;Avery用生物化学的方法证明转化因子是DNA而不是其他物质。 (四)基因是有功能的DNA片段 20世纪40年代Beadle和Tatum提出一个基因一个酶的假说,沟通了蛋白质合成与基因功能的研究 1953年Watson和Crick提出DNA双螺旋结构模型,明确了DNA的复制方式。 1957年Crick 提出中心法则,61年提出三联体遗传密码,从而将DNA分子结构与生物体结合起来 1957年Benzer用大肠杆菌T4噬菌体为材料,分析了基因内部的精细结构,提出了顺反子(cistor)的概念,证明基因是DNA分之上一个特定的区段,是一个功能单位,包括许多突变位点(突变子),突变位点之间可以发生重组(重组子) 理论上,一个基因有多少对核苷酸对就有多少突变子和的重组子,实际上,突变子数少于核苷酸对数,重组子数小于突变子数。 总之:顺反子学说打破了“三位一体”的基因概念,把基因具体化为DNA分子上特定的一段顺序--- 顺反子,其内部又是可分的,包含多个突变子和重组子。 近代基因的概念:基因是一段有功能的DNA序列,是一个遗传功能单位,其内部存在有许多的重组子和突变子。 突变子:指改变后可以产生突变型表型的最小单位。 重组子:不能由重组分开的基本单位。(五)操纵子模型 1961年法国分子生物学家Jacob和Monod通过对大肠杆菌乳糖突变体研究,提出了操纵子学说(operon theory)。阐明了基因在乳糖利用中的作用。

基因概念

第四节基因的概念和基因作用的调控 一、基因的概念及其发展 人们对基因的认识是不断深入的,因此关于基因的概念也是不断发展的。 (一)经典遗传学基因的概念 最初基因是决遗传性状的一个基本单位,它和孟德尔的遗传因子遇义词,它是根据试验结果推导出来的一种遗传单位,人们只能从它的作用或它所产生的遗传效应得知它的存在。基因一词是由丹麦的遗传学家约翰逊提出来的,此时基因只是逻辑推理的产物,并无实质内容。 二十世纪30年代摩尔根等人建立了染色体和基因的遗传学说,证明基因以念珠学说:基因位于染体上是突变,重组和一定遗传功能三位一体不可分割的遗传单位。 二十世纪40年代以后,基因的细微结构的遗传分析证明,基因并不是最小的可分割的遗传单位。 1959年本译(Benzer)以T4为材料,进行顺反试验,结果发现在个基因仍然可以划分为若干个起作用的小单位,并根据它们的质和作用区分为三个单位。 1 顺反子(cistron 作用子)是基因的主要部分,它是一个功能单位。一个顺反子通常就是一个基因,它是链上的一段核苷酸序列,决定着一种多肽的合成。目前的研究发现有单顺反子基因和多顺反子基因。有的顺反子只编码rRNA和tRNA。 2 突变子(mutor)是指一个基因内部能够引起性状突变的最小单位。一个顺反子中包含多个突变子,有时一个核苷酸对就是一个突变子。 3 重组子(recon交换子)一个顺反子内部可以发生交换出现重组,不能由重组分开的最小单位。(最基本单位)一个重组子可以小到一个核苷酸对。 本译的顺反试验:是用于测定具有相似表型的两个独立起源的隐性突变是否属于同一基因的突变试验。 1 其具体试验:两突变型m1×m2,测定F1(双突变杂合2n)两个突变体间有无互补作用。 2 结果分析,若有互补作用,其F1表现为野生型;若无互补作用,其F1表现为突变型。这样两种不同的结果说明了什么呢? 若两个突变型来自同一顺反子内的突变,则两条同源染色体都只能转录成突变的mRNA 形成——→突变型。 若两个突变来自不同顺反子(基因),则每个突变相对位点上都有一个正常的野生型基因,因而可产生正常的mRNA,形成正常功能的蛋白质或酶,而表现野生型。 3 顺反试验中的顺反的含义 顺反指的是两个材料杂交所得F1(双突变杂合)个体中的顺式,反式两种不同的排列方式。 A 顺式排列指两个突变座位在同一条染色体上。 B 反式排列指两个突变座位在不同的染色体上。 (二)分子遗传学关于基因的概念 1 分子遗传学的发展揭示了遗传密码,使基因概念落实到具体物质上,DNA是主要的遗传物质,一个基因相当于DNA分子上一个特定的区段,它携有特殊的遗传效用。 根据DNA分子特定区段(基因)的功能差异,基因可分为结构基因,调节基因,操作基因和决定子。 A 结构基因——决定某一种多肽结构的一段DNA,它把携带的特定遗传信息转录给mRNA,再经mRNA为模板合成特定的AA序列多肽链。 B调节基因——调节多肽合成的基因,它能使结构基因在需要某种时就合成这种,不需要时,就停止合成。

02 生物化学习题与解析--核酸的结构与功能

核酸的结构与功能. 一、选择题 (一) A 型题 1 .核酸的基本组成单位是 A .磷酸和核糖 B .核苷和碱基 C .单核苷酸 D .含氮碱基 E .脱氧核苷和碱基 2 . DNA 的一级结构是 A .各核苷酸中核苷与磷酸的连接键性质 B .多核苷酸中脱氧核苷酸的排列顺序 C . DNA 的双螺旋结构 D .核糖与含氮碱基的连接键性质 E . C 、 A 、 U 、 G 4 种核苷酸通过3′ , 5′- 磷酸二酯键连接而成 3 .在核酸中,核苷酸之间的连接键是 A .糖苷键 B .氢键 C .3′ ,5′- 磷酸二酯键 D .1′ , 3′- 磷酸二酯键 E .2′ ,5′- 磷酸二酯键 4 .核酸中稀有碱基含量最多的是 A . rRNA B . mRNA C . tRNA D . hnRNA E . snmRNA 5 .核酸的最大紫外光吸收值一般在 A . 280nm B . 260nm C . 240nm D . 200nm E . 220nm 6 .有关核酸酶的叙述正确的是 A .由蛋白质和 RNA 构成 B .具有酶活性的核酸分子 C .由蛋白质和 DNA 构成的 D .专门水解核酸的核酸 E .专门水解核酸的酶 7 . DNA 与 RNA 彻底水解后的产物是 A .戊糖不同,碱基不同 B .戊糖相同,碱基不同 C .戊糖不同,碱基相同 D .戊糖不同,部分碱基不同 E .戊糖相同,碱基相同 8 .关于 DNA 的二级结构,叙述错误的是 A . A 和 T 之间形成三个氢键, G 和 C 之间形成两个氢键 B .碱基位于双螺旋结构内侧 C .碱基对之间存在堆积力 D .两条链的走向相反 E .双螺旋结构表面有大沟和小沟 9 .关于 mRNA 叙述正确的是 A .大多数真核生物的 mRNA 在5′ 末端是多聚腺苷酸结构 B .大多数真核生物的 mRNA 在5′ 末端是 m 7 GpppN- C .只有原核生物的 mRNA 在3′ 末端有多聚腺苷酸结构 D .原核生物的 mRNA 在5′ 末端是 m 7 GpppN- E .所有生物的 mRNA 分子中都含有稀有碱基 10 .关于 DNA 热变性的描述正确的是 A . A 260 下降 B .碱基对可形成共价键连接

基因组学(结构基因组学和功能基因组学)

问:基因组学、转录组学、蛋白质组学、结构基因组学、功能基因组学、比较基因组学研究有哪些特点? 答:人类基因组计划完成后生物科学进入了人类后基因组时代,即大规模开展基因组生物学功能研究和应用研究的时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。以功能基因组学为代表的后基因组时代主要为利用基因组学提供的信息。 基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(struc tural genomics)和以基因功能鉴定为目标的功能基因组学(functional genomics)。结构基因组学代表基因组分析的早期阶段,以建立生物体高分辨率遗传、物理和转录图谱为主。功能基因组学代表基因分析的新阶段,是利用结构基因组学提供的信息系统地研究基因功能,它以高通量、大规模实验方法以及统计与计算机分析为特征。 功能基因组学(functional genomics)又往往被称为后基因组学(postgenomics),它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。这是在基因组静态的碱基序列弄清楚之后转入基因组动态的生物学功能学研究。研究内容包括基因功能发现、基因表达分析及突变检测。 基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及mRNA差异显示等,但这些技术不能对基因进行全面系统的分析。新的技术应运而生,包括基因表达的系统分析,cDNA微阵列,DNA芯片等。鉴定基因功能最有效的方法是观察基因表达被阻断或增加后在细胞和整体水平所产生的表型变异,因此需要建立模式生物体。 功能基因组学

相关主题
文本预览
相关文档 最新文档