当前位置:文档之家› 高速铁路的隧道教材

高速铁路的隧道教材

高速铁路的隧道教材
高速铁路的隧道教材

高速铁路隧道

铁道科学研究院咨询公司刘艳青

高速铁路的隧道设计是由限界、构造尺寸、使用空间和缓解及消减高速列车进入隧道诱发的空气动力学效应两方面的要求确定的。研究表明,以上两方面要求中,后者起控制作用。

第一节高速列车进入隧道诱发的空气动力学效应综述

当列车进入隧道时,原来占据着空间的空气被排开。空气的粘性以及气流对隧道壁面和列车表面的摩阻作用使得被排开的空气不能象在隧道外那样及时,顺畅地沿列车两侧和上部流动,列车前方的空气受压缩,随之产生特定的压力变化过程,引起相应的空气动力学效应并随着行车速度的提高而加剧。

(一)空气动力学效应对高速铁路运营的影响

1、由于瞬变压力造成乘员舒适度降低,并对车辆产生危害;

2、微压波引起爆破噪声并危及洞口建筑物;

3、行车阻力加大;

4、空气动力学噪声;

5、列车风加剧。

(二)高速铁路隧道空气动力学效应的影响因素

高速铁路进入隧道产生的空气动力学效应是由多种因素所确定的。

1、机车车辆方面:

行车速度,车头和车尾形状,列车横断面,列车长度,列车外表面形状和粗糙度,车辆的密封性等。

2、隧道方面:

隧道净空断面面积,双线单洞还是单线双洞,隧道壁面的粗糙度,洞口及辅助结构物形式,竖井、斜井和横洞,道床类型等。

3、其它方面:

列车在隧道中的交会等。

第二节列车进入隧道引起的瞬变压力

列车进入隧道引起的压力变化是两部分的叠加:

①列车移动时从挤压、排开空气到留下真空整个过程引起的压力变化;

②列车车头进入隧道产生的压缩波以及车尾进入隧道产生的膨胀波在隧道两洞口之间来回反射产生的压力变化(Mach波)。

当双线隧道中同时有不同方向列车相向行驶时,叠加所产生的情况则更为复杂。

列车在隧道中运行时(无相向行驶列车)车上测得的最大压力波动发生在第一个反射波到达列车时。

(一)隧道长度的影响

Mach波以声速传播,对于长隧道,来回反射的周期相应较长。同时,在反射的过程中能量有所衰减。

而对于短隧道,Mach波反射的周期大为缩短。同时,在反射过程中能量损失也较少,致使压力波动程度加剧。试验表明,压力波动绝对值,并不随隧道长度的减小而减小。

因此,对高速铁路中的隧道,有的虽然不长(例如长度在1km左右),其可能引起的行车时的压力波动仍然不能忽视。但是,当隧道长度短到使列车首尾不能同时在其中时。则Math波的叠加不可能发生,压力波动程度当然随之缓解。

当隧道长度为1km时,压力波动明显加剧,而当隧道长度进一步增大到3km时,压力波动则并无显著加剧,反而有缓解趋向。

列车交会的双线隧道,最不利情况发生在列车交会在隧道中点时。

(二)列车速度的影响

ORE的研究报告提出压力波动同列车速度平方成正比。

(三)隧道净空断面面积的影响

对于压力波动,诸因素中隧道横截面积的影响是最大的。ORE曾经系统地研究了各种因素对压力波动的影响。结果也表明,隧道净空断面面积,或者说,隧道阻塞比是最主要的因素。根据计算分析,提出压力波动与隧道阻塞比之间有下列关系。

N βkv P 2max =

单一列车在隧道中运行时,N =1.3±O.25。考虑列车交会时,N =2.16±0.06。 式中:max P —3秒钟内压力变化的最大值;

v —行车速度;

β—阻塞比;面积隧道内轨顶面以上净空列车横截面积=β。

(四)竖井的影响

竖井(斜井、横洞)的存在会缓解压力波动的程度。竖井位置对减压效果的影响很大,并不是处于任何位置的竖井都能有较好的效果。竖井断面积5~lOm 2即可,加大竖井的横断面积,并不能收到好的效果。

根据Mach 波叠加情况可以理论地得到竖井的最佳位置: )1(2M M L X +=

式中 X —竖井距隧道进口距离; L —隧道长度;M —Mach 数。

(五)列车交会的影响

双线隧道列车在隧道中交会引起压力波动的叠加,情况十分复杂。ORE 研究报告说,列车交会时,压力波动最大值是单一列车运行情况的2.8倍。

实际上,列车交会时所产生的压力波动同列车长度、隧道长度、会车位置、车速等多种因素有关。

(六)列车密封条件对车内压力波动的影响

在车辆密封的情况下,假定车外压力a P 为常数,车内压力随时间的变化可以表为:

)e -(1P P t/a i τ=

式中τ称为“密封指数”用于衡量车辆的密封程度。

“不密封车” τ=0.4S ~O.8S 一般取τ=O.7S

“新一代密封车” τ=3.0~8.0S

考虑a P 为时间的函数,则有:

?=t 0t/-a i dt e P 1P ττ 内外压差: ?=t 0t/-a a i a dt e P 1-P P P ττ-

计算结果表明,车辆的密封对车内压力波动的影响可以归结为“缓解”和“滞

后”两种效应。

值得指出的是,在考虑到列车交会的情况下,就车外压力而言,洞口会车有时会成为最不利情况,然而在列车密封的条件下,洞口会车并非最不利情况。由于“滞后”效应,车内压力来不及“响应”列车就出洞了。

(七)压力波动程度阈值的确定

高速铁路隧道设计应通过正确地选择隧道设计参数,将压力波动控制到“允许”范围内。

评定压力波动程度一般采用的参数有:

①“峰对峰”最大值。即最大压力变化的绝对值;

②压力变化率的最大值。

将这两种指标单独使用均不能合理地同人的生理反应和乘员的舒适度相联系。例如,对于变化缓慢的压力过程,即使变化幅度较大,但由于来得及对耳腔压力进行主动(如做吞咽动作)或被动(外界降压时中耳通道将自动开启)调节,不会造成很大不适。当然,对于变化急剧的情况,尽管变化率较大,但只要变化幅度不大,也不会有多大问题。

因此,目前较通用的评估参数是相应于某一指定短时间内的压力变化值,例如3S内最大压力变化值或4S内最大压力变化值。

所谓3S或4S大致相当于完成耳腔压力调节所需的时间。

第三节列车进入隧道引起的行车阻力

(一)行车阻力的组成

行车阻力由机械阻力和空气阻力两部分组成。

机械阻力一般同行车速度成正比:W

(+

=

a

D M)

bV

式中a,b—常数;V—车速;W—列车质量。

而空气阻力则同行车速度二次方成正比。在隧道中,空气阻力问题更为突出。

根据现场试验资料,T.HARA,N.NISHIOKA等(1967)提出了行车阻力的下列经验公式:

c

=V

dl

D

+

a

bV

W

)

]

8.9

)

(

+

[(2?

+

式中W—列车质量(t);V—车速(km/h);l—列车长度(m);D—阻力(N)。(二)隧道条件对空气阻力的影响

①隧道长度的影响

研究表明,空气阻力随隧道长度的增加而单调增加,但其增加率越来越小,最后趋于一常数。阻塞比β越小,趋于常数所需的隧道长度越短。当0.15

β时,隧道

长度超过3km以后,空气阻力已变化不大;而对于0.42

β的隧道在长度超过10km以

=

后仍有较大的变化。

②阻塞比β对空气阻力的影响

空气阻力随β的增加而单调增加,并且斜率越来越大。当以V=250km/h为例,β从0.15增加到0.20时,空气阻力将增加工13%。而当β从O.4增加到0.45时,空气阻力将增加16%。

③列车在隧道中交会的影响

以S=1OOm2、β=0.1为例,当两列车车体重合时,空气阻力系数将增加23% (车长360m,隧道长3000m)。

一般说来会车阻力只对确定机车最大牵引能力时有意义。

④竖井的影响

竖井的存在,可降低行车阻力。但这种影响并不很大。以设在隧道中断面积为5m2的竖井为例,当β=0.42时,空气阻力减小7%,当β=O.15时,空气阻力仅降低1.2%。第四节列车进入隧道引起的微压波

微压波是隧道出口微气压波的简称,是高速铁路隧道运营过程中产生的空气动力学问题之一。

微压波使得列车高速进入隧道时,在另一侧出口产生突然爆炸声响,对隧道出口附近的环境构成危害。

(一)国外有关国家的研究及应用情况简介

欧洲国家对此研究较少,而日本由于采用的隧道断面较小,微压波问题特别突出。针对这一现象,日本铁道技术研究所等在现场测试、模型实验、理论分析及工程措施等方面进行了全面地研究,并取得了成功的应用。

研究认为,隧道出口的爆炸声响是由列车高速进入隧道产生的压缩波在隧道内传播到达出口时,由出口向外部放射脉冲状压力波而引起的。

微压波的大小与列车进洞速度、隧道长度、道床类型及隧道入口形式等有关。

降低隧道微压波的工程措施有以下几种:

①采用特殊隧道入口形式(称为洞口缓冲结构);

②采用道碴道床或具有相同效果的贴附有吸音材料的洞壁;

③连接相邻隧道并在连接部分适当开口,对单一隧道可在埋深浅的地方设窗孔;

④利用斜井、竖井、平行导坑等辅助坑道。

(二)高速铁路隧道微压波问题的提出及实态

1、微压波问题的提出

1973年,Ham mitt通过对有关列车隧道空气动力学问题的理论研究,提出了微压波问题的预见。1975年,在日本新干线冈山以西段的试运营过程中首次观察到。

此后,随着新干线投入运营和列车速度的提高,在日本的其它地方也相继出现了由微压波产生的洞口气压噪声现象。

2、微压波的实态分析

①微压波的产生

隧道微压波是列车高速进入隧道产生的压缩波在隧道内以音速传播,当到达隧道的出口时,向外放射的脉冲状压力波。其大小与到达出口的压缩波形态密切相关,在靠近低频段与压缩波波前的压力梯度成正比。

②微压波波形

典型的洞口微压波波形见图[1]。其中U为列车的进洞速度,r为测点到洞口中心的距离。隧道短时,可能出现多个波峰,而对于长隧道来说,由于压缩波的反射波(即稀疏波,亦称膨胀波)波前较为模糊,使得第一个波峰最为显著。

③微压波的大小和道床种类及列车进洞速度的关系

图[1] 微压波波形(r=20m)

当隧道较短(如小于1km )时,道碴道床和板式道床几乎没什么差别,微压波的大小基本上与U 3 (列车进洞速度)成正比,即 Pmax=KU 3/r 。其中, K 为隧道出口地形影响系数。对于长隧道来说,道碴道床隧道的微压波较短隧道要小,基本上也符合U 3关系。

④ 微压波和隧道长度的关系

图[2]为微压波最大值和隧道长度的

关系。比较短的隧道(小于1km )微压波

的大小不受隧道长度的影响。较长的道

碴道床隧道的微压波最大值随隧道长度

的增加减少;相反,板式道床隧道的微

压波最大值随隧道长度的增加而增加,

到某一隧道长度时达最大值,其后随隧

道长度的增加而减小。

⑤ 微压波最大值的距离衰减

根据日本南乡山隧道东口的测量结果。微压波最大值大体上与到隧道出口中心的距离r 成反比。

⑥ 微压波频谱分析

日本对米神、大仓山、南乡山、加登、尾道、备后、新关门等隧道进行了实际量测分析,图[3]为加登隧道东口微压

波的频谱分析结果(隧道长482m ,板式

道床)。

分析认为,微压波的幅值随频率值

的增加而下降,下降梯度大体上与列车

速度U 成正比。

对于短隧道来说,道碴道床和板式

道床的差别不大,微压波的幅值随频率

的增加而呈线性减小。

对于板式道床隧道,U=200km/h 时的微压波幅值在0~13Hz 范围图内呈线性减小,并在13Hz 处骤减,且隧道越长,其减小的梯度越小。这一13Hz

的频率与微压波主脉 图[2] 微压波最大值和隧道长度的关系

图[3] 加登隧道东口微压波频谱分析结果

冲后产生的压力变动频率是一致的。

(三)隧道洞口缓冲结构的研究

1、理论研究

日本的研究人员对微气压波进行了理论分析,并结合经验得出了压缩波、微气压波的计算公式

列车进洞时产生的压缩波波形 ??? ??+-+---=-d Ut tg R M M R U P 3.0121))1()(1()1(12

21

1220πρ 列车进洞时产生的压缩波最大波前梯度)

)1()(1()1(1121

)(22

30max R M M R d U dt dP

EN -+---=τρ 出口微压波压力与到达隧道出口的压缩波的关系 max 0max )(2EX

EX dt dP C a

P ≈ 洞外点微压波压力与到达隧道出口的压缩波的关系 max

0max )(2EX r dt dP

rC S

P Ω= 其中:0ρ—空气标准密度;0C —标准音速;U —列车进洞速度;R —阻塞比; d

—隧道的水力直径; M —马赫数;Ω—反映出口地形条件的空间立体角; γ —到隧道洞口的距离;t —时间;τ—反应压力上升时间的参数;a —隧道半径; S —隧道的有效面积。

对于短隧道,可忽视在隧道内传播的压缩波的变形,并可忽略洞口外微压波的指向性。

由上式可知,微压波最大值Pmax 与到达隧道出口的压缩波压力对时间微分的最大值成正比。

因此,通过减小到达隧道出口的压缩波波前的压力梯度可以降低隧道出口微压波大小。

实际上,在长5~1 0Km 的板式道床隧道中,列车以2O0Km/h 速度进洞的情况下,其微压波是很大的,也会产生气压噪声。但列车速度若降低到某一速度时,其微压波压力将变小(较同速度下的短隧道微压波略大),气压噪声也很小或没有。

隧道洞口缓冲结构的目的就是将高速列车进入隧道而产生的压缩波波前的压力梯度在传播的最初阶段就降低下来,以产生与降低列车进洞速度相同的效果。

(四) 隧道洞口缓冲结构的试验分析

l 、无开口的全封闭缓冲结构

日本针对备后隧道(长89O0m ,板式道床,断面面积60.4m 2)进行了一系列较为完善的全封闭缓冲结构不同截面和不同长度的模型试验,研究了各种条件下的微压波降低效果。

① 微压波最大值与缓冲结构长度的关系

仅就全封闭缓冲结构来说,若长度大于隧道水力直径,其效果基本上为一定值。 ② 微压波最大值与缓冲结构断面积的关系

见图[4],由图可知,缓冲结构的截面积约为隧道的1.55倍时,便可使微压波的第一波和第二波均呈较小值。

因此,对于没有开口的全封闭缓冲

结构,取其截面积为隧道截面积的l.55

倍,长度大于隧道直径即可。

2、有开口的缓冲结构

开口部分设在缓冲结构的侧面,为

长方形。对于全长开口,随着开口面积

的增加,微压波第一波减小而第二波增

加。

如果对不同开口长度条件下的微

压波最大值进行比较,则当其断面比=1.62时,几乎没什么差别,但当断面比=1.04时,1/2长开口较全长开口为小,显示出其具有良好的降低微压波效果。

在某一试验条件下,微压波最大值比在缓冲结构开口率为0时约为0.5,而在开口面积/隧道断面积=0.2且1/2长开口时为0.3~0.35左右。

3、开槽式缓冲结构

缓冲结构断面积/隧道断面积 图[4] 微压波和缓冲结构断面积关系

缓冲结构的槽长/隧道直径 图[5] 开槽式缓冲结构的效果 开槽式缓冲结构是指断面与隧

道断面相同而在其侧面沿全长设置

一定宽度的开口(槽)。

开槽式缓冲结构的开口率不是

指面积比,而是指开口弧长和缓冲结

构周长之比。缓冲结构的长度一定

时,必然存在着与之相应的最佳开口

率,微压波最大值比及最佳开口率和缓冲结构长度的关系见图[5],图中的纵线为最佳开口率范围,此时的微压波最大值比用白圈表示。由图可以看出,缓冲结构越长,效果越好,其长度L 和隧道直径D 之比L/D 为1.5左右时,微压波最大值比约为1/2,而当L/D 为6左右时,微压波最大值比约为1/4。

4、喇叭口型缓冲结构

以上的缓冲结构均是在主体隧道基础上的附加结构,而喇叭口型的缓冲结构则是靠改变主体隧道的入口形式来直接降低微压波的大小。

直线型和曲线型多少有些差别,但具有共同的趋势。圆形断面条件下,缓冲结构长度/隧道直径=3.33、缓冲结构开口直径/隧道直径=2.5时的微压波最大值为无缓冲结构时的0.2~0.3倍。

(五)隧道洞口缓冲结构的应用

图[6]为山阳新干线隧道标准洞口

缓冲结构之一,该图为五日市隧道东口

的缓冲结构。整个框架为钢结构,其上

安装盖板,断面积比为1.55,长11~

l2m ,在沿纵向中央部位的侧面设置窗

口,在靠近进洞列车侧窗口宽×高=

4m ×1.8m ,另一侧窗口宽x 高=4m ×2.4m 。该洞口缓冲结构使列车进洞时压缩波波前的压力梯度降为原来的0.5倍左右,相当于列车进洞速度降低为原速度0.8(≈0.51/3)倍左右的效果。

图[6]隧道标准洞口缓冲构之一

该种缓冲结构形式还用于备后隧

道(板式道床,8 9 0 0m )、第二高山隧

道(板式道床,3207m )、大野隧道(长

5389m ,板式道床)等隧道。

图[7]、图[8]、图[9]、图[10]、

图[11]、为东北、上越新干线使用的几

种洞口缓冲结构形式。

大部分采用耐久性良好的混凝土结构(或钢结构),其断面积比为1.4。

图[7]所示的缓冲结构长15m ,侧面开口面积约15m 2(大部分为左右各7.5m 2);图[8]所示的缓冲结构长12m ,侧面开口的面积约10m 2(大部分为左右各5m 2)。通过试验量测认为,长15m 的缓冲结构开口面积稍稍过大,改为11~12m 2为好。上述两种缓冲结构的效果与山阳新干线标准洞口形式的效果相同。 图[9]为采用与隧道同一断面的洞口缓冲结构形式(断面比=1),长2 0m ,顶部开口,隧道长750m ,开口位置任选。微压波最大值比约为0.45,相当于列车进洞速度降为0.77(≈0.451/3)倍的效果。

图[7]隧道标准洞口缓冲构之一

图[8]隧道标准洞口缓冲构之一

图[9]隧道标准洞口缓冲构之一 图[10]隧道标准洞口缓冲构之一

图[11]隧道标准洞口缓冲构之一

图[10]为一关隧道北口的洞口缓冲结构概况,隧道长97OOm,缓冲结构与隧道的断面比=1.4,缓冲结构长15m,侧面开口面积为l5m2。

图[11]为长17m的标准洞口缓冲结构形式,图示为第二芹泽隧道的洞口缓冲结构,隧道长775m,断面比1.4。微压波最大值比约为O.42,相当于列车进洞速度降为0.75(≈0.421/3)倍的效果。

隧道洞口缓冲结构并不能解决列车在隧道内高速行走产生的压力变化给乘员带来的不适和压力过大而带来的耳鸣问题。但却可以通过降低列车进洞后第一阶段压缩波的波前梯度而有效地降低出口微压波的大小,消除洞口的爆炸声响,减少微压波给洞口带来的环境危害。

缓冲结构的应用应将微压波的大小、隧道的具体长度、断面尺寸、道床类型、辅助坑道的设置、洞口附近房屋等建筑物的性质及其它环境要求、地质地形地貌条件、工程难易程度、造价等进行综合考虑。在有条件的隧道,还应考虑利用其它降低微压波的措施。如采用贴有吸音材料的洞壁等措施。

第五节高速铁路隧道横断面内净空尺寸

1964年10月,世界上首条高速铁路日本东海道新干线投入了运营。三十多年来全世界已有10多个国家修建了高速铁路。欧洲的一些国家发展较快,正在形成欧洲高速铁路网。日本也已修建了东海道、山阳、东北及上越等新干线。高速铁路的修建技术日益成熟。

(一)降低隧道空气动力效应的结构工程措施

高速铁路线上的隧道不同于一般的铁路隧道,当高速列车在隧道中运行时要遇到空气动力学问题,主要表现为空气动力效应所产生的新特点及现象。为了降低及缓解空气动力学效应,除了采用密封车辆及减小车辆横断面积外,必须采取有力的结构工程措施,增大隧道有效净空面积及在洞口增设缓冲结构;另外还有其它辅助措施,如在复线上双孔单线隧道设置一系列横通道;以及在隧道内适当位置修建通风竖井、斜井或横洞。

增大隧道有效净空面积其效果显著。但因增加工程数量,从而提高了造价;在洞口增设缓冲结构、将隧道出入口作成喇叭型、增设混凝土明洞或钢结构的棚洞等,并且在其洞壁上开设通气孔洞或窗口,既可降低洞内瞬变压力,又可减弱微压波产

生洞口附近的“爆炸”声。

在复线线路上还要确定是修建成单孔双线隧道,还是修建双孔单线隧道。下面给出单孔双线及双孔单线隧道优缺点的比较。

理论及试验研究表明,影响隧道中压力变化的因素有:列车的速度、头部及尾部形式、横断面面积、长度;车辆外表型式及粗糙度;隧道的有效净空面积大小及突变、长度及洞壁的粗糙度等。而在这些影响因素中列车的速度和阻塞比二者是至关重要的。研究还表明,隧道中最大压力变化与列车速度的平方成正比,同时也与阻塞比的N次方成正比。因此列车速度确定之后,阻塞比就成为关键的因素。而当列车车型选定以后(列车横断面面积已确定),隧道有效净空面积就又成为决定性因素。下表给出了几个国家高速铁路隧道的一些参数。

从表中所列阻塞比的数据,可将隧道归纳为两类:一为阻塞比β<0.15(德、法)、德国ICE 车辆横断面积为10.3m 2,法国TGV 车辆横断面积为1Om 2

,隧道有效净空面积相对较大;另一类阻塞比β>O.18(日、意)。相对来说隧道有效净空面积要小,而在长隧道洞口必须增设缓冲结构。以减轻

隧道的空气动力效应。意大利是欧洲最早修

建高速铁路的国家,也曾在长隧道洞口采用

过缓冲结构,但在新线建设中已将隧道有效

净空面积由53.8 m 2扩大为76 m 2。日本是在高

速铁路试运行中发现了隧道出口的微压波问

题,因而只得采用增设洞口缓冲结构来解决

其危害。由于新干线已形成了完整的体系,

现在仍采用此种措施。

再从近年来各国发表的高速铁路建设规

划中的技术指标来分析,法国已制定当列车

速度为300km/h 及以上时,隧道有效净空面积为1OOm 2。西班牙高速铁路在列车速度为300km/h 时,隧道也采用1OOm 2的有效净空面积。1986年3月意大利提出的运输计划中,给出了列车速度为300km/h 时,隧道有效净空面积约为76~80m 2。德国高速铁路直线段隧道有效净空面积为82m 2。其跨度为11.9m ,出于安全考虑,新规范已将跨度改为12.9m 。尽管日本采用洞口增设缓冲结构及密封车辆措施来降低空气动力效应,但当列车速度为300km/h 时,也产生了扩大隧道有效净空面积为85m 2的设想。再从其正在开发的磁悬浮高速铁路,已将阻塞比降低为β=O.12,有效净空面积为74m 2。这就表明车辆横断面积相对减小,也就是取得增大有效净空断面的效果。

通过以上分析可以认为:为了降低隧道的空气动力效应,增大隧道有效净空面积是较好的结构工程措施,也是当前世界各国高速铁路发展的总趋势。 (二)隧道横断面有效净空尺寸的选择

在确定隧道横断面有效净空尺寸之前,首先要正确地选择隧道设计参数。高速列车进入隧道时产生的空气动力学效应,与人的生理反应和乘客的舒适度相联系。这就要制定压力波动程度的评估办法及确定相应的阈值,目前较通用的评估参数是相应于某一指定短时间内的压力变化值,如3S 或4S

内最大压力变化值。我国拟采用 图[12] 列车速度为300km/h 时,西班 牙采用的lOOm2隧道横断面图

压力波动的临界值(控制标准)为3.0KPa/3S。

根据ORE提出的压力波动与隧道阻塞比关系公式:Nβ

P2

kv

max

式中N =2.16±0.06(列车交会时);K =实测数据反分析系数。

可以推算出满足舒适度要求时,阻塞比β宜取为

当v=250km/h时β=0.14

v=350km/h时β=O.11

隧道横断面形式一般为园形(部分或全部)、具有或没有仰拱的马蹄形断面。而影响隧道横断面尺寸的因素有:

建筑限界;

电气化铁路接触网的标准限界及接触网支承点和接触网链形悬挂的安装范围;

线路数量:是双线单洞还是单线双洞;

线间距;

线路轨道横断面;

需要保留的空间如安全空间,施工作业工作空间等;

空气动力学影响;

与线路设备的结构相适应。

(三)国外隧道横断面尺寸

1、德国隧道有效净空断面

根据德国有关规范隧道线路危险区在列车速度为300km/h(>160km/h)时,距线路中心线应为3m。此时工作人员不能在隧道内停留,在线路危险区处要设立安全空间。多线隧道安全空间设于两侧。安全空间的尺寸至少为高2.2m,宽0.8m。这是为了铁路员工而设计的。安全空间设在隧道侧墙一侧,容许宽度受以下因素的影响:

①为保证乘客及工作人员安全,暂时或长期安装的设施—防护通道,把手或防护栏杆;

②专业部门安装建筑设施;

③无线电和信号系统配电柜和电气开关操纵机构。

安全空间地面应在轨面规定高度上,必需平坦,只容许有较小的横向坡度,安全空间的地面与接触网设备的带电部分之间的距离至少为3.95m。

在所有隧道内,必须为每条线路设置直通的救援道路。它设置在安全空间一侧,距线路中心线至少2.2m。此空间高度至少为2.2m,宽度至少为1.6m,后者可保证满足施工作业空间后,还有1.25m的最小宽度。根据安全方案规定配备救援列车时,救援道路的长度为1000m。而无救援列车时其长度不超过500m。

隧道中还应设一个施工作业工作空间,在暗挖双线隧道内沿隧道环形衬砌的最小厚度为0.30m,此空间应符合下列要求:

①工程辅助设施;

②隧道衬砌预留的补充加强设施;

③根据要求可转换为施工作业工作

空间的建筑设施。

具体地说施工作业工作空间可用来安

装将来需要的设备或加强衬砌以及安装降

低噪声的护墙板,也可用来满足衬砌未预

料的少量的静态长期变形。但不得利用施

图[13] 第二代新线直线段的隧道横断面

工作业工作空间来满足隧道建设的工程误

差。德国直线段隧道断面图见图[13]。

2、法国TGV—A已建成的隧道断面

法国高速列车的速度曾多次创造了世界最高纪录,国内已先后投入运行的有多条高速线路如TGV—PSE,TGV-A,TGV—R及TGV—N等,为了与欧洲大陆联网而生产了TGV欧洲之星,此列车适应了英国列车车低而窄的特点。

法国已制定了TGV—A大西洋沿岸高速线上的列车速度与隧道有效净空面积的关

系。

法国高速铁路双线隧道阻塞比β=0.13~0.15,现行的运营列车速度为

270km/h。隧道有效净空面积为71m2,列车横断面积为10m2。车辆限界同UIC限界。

3、日本新干线的隧道断面

日本东海道新干线是世界上最早建成的高速铁路线,其后又陆续修建了山阳、东北及上越等新干线。其单线隧道建筑限界宽为4400mm,高为6450mm。车辆限界宽3400mm高6350mm。建筑限界中在每侧留有500mm,这是为了考虑车体横向摇动偏移值。

影响偏移值的主要因素是:车轴横向移动、横摇引起车体的倾斜、蛇形引起车端的偏移及轨道不平顺增大偏移等。建筑限界比车辆限界高1O0mm。

东海道新干线建筑限界与隧道内轮廓间的最小富余量为50mm。基于东海道新干线的经验,考虑施工误差及养护等原因,山阳新干线的最小富余量采用了lOOmm。于70年代开通的山阳新干线等双线隧道。线间距由4.2m改为4.3m;隧道有效净空面积由60.5m2加到63.4m2。

第六节高速铁路隧道防灾

高速铁路条件下的隧道灾害,主要表现为火灾、水灾、空气动力学问题、隧道内掉块、侵限和结构失稳。其中隧道内掉块、侵限和结构失稳问题是铁路隧道的共有问题,即隧道病害问题,在非特大灾害条件下(如爆炸、地震、山体滑坡等)一般来说发展较为缓慢,有一定的时间发现和整治,且可通过提高设计标准和施工工程质量来相应提高其抗灾能力,有关隧道病害的监测、检测、状态评估和整治能够独立进行操作;空气动力学问题可以通过对隧道断面和隧道洞口形式等采取一系列构造技术措施来解决;水灾问题在水底隧道中最为突出,危害也大;火灾具有突发性,常常造成灾难性后果。

(一)国内外隧道火灾

国内外运营隧道中,洞内火灾事故时有发生,其中相当一部分火灾造成了严重的后果,如:日本北陆隧道、日本坂隧道、大清水隧道等,其中北陆隧道列车火灾事故死伤七百多人;德国的Billweder隧道、荷兰的Velsen隧道、西班牙的Guadarrama 隧道及英国伦敦地铁维多利亚车站隧道等。近年来我国也发生过几起严重的隧道火灾事故。这些隧道内的灾害不仅直接造成生命财产的巨大损失,还造成了停运、恢复整治和善后处理等更大的间接损失。

(二)铁路山岭隧道内火灾的特点

列车火灾可能在线路的任何地方发生,但以隧道内火灾最难处理,主要表现为

以下几方面:

1、着火列车停在隧道内时,乘客避难和救援困难。

铁路隧道为长条形,空间狭小,火灾蔓延速度快,排烟困难,洞内可视性差、路面不平,且救援设备和人员难以接近着火点。

2、固定灭火设备和排烟设备综合配置难度大。

3、列车在隧道内行车时,车厢内换气量比非隧道区段大数倍,因此一旦着火,其火势也比非隧道区段发展迅猛。

4、隧道内火灾发生后,灭火、恢复整治时间长。间接损失远大于洞外火灾。

5、隧道内环境差,固定的火灾监控和自动化消防设施维护困难,很难保证火灾发生时能完好工作。

6、隧道内火灾发生的概率小,且具有位置上的不确定性,在隧道短且较分散的情况下,在全线隧道上维持有效的全自动化监测和消防设施投入大、难度高。

7、客运列车火灾规模小于货运列车。

8、整个安全系统从发现、通报、判断确认、停车到启动消防及救援系统的时间较长。

根据隧道内列车火灾特点,综合分析国外高速铁路隧道列车火灾发生条件及防治措施,高速铁路的隧道安全系统的火灾防治问题应与线路、机车车辆、运输组织、供电及通信信号、车站安全监测、列车工作人员素质等几方面共同解决,最大限度地防止列车在隧道内发生火灾和火灾列车进入隧道,并建立起完善的火灾防止和火灾处置程序和行之有效的管理体制。

(三)隧道内列车消防设施

1、辅助洞室

避车洞主要用于长隧道维修养护人员避车,放置维修养护材料及设备,灭火设备等。

不论高速铁路采用何种维修养护体制,都不能完全避开运营时间内进行一些必要的维修养护作业,而避车洞是永久性建筑物,是作业人员和设备的安全待避所,可以为作业人员和行车提供可靠的安全保障。

2、给排水设施

高速铁路路基工程试题

高速铁路路基工程试题 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

吉图珲客专X X X标 路基专业考试题 姓名:单位:职务:专业类别: 答题时间:120分钟满分:100分 一、填空(每空1分,共计40分) 1、工序之间应进行交接检验,上道工序应满足下道工序的施工条件和技术要求。相关专业工序之间的交接检验应经(监理工程师)检查认可,未经检查或经检查不合格的不得进行下道工序施工。 2、路堤填筑材料基床底层填料的粒径应小于( 60)mm,基床底层以下路堤填料的粒径应小于( 75)mm,且应级配良好。 3、区间原地面处理、浆体喷射搅拌桩、CFG桩沿线路纵向连续路基长度每(≤200m)的单个工点为一个检验批;站场路基折合正线双线每(≤200m)的单个工点为一个检验批; 4、路基相关工程包括(电缆槽)、(接触网支柱基础)、(防护栅栏)、(过轨管线、综合接地)等分项工程。 5、路堤填筑应按(三阶段、四区段、八流程)的施工工艺组织施工。每个区段的长度应根据使用机械的能力、数量确定,一般宜在200m以上或以构筑物为界。各区段或流程内严禁几种作业交叉进行。 6、基床以下路堤压实标准:压实系数(≥),砂类土及细砾土地基系数K30 (MPa/m) (≥ 110 ),碎石类及粗砾土K30 (MPa/m)(≥ 130 ),基床底层路堤压实标准:压实系数(≥),砂类土及细砾土地基系数K30 (MPa/m) (≥130 ),碎石类及粗砾土K30 (MPa/m)(≥ 150 ),动态变形模量Evd (MPa) (≥ 40 )。 7、路堤边坡宜采用加宽超填或专用边坡压实机械施工。当采用加宽超填方法时,

高速铁路隧道工程衬砌标准化施工

隧道衬砌标准化施工措施 1.仰拱施工 (1)仰拱开挖 洞身仰拱开挖时,采用控制周边眼外插角度的办法,确保开挖平顺,严禁仰拱欠挖;爆破之后要求基底清理干净,必须无虚渣、无积水。 (2)五线上墙 为有效控制水平施工缝位置、仰拱钢筋和盲管位置,在边墙初支表面上测量放样“五线”(即:仰拱混凝土顶面标高线、仰拱钢筋搭接上下线、纵向和环向盲管线),并用红线明显标记(包括接地钢筋位置),为仰拱及后续防排水及衬砌施工提供控制依据。仰拱钢筋安装时分别自施工缝截面环向延伸固定长度,且仰拱内外环向钢筋在隧道环向、纵向均长短相间布置。环向盲管线根据设计要求,一般地段每组台车设置一道;岩溶发育地段需加密设置。如图 1.1 所示。 图 1.1 仰拱五线上墙 (3)仰拱钢筋预弯及定位 采用自制仰拱钢筋预弯机对仰拱钢筋进行预弯,利用液压千斤顶调节弧度大小,保证成型质量。如图1.2 所示。 图 1.2 仰拱钢筋预弯平台

安装仰拱钢筋时由测量定位(共九条:中间 1条,两侧位置各 4 条),确保钢筋间间距、排距和弧的准确。 仰拱钢筋安装时必须使用钢筋卡,使钢筋间距均匀。钢筋卡距可用角钢刻槽或钢管焊接卡具,相邻槽中心间距为设计钢筋间距。钢筋卡长度一般取6m,可根据施工方便设置长度。如图1.3 所示。 图 1.3 仰拱钢筋定位 (4)仰拱弧模与端模安装 通过轻质曲面钢模板,与仰拱端头钢模连接,整体采用地锚加固的方式施工,实现仰拱与仰拱填充的分层浇筑。端模与腹模连接,确保仰拱尺寸准确;通过整体曲面腹模,确保仰拱设计弧面和曲率;通过分窗进料振捣,保证仰拱混凝土密实度和强度;通过使用上、下钢端模,实现了仰拱环向中埋式止水带的准确定位。如图 1.4 所示。 图 1.4 弧模与端模 (5)纵、环向排水管安装 纵向排水盲管采用土工布包裹;盲管中间不得有凹陷、扭曲等,以防泥砂淤积堵塞;纵向排水盲 管按设计规定的排水坡度安装,并用钢筋卡固定,严格按照设计尺寸控制埋设高度。 (6)混凝土浇筑 混凝土浇筑过程,必须保证仰拱与拱墙小边墙一次性整体浇筑,确保边墙混凝土完整性,保证混 凝土浇筑质量良好。仰拱填充必须在仰拱衬砌浇筑完成之后分次浇筑,确保两者厚度、强度符合设计要求。 2 防排水安装

08-高速铁路设计规范条文(8隧道)课案

8 隧道 8.1 一般规定 8.1.1 隧道设计必须考虑列车进入隧道诱发的空气动力学效应对行车、旅客舒适度、隧道结构和环境等方面的不利影响。 8.1.2 隧道衬砌内轮廓应符合建筑限界、设备安装、使用空间、结构受力和缓解空气动力学效应等要求。 8.1.3 隧道结构应满足耐久性要求,主体结构设计使用年限应为100年。 8.1.4 隧道主体工程完工后,应对其特殊岩土及不良地质地段基底的变形进行观测。 8.1.5 隧道辅助坑道的设置应综合考虑施工、防灾救援疏散和缓解空气动力学效应等功能的要求。 8.1.6 隧道结构防水等级应达到一级标准。 8.2 衬砌内轮廓 8.2.1 隧道衬砌内轮廓的确定应考虑下列因素: 1 隧道建筑限界; 2 股道数及线间距; 3 隧道设备空间; 4 空气动力学效应; 5 轨道结构形式及其运营维护方式。 8.2.2 隧道净空有效面积应符合下列规定: 1 设计行车速度目标值为300、350km/h时,双线隧道不应小于100 m2,单线隧道不应小于70 m2。 2 设计行车速度目标值为250km/h时,双线隧道不应小于90 m2,单线隧道不应小于58 m2。 8.2.3 曲线上的隧道衬砌内轮廓可不加宽。

8.2.4 隧道内应设置救援通道和安全空间,并符合下列规定: 1 救援通道 1)隧道内应设置贯通的救援通道。单线隧道单侧设置,双线隧道双侧设置,救援通道距线路中线不应小于2.3m。 2)救援通道的宽度不宜小于1.5m,在装设专业设施处可适当减少;高度不应小于2.2m。 3)救援通道走行面不应低于轨面,走行面应平整、铺设稳固; 2 安全空间 1)安全空间应设在距线路中线3.0m以外,单线隧道在救援通道一侧设置,多线隧道在双侧设置; 2)安全空间的宽度不应小于0.8m,高度不应小于2.2m。 8.2.5 双线、单线隧道衬砌内轮廓如图8.2.5-1~4所示。 图8.2.5-1 时速250km/h双线隧道内轮廓(单位:cm) 图8.2.5-2 时速300、350km/h双线隧道内轮廓(单位:cm)

隧道工程建设标准及施工技术

第四章隧道工程建设标准及施工技术 第一节隧道工程设计要求 客运专线铁路的隧道设计是由限界、构造尺寸、使用空间和缓解及消减高速列车进入隧道诱发的空气动力学效应两方面的要求确定的。研究表明,以上两方面要求中,后者起控制作用,但隧道工程设计及施工过程中以隧道横断面的限界、构造尺寸、使用空间为控制要点。 一、隧道横断面有效净空尺寸的选择 在确定隧道横断面有效净空尺寸之前,首先要正确地选择隧道设计参数。高速列车进入隧道时产生的空气动力学效应,与人的生理反应和乘客的舒适度相联系。这就要制定压力波动程度的评估办法及确定相应的阈值,目前较通用的评估参数是相应于某一指定短时间内的压力变化值,如3s或4s内最大压力变化值。我国拟采用压力波动的临界值(控制标准)为3.0Kpa/3s。 根据ORE提出的压力波动与隧道阻塞比关系可以推算出满足舒适度要求时,阻塞比β宜取为:当V=250km/h时,β=0.14;当V=350 km/h时,β=0.11。 隧道横断面形式一般为园形(部分或全部)、具有或没有仰拱的马蹄形断面。而影响隧道横断面尺寸的因素有: (1)建筑限界; (2)电气化铁路接触网的标准限界及接触网支承点和接触网链形悬挂的安装范围; (3)线路数量:是双线单洞还是单线双洞; (4)线间距; (5)线路轨道横断面; (6)需要保留的空间如安全空间,施工作业工作空间等; (7)空气动力学影响; (8)与线路设备的结构相适应。 二、客运专线隧道与普通铁路隧道的不同点 1.当高速列车在隧道中运行时要遇到空气动力学问题,为了降低及缓解空气动力学效应,除了采用密封车辆及减小车辆横断面积外,必须采取有力的结构工程措施,增大隧道有效净空面积及在洞口增设缓冲结构;另外还有其它辅助措施,如在复线上双孔单线隧道设置一系列横通道;以及在隧道内适当位置修建通风竖井、斜井或横洞。 2.客运专线隧道的横断面较大,受力比较复杂,且列车运行速度较高,隧道维修有一定的时间限制,复合衬砌和整体式衬砌比喷锚衬砌安全,且永久性好,故一般不采用喷锚衬

高速铁路路基施工及维护

路基排水设备施工 地面排水设备的类型?分别适用于什么条件? 地面排水设备主要有:排水沟、测沟、天沟、截水沟、矩形沟槽、跌水沟和急流槽等。 排水沟是设置于路堤护道的外侧,用以排除路堤范围内的地面水和截排从田野方向流向路堤的地面水的地面排水设备。 测沟是位于路堑路肩边缘的外侧,用以汇集和排除路堑范围内的地面水。在线 路不填不挖的地段亦应设置测沟。 天沟位于堑顶边缘以外,可设一道或几道,用以截排堑顶上方流向路堑的地面水。截水沟设置于路堑边坡平台上及排水沟、测沟、天沟所在部位以外的其他地方,用以截排边坡平台以上的坡面水或所在地区的部分地面水。 矩形水槽,当水沟所在地段土质不良或地质不良,水沟易于变形,以及受地形、地物或建筑限界的限制,不能设置占地较宽的梯形水沟时,排水沟、测沟、天沟、截水沟均宜采用矩形水沟的形式。 跌水、缓流井和急流槽,在地形陡峻地段,水沟的沟底纵坡很大时,可修建跌水、急流槽和缓流井等排水设施,以减少沟内流速,降低动能。 地下排水设备的类型?分别适用什么条件? 地下排水设备的类型有:明沟与槽沟、边坡渗沟、支撑渗沟、截水渗沟与引水渗沟、渗水隧洞、水平钻孔、立式集水渗井与渗管 明沟与槽沟是敞开的地下排水设备,用于拦截、引排埋藏不深的地下水(一般为2m以内的潜水和上层滞水),并可兼排地表水。设置时,宜沿线路方向和顺沟谷走向布置,沟底应埋入不透水地层内,沟壁最下一排渗水孔的底部应高出沟底不小于0.2m。为避免开挖断面过大,明沟深度不宜超过1.2m,若再深可用槽沟;槽沟深度不宜超过2m,若再深宜改用渗沟。 边坡渗沟是为疏导潮湿边坡及引排边坡上层滞水和泉水而修建的排水设备,同时可起支撑边坡的作用。其适用于土质路堑边坡不陡于1:1 或路堤边坡因潮湿容易发生表土坍滑的部位。 支撑沟是用来支撑可能滑动的不稳定土体或山坡,并排除在滑动面附近的地下水和疏干潮湿土体的一种地下排水设备。 截水渗沟与引水渗沟,截水渗沟用于拦截地下水,使其不流入病害区;引水渗沟是用来引排山坡湿地、洼地或路基内的地下水,以便疏干附近土体和降低地下水位。

高速铁路隧道技术发展现状存在问题及其展望

读书报告 高速铁路隧道技术 发展现状存在问题及其展望

目录 一、我国遂道及地下工程的发展现状 (1) 1.1 交通隧道 (1) 1.2 水利水电隧洞 (2) 1.3 地下工程 (2) 二、我国隧道及地下工程的主要开挖方法及新技术 (2) 三、当前国内铁路隧道施工主要存在技术问题 (3) 3.1 爆破精细控制技术 (3) 3.2 改进开挖技术 (3) 3.3 机制砂喷混凝土湿喷工艺 (4) 3.4 仰拱与掌子面进度的协调性 (4) 3.5 隧道沟槽施工工艺 (4) 3.6 通风及空气净化技术 (5) 四、贵广铁路建设实例 (6) 五、我国隧道及地下工程的发展前景 (7) 5.1 隧道发展前景 (7) 六、高速铁路隧道的研究几个热点问题 (8) 6.1 高速铁路隧道的空气动力学效应 (8) 6.2 高速铁路隧道的瞬变压力 (9) 6.3 高速铁路隧道的微压波 (9)

高速铁路隧道技术发展现状,存在问题及其展望 自1978年我国改革开放以来,我国在交通、水利水电、市政等基础设施领域取得了令人瞩目的成就,特别是近十年来,更取得了突飞猛进的发展,同时在设计和施工技术水平上也有了很大提高。但是由于我国东西高差大、地势复杂,隧道工程是铁路工程中不可缺少的重要项目,例如最近刚开通的兰新高铁,隧道比例达到60%以上。我国大力发展高速铁路,列车运行速度的提高势必造成列车振动荷载进一步加大,从而对隧道结构的动力稳定性提了更高的要求。伴随着铁路的出现和发展,铁路隧道也逐渐发展起来,但受制于技术条件的限制,在很长的时间内,铁路隧道的规模都很有限,直到20 世纪,随着人类科技水平和技术装备的进步,才开始出现了一些大型隧道,世界铁路隧道的世界记录也不断被更新。我国高速铁路已进入实质性的建设阶段,全国各铁路干线列车提速正在进行之中。 一、我国遂道及地下工程的发展现状 1.1 交通隧道 交通隧道主要包括铁路隧道、公路隧道及城市地铁工程,铁路隧道目前在数量、长度、设计及施工技术上在我国处于领先地位,截至1997年,在我国的铁路线上已建成并正式交付运营的隧道大约5200座,总长度2457.89km,平均占铁路网总长度的4.7‰。目前我国已建成铁路中隧道占线路长度在30%以上的就有襄渝线34.3%,成昆线31.6%,在建铁路中隧道占线路长度比例最大的达到50.42%(西康线)。目前已建成的最长隧道是西康线的秦岭单线隧道,长18.4km,其它较长的还有衡广铁路复线上的大瑶山双线隧道,长14.295km,于1987年建成。南昆线上的米花岭隧道,长9.383km。地铁工程目前仅有京、津、沪、穗四市约80km正在运营,而在建工程则很多,目前除上述四城市仍在继续扩建地铁外,南京、重庆、青岛、沈阳、深圳、成都等约20个大中城市进行了地铁和轻轨交通系统规划,部分项目正在全面施工。我国公路隧道在80年代前,因公路等级较低,同时限于设计、施工及短期投资大等多种原因,很少设计长大隧道,且数量(总长度)上也不多,但改革开放以后,为了实现截弯、降坡、提速、提高运营安全及实现长期运营收益提高等,相继修建了一批长大公路隧道,如辽宁的八盘岭双线公路隧道(长1600m),吉林的小盘岭公路、,速公路建设的大规模展开和设计、施工总体水平的提高,公路隧道工程在总量、单体长度上有了突飞猛进的发展,隧道单体长度记录不断被刷新。目前已提高到4km长度以上的水平,如川藏公路上的二郎山隧道全长4160m,目前我国海拔最高,2000年4月18日峻工通车的重庆铁山坪路隧道双线全长5424m,是目前我国最长的大跨度公路隧道,北京至八达岭高速公路上的潭峪沟公路隧道主隧道全长3455m,单向三车道,是目前国内最宽的公路隧道。

高速铁路路基工程专业技术

高速铁路路基工程技术 中国铁道科学研究院铁道建筑研究所 史存林 一、我国高速铁路路基的发展情况 路基工程是铁路工程建设项目中所占比例较大的工程,在线下工程中占有举足轻重的地位。随着铁路向高速化发展,路基标准及施工质量状况直接影响列车高速、平稳、舒适和安全的技术指标。 我国客运专线铁路路基的技术标准及主要参数,是九十年代以来在高速铁路“八五”、“九五”研究成果的基础上,吸收了国外高速铁路路基施工和建设的经验;在设计过程中借鉴、消化、吸收了国外铁路设计新方法和新标准;结合秦沈线的实际情况,并经有关部门多次组织国内专家的论证而最终确定的。 1.1路基主要研究的课题及成果 1.1.1“八五”“九五”路基主要研究的课题 《高速铁路路基技术条件的研究》(1993~1995) 《高速列车作用下地基弹塑性与刚度的研究》(1993~1995) 《高速铁路路基稳定性及变形控制值的研究》(1995~1997) 《高速铁路软土地基工后沉降标准的研究》(1995~1997) 《高速铁路路基与桥梁过渡段技术措施的研究》(1995~1997) 1.1.2秦沈客运专线路基科研试验的主要项目(2000~2003) 《软土路基工后沉降的控制试验研究》 《路基施工工艺、质量检测方法和标准的试验》 《路桥过渡段设置方法试验》 《土工合成材料加筋技术处理路基试验》 《不同基床表层结构及路基、轨道动态试验研究》 1.1.3高速铁路(京沪)路基工程试验研究项目 《京沪高速铁路路基结构形式及填料改良优化研究》(1997~1998) 《(高速铁路)路基和桩基沉降控制的试验研究》(1999~2001) 《高速铁路路基沉降控制的试验研究》(2002~2003) 《高速铁路软土和液化土地基处理技术的试验研究》(2002~2003) 《高速铁路液化土地基加固技术的试验研究》(2003~2004) 1.1.4客运专线路基工程试验研究项目 随着客运专线的大规模规划建设,针对客运专线通过软土、膨胀土、湿陷性黄土等

新验标TB10753—2018《高速铁路隧道工程施工质量验收标准》培训考试01期---答案

新验标TB10753—2018《高速铁路隧道工程施工质量 验收标准》培训考试 (2019年第1期) 姓名:职务:得分: 一、填空题(每题5分、共100分) 1.单位工程可按一个完整工程、一个施工标段或一种施工方式的施工 范围划分,其中明挖法、质构(TBM)p7 施工区段可按 单位工程进行验收。P7 2.检验批质量验收的主控项目的质量经抽样检验全部合 格,一般项目的质量经抽样检验应合格;当采用计数抽样 检验时,队本标准各章有专门规定外,其合格点率应达到 80% 及以上,且不得有严重缺陷,不合格点不得集中。P8 3.管棚、超前小导管和注浆管等所用钢管等所用钢管进场检验,应按 批抽取试件作力学性能和工艺性能试验,其质量应符合设计,《结构 用无颖钢管》GB/T 8162标准的规定。检验数量:以同牌号、同炉罐 号、同规格、同交货状态的管材,每60T为一批,不足60t应按一批 计。施工单位每批检验一次,监理单位按施工单位检验次数的10%平 行检验,且不少于一次。检查方法:检查质量证明文件、力学性能(屈 服强度和抗拉强度)试验检验。P12 4.排水板的进场检验应符合设计要求及《铁路隧道防排水板》 TB/T3354等相关标准的规定。检验数量:按同厂家、同品种、同规 格,且不大于5000m2为一批。施工单位每批验一次,监理单位按施 工单位检验次数的10%平行检验,且不少于一次。 P13 5.地表注浆加固应符合设计要求,检验数量:每不大于200m2检验取

样不少于2孔;正在注浆的区域,其附近30M以内不得进行爆破。预注浆加固应符合设计要求,检验数量:每循环检验不少于3个孔。检查数量为检查总数的20%。P19-20 6.隧道洞口段边、仰拱坡度和范围应符合设计要求。检验数量:每不大于10m检查一个断面,检验方法:测量。洞口、明洞(棚洞)开挖断面、中线和高程应符合设计要求。检查数量:每不大于5m检查一个断面。检验方法:测量。P22 7.隧道洞门结构、档(端)墙和明洞基础的基抗底面应无积水、虚渣、杂物。隧道洞门结构、档(端)墙,缓冲结构和明洞结构的位置应符合设计要求。检验数量:每不大于5m检查一个断面。明洞混凝土结构外形尺寸、预埋件和预留孔洞位置检验数量:每一浇筑段检查一次。P23-24 8.高速铁路隧道钻爆开挖应遵循减少围岩扰动,严格控制超欠挖的原则进行爆破设计,爆破设计参数应根据爆破效果动态调整。隧道开挖轮廓尺寸应符合设计要求,并应控制超欠挖,围岩完整石质坚硬岩石个别突出部位最大欠挖值不大于50mm,且每1M2不大于0.1m2。P29 9.超前支护管棚钢管接头应采用丝扣连接,同一断内的钢筋接头不大于钢管总数量的50%。超前小导管的种类、规格应符合设计要求。检验数量:每循环检验3根。检验方法:观察、尺量、留存影像资料。超前小导管的位置、搭接长度和数量应符合设计要求。检查数量:每循环位置、搭接长度检验3根。检验方法:观察、测量、留存影像资料。P31 10.初期支护喷射混凝土的24H强度应小于10MPa。检查数量:同强度等级、每级连续检验一次。检验方法:拔出法或无底试模法。喷射混凝土平均厚度应符合设计要求,检查点数90%及以上应不小于设计厚度。检验数量:全断面开挖时,每一作业循环检验一次;分部开挖

高速铁路隧道毕业设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

高速铁路路基工程

高速铁路路基工程 中国铁道科学研究院 2002年11月27日 高速铁路路基技术特点 ?路基按照结构物设计,填料和压实标准高; ?严格控制路基变形和工后沉降; ?路桥及横向构筑物间设置过渡段; ?路基动态设计; ?地基处理类型多。 路基填筑质量标准高 ?基床表层采用级配碎石强化结构,K30 、E v2、E vd、n 指标满足设计要求。 ?基床底层采用A、B组或改良土填筑,K30、E v2、K 、n满足设计要求 ?基床以下路基采用A、B、C组或改良土填筑,K30、E v2、K 、n满足设计要求 严格控制路基变形和工后沉降 ?工后沉降是高速铁路路基设计的主要控制因素,路基发生强度破坏之前,已经出现了不能容许的变形;

?我国对无砟轨道的路基工后沉降要求一般不应超过扣件可调高量15mm,路桥路隧差异沉降不超过5mm。路桥及横向构筑物间设置过渡段 ?路桥及横向构筑物间的过渡段,是以往设计及施工中的薄弱环节,也是既有线发生路基病害的重要部位。由于桥台与路堤的刚度相差显 著,高速列车通过时对轨道结构及列车自身会产生冲击,从而降低列 车运行的平稳性和舒适度,加快结构物和车辆的损坏。 ?为保证列车高速运行时的平稳舒适,对路桥过渡段采用了刚度过渡的设计方法。在桥台后一定范围内,采用刚度较大的级配碎石作为过渡 填筑段,与路堤相接处采用1:2的斜坡过渡。 路基动态设计 ?为了有效地控制工后沉降量及沉降速率,需要开展路基动态设计。 ?根据沉降观测资料及沉降发展趋势、工期要求等,采取相应的措施,如调整预压土高度,确定预压土卸荷时间,以及铺轨前对路基进行评 估及合理确定铺轨时间,以确保铺轨后路基工后沉降量与沉降速率控 制在允许范围内。路基动态设计的成果可以为后续的轨道工程打下了 良好的基础。 地基处理的种类多 ?对于浅层软弱地基采用了换填碾压处理、或换填砂垫层处理; ?对于深层软基的主要地段采用袋装砂井、塑料排水板的排水固结加预压的处理方 法; ?对于工后沉降要求高及路桥过渡段,根据地质条件和经济对比,采用了砂桩、碎 石桩、粉喷桩、搅拌桩、旋喷桩等地基处理方法; ?对于有地震液化的粉土或粉细砂层的地基段,采用了挤密砂桩的处理方法; ?新建的一些客运专线采用强夯、CFG桩、灰土挤密桩、桩网、桩板等地基处理方

我国高速铁路及路基工程技术发展

中南林业科技大学课程考查作业学科专业:工程管理 年级:2011级 学号:20111518 姓名:梁志杰 课程名称:铁道工程

我国高速铁路与路基工程技术发展 【摘要】:高速铁路是当今世界铁路高新技术的一项重大成就,是当今世界安全可靠的现代交通工具。它在许多国家得到迅猛发展,成为世界铁路的新潮流。高速铁路的出现已突破了传统铁路路基的设计理念,其设计理论、施工技术和检测手段等都有了很大发展,相关的技术标准不断提高,新技术也不断被应用于高速铁路路基中。 【关键字】:高速铁路、路基、技术特点 【正文】: 高速铁路是指通过改造原有线路,使营运速率达到每小时200公里以上,或者专门修建新的高速新线,使营运速率达到每小时250公里以上的铁路系统。高速铁路是当今世界铁路高新技术的一项重大成就,是当今世界安全可靠的现代交通工具。它在许多国家得到迅猛发展,成为世界铁路的新潮流。 我国高速铁路的运输组织模式主要有以下3种类型:(1)高速客运专线。这种高速铁路建于客货运输都十分繁忙的通道上,一般沿既有线修建,设计速度达350km/h。承担本线到发与跨线客流的输送任务,采用300km/h及以上的高速列车与200~250km/h的跨线列车混合运行的运输组织模式。(2)城际铁路。这种高速铁路建于两相邻大城市间,设计速度为200~250km/h。承担两城市间到发客流的输送任务,采用高密度、短编组、公交化的运输组织模式。(3)快速客运

通道。这种高速铁路建于客货运输潜在需求都十分旺盛但还没有铁路的地区,设计速度为200~250km/h,承担吸引区内客货运输任务,采用200~250km/h的旅客列车与120km/h货物列车混合运行的运输组织模式。我国高速铁路的技术体系构建,主要应针对高速客运专线。 高速铁路不仅仅是高速,它具有三点优势:一是高速铁路速度快、省时间,安全系数高,乘坐空间大,舒适又方便,价格又适宜,迎合了现代社会出行的需求,因而受到人们的青睐,成为世界各国振兴铁路的强大动力。二是高速铁路运输系统是铁路大面积吸纳现代高科技成果进行技术创新的产物。推动了铁路科学技术和装备登上一个崭新的台阶,增强了铁路的竞争力。三是高速铁路不仅运输能力特别大,有年运输量可达数亿人次以上的优势,又有减少环境污染的优势,因而特别适宜于大运量的城市间、城市群和城郊的高频率运输。旅行时间的节约,旅行条件的改善,旅行费用的降低,再加上国际社会对人们赖以生存的地球环保意识的增强,使得高速铁路在世界范围内呈现出蓬勃发展的强劲势头。总之,发展高速铁路是科技进步的必然,是时代发展的需要。 我国高速铁路以其高速、平稳、舒适的优良品质赢得了人民群众的广泛赞誉,有力促进了沿线区域经济发展,带动了相关产业升级,改善了人民群众生活。 从旧时落后的铁路到如今的高速铁路,我国铁路的发展经历了几代人不懈的努力,从封建落后的清朝至今已有百余年的历史,旧时中国铁路发展缓慢,受到清政府封建势力的强烈发对。在那个动荡的年

高速铁路路基工程施工质量验收暂行标准(正文)

1.0.1 为了加强京沪高速铁路工程施工质量管理,统一京沪高速铁路路基工程施工质量的验收,保证工程质量,制定本标准。 1.0.2本标准适用于京沪高速铁路路基工程施工质量的验收。对于本标准未涉及的新技术、新工艺、新设备、新材料,其施工质量的验收应另行制定补充标准。 1.0.3 施工单位作为工程施工质量控制的主体,应对工程施工质量进行全过程控制;建设单位、监理单位和勘察设计单位等各方应按有关规定的要求对施工阶段的工程质量进行控制。 1.0.4京沪高速铁路路基工程施工应贯彻国民经济可持续发展战略,做好环境保护、水土保持等工作,合理利用资源,并做到安全施工。 1.0.5 京沪高速铁路路基工程施工质量的检验、检测工作取得的质量数据应真实可靠,全面反映工程质量状况。所用方法和仪器设备应符合相关标准的规定。 1.0.6 京沪高速铁路路基工程施工中所采用的承包合同文件和工程技术文件等对施工质量的要求不得低于本标准的规定。 1.0.7京沪高速铁路路基工程质量的验收除应符合本标准外,尚应符合国家现行有关标准的规定。

2.0.1工程施工质量 反映工程施工过程或实体满足相关标准规定或合同约定的要求,包括其在安全、使用功能及其耐久性能、环境保护等方面所有明显和隐含能力的特性总和。 2.0.2验收 工程施工质量在施工单位自行检查评定的基础上,参与建设活动的有关单位共同对检验批、分项、分部、单位工程的质量按有关规定进行检验,根据相关标准以书面形式对工程质量达到合格与否做出确认。 2.0.3进场验收 对进入施工现场的材料、构配件、设备的外观、性状和质量证明文件等进行进场检查,对其达到合格与否做出确认。 2.0.4检验批 按同一生产条件或按规定的方式汇总起来供检验用的,由一定数量样本组成的检验体。 2.0.5检验 对检验项目中的性能进行量测、检查、试验等,并将结果与标准规定要求进行比较,以确定每项性能是否合格所进行的活动。 2.0.6见证 在监理单位或建设单位监督下,由施工单位有关人员现场取样、并送至具备相应资质的检测单位所进行的检测,或由施工单位有关人员在现场进行的检验活动。 2.0.7 平行检验 监理单位利用一定的检查或检测手段,在承包单位自检的基础上,按照一定的比例独立进行检查或检测的活动。 2.0.8旁站 在工程的关键部位或关键工序施工过程中,由监理人员在现场进行的监督活动。 2.0.9 交接检验 由施工的承接方与完成方经双方检查并对可否继续施工做出确认的活动。 2.0.10 主控项目 工程中的安全、卫生、环境保护和公众利益起决定性作用的检验项目。 2.0.11 一般项目

新高速铁路隧道工程施工技术指南—4.施工准备

4 施工准备 4.1 施工调查 4.1.1 施工调查前应查阅设计文件和相关资料,定制调查大纲。调查结束后根据调查情况编写书面的施工调查报告。 4.1.2 施工调查应包括下列内容: 1 地理环境、气象、水文水质情况。 2 辅助坑道、洞口位置及相邻工程情况。 3 施工运输道路、水源、供电、通信、施工场地、征地拆迁情况、弃渣场地基容纳能力等。 4 原材料及半成品的品种、质量、价格及供应能力等、爆破器材的供应情况、供货渠道及管理方式等。 5 交通运能、运价、装卸费率等。 6 可供利用的劳动力资源状况,包括工费、就业情况等。 7 生活供应、医疗、卫生、防疫、民俗及居民点的社会治安情况等。 8 生态、环境保护的一般规定和特殊要求。 9 对隧道施工有直接和间接影响的其他问题 4.1.3 施工调查报告除应包括施工调查的主要内容外,还应包括下列内容: 1 工程概况,包括工程环境、工程地质、水文地质、工程规模、数量、特点。 2 临时设施方案,包括临时房屋、材料厂、施工便道及码头、电力及通讯干线等的选择、规模和标准。 3 砂、石等当地材料的供应方案。 4 生产生活供水、供电方案,施工通讯方案。 5 施工建议方案。 6 当地风俗习惯及注意事项。 7 环保要求及注意事项,可能对环境造成的影响。 8 施工调查中发现的设计有关问题和优化设计建议。 9 尚待进一步调查落实的问题。 4.2 设计文件现场核对 4.2.1 隧道工程施工前,应重点对设计文件中的拆迁工程、工程设计方案、工程措施、大型临时工程等进行现场核对,并做好核对记录。 4.2.2 设计文件核对应包括下列内容: 1 设计文件相互间的一致性、系统性,是否存在差、错、漏、碰。重点是各设计专业接口工程的相互衔接。 2 隧道平面及纵断面参数计算是否正确。 3 设计工程数量计算是否正确,超前地质预报设计内容是否完整。

高速铁路路基工程施工技术探讨

高速铁路路基工程施工技术探讨 摘要 摘要:在高速列车运营的过程中,对列车运行的稳定性、平顺性、舒适性和安全性要求比较高,为了保证路基具有良好的动力特性和纵向刚度均匀性,需要做好铁路路基的处理工作。鉴 摘要:在高速列车运营的过程中,对列车运行的稳定性、平顺性、舒适性和安全性要求比较高,为了保证路基具有良好的动力特性和纵向刚度均匀性,需要做好铁路路基的处理工作。鉴于此,以实际工程为例,对铁路工程基底处理、路基填筑、过渡段填筑的施工技术进行了探讨,具有一定的借鉴参考价值。 关键词:高速铁路;路基填筑;过渡段填筑 0 引言 在高速铁路施工过程中,对路基的耐久性、稳定性及刚度都有比较高的要求,需要按照指标对施工质量进行控制并做好原地面的处理工作;在路基工程施工时要根据路基填筑质量标准和沉降标准进行控制,强化路基结构设计,严格按照路基填筑和地基处理标准控制好施工质量。 1 工程概况 某高速铁路工程总建设长度为1320km,设计时速为300km/h,基础设施按照350km/h的标准进行设计,铁路线路穿越浅丘、池塘、水电等地区,表面覆盖了比较厚的软~硬塑状粉质黏土,下部为砂质泥岩、砂岩、卵石土、泥岩互层,中部为细砂层和中砂层,孔隙水较发育,水位埋设深度较浅,而且地下水和地表水系较发达,水网密布。 2 基底处理 考虑到填料结构与原地面不管是在结构方面还是在密度、承载能力方面都不同,若未对原地面进行必要的处理,会引发沉降等病害,影响地基的稳定性。在进行地基处理时,施工人员需将地表周围残存的杂草、垃圾等彻底清理后方可进行压实工作,如果施工区域地表土质不良,一般的填前压实技术很难达到要求,因此应使用专门的软土地基处理方式进行

高速铁路隧道开挖专项施工方案

目录 第一章编制依据 (1) 第二章编制范围 (1) 第三章工程概况 (1) 第四章主要施工方案及施工方法 (1) 4.1施工方案 (1) 4.2施工方法 (1) 4.2.1明洞段开挖方法 (2) 4.2.2台阶法 (2) 4.2.3.隧道围岩分级、开挖方法及衬砌支护形式 (3) 第五章施工进度安排 (5) 第六章爆破设计 (6) 6.1爆破方案 (6)

6.2钻爆设计 (6) 6.2.1光爆基本参数 (6) 6.2.2掏槽方式 (7) 6.2.3周边眼 (7) 6.2.4掘进眼 (7) 6.2.5装药结构及堵塞方式 (8) 6.2.6炮眼布置 (8) 6.3爆破设计的优化及爆孔布置 (12) 第七章劳动力和机械设备配置 (12) 7.1劳动力配置 (12) 7.2机械配置 (13) 第八章质量保证措施 (14) 第九章安全、文明施工 (15)

第一章编制依据 1、新建贵阳枢纽小碧经清镇东至白云联络线《摆龙村一号隧道设计图》; 2、新建贵阳枢纽小碧经清镇东至白云联络线第三册《隧道附图洞门及洞口工程》; 3、《高速铁路隧道工程施工技术指南》铁建设(2010)241号; 4、《高速铁路隧道工程施工质量验收标准》(TB10753-2010); 5、《铁路混凝土工程施工质量验收标准》(TB10424-2010); 6、《铁路工程基本作业施工安全技术规程》TB10301-2009; 7、《铁路隧道工程施工安全技术规程》TB10304-2009; 8、《爆破安全规程》GB6722-2011; 9、新建贵阳枢纽小碧经清镇东至白云联络线站前4标《实施性施工组织设计》 第二章编制范围 新建贵阳枢纽小碧经镇东至白云联络线站前Ⅳ标(D1K64+770~D1K65+275)摆龙一号隧道。 第三章工程概况 摆龙村一号隧道位于贵阳市金华新区金华镇摆龙村境内,全长505米,隧道进出口里程分别为D1K64+770、D1K65+275。该隧道为时速200km Ⅰ级铁路双线隧道,隧道内线间距为4.6m。洞内采用重型轨道碎石道床,铺设Ⅲ型轨枕(2.6m)及60kg/m钢轨,轨道结构高度766mm。 隧区岩溶中等至强烈发育,隧道进出口右侧边坡顺层且洞身右侧围岩顺层偏压。洞身与梨木山断层平行,相距30~80m,洞身位于地下水垂直渗流带内,地下水对混凝土无侵蚀性。 第四章主要施工方案及施工方法 4.1施工方案 根据设计要求,隧道除明洞段为明挖之外,隧道暗挖段采用锚喷构筑法施工、光面爆破开挖。暗挖段根据围岩类别的不同分别采用IV级围岩采用台阶法,V级围岩采用台阶法+临时横撑。 4.2施工方法

高速铁路设计规范条文(8隧道)

8隧道 8.1 一般规定 8.1.1隧道设计必须考虑列车进入隧道诱发的空气动力学效应对行车、旅客舒适度、隧道结构和环境等方面的不利影响。 8.1.2隧道衬砌内轮廓应符合建筑限界、设备安装、使用空间、结构受力和缓解空气动力学效应等要求。 8.1.3隧道结构应满足耐久性要求,主体结构设计使用年限应为100年。 8.1.4隧道主体工程完工后,应对其特殊岩土及不良地质地段基底的变形进行观测。 8.1.5隧道辅助坑道的设置应综合考虑施工、防灾救援疏散和缓解空气动力学效应等功能的要求。 8.1.6隧道结构防水等级应达到一级标准。 8.2衬砌内轮廓 8.2.1隧道衬砌内轮廓的确定应考虑下列因素: 1隧道建筑限界; 2股道数及线间距; 3隧道设备空间; 4空气动力学效应; 5轨道结构形式及其运营维护方式。 8.2.2隧道净空有效面积应符合下列规定: 1设计行车速度目标值为300、350kEh时,双线隧道不应小于100成单线隧道不应小于70 m2。 2设计行车速度目标值为250km^h时,双线隧道不应小于90 m2,单线隧道不应小于58 m2。 8.2.3曲线上的隧道衬砌内轮廓可不加宽。

8.2.4隧道内应设置救援通道和安全空间,并符合下列规定: 1救援通道 1)隧道内应设置贯通的救援通道。单线隧道单侧设置,双线隧道双侧 设置,救援通道距线路中线不应小于 2.3m。 2)救援通道的宽度不宜小于1.5m,在装设专业设施处可适当减少;高度不应小于2.2m。 3)救援通道走行面不应低于轨面,走行面应平整、铺设稳固; 2 安全空间 1)安全空间应设在距线路中线 3.0m以外,单线隧道在救援通道一侧设置,多线隧道在双侧设置; 2)安全空间的宽度不应小于0.8m,高度不应小于2.2m。 8.2.5双线、单线隧道衬砌内轮廓如图8.2.5-1?4所示。 线| '隧|线 路|道路 中I ■中|中 线I线线 1内轨顶面三, UM

《高速铁路隧道工程施工质量验收标准》TB 10753-2018更改

3、基本规定 第 ,可调整进场检验频次、试验数量 ,属于同一工程项目同期施工的多个单位工程,对同一厂家生产的同批次原材构配件、半成品、设备等可进行统一验收。 不得有严重缺陷,不合格点不得集中。增加第4条 3.3.3 增加第3条涉及安全和主要使用功能的抽样检验结果应符合相应 规定。 ,委外进行实体检测或抽样检测。 4、原材料、构配件、半成品 新增第4章将原材料单独进行解释说明,原材料技术要求按照相关产品技术要求 进行规定,不在单独进行规定。 支护材料4.1.1 混凝土、钢筋所用原材符合10424 可扩大检验批一倍,出现不合格,不得在扩大。 4.1.3 实行工厂化生产,半成品、构配件等可采用出厂检验合格证作为质 量证明文件 进行分别标识、分区存放,工厂化生产的半成品宜采用信息码进行编码溯源。 706、11263 4.2.4 管棚、超前小导管、注浆管符合8162。 防水材料增加VA含量检验。 4.3.2 排水板检测符合3354。 18173.3。 2000m一批。 ,按进场批次和产品标准确定批次容量。 4.4构配件和半成品 4.4.1 管棚、超前小导管、锚杆(管)、钢架、钢筋网片等半成品检验符 合相应设计要求。,管棚50根检查3根,超前小导管、锚杆(管) 100根检查3根,钢筋网片100片检查3片。 ,数量符合10424. ,盖板尺寸、强度符合设计要求。不大于1000块为1批每批3块。 4.4.5 管片螺栓符合设计要求,按进场批次和产品标准确定批次容量。 4.4.6 排水管沟的规格和强度等符合设计要求,同规格同类型不大于100 节为1批,每批1节。 4.4.7 水泥基钢筋保护层垫块强度不小于混凝土强度,尺寸满足钢筋保护 层厚度要求,不大于5000块为1批每批5块。 ,不大于2000米为一批,每批3根。 5加固处理 ,检验方法表5.2.5 数量按照总数的2%,且不少于3根。 5.3.3 预注浆加固效果应符合设计要求每循环不少于3孔。

高铁路基工程施工技术标准

高铁路基工程施工技术标准(2011) 【标准概况】 适用范围:高铁路基施工适用速度范围:250-350km/h 编制意义:统一主要技术要求 2011年 1 总则 1.0.1为指导高速铁路路基工程施工,统一主要技术要求,加强施工管理,保证工程质量,制定本指南。 1.0.2本指南适用于新建时速250-350高速铁路路基工程 施工。时速250km以下客运专线铁路路基工程施工可参照执行。 1.0.3高速铁路路基工程施工必须执行国家法律法规及相关技术标准,按照设计文件施工,满足工程结构安全、耐久性能及系统使用功能要求,保证设计使用年限内正常运营。 1.0.4高速铁路路基工程施工应从管理制度、人员配备、现场管理和过程控制四个方面加强标准化管理,采用机械化、工厂化、专业化、信息化等先进的施工管理手段,实现质量、安全、工期、投资效益、环境保护、,技术创新等建设目标。 1.0.5高速铁路路基工程施工应重视地质核査,作好地基处理、填料生产供应及压实成型、过渡段处理、支挡结构、边坡防护及防排水、变形观测评估、接口工程等关键环节的施工。

1.0.6高速铁路路基工程施工应加强现场管理,严格施工工序,根据工艺流程合理划分施工段落,提髙文明施工水平。 1.0.7高速铁路路基工程施工应重视对地质灾害的识别、评估和预防工作,加强路基变形监控量测,保证排水系统畅通无阻,及时完成支护结构,有效减少地质灾害及其影响。 1.0.8高速铁路路基工程施工涉及文物古迹时,应立刻停止作业上报有关部门并做好现场保护工作,严格按文物保护部门批准的保护措施进行施工。 1.0.9高速铁路路基工程施工应根据国家节约资源、节约能源、减少排放等相关法规和技术标准,结合工程特点和施工环境,编制并实施工程施工节能减排技术方案。 1.0.10 高速铁路路基工程施工应根据批准的指导性施工组织设计编制实施性施工组织设计和作业指导书。 1.0.11 高速铁路软土、松软土路基工程应作为控制工程组织施工。 1.0.12 防排水工程是高速铁路路基工程的重要组成部分,应加强施工全过程管理,及时做好防、排水工程。 1.0.13修筑于路基上的端刺、电缆槽、接触网支柱基础、声屏障基础、预埋管线等工程项目应与路基同步协调施工,不应损坏或危及路基的稳定和安全。 1.0.14高速铁路路基工程施工爆破器材的储存、保管、运输、使用等方面必须符合国家爆破安全规程的相关规定。 1.0.15高速铁路路基工程应加强施工过程的安全管理和监控,高陡边坡、地质不良地段、临近营业线或营业线施工等危险性较大的路基工程应编制专项施工方案,并按相关规定经审批后实施。 1.0.16高速铁路路基工程施工中,应重视对农田水利和环境的保护,节约用地,少占耕地,临时占用的土地应及时做好复垦工作。 1.0.17高速铁路路基工程施工的各类人员应经过专门培训,合格后方可上岗。 1.0.18高速铁路路基工程施工资料的收集和整理工作应与工程进度同步,做到系统、完整、真实、准确,保正其具有有效的查考利用价值和完备的质量责任追溯功能,并应按相关规定做好资料的归档管理工作。 1.0.19高速铁路路基工程施工除应执行本指南外,尚应符合国家现行相关标准的规定。

高速铁路的隧道特点(DOC)

高速铁路的隧道的特点 高速铁路的隧道设计是由限界、构造尺寸、使用空间和缓解及消减高速列车进入隧道诱发的空气动力学效应两方面的要求确定的。 研究表明,以上两方面要求中,后者起控制作用。当列车进入隧道时,原来占据着空间的空气被排开。空气的粘性以及气流对隧道壁面和列车表面的摩阻作用使得被排开的空气不能象在隧道外那样及时、顺畅地沿列车两侧和上部流动,列车前方的空气受压缩,随之产生特定的压力变化过程, 引起相应的空气动力学效应并随着行车速度的提高而加剧。 1、由于瞬变压力造成乘员舒适度降低,并对车辆产生危害; 2、微压波引起爆破噪声并危及洞口建筑物; 3、行车阻力加大; 4、空气动力学噪声; 5、列车风加剧。 高速铁路进入隧道产生的空气动力学效应是由多种因素所确定的。行车速度,车头和车尾形状,列车横断面,列车长度,列车外表面形状和粗糙度,车辆的密封性等。隧道净空断面面积,双线单洞还是单线双洞,隧道壁面的粗糙度,洞口及辅助结构物形式,竖井、斜井和横洞,道床类型等。列车在隧道中的交会等。 列车进入隧道引起的压力变化是两部分的叠加: ①列车移动时从挤压、排开空气到留下真空整个过程引起的压力变化; ②列车车头进入隧道产生的压缩波以及车尾进入隧道产生的膨胀波在隧道两洞口之间来回反射产生的压力变化(Mach波)。 当双线隧道中同时有不同方向列车相向行驶时,叠加所产生的情况则更为复杂。列车在隧道中运行时(无相向行驶列车)车上测得的最大压力波动发生在第一个反射波到达列车时。Mach波以声速传播,对于长隧道,来回反射的周期相应较长。同时,在反射的过程中能量有所衰减。而对于短隧道,Mach波反射的周期大为缩短。同时,在反射过程中能量损失也较少,致使压力波动程度加剧。试验表明,压力波动绝对值,并不随隧道长度的减小而减小。因此,对高速铁路中的隧道,有的虽然不长(例如长度在1km左右),其可能引起的行车时的压力波动仍然不能忽视。但是,当隧道长度短到使列车首尾不能同时在其中时。则Math波的叠加不可能发生,压力波动程度当然随之缓解。当隧道长度为1km时,压力波动明显加剧,而当隧道长度进一步增大到3km时,压力波动则并无显著加剧,反而有缓解趋向。列车交会的双线隧道,最不利情况发生在列车交会在隧道中点时。 研究表明:对于压力波动,诸因素中隧道横截面积的影响是最大的。隧道净空断面面积,或者说,隧道阻塞比是最主要的因素。根据计算分析,提出压力波动与隧道阻塞比之间有下列关系。 3 N β kv P 2 max ?? 单一列车在隧道中运行时,N =1.3 ?? O.25。考虑列车交会时,N =2.16 ?? 0.06。式中:max P —3秒钟内压力变化的最大值;v —行车速度;?? —阻塞比;面积隧道内轨顶面以上净空列车横截面积=?? 。竖井(斜井、横洞)的存在会缓解压力波动的程度。竖井位置对减压效果的影响很大,并不是处于任何位置的竖井都能有较好的效果。竖井断面积5~lOm 2 即可,加大竖井的横断面积,并不能收到好的效果。根据Mach 波叠加情况可以理论地得到竖井的最佳位置:) 1 ( 2 M M L X ?? ?? 式中X —竖井距隧道进口距离;L —隧道长度;M —Mach数。 双线隧道列车在隧道中交会引起压力波动的叠加,情况十分复杂。列车交会时,压力波动最大值是单一列车运行情况的2.8倍。实际上,列车交会时所产生的压力波动同列车长度、隧道长度、会车位置、车速等多种因素有关。在车辆密封的情况下,假定车外压力 a P 为常数,车内压力随时间的变化可以表为:

相关主题
文本预览
相关文档 最新文档