当前位置:文档之家› 不定积分习题库

不定积分习题库

不定积分习题库
不定积分习题库

第五章 不定积分复习资料练

习题

学生学习档案

要求:仔细,认真!

一 选择题:

1. 若

22()x

f x dx x e

c =+?,则()f x =( ).

(a) 22x xe , (b) 222x x e , (c) 2x

xe , (d) 22(1)x

xe x +.

2. 如果()F x 是()f x 的一个原函数,c 为不等于0且不等于1的其他任意常数,那么( )也必是()f x 的原函数。

(a) ()cF x , (b) ()F cx , (c) x F c ??

???

, (d) ()c F x +. 3. 下列哪一个不是sin 2x 的原函数( ).

(a) c x +-

2cos 2

1

, (b) c x +2sin , (c) c x +-2

cos , (d) c x +2sin 2

1.

4.

2

x xe

dx -=?( ).

(a) x

e

c -+, (b)212x e c -+, (c)2

12

x e c --+, (d) 2x e c --+.

5.设()2f x x =,则()f x 的一个原函数是( ) (a) 3x , (b) 2

1x -, (c) 2

12

x c +, (d) 2x c +. 6.设()x

f x e '=,则()f x 为( ) (a) 12

x

e , (b) 2x e , (c) x e c +, (d) 21x e -. 7.

cos xdx =?( )

(a) cos x , (b) sin x , (c) sin x c +, (d) cos x c +. 8.

2x e dx ?=( )

(a) 2x

e c +, (b)

212x e c +, (c) 2x e , (d) 212

x e . 9.

1

2dx x =?( )

(a) ln |2|x c +, (b) 1ln |2|2x c +, (c) 1

ln |2|2

x , (d) ln |2|x . 10. 设

2()x

f x dx e

c =+?,则 ()f x =( )

(a) 22x

e , (b) 2x

e , (c) 212

x

e , (d) 2x e c +. 11.

3

x dx =?( )

(a) 3

x c +, (b) 4

4x , (c) 414x c +, (d) 313

x . 12.

22

1(2)dx x =+?( )

(a) arctan 2x c +, (b) arctan 2x , (c) arcsin 2x , (d) arcsin 2x c +. 13.

3x

dx =?( )

(a) 3ln 3x

c +, (b)

3ln 3

x

c +, (c) 3x c +, (d) 3x . 14. 设

2()f x dx x c =+?,则()f x =( )

(a) 2

x , (b) 2x , (c) 2

x c +, (d) 2x c +. 15 . 2

2sec 2xdx =?

( )

(a)tan 2x c +, (b) tan 2x , (c) tan x , (d) tan x c +.

答案: 1.d 2.d. 3.d. 4.c. 5.b. 6.c 7.c. 8.b. 9.b. 10.a. 11.c.12. a. 13.b. 14.b. 15.a.

二 填空题:

1. 设

21

()ln(31)6

f x dx x c =-+?,则()f x = . 2. 经过点(1,2),且其切线的斜率为2x 的曲线方程为 .

3. 已知()21f x x '=+,且1x =时2y =,则()f x = .

4. (10

3sin x

x dx +=? .

5.

222()a x dx +=?

.

6.

3

(1x x dx -+-=?

.

7.

2tan xdx =? .

8. (1)n

x dx +=? .

9.

cos(34)x dx +=? .

10.

=?

.

11. x

e

dx -=? . 12.

1

sin

2

xdx ?= . 13.

(2)x x dx -=? .

14.

2

= .

15. 1

2dx x =-? .

答案

:

32132

2

423521

2410221

1:.2: 1.3:.4:3cos .5:.31ln10335

11(1)1

6:3.7:tan .8:.9:sin(34).10:.

2413

x n x

y x x x x x c a x a x x c x x x x x x c x x c c x c c n +=++-+++++-+-+-+-+++++11:x

e c -+. 12:12cos

2x c -+. 13: 321

3

x x c -+. 14: arcsin 2x c +. 15: ln |2|x c -+. 三 应用题:

1. 已知某产品产量的变化率是时间t 的函数()f t at b =-(,a b 是常数),设此产品t 时的产

量函数为()P t ,已知(0)0P =,求()P t

2. 已知动点在时刻t 的速度为21v t =-,且0t =时4s =,求此动点的运动方程.

3. 已知质点在某时刻t 的加速度为2

2t +,且当0t =时,速度1v =、距离0s =,求此质点的

运动方程.

4. 设某产品的需求量Q 是价格P 的函数,该商品的最大需求量为1000(即0P =时

1000Q =),已知需求量的变化率(边际需求)为1()1000ln 44P

Q P ??

'=-? ???

,求需求量Q 与

价格P 的函数关系.

5. 设生产某产品x 单位的总成本C 是x 的函数()C x ,固定成本(即(0)C )为20元,边际成本

函数为()210C x x '=+(元/单位),求总成本函数.

6. 设某工厂生产某产品的总成本y 的变化率是产量x 的函数

9y '=+

,已知固定成本为100元,求总成本与产量的函数关系.

7. 设某工厂生产某产品的边际成本()C x '与产量x 的函数关系为()7C x

'=已知固定成本为1000,求成本与产量的函数.

8. 已知生产某商品x 单位时,边际收益函数为()10020

x

R x '=-

(元/单位),求生产x 单位时总收益()R x 以及平均单位收益()R x ,并求生产这种产品1000单位时的总收益和平均单位收益.

9. 已知生产某商品x 单位时,边际收益函数为()300100

x

R x '=-

,求生产这种产品3000单位时的总收益和平均单位收益.

10. 设曲线通过点(1,2),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线的

方程.

答案:

1:由题意得:2

1()()2

p t at b dt at bt c =-=-+?

.又(0)0p =,代入得0.c = 故2

1()2

p t at bt =

-. 2: 由题意得:2

(21)S t dt t t c =-=-+?

, 又 0t =时4s =,代入得4c =,故

24s t t =-+.

3: 由题意得:2

31(2)23

v t dt t t c =+=++?

,又当0t =时,速度1v =,代入得1c =,故

31213v t t =++,从而有34211

(21)312

s vdt t t dt t t t c ==++=+++??,又0t =时

0s =,故0c =.得421

12

s t t t =++.

4: 由题意得:Q =11()1000ln 4100044P P

Q P dp dp c ????

'=-?=?+ ? ???????.又0P =时

1000Q =,故1

1000()4

p Q =.

5: 由题意得:2()(210)10C x x dx x x c =+=++?

.又固定成本(即(0)C )为20元,代入得

20c =.故2()1020.C x x x =++

6:23

(9930y dx x x c =+

=++?

,又已知固定成本为100元,即(0)100y =,代入得100c =,故2

3930100y x x =++.

7:()(77C x dx x c

==+?

,又已知固定成本为1000元,即(0)1000C =,代

入得1000c =,故()71000C x x =+.

8:2()(100)1002040x x R x dx x c =-=-+?,又(0)0R =,故0c =,得2

()10040

x R x x =-,

()()10040

R x x R x x =

=-. 2

1000(1000)10010002500040

R =?-=(元).

(1000)1000

(1000)10075100040

R R =

=-=(元).

9:2

()(300)300100200x x R x dx x c =-=-+?,又(0)0R =,故0c =,得2()300200x R x x =-,23000(3000)3003000200R =?-.()300200

R x x

x =-.

10: 设所求的曲线方程为y =f (x ),按题设,曲线上任一点(x ,y )处的切线斜率为 d d y

x

=2x ,即f (x )是2x 的一个原函数.

因为 2x ?

d x =2

x +C ,

故必有某个常数C 使f (x )= 2

x +C ,即曲线方程为y =2

x +C .因所求曲线通过点(1,2),故 2=1+C , C =1.

于是所求曲线方程为 y =2

x +1.

四 计算题:

1 313

()x x x

+?d x 2 421x x +?d x

3、2tan x ? d x 4 2

sin

2

x

?

d x

5

2

5)x -d x 6 2

x 7 3e x x ?

d x 8 2

cos

2x ?d x 9 2cos 2x ?d x 10 1

d 25

x x +?

11 x ?x 12 3sin ?

x d x

13

d x 14 5

e d t t ?

15 3(32)x -?

d x 16

d 12x x -?

17

t 19 10

2

tan sec x xdx ? 20 2

x xe dx -?

21

d

e e x x

x

-+? 22 x 23 34

3d 1x x x -? 24 3sin d cos x x x ?

25 ln d x x ? 26 cos d x x x ?

27 arctan d x x x ? 28 e d x

x x ?

29 sin d x x x ? 30 e d x

x x -?

解答:

1、 原式=x ?d x +1x

?d x -1

2x ?d x +33

x -?d x

=22x +ln x -2332x -232

x -+C . 2、原式=42111x x -++? d x =2

21(1)1x x -++? d x =313

x -x +arctan x +C . 3、原式=2(sec 1)x -?d x =2sec x ?d x -dx ?

=tan x -x +C .

4、原式=

12?(1-cos x )d x =12∫(1-cos x )d x =1

2

(x -sin x )+C . 5、原式=5712

2

23

2210

(5)73

x x dx x x C -=-

+?。 6、原式=335

1

112222

2242(2)235

x x x dx x x x C --+=-++?。

7、原式=3(3)1ln 3

x x

x

e e dx C =

++?。 8、原式=

1cos sin 2x x x

dx C x

++=+?。 9、原式=cos 2x ?·2d x =cos 2x ?·(2x )′d x =cos ?

u d u =sin u +C . 再以u =2x 代入,即得2?

cos 2x d x =sin 2x +C . 10、原式=

125x +? d x =12?·125x + (2x +5)d x =12

125x +?d(2x +5)=1

21

u ?d u

=12ln u +C =1

2

ln 25x + +C .

11、 原式=-

1

2

2

)'x -d x =-

1

2

122

(1)

x -?d(1-2

x

2

1u x =-令-

1

2

12

u ?d u =3213u -+C =-13 3

2

2(1)x -+C .

12、原式= 2

(1cos )x -?

sin x d x =-2

(1cos )x -?

d(cos x )

=- d ? (cos x )+ 2

cos ?

x d(cos x )

=-cos x +

1

33cos x +C .

13、原式= 23?=23C .

14、原式=5511(5)55

t t

e d t e C =+?。

15、原式=()34

1132(32)(32)28x d x x C ---=--+?。

16、原式=111

(12)ln |12|2122

d x x C x --=--+-?。

17、原式=1

23311(23)(23)(23)32

x d x x C ----=--+?。

18、原式=

2C

==-?。

19、原式=10

11

1tan (tan )tan 11

xd x x C =

+?。 20、原式=222

11()22

x x e d x e C ----=-+?。

21、原式=221

()arctan 11()

x x x x x e dx d e e C e e ==+++??。 22、原式=11

2222211(23)(23)(23)63x d x x C ---=--+?。

23、原式=4

44

313(1)ln |1|414d x x C x --=--+-?。 24、原式=3

32sin 1cos (cos )cos 2cos x dx xd x C x x

=-=-+??。 25、原式=ln d ln d(ln )ln d x x x x x x x x x =-=-???

=x ln x -x +C .

26、原式=dsin x x ? =x sin x -sin d x x ?

=x sin x +cos x +C .

27、原式=21arctan d(

)2x x ?

=21arctan 2x x -21

d(arctan )2

x x ? =2

1arctan 2

x x -22

1d 21x x x +? =

21arctan 2x x -211(1)d 21x x -+? =21arctan 2x x -12x +1

arctan 2

x C +. 28、原式=de x x ?

=e x

x -e d x

x ?

=x e x -e x +C .

29、原式=sin d x x x ?=??

++-=+-=-c x x x xdx x x x xd sin cos cos cos )cos ( 30、原式=?

?+--=+-=------c e xe dx e xe

e xd x x x x

x )(。

不定积分练习题及答案

不定积分练习题一、选择题、填空题: 1、(1 sin2X )dx 2 2、若e x是f(x)的原函数,贝x2f(l nx)dx ___________ 3、sin(ln x)dx _______ 2 4、已知e x是f (x)的一个原函数,贝V f (tanx)sec2xdx ___________ : 5、在积分曲线族dx 中,过(1,1点的积分曲线是y _______________ 6、F'(x) f(x),则f '(ax b)dx ____________ ; 、1 7、设f (x)dx 2 c,则 x 8、设xf (x)dx arcs in x c,贝V ---------- dx f(x) 9、f '(lnx) 1 x,则f (x) _______ ; 10、若f (x)在(a,b)内连续,则在(a,b)内f (x) _________ (A)必有导函数(B)必有原函数(C)必有界(D)必有极限 11、若xf (x)dx xsin x sin xdx,贝Vf (x) _____ 12、若F'(x) f(x), '(x) f(x),贝V f (x)dx ______ (A)F(x) (B) (x) (C) (x) c (D)F(x) (x) c 13 、 下列各式中正确的是:(A) d[ f (x)dx] f (x) (B)引 dx f (x)dx] f (x)dx (C) df(x) f(x) (D) df(x) f (x) c 14 、设f (x) e x,则: f(lnx) dx x 1 c x (A) 1 c x (B) lnx c (C) (D) ln x c ◎dx

不定积分练习题及答案

不定积分练习题 2 11sin )_________ 2 x d x -=?一、选择题、填空题:、( 2 2()(ln )_______x e f x x f x dx =?、若是的原函数,则: 3sin (ln )______x d x =?、 2 2 2 4()(tan )sec _________; 5(1,1)________; 6'()(),'()_________;1() 7(),_________;1 8()arcsin ,______() x x x e f x f x xd x d x y x x F x f x f a x b d x f e f x d x c d x x e xf x d x x c d x f x --===+== +==+=?? ??? ? ? 、已知是的一个原函数,则、在积分曲线族 中,过点的积分曲线是、则、设则、设 则____; 9'(ln )1,()________; 10()(,)(,)()______;()()()()11()sin sin ,()______; 12'()(),'()(),()_____()() ()() ()(f x x f x f x a b a b f x A B C D xf x d x x x xd x f x F x f x x f x f x d x A F x B x C x κ??=+== - = ===???、则、若在内连续,则在内必有导函数必有原函数必有界 必有极限 、若 则、若则)()()()c D F x x c ?+++ 13()[()]() ()[()]()() ()() () ()()d A d f x dx f x B f x dx f x dx d x C df x f x D df x f x c === = +????、下列各式中正确的是: (ln )14(),_______ 11() ()ln () () ln x f x f x e dx x A c B x c C c D x c x x -==++-+-+? 、设则:

定积分典型例题20例答案(供参考)

定积分典型例题20例答案 例1 求2 1lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111 n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 = ?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=, 故321(1)3f x x -= ,令3126x -=得3x =,所以1(26)27 f =.

定积分典型例题11198

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π . 例18 计算2 1 ||x dx -?. 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1||x dx -?=0 2 10()x dx xdx --+??=220210[][]22x x --+=5 2 . 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3 322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算2 20 max{,}x x dx ?. 分析 被积函数在积分区间上实际是分段函数 212()01x x f x x x ?<≤=?≤≤? . 解 232 12 2 2 12010 1 1717max{,}[][]23236 x x x x dx xdx x dx =+=+=+=? ?? 例20 设()f x 是连续函数,且10 ()3()f x x f t dt =+?,则()________f x =. 分析 本题只需要注意到定积分()b a f x dx ?是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而10 ()f t dt ?是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且11 (3)()x a dx f t dt a +==??.

不定积分例题及答案

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 5 3 2 2 23x dx x C - - ==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +?

思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式, 通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134 (- +-)2 思路:分项积分。 解:34 11342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8)23( 1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 111 7248 8 x x ++==,直接积分。 解 : 715 8 88 .15x dx x C ==+? ? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1) (1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12)3x x e dx ?

不定积分的典型例题

例1.計算 dx x x ?++1 1 42 解法1 ).12)(12(1224+- ++ =+x x x x x 而 +++)12(2x x )1(2)12(22+=+-x x x 所以 )121 121(21112242dx x x dx x x dx x x ???++++-=++ . )]12arctan()12[arctan(2 11 )12( ) 1221 1 )12( ) 12(21) 21)22(121)22(1[212 2 22c x x x x d x x d dx x dx x +++-= ++++ +--=++ ++- =???? 解法2 dx x x x x x x x dx x x ??+++-++-=++)12)(12(2)12(112 2242 . arctan 21)12arctan(211212242 c x x dx x x x x dx +++=++++=?? 解法3 ???+-=++=++≠22222421)1 (11111,0x x x x d dx x x x dx x x x 当 c x x x x x x d +-=+--=?21arctan 212)1() 1 (22 ,2 221arctan 2 1lim 20 π - =-+ →x x x Θ ,2 221arctan 21lim 20π=--→x x x

由拼接法可有 .0 2 221arctan 2100 ,2 221arctan 21112242 ??? ? ? ? ?<+--=>++-=++?x c x x x x c x x dx x x ππ 例2.求 .) 1()1(2 2 23dx x x x ?+++ 解 将被积函数化为简单的部分分式 (*)1 )1(1)1()1(222223?????++++++=+++x D Cx x B x A x x x 两边同乘以2)1(+x ,约去1+x 的因子后令1-→x 得 .2 11)1(2)1(2 3=+-+-=B 两边同乘以2)1(+x ,对x 求导,再令1-→x ,施以上运算后,右端得A,而左端为 . 2.24 26)1() 2(2)1(3lim ]12[lim )1() 1()1(2[lim 2232212312 2231=∴=+=++-+=++=++++-→-→-→A x x x x x x x dx d x x x x dx d x x x 在分解式(*)中令,0=x 得,2D B A ++=所以 .2 1 -=D 分解式(*)两边同乘以x ,再令,+∞→x 得 .1,1-=?+=C C A 故有 . arctan 2 1 )1ln(21)1(211ln 2]1)1(1[)1()1(2222223c x x x x dx x D Cx x B x A dx x x x +-+-+-+=++++++=+++?? 例3. 求 .) ()1(2 424dx x x x x ? ++ 解 令 ,2x u =再用部分分式,則

不定积分例题及答案 理工类 吴赣昌

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!

★(1) ? 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+? ??? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++???() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

最新不定积分的典型例题

不定积分的典型例题

例1.計算?Skip Record If...? 解法1 ?Skip Record If...? 而?Skip Record If...??Skip Record If...?所以 ?Skip Record If...? ?Skip Record If...? 解法2 ?Skip Record If...? ?Skip Record If...? 解法3 ?Skip Record If...? ?Skip Record If...? ?Skip Record If...??Skip Record If...? 由拼接法可有 ?Skip Record If...? 例2.求?Skip Record If...? 解将被积函数化为简单的部分分式 ?Skip Record If...? 两边同乘以?Skip Record If...?,约去?Skip Record If...?的因子后令?Skip Record If...?得?Skip Record If...? 两边同乘以?Skip Record If...?,对?Skip Record If...?求导,再令?Skip Record If...?,施以上运算后,右端得A,而左端为 ?Skip Record If...? 在分解式(*)中令?Skip Record If...?得?Skip Record If...?所以?Skip Record If...?分解式(*)两边同乘以?Skip Record If...?,再令?Skip Record If...?得?Skip Record If...?故有 ?Skip Record If...? 例3.求?Skip Record If...? 解令?Skip Record If...?再用部分分式,則 ?Skip Record If...? ?Skip Record If...?两边乘以?Skip Record If...?再令?Skip Record If...?得?Skip Record If...?两边乘以?Skip Record If...?再令?Skip Record If...?得?Skip Record If...?两边乘以 ?Skip Record If...?再令?Skip Record If...?得?Skip Record If...?令?Skip Record If...? ?Skip Record If...? 例4 ?Skip Record If...? ?Skip Record If...??Skip Record If...? 例5.求?Skip Record If...?

经济数学(不定积分习题及答案)

第五章 不定积分 习题 5-1 1. 1. 验证在(-∞,+∞) 内, 221 sin , cos 2, cos 2x x x -- 都是同一函 数的原函数. 解 221 (sin )'(cos 2)'(cos )'sin 22x x x x =-=-=因为 221 sin ,cos 2,cos sin 22x x x x --所以都是的原函数. 2. 2. 验证在(-∞,+∞) 内, 2222(),() 2()x x x x x x e e e e e e ---+-+都是 的原函数. 解 2 2 22[()]' [()]'=2() x x x x x x e e e e e e - --+=-+因为 2222 ()() 2().x x x x x x e e e e e e ---+=-+所以都是的原函数 3.已知一个函数的导数是2 11 x -,并且当x = 1时, 该函数值是3 2π,求这个函数. 解 设所求函数为f (x ), 则由题意知 '()f x = '(arcsin )x 因为 '()()d arcsin f x f x x x C ===+?所以 又当x = 1时, 3 (1)2f π =,代入上式, 得C = π 故满足条件的函数为 ()f x =arcsin x π+. 3. 3. 设曲线通过点(1, 2) , 且其上任一点处的切线的斜率等于这点横坐 标的两倍,求此曲线的方程. 解 设曲线方程为 ()y f x =, 则由题意知'' ()2y f x x == 因为 2()'2x x = 所以 2'()d 2d y f x x x x x C = ==+? ? 又因为曲线过点(1, 2), 代入上式, 得C = 1 故所求曲线方程为 2 1y x =+. 5. 求函数y = cos x 的分别通过点( 0, 1) 与点(π, -1)的积分曲线的方程. 解 设y = cos x 积分曲线方程为 ()y f x = 因为 ' (sin )cos x x = 所以 ()cos d sin f x x x x C ==+? 又因为积分曲线分别通过点( 0, 1) 与点(π, -1),代入上式, 得C 1 = 1 与 C 2 = -1. 故满足条件的积分曲线分别为

不定积分_定积分复习题与答案

上海第二工业大学 不定积分、定积分 测验试卷 姓名: 学号: 班级: 成绩: 一、选择题:(每小格3分,共30分) 1、设 sin x x 为()f x 的一个原函数,且0a ≠,则()f ax dx a ?应等于( ) (A )3sin ax C a x +; (B )2sin ax C a x +; (C )sin ax C ax +; (D )sin ax C x + 2、若x e 在(,)-∞+∞上不定积分是()F x C +,则()F x =( ) (A )12,0(),0x x e c x F x e c x -?+≥=?-+?? ===??-<>。令1()b a s f x dx =?,2()()s f b b a =- 31 [()()]()2 s f a f b b a =+-,则( ) (A )123s s s <<; (B )213s s s <<; (C )312s s s <<; (D )231s s s <<

不定积分典型题型

不定积分典型题型 1. 原函数 2.积分公式 3.第一类换元积分法(也称凑微分法) 4.第二类换元积分法 5. 分部积分法 原函数 1. 若F’(x)=f(x), G’(x)=f(x), 则 ?=dx x f )(( ) A. G (x ) B. F (x ) C. F (x )+C 分析:此题考查不定积分和原函数之间的关系。 2. 下列函数中,是同一个函数的原函数的为( ) A.lnx,ln(x+2) B.arcsinx,arccosx C.lnx,ln2x 分析:验证两个函数的差是否为常数。运用对数函数的运算。Ln2x=ln2+lnx 积分公式 1.=? dx e x x 3 分析:运用公式 ? a x dx= a ln 1a x +C , 把3e 看做一个整体,化为x e )3(。 答: C e x x ++3 ln 13 2.=+?dx x x 2 2 13 分 析 : 对 函 数 进 行 “ 加 一 项 减 一 项 ” 处 理 , 则 C x x dx x x x dx x x +-=+-=+-+=+???)arctan (3)11 1(311131322222 3.=? dx x 2tan 分析:运用三角恒等式,1sec tan 2 2-=x x 则C x x dx x ec s dx x +-=-=? ?tan )1(tan 2 2 4. =?dx x x 22sin cos 1 分 析 : 运 用 三 角 恒 等 式 sin 2x+cos 2x=1, 则 C x x dx x x dx x x x x dx x x +-=+=+=???cot tan )csc (sec sin cos cos sin sin cos 12 2222222.

§_5_定积分习题与答案

第五章 定积分 (A) 1.利用定积分定义计算由抛物线12 +=x y ,两直线)(,a b b x a x >==及横轴所 围成的图形的面积。 2.利用定积分的几何意义,证明下列等式: ? =1 12)1xdx 4 1) 21 2π = -? dx x ?- =π π0sin ) 3xdx ?? - =2 2 20 cos 2cos )4π ππ xdx xdx 3.估计下列各积分的值 ? 33 1arctan ) 1xdx x dx e x x ?-0 2 2)2 4.根据定积分的性质比较下列各对积分值的大小 ?2 1 ln )1xdx 与dx x ?2 1 2)(ln dx e x ?10)2与?+1 )1(dx x 5.计算下列各导数

dt t dx d x ?+20 2 1)1 ?+32 41)2x x t dt dx d ?x x dt t dx d cos sin 2)cos()3π 6.计算下列极限 x dt t x x ?→0 20 cos lim )1 x dt t x x cos 1)sin 1ln(lim )20 -+?→ 2 2 20 )1(lim )3x x t x xe dt e t ? +→ 7.当x 为何值时,函数? -=x t dt te x I 0 2 )(有极值? 8.计算下列各积分 dx x x )1 ()12 1 42? + dx x x )1()294+?

? --212 12) 1()3x dx ? +a x a dx 30 2 2) 4 ?---+2 11)5e x dx ?π20sin )6dx x dx x x ? -π 3sin sin )7 ? 2 )()8dx x f ,其中??? ??+=22 11)(x x x f 1 1>≤x x 9.设k ,l 为正整数,且l k ≠,试证下列各题: ?- =π π 0cos )1kxdx πππ =?-kxdx 2cos )2 ?- =?π π 0sin cos )3lxdx kx ?-=π π 0sin sin )4lxdx kx

不定积分例题及答案

第4章不定积分 内容概要 课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式 加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34 134( -+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-? ????34134( -+-)2 ★ (8) 23(1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ?? ★★ (9) 思路 =? 看到1117248 8 x x ++==,直接积分。 解 : 7 15 8 88 .15x dx x C ==+? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1)(1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? 3x x e dx ?

高等数学不定积分例题思路和答案超全

高等数学不定积分例题思路和答案超全 内容概要 课后习题全解 习题4-1 :求下列不定积分1.知识点:。直接积分法的练习——求不定积分的基本方法思路分析:!利用不定积分的运算性质和基本积分公式,直接求出不定积分(1)★思路: 被积函数,由积分表中的公式(2)可解。 解: (2)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。解: (3)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。:解. (4)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。解: (5)思路:观察到后,根据不定积分的线性性质,将被积函数分项,分别积分。

解: (6)★★思路:注意到,根据不定积分的线性性质,将被积函数分项,分别积分。 解: 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。(7)★思路:分项积分。 解: (8)★思路:分项积分。 解: (9)★★思路:?看到,直接积分。 解: (10)★★思路: 裂项分项积分。解: (11)★解: (12)★★思路:初中数学中有同底数幂的乘法:指数不变,底数相乘。显然。 解: (13)★★思路:应用三角恒等式“”。 解: (14)★★思路:被积函数,积分没困难。 解: (15)★★思路:若被积函数为弦函数的偶次方时,一般地先降幂,再积分。 解: (16)★★思路:应用弦函数的升降幂公式,先升幂再积分。 解: () 17★思路:不难,关键知道“”。 :解. ()18★思路:同上题方法,应用“”,分项积分。 解: ()19★★思路:注意到被积函数,应用公式(5)即可。 解: ()20★★思路:注意到被积函数,则积分易得。 解: 、设,求。2★知识点:。考查不定积分(原函数)与被积函数的关系思路分析::。即可1直接利用不定积分的性质解::等式两边对求导数得 、,。求的原函数全体设的导函数为3★知识点:。仍为考查不定积分(原函数)与被积函数的关系思路分析:。连续两次求不定积分即可解:,由题意可知:。所以的原函数全体为、证明函数和都是的原函数4★知识点:。考查原函数(不定积分)与被积函数的关系思路分析:。只需验证即可解:,而、,且在任意点处的切线的斜率都等于该点的横坐标的倒数,求此曲线的方程。一曲线通过点5★知识点:属于第12章最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。 思路分析:求得曲线方程的一般式,然后将点的坐标带入方程确定具体的方程即可。 解:设曲线方程为,由题意可知:,; 又点在曲线上,适合方程,有, 所以曲线的方程为 、,:问6一物体由静止开始运动,经秒后的速度是★★(1)在秒后物体离开出发点的距离是多少?

(完整版)不定积分习题与答案

不定积分 (A) 1、求下列不定积分 1)?2 x dx 2) ? x x dx 2 3) dx x ?-2)2 ( 4) dx x x ? +2 2 1 5)??- ? dx x x x 3 2 5 3 2 6) dx x x x ?2 2sin cos 2 cos 7) dx x e x) 3 2(?+ 8) dx x x x ) 1 1( 2 ?- 2、求下列不定积分(第一换元法) 1) dx x ?-3)2 3( 2) ? - 33 2x dx 3) dt t t ?sin 4) ? ) ln(ln ln x x x dx 5)? x x dx sin cos6) ?- +x x e e dx 7) dx x x) cos(2 ? 8) dx x x ? -4 3 1 3 9) dx x x ?3 cos sin 10) dx x x ? - - 2 4 9 1 11)? -1 22x dx 12) dx x ?3 cos 13)?xdx x3 cos 2 sin 14) ?xdx x sec tan3 15) dx x x ? +2 3 916) dx x x ? +2 2sin 4 cos 3 1 17) dx x x ? -2 arccos 2 1 10 18) dx x x x ? +) 1( arctan

3、求下列不定积分(第二换元法) 1) dx x x ? +2 1 1 2) dx x ?sin 3) dx x x ?-4 2 4) ?> - )0 (, 2 2 2 a dx x a x 5)? +3 2)1 (x dx 6) ? +x dx 2 1 7)? - +2 1x x dx 8) ? - +2 1 1x dx 4、求下列不定积分(分部积分法) 1) inxdx xs ? 2) ?xdx arcsin 3)?xdx x ln 2 4) dx x e x ?- 2 sin 2 5)?xdx x arctan 2 6) ?xdx x cos 2 7)?xdx 2 ln 8) dx x x 2 cos2 2 ? 5、求下列不定积分(有理函数积分) 1) dx x x ? +3 3 2)? - + + dx x x x 10 3 3 2 2 3)? +)1 (2x x dx (B) 1、一曲线通过点 )3, (2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的 方程。 2、已知一个函数 ) (x F的导函数为2 1 1 x -,且当1 = x时函数值为 π 2 3 ,试求此函数。

不定积分练习题

一. 单项选择题 1 ( D ); (A) (B) (C) (D) 2 设 的一个原函数是,则( ) (A) (B) (C) (D) 3 ,则( ) (A) (B) (C) (D) 4 ( ); (A) (B) (C) (D) 5下列等式中正确的是 ( ); (A) (B) (C) (D) 6 ( ) (A) (B) (C) (D) 7 设且,则( ) (A) (B) (C) (D) 8 设存在,则下式不正确的是( ) =?)(arcsin x d x sin C x +sin x arcsin C x +arcsin x x f 2tan 3 4 )(-=)2ln(cos x k ?=k 32- 3234-3 4C x x dx x f +=?ln )(=)(x f 1ln +x x x +ln 1ln +x x x x x +ln ?=xdx dx d cot x 2sec x tan x sec ln x cot 2 3 x dx x C =+?3 44x dx x C ---=+?sin cos xdx x C =-+?33x x dx C =+? 1 12dx x =-?ln |12|x C -+1 ln |12|2 x C - -+2 1 (12)C x +-1ln |12|2x --2 /11)(x x F -= 2 3)1(π = F =)(x F 2 arcsin π + x π+x arcsin 2 12π + -x π+-21x )(/ x f

(A) (B) (C) (D) 9若 ,则( ) (A) (B) (C) (D) 10 已知是的一个原函数,则( A ) (A ) (B) (C) (D) 二, 求下列不定积分 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) )()(/x f dx x f ?=? +=c x f dx x f dx d )()(c x f dx x f +=? )2()2(/? =)2()2(x f dx x f dx d ? +=c e x dx x f x 22)(=)(x f x xe 22x e x 222x xe 2)1(22x xe x +x x +2 )(x f =? dx x xf )(/ c x +2 x x 21323+343 1 41x x +c x +22?2x dx ?x x dx 2dx x ?-2)2(dx x x ?+22 1??-?dx x x x 32532dx x x x ?22sin cos 2cos ?-++dx x x x 103322dx x x ?+33 dx x ?-3 )23(?-3 32x dx dt t t ? sin ?-+x x e e dx dx x x )cos(2?dx x x ?-4313dx x x ?3cos sin dx x ?3cos

不定积分练习题及答案

不定积分练习题 一、选择题、填空题: 1、 ((1—sin 2 X )dx = 2 ------------- 2、 若 e x 是f (x)的原函数,贝x 2f(lnx)dx = ________ 3、sin (I n x)dx 二 __ 12、若 F '(x)工 f(x), ? '(x)工 f (x),则 f(x)dx = _______________________________________________ (A)F(x) (B) : (x) (C) : (x) - c (D)F(x) (x) c 13、下列各式中正确的是: (A) d[ f(x)dx]二 f(x) (B) —[ f(x)dxp f(x)dx dx L (C) df(x)二 f(x) (D) df(x)二 f(x) c 14、设 f(x)=e :则: f(lnx) dx = _____________ 2 已知e 公是f (x)的一个原函数,贝V f (tan x)sec xdx 二__ 在积分曲线族(卑中,过(1,1点的积分曲线是y=_ 'x\!x F'(x)= f (x),贝》J f'(ax+b)dx = ________ ; 设 [f (x)dx =丄 + c ,贝叮 "号)dx = _________ ; e 「dx= ____ ; "f(x) f '(ln x) =1 x,则f (x)二 ______ ; 10、 若 f (x)在(a, b)内连续,则在(a, b)内 f (x) ___ ; (A)必有导函数 (B)必有原函数 (C)必有界(D)必有极限 11、 ______________________________________________ 若 Jxf (x)dx = xs in x — [sin xdx,贝 V f (x) = ________ ; 4、 5、 6、 7、 9、 设 xf (x)dx =arcsin x c,贝V

不定积分练习题及答案

不定积分练习题 2 11sin )_________ 2x dx -=?一、选择题、填空题: 、( 22()(ln )_______x e f x x f x dx =?、若是的原函数,则: 3sin(ln )______x dx =?、 2 224()(tan )sec _________;5(1,1)________;6'()(),'()_________;1() 7(),_________;1 8()arcsin ,______()x x x e f x f x xdx y F x f x f ax b dx f e f x dx c dx x e xf x dx x c dx f x --===+==+==+=??????、已知是的一个原函数,则、在积分曲线族点的积分曲线是、则、设则、设则____; 9'(ln )1,()________; 10()(,)(,)()______;()()()()11()sin sin ,()______;12'()(),'()(),()_____()()()()()(f x x f x f x a b a b f x A B C D xf x dx x x xdx f x F x f x x f x f x dx A F x B x C x κ??=+==-====???、则、若在内连续,则在内必有导函数必有原函数必有界必有极限、若则、若则)()()()c D F x x c ?+++ 13()[()]()()[()]()() ()() () ()()d A d f x dx f x B f x dx f x dx dx C df x f x D df x f x c ====+????、下列各式中正确的是: (ln ) 14(),_______11 () ()ln ()()ln x f x f x e dx x A c B x c C c D x c x x -==++-+-+?、设则:

不定积分-定积分复习题及答案-精品

不定积分-定积分复习题及答案-精品 不定积分、定积分 测验试卷 姓名: 学号: 班级: 成绩: 一、选择题:(每小格3分,共30分) 1、设 sin x x 为()f x 的一个原函数,且0a ≠,则() f ax dx a ?应等于( ) (A )3sin ax C a x +; (B )2sin ax C a x +; (C )sin ax C ax +; (D )sin ax C x + 2、若x e 在(,)-∞+∞上不定积分是()F x C +,则()F x =( ) (A )12,0(),0x x e c x F x e c x -?+≥=?-+?? ===??-<>。令1()b a s f x dx = ? ,2()()s f b b a =- 31 [()()]()2 s f a f b b a =+-,则( ) (A )123s s s <<; (B )213s s s <<; (C )312s s s <<; (D )231s s s << 二、填空题:(每小格3分,共30分)

相关主题
文本预览
相关文档 最新文档