当前位置:文档之家› PT6A_27型发动机压气机喘振问题的分析(精)

PT6A_27型发动机压气机喘振问题的分析(精)

PT6A_27型发动机压气机喘振问题的分析(精)
PT6A_27型发动机压气机喘振问题的分析(精)

T

ECHNOLOGY

科技纵横

2010.4CHINA EQUIPMENT

【摘

要】在Y12型飞机地面开车的时

候,从慢车加速到大功率时,偶尔发动机的声

音由尖哨转变为低沉;发动机的振动加大;转速不稳定,推力突然下降并且有大幅度的波动;发动机的排气温度升高;严重时会发生放炮偶尔会听到些异常声。这就是所谓的发动机发生了喘振。而对于涡轮螺旋桨发动机来说,喘振在压气机工作中危害很大,对于工作人员有些原理,发生原因不很清楚,解决办法也很棘手。本文对Y12型飞机压气机结构工作原理喘振原理加以分析说明。对工作中出现的故障从理论角度加以解释,从而使解决这方面问题有所借鉴。

【关键词】喘振压气机发动机流量攻角叶栅

1.Y12型飞机发动机简介

Y12型飞机的发动机是采用加拿大惠普公司生产的PT6A--27涡轮螺旋桨发动机。最大应急功率为680SHP 轴马力,最大Ng 为38100rpm 。它的压气机是三级轴流,一级离心,增压比为7:1.它的轴流压气机由转动件和静子件组成。转动件包括转子叶片(工作叶片轮盘和轴,被支撑在前后轴承上,静子件包括静子叶片(导向叶片和机匣。在三级转

子中,第一级转子由钛合金制成,

44个叶片,第二、第三级转子是不锈钢制成,有40个叶片。转子叶片是用楔形接合法安装到各自的圆盘中。

2.压气机工作原理2.1基元级速度三角形

轴流压气机有多级组成,每级由一圈转

子和静子级成。如果我们用某直径的圆柱面截取压气机的一个级,并展为平面,即得一个由两排平面叶栅组成的基元级。基元级是构成压气机的基本元素。

当气流经过动叶栅(转子,在它的前后构成两个速度三角,如图a

V 表示绝对速度,

w 为相对速度,u 为转子轮缘速度

由于轴流压气机级的增压比小,且在级的前后流程通道尺寸径向尺寸逐渐缩小,所以可假定在级的进出口的轴向分速不变,即V 1a =V 2a =V 3a 。如再假定V 1、V 3方向一致。就可把叶轮前后的两个速度三角形画在一起。如图b 。

2.2增压原理

从速度三角形看,气流经过动叶栅,相对速度从W 1降为W 2,绝对速度从V 1升到V 2,叶轮对气流做功,轮缘功

W u =(V 22-V 12/2+(W 12-W 22/2

上式右边第一项为气流经过转子所获动能,第二项表示气流经过转子有多少相对动能转化为气体静压的提高。

由于转子叶片对气流做功增加气流速度,根据气动原理,它的冲压也增加,但这些

增加量还比不上扩压的影响。如图,

当气流流过转子叶片时,叶片剖面形状决定了通道是扩散的。根据伯努力原理,气流的静压增强。当流过静子叶片时,动能没增加,气流速度、冲压会下降,其下降数量是前一级转子中所增加的值。由于静子叶片形成通道也是扩散的,它的静压也增加。这样气流通过每一基元级时速度几乎不变,而压力(冲压和静压的总和增加了。气流通过整个压气机时达到了压力增大的设计目的。

压气机能增加气流压力,主要是压气机涡轮输入的能量。而每个转子或静子与气流之间都要有一定攻角。这样就在每个叶片上下表面形成不同的压力区,如下图。

而这样排列又使相邻两个级的压力区相互影响。我们称它为瀑布效应。正是这种效应使气流进入压气机象进入泵中一样,气流在第一级转子高压区被压入第一级静子低压区以此方式气流流过整个压气机。

3.失速和喘振

3.1攻角:叶片进口气流的相对速度w 1

和方向β1在设计条件下也不一定与叶片几何进口角β1k 一致,它们的差值称为攻角。如图所示

i=β1k -β1=β1k -arctg(V 1a /u

从速度三角形可看出β1k 是一定的。攻角i 取决(V 1a /u ,当(V 1a /u 减小,则i 增加。攻角过大就会发生气流在压气机叶片的叶背分离。这就是失速。压气机叶片失速造成气流流

动减慢、

停止、甚至倒流,其效率下降。这只是局部的。对于发动机开车时,操作人员无法通过仪器知道哪片叶片失速。而这些失速叶片有连锁反应,当某一局部失速,他后面级的叶片都有失速可能,引起压气机喘振。

3.2失速的原因主要有:3.2.1进气气流不稳定,紊流(V 1a 下降3.2.2发动机突然加速引起富油,而造成

燃烧室压力增加(V 1a 下降

。3.2.3叶片形状损坏,影响气动力效果。3.2.4压气机涡轮轴损坏(V 1a u 都下降。3.3喘振

压气机喘振是气流沿压气机轴线方向发生的低频率,高振幅的震荡现象。这种低频率高振幅的气流振荡是一种很大的激振力来源,他会导致发动机机件的强烈机械振动和热端超温,并在很短的时间内造成机件的严重损坏,所以在任何状态下都不允许压气机

进入喘振区工作。当失速发展到一定程度,

整个压气机通道受阻,压比突然下降。后面的高压气体始终有一种回冲趋势。当气流前进的动能不足以克服气流回冲趋势(或反压作用,气流就要倒流。可是一发生倒流,随即消除了反压。气流在叶片推动下,又开始正向流动,流量又嫌小。如此反复,就造成了压气机内部气柱的纵向振荡,即喘振。

当它发生时,小面积能引起压气机气动性能

恶化,使叶片受到一种频率低、

强度大的振荡力;当喘振严重时,会发出类似于放炮声,低沉,甚至引起发动机熄火。对于发动机部件损害很大。

3.4压气机喘振发生的条件

3.4.1发动机转速减小而偏离设计值。3.4.2压气机进口总温升高。3.4.3发动机空气流量骤然减少。

3.4.4发动机损伤和翻修质量差如发动机的防喘机构有故障而失调,外来物等都可能造成压气机喘振

4.防喘措施

目前防止发生喘振的措施有四个方面:4.1在设计压气机时应合理选择各级之间流量系数。

4.2在轴流式压气机的第一级,或者前面若干级中,装设可转导向叶的防喘措施。

PT6A-27型发动机压气机喘振问题的分析

文/叶

204

T

ECHNOLOGY

科技纵横

2010.4CHINA EQUIPMENT

(上接第132页

冲突的主要源头。因此,在坚持可持续发展战略的要求下,有关资源和环保的问题成为制造业的热点。

3.4采用回收再生与复用技术,实现资源、能源和物料的可再生循环,传统的产品链包括;原材料、加工件、成套组装、使用、零部件更换或报废、二次原料资源,形成一个开式

循环、

能耗、资源消耗严重,甚至污染环境,采用新型加工工艺和修复技术,使已丧失功能的零部件重新恢复甚至超过原性能要求,发达国家早在上个世纪未就开始应用。其中,仅汽车零件回收、拆卸、翻新一项,每年就可获利数十亿美元的高额回报。

4.绿色制造技术的发展趋势4.1绿色产品清洁生产技术,包括节省资源的生产技术,主要从减少生产过程中消耗的能量,减少原材料和减少生产过程中的其他消耗三方面的研究。面向环保的生产技术,主要研究减少生产过程中的污染,包括减少生产过程中的废料,减少有毒有害物质、降低嗓声和振动等,产品包装技术,产品包装形式,包装材料,以产品贮存,运输等方面都要考虑环境影响的因素。

4.2再制造工程技术,也就是产品可拆卸,可回收,可修复技术,利用计算机辅助设

计,尽量简化工艺,优化配置提高系统运作效

率,使原材料和能源的消耗量少,使零部件标准化,模块化设计达到最佳效果,可方便拆卸,可回收,并使表面工程技术和热处理技术等选择进加工工艺技术,达到恢复原有性能和技术要求的目的,实现其再利用。

4.3成形制造技术向净成形方向发展,成形制造技术包括铸造、焊接、塑性加工等。目前它正从接近零件形状向直接制成工作,即精密成形或净成形方向发展。这些工作有些可以直接或者稍加处理即可用于组产品,这样就可以大大减少原材料和能源的消耗。

4.4干式切削加工技术,传统的切削加工都要使用切削液,切削液的广泛使用需消耗大量的能源泉和资源,而且切削液对环境的污染也较为严重,甚至危害人员健康,干式切削加工顾名思义就是加工过程中不采用任何冷却液的加工方式。干式切削加工简化了工艺、减少成本并消除了冷却液带来的一系列污染,如废液排放和回收等等;干式加工在国外已经得到应用,采用干车削、干磨削、干镗削等都取得了一定的成果。

4.5低能耗的绿色制造技术,例如:哈尔滨电机厂等机械制造企业在生产机械设备时,需要大量钢铁、电力、煤炭和有色金属等资源,随着地球上矿物资源的减少和近期国

际市场石油的不断波动,节能降耗已经是不争的事实,对此采取绿色材料,减少加工余量,虚拟设计,新型刀具材料等先进国工技术,达到最大降低能耗的目的。

结束语

绿色产品及设计是人类可持续发展战略在制造业的体现。它考虑环境和资源既要满足经济发展的需要,又使其作为人类生存的要素之一而直接满足人类长远生存的需要,从而形成了一种综合性的发展战略。研究表明,产品性能的70%-80%是由设计阶段决定的,设计阶段是产品生命周期的源头,因此绿色设计是生产绿色产品的保障,是绿色制造技术的核心。

绿色制造技术已成为制造业先进技术的重要标志,也是我国经济建设可发展的重要因素之一。制造企业应当认识到,绿色制造不仅是一个社会效益显著的行为,也是取得经济效益的有效手段。要积极培养和引进绿色制造方面的人才,加强同国外绿色制造方面的专家进行交流,吸收先进的绿色制造技术,从而推进绿色制造技术的研究和开发应用。

(作者单位:哈尔滨电机厂有限责任公司大电机研究所

4.3在压气机通流部分的某一个或若干个截面上,安装防喘放气阀的措施。

4.4把一台高压比的压气机分解成为两

个压缩比较低的高、

低压压气机,依次串联工作;并分别用两个转速可以独立变化的透平来带动的双轴(转子发动机方案,可以扩大高压比压气机的稳定工作范围。

(1放气防喘方式

本文着重介绍中间级放气法,放气防喘方法就是压气机中间级放气。放气位置在压气机中部由活门控制。放气活门根据发动机转速在一定范围内工作。以压气机进口压力或压力比的变化来自动改变放气活门的开与关。

(2通用特性图和喘振裕度

放气活门的设计必然损失了一些高压气流,浪费了来自涡轮对气流作的功作为代价。这种思想是根据发动机过渡控制方案而产生的。目的就是使发动机在过渡工作状态迅速、稳定、可靠地进行。而按压气机进出口压力的函数关系设计过渡控制是目前采用较普遍的方法。空气压力升高一般反映了空气流量的增大,这种保持Ng 的增加(即增压比的增加与气流量的增加相适应的加速控制方案也便于实现最佳防喘加速供油曲线。

如图,每台压气机在给定增压比\速度

和气流质量的条件下,都有最佳工作状态,这就是最佳设计点。图中看出设计点在失速区以下的稳态线上。沿着稳态线改变压气机增压比、发动机速度、气流质量都不能发生喘振。在给定压气机速度后,在稳态线和失速线之间的工作区域很窄,通常用喘振裕度表示,它可以描述压气机可靠工作的程度。如果超过这个区域,压气机就要发生喘振;相反,如果工作区在稳态线以下,就没有达到发动机设计的目标,所要求的功率就不可能达到。

(3Y 12防喘放气活门工作原理

Y12飞机发动机的放气活门设计要求是Ng 在86%开始关,91%全关闭,放气活门装在燃气发生器外壳的7点钟处,由四个螺栓固定住。它有一个活塞式的活门装在一个带口的罩壳中。一个滚动隔膜把这个活塞支撑在罩壳的镗孔中。这薄膜可以使活塞向开口或闭口方向作全行程的移动而同时又有效地在活塞顶部封严住空气室。燃气发生器外壳中

有一个口子,让压气机级间的空气流(P2.5

可以直接通到放气活门活塞的底部(如下图

压气机的输出空气(P3

分流出来,通过这个活门件中的一个固定小孔进行计量,然后经过活塞的顶上通过一个计量堵塞(收集-扩散小孔流到活门外面的大气中。在两个小孔之间的控制压力(Px 作用在放气活门活塞的顶上,这样当Px 大于P2.5时放气活门关

闭。在关闭位置时由于Px 的作用,活塞压在它的座中而把口子封住。相反当Px 小于P2.5,

放气活门打开,从而让级间空气(P2.5释放到大气中。从而达到防喘的目的。

(4放气活门系统容易出现的故障问题在平时的维护中,会遇到一些问题:

①膜片漏气,在这种情况下,Px =P2.5活门关不严或关闭晚,气流损失大,增压比小,从压气机特性曲线可看出压气机效率降低,工作区在稳态线以下,发动机功率也会降低。表现为Ng 上升慢,且达不到最大;扭矩TQ 上升更慢,且小得多。

②Px 孔堵,放气活门晚关,现象类似膜片漏气。

③计量孔堵,Px 压力上升,活门早关,易发生喘振。

发生上述故障后,采取措施是:按《Y12维护手册》的规定,检查气路,用超声波清洗气滤,或更换放气活门组件。

小结

本文讲述压气机的结构,工作原理。着重阐明压气机失速,喘振原理,以Y12涡轮螺旋桨发动机的防喘为例子,描述了在外场中该系统的典型故障分析。对于从事

Y12型飞机

维护的空、

地勤人员的工作是个参考。限于作者的理论水平和实践经验,文中必有不少缺点和错误,请读者批评指正。

参考文献

[1]《航空燃气涡轮发动机》尚义著国防工业出版社.

[2]《航空发动及专业英语》邓福庆著中国民航学院出版.

(作者单位:哈尔滨飞机工业集团有限责任公司

205

喘振原因分析及对策

离心式鼓风机喘振原因分析及对策 离心式鼓风机在使用过程中发生的喘振现象,对喘振产生的原因和影响喘振的主要因素进行了分析,提出了判断喘振的方法,并总结了几种消喘振的解决方案,如采用变频器启动、采用出风管放气、降低生物池的污泥浓度、保证管路畅通改变鼓风机的“争风”状态、加强人员技能培训、定期维护保养等。 关键词:离心式鼓风机;喘振;对策 1喘振 1.1喘振产生的原因 在鼓风机运转过程中,当流量不断减少到最小值Qmin(喘振工况)时,进入叶栅的气流发生分离,在分离区沿着叶轮旋转方向并以比叶轮旋转角速度小的速度移动。当旋转脱离扩散到整个通道,会使鼓风机出口压力突然大幅下降,而管网中压力并未马上减低,于是管网中的气体压力就大于鼓风机出口处的压力,管网中的气体倒流向鼓风机,直到管网中的压力下降至低于鼓风机出口压力才停止。接着,鼓风机开始向管网供气,将倒流的气体压出去,使机内流量减少,压力再次突然下降,管网中的气体重新倒流至风机内,如此周而复始,在整个系统中产生周期性的低频高振幅的压力脉动及气流振荡现象,并发出很大的声响,机器产生剧烈振动,以致无法工作,这就产生了喘振。 1.2影响喘振的主要因素 ①转速 离心式压缩机转速变化时,其性能曲线也将随之改变。当转速提高时,压缩机叶轮对气体所做的功将增大,在相同的容积流量下,气体的压力也增大,性能曲线上移。反之,转速降低则使性能曲线下移。随着转速的增加,喘振界限向大流量区移动。 ②管网特性 离心式鼓风机的工作点是鼓风机性能曲线与管网特性曲线的交点,只要其中一条曲线发生变化(如将鼓风机出口阀关小),工作点就会改变。管网阻力增大,其特性曲线将变陡,致使工作点向小流量方向移动。 ③进气状态 在实际生产中,进气压力过低、背压过高、进(排)气量忽然减少、进气温度过高、鼓风机转速忽然降低、机械故障、进口风道过滤网堵塞、生物池污泥浓度过高、曝气头堵塞、喘振报警装置失灵等都会引起鼓风机喘振。 2喘振的判断及消除 2.1喘振现象的判断 ①鼓风机抽出的风量时大时小,产生的风压时高时低,系统内气体的压力和流量也会发生很大的波动。

王宏强 丰田1ZR发动机喘振加速不良案例分析

学习情境丰田1ZR发动机喘振/加速不良案例分析 ?学习目标: 通过本任务的学习,学生应能掌握:丰田1ZR发动机产生喘振/加速不良的故障原因以及排除的方法。 ?时间分配建议:7课时 学习任务1:咨询获取2课时学习任务2:决策和计划1课时学习任务3:故障诊断和修复2课时学习任务4:维修质量检查1课时学习任务5:评估和展示1课时 ?分组建议: 每5人一小组,每三小组一辆车,每组安排一位组长负责相关的课堂管理、任务分工,并负责场地卫生。 ?器材准备: 卡罗拉1.6自动档三辆,丰田KT600诊断仪三台,数字万用表三个,诊断检测连接线若干,常用工具三套,维修手册。 学习任务1:咨询获取 派工单: 1、任务:一辆卡罗拉1.6自动档轿车,车主反应发动机喘振/加速不良 2、任务要求:请制定工作计划,并利用诊断设备确定故障位置,并对故障部件进行检测和更换。

一、知识链接 分析故障原因 1.1燃油管路和燃油泵

1.2电路图分析

2.1空气流量传感器 2.1.1、空气流量计作用 空气流量计是最重要的传感器之一,用来检测吸入空气质量或体积。吸入空气的质量或体积的信号用于计算基准喷射时间和基准点火提前角。安装在空气滤清器和节气门之间的进气管上,以便测量进入发动机气缸的所有空气流量,并转换成电压信号送给发动机控制单元ECU。 2.1.2、空气流量计结构特点 热线式空气流量计 构造: 如图质量型空气流量计是安装在进气道上的插入型,它使一部分气流进入检测区域。用作传感器的一条铂热线和热敏电阻被安放在检测区域。通过直接测量进气质量,检测精度可以提高,并且几乎没有进气阻力。而且,由于没有使用专门的机械,这种流量计有很好的耐久性。图示的空气流量计也有一个嵌入式进气温度传感器。

汽车发动机振动噪声测试系统方案

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10 C ~50C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

发动机喘振故障的形成原因及防范措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 发动机喘振故障的形成原因及防范措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4642-29 发动机喘振故障的形成原因及防范 措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 摘要:涡轴8系列发动机为自由涡轮式的涡轮轴发动机,具有性能比较先进,尺寸小,重量轻,结构简单,工作可靠,使用维护方便的特点。发动机的压气机由一级跨音轴流压气机和一级超音离心压气机组成的混合式压气机,具有结构简单、重量轻、增压比高、性能平稳的特点。本文根据发动机的压气机工作原理分析喘振的原因并提出维护建议及防止喘振的措施。 关键词:发动机喘振空气压力故障 1失速与喘振的概述 工作叶轮进口处相对失速的方向与叶片弦线之间的夹角叫做攻角。影响攻角的因素有两个:一是转速,另一个是工作叶轮进口处的绝对速度(包括大小和方

向)。在攻角过大的情况下,会使气流在叶背处发生分离,这种现象叫做失速。失速区九朝着与叶片旋转方向相反的方向移动。这种移动失速比周围速度要小,所以站在绝对坐标系上观察时,失速区以较低的转速与压气机叶轮做同方向的旋转运动,称为旋转失速。 2发动机内部空气系统 发动机工作时,外界空气经直升机上的进气道流入压气机,首先在轴流压气机中得到压缩,然后再进入离心压气机被进一步压缩。压缩后的高压空气进入燃烧室,与燃油混合燃烧,生成高压高温的燃气。从燃烧室出来的燃气流向涡轮,首先在燃气发生器涡轮中膨胀做功,带动压气机工作;然后燃气进入自由涡轮中进一步膨胀做功,从而向外提供功率,驱动直升机旋翼等工作。 2.1 篦齿(或称迷宫)封严装置的密封原理。篦齿封严装置(或称迷宫封严装置)是利用篦齿前后空气的压差来达到密封目的。增压空气从压力高的一侧通过篦齿装置很小的间隙流向压力低的一侧,空气的

压气机的压气过程

习题提示与答案 第八章 压气机的压气过程 8-1 设压气机进口空气的压力为0.1 MPa ,温度为27 ℃,压缩后空气的压力为0.5 MPa 。设压缩过程为:(1)绝热过程;(2)n =1.25的多变过程;(3)定温过程。试求比热容为定值时压气机压缩1 kg 空气所消耗的轴功及放出的热量。 提示:略。 答案:(1)(w s )c s =-176 kJ/kg ;(2)(w s )c n =-163 kJ/kg ,q c n =-48.94 kJ/kg ; (3)(w s )c T =-138.6 kJ/kg ,q c T =-138.6 kJ/kg 。 8-2 按上题所述条件,若压气机为活塞式压气机,其余隙比为0.05,试求三种压缩过程下压气机的容积效率。 提示:余隙比h s V V ,容积效率1])[(111 2??=n h s V p p V V η。 答案:=0.892,=0.869,=0.8。 Vs ηVn ηVT η 8-3 设活塞式压气机的余隙比为0.05,试求当压气机的压缩过程分别为绝热过程、n =1.25的多变过程、定温过程时,压气机的容积效率降低为零所对应的增压比。 提示:容积效率1])[(1112?? =n h s V p p V V η。 答案:( 12p p )s =70.98;(12p p )n =44.95;(12p p )T =21。 8-4 有一台两级压气机,其进口的空气压力为0.1 MPa ,温度为17 ℃,压气机产生的压缩空气的压力为2.5 MPa 。两级气缸中的压缩过程均为n =1.3多变过程,且两级中的增压比 相同。在两级气缸之间设置有中间冷却器,空气在其中冷却到17 ℃后送入高 压气缸。试求压气机压缩1 kg 空气所需要的轴功,以及中间冷却器和两级气 缸中所放出的热量。 两级压缩的示功图 提示:两级压缩的增压比相同,压缩过程多变指数相同,则两级压缩耗 功量相同;中间冷却器中空气经历的是定压冷却过程,过程放热量q=c p 0ΔT , 且充分冷却时,T 2′ =T 1;压缩过程的初始温度相同、增压比相同,则过程热 量也相同。 答案:(w s )c =-324.5kJ/kg ,q c =-62.26kJ/kg ,q =-131kJ/kg 。

风机运行中常见故障原因分析及其处理

风机运行中常见故障原因分析及其处理方法
风机是一种将原动机的机械能转换为输送气体、给予气体能量的机械,是机 械热端最关键机械设备之一,虽然风机的故障类型繁多,原因也很复杂,但根据 经验实际运行中风机故障较多的是:轴承振动、轴承温度高、运行时异响等。 1 风机轴承振动超标 风机轴承振动是运行中常见的故障,风机的振动会引起轴承和叶片损坏、螺 栓松动、机壳和风道损坏等故障,严重危及风机的安全运行。风机轴承振动超标 的原因较多, 如能针对不同的现象分析原因采取恰当的处理办法,往往能起到事 半功倍的效果。 1.1 叶片非工作面积灰引起风机振动 这类缺陷常见现象主要表现为风机在运行中振动突然上升。 这是因为当气体 进入叶轮时,与旋转的叶片工作面存在一定的角度,根据流体力学原理,气体在 叶片的非工作面一定有旋涡产生, 于是气体中的灰粒由于旋涡作用会慢慢地沉积 在非工作面上。 机翼型的叶片最易积灰。当积灰达到一定的重量时由于叶轮旋转 离心力的作用将一部分大块的积灰甩出叶轮。 由于各叶片上的积灰不可能完全均 匀一致, 聚集或可甩走的灰块时间不一定同步,结果因为叶片的积灰不均匀导致 叶轮质量分布不平衡,从而使风机振动增大。 在这种情况下,通常只需把叶片上的积灰铲除,叶轮又将重新达到平衡,从 而减少风机的振动。 在实际工作中,通常的处理方法是临时停机后打开风机叶轮 外壳,检修人员进入机壳内清除叶轮上的积灰。 1.2 叶片磨损引起风机振动 磨损是风机中最常见的现象,风机在运行中振动缓慢上升,一般是由于叶片 磨损, 平衡破坏后造成的。 此时处理风机振动的问题一般是在停机后做动平衡校 正。 1.3 风道系统振动导致引风机的振动 烟、 风道的振动通常会引起风机的受迫振动。这是生产中容易出现而又容易 忽视的情况。风机出口扩散筒随负荷的增大,进、出风量增大,振动也会随之改 变,而一般扩散筒的下部只有 4 个支点,如图 2 所示,另一边的接头石棉帆布是 软接头,这样一来整个扩散筒的 60%重量是悬吊受力。从图中可以看出轴承座 的振动直接与扩散筒有关,故负荷越大,轴承产生振动越大。针对这种状况,在 扩散筒出口端下面增加一个活支点(如图 3),可升可降可移动。当机组负荷变 化时,只需微调该支点,即可消除振动。经过现场实践效果非常显著。该种情况 在风道较短的情况下更容易出现。

最新航空发动机构造复习题

一、填空题(请把正确答案写在试卷有下划线的空格处) 容易题目 1. 航空涡轮发动机的五大部件为进气装置;压气机;燃烧室;涡轮和排气装置;其中“三大核心”部件为:压气机;燃烧室和涡轮。 2. 推力是发动机所有部件上气体轴向力的代数和。 3. 轴流式压气机转子的组成盘;鼓(轴)和叶片。 4. 压气机转子叶片的组成:叶身和榫头。 5. 压气机叶片的榫头联结形式有销钉式榫头;燕尾式榫头;和枞树形榫头。 6. 压气机静子的固定形式T形(或者燕尾形)榫头;柱形榫头和焊接在中间环或者机匣上。 7. 燃气涡轮的组成:转子;静子和冷却系统。 8. 涡轮叶片的特点剖面厚;弯曲大;和内腔有冷却通道。 9. 涡轮不可拆卸式盘轴联接的方案有径向销钉联接方案;盘、轴焊接联接方案和盘轴整体方案 10. 燃烧室的基本类型有:分管式;环管式;环形式;回流式和折流式。 11. 火焰筒的组成:涡流器;筒体及传焰管(连焰管) 12. 加强的盘式转子是在盘式转子的基础上增加了定距环和将轴加粗。 13. 在压气机的某些截面放气的目的是防止压气机发生喘振 14. 燃气涡轮发动机压气机的作用是提高空气压力。 15. 燃气涡轮发动机燃烧室的作用是燃油与空气混合并进行燃烧,提高燃气的温度。 16. 燃气涡轮发动机加力燃烧的作用是加力时,燃油与空气混合并进行燃烧,提高喷管前燃气的温度 17. 燃气涡轮发动机喷管的作用是燃气在其中膨胀加速,高速喷出。 18. 外涵道是涡轮风扇发动机的附件。 19. 燃气涡轮发动机附件机匣的作用是安装和传动附件 20. 影响喷气发动机推力的因素有空气流量和流过发动机的气流的速度增量。 21. 燃气涡轮发动机中,组成燃气发生器的附件有压气机、涡轮和燃烧室。 22. 航空发动机压气机的功用是提高气体压力。 23. 航空发动机压气机可以分成轴流式、离心式和组合式等三种类型。 24. 轴流式压气机叶栅通道形状是扩散形。 25. 轴流式压气机级是由工作叶轮和整流环组成的。 26. 在轴流式压气机的工作叶轮内,气流相对速度减小,压力、密度增加。 27. 在轴流式压气机的整流环内,气流绝对速度减小,压力增加。 28. .多级轴流式压气机由前向后,叶片长度的变化规律是逐渐缩短。 29. 气流M数的定义是某点气流速度与该点音速的比值,称为该点的气流M数。 30. 在绝能条件下,要使亚音速气流加速,必须采用收敛形管道。 31. 在绝能条件下,要使超音速气流加速,必须采用扩散形管道。 32. 在绝能条件下,要使气流从亚音速加速到超速,必须采用先收敛后扩散的管道。 33. 在绝能条件下,要使亚音速气流减速,必须采用扩散形管道。 34. 压气机增压比的定义是压气机出口压力与进口压力的比值。 35. 压气机增压比的大小反映了气流在压气机内压力提高的程度。 36. 压气机由转子和静子等组成。 37. 压气机转子可分为鼓式、盘式和鼓盘式。 38. 压气机转子可分为鼓式、盘式和鼓盘式。 39. 压气机转子可分为鼓式、盘式和鼓盘式。 40.压气机的盘式转子可分为盘式和加强盘式。 41.压气机转子叶片上的凸台的作用是防止叶片振动。 42.压气机转子叶片通过燕尾形榫头与轮盘上的燕尾形榫槽连接在轮盘上。 43.多级轴流式压气机由前向后,转子叶片的长度的变化规律是逐渐缩短。 44.压气机进口可变弯度导流叶片(或可调整流叶片)的作用是防止压气机喘振。 45.压气机是安装放气带或者放气活门的作用是防止压气机喘振 46.采用双转子压气机的作用是防止压气机喘振。 47.压气机进口整流罩的功用是减小流动损失。 48.压气机进口整流罩做成双层的目的是通加温热空气 49.涡轮的功用是把高温、高压燃气的部分热能、压力能转变为旋转地机械功从而带动压气机和其他附件工作 50.涡轮叶片一般通过枞树形榫头与轮盘上的榫槽连接到轮盘上。 51.为了冷却涡轮叶片,一般把叶片做成空心的,通冷却空气。 52.涡轮叶片带冠的目的是减小振动。 53.在两级涡轮中,一般第二级涡轮叶片更需要带冠。 54.空气—空气热交换器的功用是利用外涵道的空气给冷却涡轮的空气降温 55.航空发动机的燃烧室可以分为分管形、环管形和环形。 56.航空发动机的燃烧室可以分为分管形、环管形和环形。 57.航空发动机的燃烧室可以分为分管形、环管形和环形。 12.鼓式转子的优点是抗弯刚性好,结构简单。 三选一 1.加力燃烧室前的气流参数不变,那么,发动机的推力是: A 。 A.增大; B.减小; C.不变 2.直通管气体力恒指 A 方向 A.收敛; B.扩散; C.直径 3.卸荷使发动机推力 B 。 A.增大; B. 不变; C. 减小 4.涡桨发动机承受的总扭矩为 B 。 A.零; B.不为零; C.与螺旋桨扭矩无关 5.发动机转子所受的陀螺力矩是作用在 A 。 A.静子上; B.转子上; C.飞机机体上 6.在恰当半径处 C 。 A.盘的变形大于鼓的变形; B.盘的变形小于鼓的变形; C. 盘的变形等于.鼓的变形 7.涡喷发动机防冰部位 A 。 A.进口导流叶片; B.压气机转子叶片; C.涡轮静子叶片 8.涡轮叶片榫头和榫槽之间的配合是 B 。 A.过渡配合; B.间隙配合; C.过盈配合 9.首当其冲地承受燃烧室排出的高温燃气的部件是A 。 A.涡轮一级导向器; B. 涡轮二级导向器; C. 涡轮三级导向器 10.加力燃烧室的功用是可以 C 。 A.节能; B.减小推力; C.增大推力 四选一 1.燃气涡轮发动机的核心机包括 C 。 A.压气机、燃烧室和加力燃室B.燃烧室、涡轮和加力燃室 C.压气机、燃烧室和涡轮D.燃烧室、加力燃室和喷管 答案:C。 2.下列发动机是涡轮喷气发动机的是 D 。 A.АЛ—31ФB.Д—30 C.WJ—6 D.WP—13 答案:D。 3.下列发动机属于涡轮风扇发动机的是_____A____。 A.АЛ—31ФB.WP—7 C.WJ—6 D.WP—13 答案:A。 8.发动机正常工作时,燃气涡轮发动机的涡轮是____ B.燃气推动____旋转的。 9.气流在轴流式压气机基元级工作叶轮内流动,其____C_ C.相对速度降低,压力增加____。 10.气流在轴流式压气机基元级整流环内流动,其__C_______。A.相对速度增加,压力下降B.绝对速度增加,压力增加C.相对速度降低,压力增加D.绝对速度下降,压力增加答案:C。 11.气流流过轴流式压气机,其_____C____。 A.压力下降,温度增加B.压力下降,温度下降 精品文档

发动机喘振故障的形成原因及防范措施

编号:SM-ZD-86190 发动机喘振故障的形成原 因及防范措施 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

发动机喘振故障的形成原因及防范 措施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 摘要:涡轴8系列发动机为自由涡轮式的涡轮轴发动机,具有性能比较先进,尺寸小,重量轻,结构简单,工作可靠,使用维护方便的特点。发动机的压气机由一级跨音轴流压气机和一级超音离心压气机组成的混合式压气机,具有结构简单、重量轻、增压比高、性能平稳的特点。本文根据发动机的压气机工作原理分析喘振的原因并提出维护建议及防止喘振的措施。 关键词:发动机喘振空气压力故障 1失速与喘振的概述 工作叶轮进口处相对失速的方向与叶片弦线之间的夹角叫做攻角。影响攻角的因素有两个:一是转速,另一个是工作叶轮进口处的绝对速度(包括大小和方向)。在攻角过大的情况下,会使气流在叶背处发生分离,这种现象叫做失速。

基于ANSYS 的涡轴发动机组合压气机转子

2006年用户年会论文 1 基于ANSYS 的涡轴发动机组合压气机转子 参数化仿真系统开发 纪福森,吴铁鹰,陈伟 [南京航空航天大学 能源与动力学院,210016] [ 摘 要 ] 本文分析了航空涡轴发动机组合压气机转子的结构特点和设计特点,并将近年来广泛提及的参 数化设计思想引入到组合压气机的设计分析中,利用ANSYS 提供的APDL(ANSYS Parametric Design Language)和UIDL(User Interface Design Language)开发工具,开发了涡轴发动 机组合压气机参数化有限元分析系统。实现了某涡轴发动机组合压气机转子各级叶片、各级轮 盘、各级叶盘以及整级组件的全参数驱动的有限元建模及分析。 [ 关键词 ] 涡轴发动机,组合压气机,整体叶盘,参数化设计分析 Development of Parametric Simulation System of Turbine Shaft Engine Combined Compressor Rotor JiFusen, WuTieying, ChenWei [Nanjing University of Aeronautics and Astronautics College of Energy and Power Engineering, 210016] [ Abstract ] In this paper, structural characteristic and design characteristic of turbine shaft engine combined compressor rotor were analyzed, and the parametric design method was used in the design and analysis of combined compressor rotor. By the tools of APDL (ANSYS Parametric Design Language) and UIDL (User Interface Design Language), parametric finite element analysis system of turbine shaft engine combined compressor rotor was developed. At last, the complete parametric finite element model and analysis of blades, disks, blisks and combined compressor rotor was realized. [ Keyword ] turbine shaft engine, combined compressor, blisk, parametric design and analysis.

压气机的理论压缩功

第9章压气机 一、教案设计 教学目标:使学生熟悉压气机热力过程,活塞式压气机工作原理,耗功量计算;余隙容积对压气机性能的影响;多级压缩与级间冷却;叶轮式压气机的工作原理。知识点:活塞式压气机工作原理,耗功量计算;余隙容积对压气机性能的影响;多级压缩与级间冷却;叶轮式压气机的工作原理。 重点:压气机耗功量的计算方法,提高压气机效率的方法和途径。 难点:多级压缩过程中各级增压比的确定,提高压气机效率的方法和途径。教学方式:讲授+多媒体演示+课堂讨论 师生互动设计:提问+启发+讨论 问:余隙容积的存在使压气机产气量下降,对实际耗功有没有影响?。 问:活塞式压气机为什么应采用隔热措施? 问:为什么若实施定温压缩产生高压气体,可不必分级压缩、中间冷却? 问:为什么活塞式压气机适用于高压比、小流量;叶轮式压气机适用于小压比、大流量? 学时分配:2学时 二、基本知识 第一节气体的压缩及压气机的耗功 一、气体压缩 1压气机:用来压缩气体的设备 2.。压气机的分类 1)压气机按其产生压缩气体的压力范围,习惯上常分为: ①通风机(pg<0.01MPa); ②鼓风机(0.01MPa0.3Mpa)。 2)按压缩原理和结构分压气机分为: 活塞式、叶轮式(离心式和轴流式)及引射式。

三、压气机的实际耗功(压气机的效率)21 '2'1 cs cs cs w h h w h h η-== -21 '2'1 cs cs cs w T T w T T η-= = -1.压气机的实际耗功 对于理想气体 1 2s p 1 p 2 s T 22.压气机的绝热效率 '2'1 cs w h h =-压气机的实际耗功 第二节 单机活塞式压气机 一、单机活塞式压气机工作过程

浅析离心鼓风机喘振现象及处理方法

浅析离心鼓风机喘振现象及处理方法 李保川 光大水务(德州)有限公司 摘要:以光大水务(德州)有限公司南运河污水处理厂鼓风机为研究对象,结合其实际运行情况,对鼓风机运行过程中产生喘振的原因进行分析研究并制定出应对对策以及验证其可行性。 关键词:污水处理厂;离心式鼓风机;喘振; 光大水务(德州)有限公司南运河污水处理厂处理规模15万m3/d,一期工程处理规模为7.5万m3/d,二期工程处理规模为7.5万m3/d,采用的污水处理工艺为A/A/O工艺。生物池为一座两池,设计流量:Q=0.868m3/s,平面尺寸:109.90m×60.30m,分厌氧区、缺氧区、好氧区。曝气方式采用盘式微孔曝气,鼓风机采用上海华鼓鼓风机有限公司生产的多级低速离心式鼓风机,三用一备。配套驱动电机为西门子电机(中国)有限公司贝德牌电机。 多级低速离心式鼓风机型号为C110-1.7,进口压力101kpa,进口流量110m3/min,出口压力0.07Mpa,额定功率200Kw,转速2970r/min。配套驱动电机型号为BM315L2-2,功率200KW,转速2975r/min。曝气系统是整个污水处理工艺流程最为核心的部分之一,而鼓风机又是曝气系统的核心设备,所以,鼓风机运行质量的好坏对污水处理后是否符合标准起着决定性的作用。因此,鼓风机一旦出现故障,对污水处理厂将会是致命的打击。多级离心式鼓风机常见的故障以喘振为代表现象。

1.什么是喘振以及危害 “喘振”是离心鼓风机性能反常的一种不稳定的运行状态,在运行过程中,当负荷减小,负载流量下降到某一定值时出现工作不稳定,管道中的气体压力大于出口的气体压力,这时管道中的气体就会倒流回鼓风机,直到管道中的压力下降至低于出口处的压力才会停止,鼓风机会产生剧烈震动,同时会伴有如喘息一般“呼啦”“呼啦”的强烈噪音。喘振现象出现时,鼓风机的强烈震动会使机壳、轴承也出现强烈振动,并发出强烈、周期性的气流声。轴承液体润滑条件会遭到破坏,轴瓦会烧坏,转子与定子会产生摩擦、碰撞,密封元件也将严重破坏,更甚至会发生轴扭断。同时,对A/A/O池中的DO量影响严重,关系到出水达标问题。 2.鼓风机产生喘振的原因 压力/Mpa Q/(m3/h) 图1 转速恒定状态下进口空气流量与出口压力的特性曲线图离心鼓风机在转速恒定的状态下,其进口空气流量Q与出口的压力的特性如图1所示。A点与B点是鼓风机正常稳定运行状态的两个临界点,也就是说只有在A点与B点这个稳定区间内鼓风机才是正常运行状态。当鼓风机的输出流量超过B点时则为不稳定区域,处于不

发动机振动特性分析与试验

发动机振动特性分析与试验 作者:长安汽车工程研究院来源:AI汽车制造业 完善的项目前期工作预示着更少的项目后期风险,这也是CAE工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验,很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH性能进行分析甚至优化显得十分重要。 众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。 发动机结构振动分析方法简介 图1 发动机结构振动分析方法 如图1所示,发动机结构噪声分析方法包括以下几个步骤: 1. 动力总成FE建模及模态校核 建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2. 动力总成模态压缩 缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。 3. 运动件简化模型建立 发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。 4. 动力总成多体动力学分析 在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。 5. 动力总成结构振动分析 基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。 实例分析 1. 分析对象 以一款成熟的直列四缸1.5L发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm,冲程85mm,缸间距84mm,最大缸压6MPa。 2. 坐标定义 为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

发动机压气机转子的工艺设计及夹具设计(有proe图CAD图)机械毕业设计

三级转子是汽车发动机压气机的关键零件,发动机压气机转子是用来对空气作功 产生反作用推力,并将空气压缩后送到燃烧室和涡轮;发动机转子由于在高转速 下工作,承受着相当大的而且复杂的负荷,例如,扭矩、轴向力、径向方、陀螺 力矩及振动等,因此对其加工要求十分严格。 而高精度加工在国内来讲也是制造业一个较困难的课题,叶型加工包含了多项高 尖技术,蕴藏了巨大的科研价值和经济价值,所以研究叶型加工工装具有重要意 义。发动机压气机Ⅲ级转子就是这样一个零件,现以这个零件为例来研究叶型加 工的工艺规程及夹具设计。 该转子的加工过程是比较复杂的,这是由零件本身的复杂程度所决定的。加工该 零件的最大难题之一就是要克服它的高精度要求。对表面的车削加工;对叶形铣 削加工;对成型面的车削加工;以及在直径87的圆周上钻头8个孔的钻削加工 都是本次加工的重点中的重点。且为了保证上述加工的精度,必须有针对性的对 其进行专用夹具的设计,以求达到最好的效果。 目录 摘要--------------------------------------------------------------------------------------------------------------------------------------- 2 ABSTRACT-------------------------------------------------------------------------------------------------------- 错误!未定义书签。第一章序论--------------------------------------------------------------------------------------------------------------------------- 4 1.1工艺的内容-------------------------------------------------------------------------------------------------------------------------- 4 1.1.1机械制造工艺的目标------------------------------------------------------------------------------------------------------- 5 1.2工艺的任务-------------------------------------------------------------------------------------------------------------------------- 5 1.3工艺规程的基本要求 ------------------------------------------------------------------------------------------------------------- 6 1.3.1工艺规程的作用 ------------------------------------------------------------------------------------------------------------- 6 1.3.2工艺规程的选择 ------------------------------------------------------------------------------------------------------------- 6 1.3.3工艺规程的编制 ------------------------------------------------------------------------------------------------------------- 6 1.3.4工艺规程的设计准则------------------------------------------------------------------------------------------------------- 7 1.3.5制定工艺规程的原始资料------------------------------------------------------------------------------------------------- 7 1.3.6生产类型的工艺特征------------------------------------------------------------------------------------------------------- 8第二章零件工艺方案制定 --------------------------------------------------------------------------------------------------------- 10

航空燃气涡轮发动机喘振问题分析

航空燃气涡轮发动机喘振问题分析 学生:刘哲指导老师:周长春 摘要 随着我国民航的迅速发展,飞机的数量和种类越来越多,对飞行安全的要求更高,发动机的好坏是保证飞行安全的关键,发动机出问题,直接影响到整个飞行安全,本文通过分析喘振对发动机使用性能及发动机经济性能方面的影响,指出了发动机喘振形成的根本原因,喘振的形成及喘振对飞机的危害,并指出这些影响在飞行中的实际意义和避免喘振的措施。 关键词:发动机;喘振;气流分离;防喘;综述

英文摘要:

引言 1903年12月7日“飞行者”1号,成功载入动力飞行,随着飞机广泛应用在军事、运输领域,航空工业尤其是民用航空业得到迅速发展,人们对飞机的性能也提出了更高的要求,如战斗机较高的机动性能,民用飞机较好的经济性及可靠性等。飞机性能的提高,在很大程度上取决动力装置的发展,人们需要推力更大,速度、高度性能更好的动力装置。实践证明。燃气涡轮发动机能够满足这些要求。 发动机是现代飞机重要的组成部分,发动机的工作对飞机的飞行安全和效益起着决定性的作用,所以装在航线运输机上的燃气涡轮发动机应满足下列基本性能要求: 1 发动机推力大,重量轻。在发动机重量一定时,发动机发出尽可能大的推力,尤其是是起飞推力,可有效改善飞机的起飞、复飞及爬升性能。 2 发动机燃油消耗率低。在一定的飞行条件下,发动机燃油消耗率越低,发动机工作效率越高,经济性越好;同时油耗越低,航线飞行载油量可相对减小,从而降低运行成本。 3 发动机应具有良好的高空性能和速度性能。一方面,飞机应能爬升到11,000米左右,因随着高度上升,大气温度降低,可提高发动机的工作效率,改善发动机的经济性,同时,在平流层飞行,气象条件较稳定,增加了飞机安全性和舒适性;另一方面,在确保发动机的工作效率条件下,尽可能提高飞行速度,可缩短飞行时间,目前,高涵道涡扇发动机能确保飞机在高亚音速范围飞行。 4 发动机结构尺寸要小。发动机的结构尺寸主要是指发动机的迎风面积和长度,适应缩小发动机结构尺寸可减小发动机飞行阻力,减轻发动机重量。 5 发动机可靠性要好。发动机可靠性是指在各种气象条件和飞行条件下,发动机稳定、安全工作的性质,它直接关系到飞行安全。 6 发动机的环境污染要小。发动机的环境污染主要有:排气污染和噪音污染。在不断改进发动机性能,确保发动机安全,可靠,经济,稳定工作的同时,应不断减少发动机环境污染水平,逐步达到相应的标准。 7 发动机的使用寿命要长。在实际使用中发动机的使用寿命和发动机的正确使用密切相关正确使用发动机不仅可以有延长发动机的使用寿命,还可以降低发动机的使用成本。 8 发动机要便于维护。在实际飞行中,发动机维护性的好坏直接影响航班的正常及维护

风机喘振分析和防止风机喘振保护原理

轴流式吸风机喘振分析 轴流式吸风机在大型发电厂中应用比较普遍。轴流式风机在运行中调节不当会出现喘振现象。因此就大唐盘山电厂吸风机出现的喘振进行分析,得出结论:及早发现,正确处理。 主题词:轴流吸风机喘振现象处理 轴流式吸风机由于其本身的特性决定了它在运行中存在着发生 喘振的可能性,这一点从理论和实践中都可以得到证明。 大唐盘山电厂应用两台轴流式吸风机并联运行的方式。运行实际中轴流风机喘振发生在增加出力的过程中,并联运行的轴流风机只是发生在单台风机喘振,未发生过两台风机同时喘振。 下面就大唐盘山电厂发生的风机喘振现象加以叙述和分析: 第一次喘振现象:当时AGC投入,负荷500MW升至550MW。A、B、 C、D、E磨运行。炉膛压力异常报警。 处理: 运行人员切换画面到吸风机时,#1吸风机跳闸(原因:液压油压力低),联跳#1送风机。RB保护动作,E磨跳闸,10秒后,D磨跳闸,炉膛压力低保护动作,MFT动作,锅炉灭火. 经过现场检查发现液压油管断开,造成油位下降,油泵不打油。液压油压力低,#1吸风机跳闸。通过追忆,确认风机跳闸前两台风机动叶全开,#1吸 风机流量"0",发生喘振。 第二次喘振现象:当时AGC投入,负荷500MW升至530MW。

A、B、C、D、E磨运行。炉膛压力异常报警,运行人员切换画面到吸风机时,#1吸风机流量"0",电流83A,#2吸风机电流480A。(风机额定电流260A)两台风机动叶全开。确认#1吸风机喘振。 处理:关小#2吸风机动叶。处理过程中,#1吸风机跳闸(原因液压油压力低),当时#1吸风机#1运行中液压油站跳闸,#2字自启后跳闸。联跳#1送风机。RB保护动作,E磨跳闸,10秒后,D 磨跳闸,炉膛压力低保护动作,MFT动作,锅炉灭火。 第三次现象:当时AGC投入,负荷500MW升至520MW。A、B、C、D、E磨运行。炉膛压力异常报警,运行人员切换画面到吸风机时,炉膛负压正400pa,#1吸风机流量"0",电流141A,#2吸风机电流285A。两台风机动叶开度75%。确认#1吸风机喘振。 处理: 两台吸风机解自动,手动关#1吸风机动叶至50%时,#1吸风机开始打风,炉膛负压至负700 pa,开始关#2吸风机动叶至65%,同时,开#1吸风机动叶至55%。当两台风机动叶开度62%/58%时,电流为160A/160A,负压稳定后,两台吸风机头自动。 分析: 1. 三次吸风机喘振均发生在升负荷过程中,且处于80%负荷以上。由于在高负荷时,烟气量较大,烟气侧阻力较大。#1吸风机在两台风机并联运行中流量偏小,且由于调节系统的原因,#1吸风机动叶先动作,造成#1吸风机进入喘振区,发生喘振。 针对这种现象,要求运行人员在负荷高于450MW,升负荷过程中,

发动机喘振故障的形成原因及防范措施

涡轴8F发动机喘振故障浅析 摘要:涡轴8系列发动机为自由涡轮式的涡轮轴发动机,具有性能比较先进,尺寸小,重量轻,结构简单,工作可靠,使用维护方便的特点。发动机的压气机由一级跨音轴流压气机和一级超音离心压气机组成的混合式压气机,具有结构简单、重量轻、增压比高、性能平稳的特点。本文根据发动机的压气机工作原理分析喘振的原因并提出维护建议及防止喘振的措施。 关键词:发动机喘振空气压力故障 1失速与喘振的概述 工作叶轮进口处相对失速的方向与叶片弦线之间的夹角叫做攻角。影响攻角的因素有两个:一是转速,另一个是工作叶轮进口处的绝对速度(包括大小和方向)。在攻角过大的情况下,会使气流在叶背处发生分离,这种现象叫做失速。失速区九朝着与叶片旋转方向相反的方向移动。这种移动失速比周围速度要小,所以站在绝对坐标系上观察时,失速区以较低的转速与压气机叶轮做同方向的旋转运动,称为旋转失速。 2发动机内部空气系统 发动机工作时,外界空气经直升机上的进气道流入压气机,首先在轴流压气机中得到压缩,然后再进入离心压气机被进一步压缩。压缩后的高压空气进入燃烧室,与燃油混合燃烧,生成高压高温的燃气。从燃烧室出来的燃气流向涡轮,首先在燃气发生器涡轮中膨

胀做功,带动压气机工作;然后燃气进入自由涡轮中进一步膨胀做功,从而向外提供功率,驱动直升机旋翼等工作。 2.1 篦齿(或称迷宫)封严装置的密封原理。篦齿封严装置(或称迷宫封严装置)是利用篦齿前后空气的压差来达到密封目的。增压空气从压力高的一侧通过篦齿装置很小的间隙流向压力低的一侧,空气的流量被限制得尽可能小,而且始终沿从压力高到压力低的方向流动,如此,压力较低的那一侧(例如滑油腔)就被空气密封,滑油不能从篦齿处泄出。 2.2发动机前部的内部空气流路。引用轴流压气机后的压缩空气(p1′),用于压气机前后轴承篦齿封严装置的密封。压缩空气经离心压气机叶轮前面的间隙进入,一部分对压气机后轴承密封,另一部分经轴上的孔进入轴流压气机轴内腔,对压气机前轴承进行密封,同时加温压气机轴流转子前端的整流帽罩,防止低温时结冰。 2.3发动机中部的内部空气流路。引用离心压气机后的压缩空气(p2),用于甩油盘篦齿封严装置的密封(密封燃油)、燃气发生器后轴承篦齿封严装置的密封、燃气发生器涡轮导向器和涡轮盘的冷却。 2.4发动机后部的内部空气流路。引用p2压缩空气密封自由涡轮前轴承、利用外界大气po冷却燃气发生器后轴承座和自由涡轮导向器。自由涡轮前轴承的密封空气,是利用装在涡轮机匣上的引气接头将p2空气引出,经外部空气导管送到减速器机匣上的空气接

相关主题
文本预览
相关文档 最新文档