当前位置:文档之家› 实变函数第三章复习题及解答

实变函数第三章复习题及解答

实变函数第三章复习题及解答
实变函数第三章复习题及解答

第三章 复习题

一、判断题

1、设()f x 是定义在可测集n

E R ?上的实函数,如果对任意实数a ,都有[()]E x f x a >为可测集,则()f x 为E 上的可测函数。(√ )

2、设()f x 是定义在可测集n E R ?上的实函数,如果对某个实数a ,有[()]E x f x a >不是可测集,则()f x 不是E 上的可测函数。(√ )

3、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对某个实数a , [()]E x f x a ≥为可测集。(× )

4、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对任意实数a , [()]E x f x a =为可测集。(× )

5、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对任意实数a , [()]E x f x a ≤为可测集。(√ )

6、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对任意实数a 和b (a b <), [()]E x a f x b ≤<为可测集。(× )

7、设E 是零测集,()f x 是E 上的实函数,则()f x 为E 上的可测函数。(√ )

8、若可测集E 上的可测函数列{()n f x }在E 上几乎处处收敛于可测函数()f x ,则{()n f x }在E 上“基本上”一致收敛于()f x 。(× )

9、设()f x 为可测集E 上几乎处处有限的可测函数,则()f x 在E 上“基本上”连续。(√ ) 10、设E 为可测集,若E 上的可测函数列()()n f x f x ?(x E ∈),则{()n f x }的任何子列都在E 上几乎处处收敛于可测函数()f x 。(× )

11、设E 为可测集,若E 上的可测函数列()()n f x f x →..a e 于E ,则()()n f x f x ?(x E ∈)。(× )

二、填空题

1、[]E f a > 等于 1

1[]n E f a n

-≥+

,[]E f a ≥ 等于 1

1[]n E f a n

->-

2、[]E a f b << 包含于 []E f a >,[]E a f b << 包含于 []E f b <;

[]E a f b << 等于 [][]E f a E f b >< ,[]E a f b << 等于 [][]E f a E f b >-≥。

3、设1n n E E ∞== ,则[]E f a < 等于 1[]n n E f a ∞=< 。

4、设1

n n E E ∞== ,则[]E f a ≥ 等于 1

[]n n E f a ∞=≥ 。

5、由于区间I 上的单调函数()f x 的不连续点所成的集为 至多可数 集,则()f x 为

I 上的 几乎处处 连续函数,从而()f x 为I 上的 可测 函数。

6、叙述可测函数的四则运算性 可测函数经过四则运算所得的函数(只要有意义)仍可测 。

7、叙述可测函数与简单函数的关系 简单函数是可测函数;在几乎处处收敛的意义下,任何

可测函数总可表示成一列简单函数的极限 。

8、叙述可测函数与连续函数的关系 连续函数必为可测函数;可测函数“基本上”可以表示成一个连续函数 。

9、叙述叶果洛夫定理 设E 是测度有限的可测集,则E 上几乎处处收敛的可测函数列“基本上”一致收敛 。

10、叙述鲁津定理 设E 是可测集,则E 上的可测函数“基本上”是连续函数 。 11、若()()n f x f x ?,()()n f x g x ?(x E ∈),则()f x 等于 ()g x 几乎处处于 E 。

三、证明题

1、证明:1R 上的连续函数必为可测函数。

证明:设()f x 是1R 上的连续函数,由连续函数的局部保号性,对任意实数a ,

1

1

[]{(),}R x f a x f x a x R >=>∈是开集,从而是可测集。所以,()f x 是1

R 上的可测函

数。

2、证明:1R 上的单调函数必为可测函数。

证明:不妨设()f x 是1R 上的单调递增函数,对任意实数a ,记inf{()}A x f x a =>,由单调函数的特点得,当{()}A x f x a ∈>时,{()}[,)x f x a A >=+∞,显然是可测集;当{()}A x f x a ?>时,{()}(,)x f x a A >=+∞,也显然是可测集。故()f x 是1R 上的可测函数。

3、证明:若()()n f x f x ?,()()n f x g x ?(x E ∈),则()()f x g x =..a e 于E 。

证明:由于11[()()][]n E x f x g x E x f g n

=≠=-≥

,而

111[][][]22n n E x f g E x f f E x f g k

k

k

-≥

?-≥

?-≥

所以,

111[][][]22n n m E x f g m E x f f m E x f g k

k

k -≥

≤-≥

+-≥

由()()n f x f x ?,()()n f x g x ?(x E ∈)得

1lim []02n n m E x f f k

→∞

-≥

=,1lim []02n n m E x f g k

→∞

-≥

=。

所以,1[]0m E x f g k

-≥=,从而[()()]0mE x f x g x ≠=,即()()f x g x =..a e 于E 。

4、证明:若()()n f x f x ?,()()n g x g x ?(x E ∈),则()()()()n n f x g x f x g x ±?±(x E ∈)。

证明:对任意0σ>,由于

()()[()()]()()()()n n n n f x g x f x g x f x f x g x g x ±-±≤-+-,

所以,由()()[()()]n n f x g x f x g x σ±-±≥可得,

1()()2

n f x f x σ-≥

和1()()2

n g x g x σ-≥

至少有一个成立。

从而

11

[[]][][]2

2

n n n n E x f g f g E x f f E x g g σσσ±-±≥?-≥

?-≥

所以,

11

[[]][][]2

2

n n n n m E x f g f g m E x f f m E x g g σσσ±-±≥≤-≥

+-≥

又由()()n f x f x ?,()()n g x g x ?(x E ∈)得,

1lim []02

n n m E x f f σ→∞

-≥

=,1lim []02

n n m E x g g σ→∞

-≥

=。

所以,

lim [[]]0n n n m E x f g f g σ→∞

±-±≥=,即()()()()n n f x g x f x g x ±?±(x E ∈)。

5、若()()n f x f x ?(x E ∈),则()()n f x f x ?(x E ∈)。

证明:因为()()()()n n f x f x f x f x -≥-,所以,对任意0σ>,有

[][]n n E x f f E x f f σσ-≥?-≥,

[][]n n mE x

f f mE x f f σσ-≥≤-≥。

又由()()n f x f x ?(x E ∈)得,lim []0n n m E x f f σ→∞

-≥=。所以,

lim []0n n m E x

f f σ→∞

-≥=,即()()n f x f x ?(x E ∈)。

(完整版)实变函数证明题大全(期末复习)

1、设',()..E R f x E a e ?是上有限的可测函数,证明:存在定义在'R 上的一列连续函数 {}n g ,使得lim ()()..n n g x f x a e →∞ =于E 。 证明:因为()f x 在E 上可测,由鲁津定理是,对任何正整数n ,存在E 的可测子集n E , 使得1 ()n m E E n -< , 同时存在定义在1R 上的连续函数()n g x ,使得当n x E ∈时,有()()n g x f x =所以对任意的0η>,成立[||]n n E f g E E η-≥?-由此可得 1[||]()n n mE f g n m E E n -≥≤-< ,因此lim [||]0n n mE f g n →∞-≥=即()()n g x f x ?, 由黎斯定理存在{}n g 的子列{}k n g ,使得lim ()()k n k g x f x →∞ =,..a e 于E 2、设()(,)f x -∞∞是上的连续函数,()g x 为[,]a b 上的可测函数,则(())f g x 是可测函数。 证明:记12(,),[,]E E a b =-∞+∞=,由于()f x 在1E 上连续,故对任意实数1,[]c E f c >是 直线上的开集,设11 [](,)n n n E f c α β∞ =>=U ,其中(,)n n αβ是其构成区间(可能是有限 个 , n α可 能为 -∞ n β可有为 +∞ )因此 22221 1 [()][]([][])n n n n n n E f g c E g E g E g αβαβ∞ ∞ ==>=<<=><都可测。故[()]E f g c >可测。 3、设()f x 是(,)-∞+∞上的实值连续函数,则对于任意常数a ,{|()}E x f x a =>是一开集,而{|()}E x f x a =≥总是一闭集。 证明:若00,()x E f x a ∈>则,因为()f x 是连续的,所以存在0δ>,使任意(,)x ∈-∞∞, 0||()x x f x a δ-<>就有, 即任意00U(,),,U(,),x x x E x E E δδ∈∈?就有所以是 开集若,n x E ∈且0(),()n n x x n f x a →→∞≥则,由于()f x 连续,0()lim ()n n f x f x a →∞ =≥, 即0x E ∈,因此E 是闭集。 4、(1)设2121 (0,),(0,),1,2,,n n A A n n n -==L 求出集列{}n A 的上限集和下限集 证明:lim (0,)n n A →∞ =∞设(0,)x ∈∞,则存在N ,使x N <,因此n N >时,0x n <<,即

实变函数与泛函分析基础(第三版)-----第三章_复习指导

主要内容 本章介绍了勒贝格可测集和勒贝格测度的性质. 外测度和内测度是比较直观的两个概念,内外测度一致的有界集就是勒贝格可测集. 但是,这样引入的可测概念不便于进一步讨论. 我们通过外测度和卡拉皆屋铎利条件来等价地定义可测集(即定义),为此,首先讨论了外测度的性质(定理). 注意到外测度仅满足次可列可加(而非可列可加)性,这是它和测度最根本的区别. 我们设想某个点集上可以定义测度,该测度自然应该等于这个集合的外测度,即测度应是外测度在某集类上的限制. 这就容易理解卡拉皆屋铎利条件由来,因为这个条件无非是一种可加性的要求. 本章详细地讨论了勒贝格测度的性质. 其中,最基本的是测度满足在空集上取值为零,非负,可列可加这三条性质. 由此出发,可以导出测度具有的一系列其它性质,如有限可加,单调,次可列可加以及关于单调集列极限的测度等有关结论. 本章还详细地讨论了勒贝格可测集类. 这是一个对集合的代数运算和极限运算封闭的集类. 我们看到勒贝格可测集可以分别用开集、闭集、型集和 型集逼近. 正是由于勒贝格可测集,勒贝格可测集类,勒贝格测度具有一系列良好而又非常重要的性质,才使得它们能够在勒贝格积分理论中起着基本的、有效的作用. 本章中,我们没有介绍勒贝格不可测集的例子. 因为构造这样的例子要借助于策墨罗选择公理,其不可测性的证明还依赖于勒贝格测度的平移不变性. 限于本书的篇幅而把它略去. 读者只须知道:任何具有正测度的集合一定含有不可测子集. 复习题 一、判断题

1、对任意n E R ?,* m E 都存在。(√ ) 2、对任意n E R ?,mE 都存在。(× ) 3、设n E R ?,则* m E 可能小于零。(× ) 4、设A B ?,则** m A m B ≤。(√ ) 5、设A B ?,则** m A m B <。(× ) 6、* *1 1( )n n n n m S m S ∞ ∞===∑。(× ) 7、* *1 1 ( )n n n n m S m S ∞ ∞==≤∑。(√ ) 8、设E 为n R 中的可数集,则* 0m E =。(√ ) 9、设Q 为有理数集,则* 0m Q =。(√ ) 10、设I 为n R 中的区间,则* m I mI I ==。(√ ) 11、设I 为n R 中的无穷区间,则* m I =+∞。(√ ) 12、设E 为n R 中的有界集,则*m E <+∞。(√ ) 13、设E 为n R 中的无界集,则*m E =+∞。(× ) 14、E 是可测集?c E 是可测集。(√ ) 15、设{n S }是可测集列,则 1 n n S ∞=, 1 n n S ∞=都是可测集。 (√ ) 16、零测集、区间、开集、闭集和Borel 集都是可测集。(√ ) 17、任何可测集总可表示成某个Borel 集与零测集的差集。(√ ) 18、任何可测集总可表示成某个Borel 集与零测集的并集。(√ ) 19、若E =?,则* 0m E >。(× ) 20、若E 是无限集,且*0m E =,则E 是可数集。(× ) 21、若mE =+∞,则E 必为无界集。(√ ) 22、在n R 中必存在测度为零的无界集。(√ )

实变函数复习资料,带答案

《实变函数》试卷一 一、单项选择题(3分×5=15分) 1、下列各式正确的是( ) (A )1lim n k n n k n A A ∞ ∞ →∞ ===??; (B )1lim n k n k n n A A ∞ ∞ ==→∞ =??; (C )1lim n k n n k n A A ∞ ∞ →∞ ===??; (D )1lim n k n k n n A A ∞ ∞ ==→∞ =??; 2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P =' (D) P P =ο 3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数(C ){}inf ()n n f x 是可测函数;(D )若 ()()n f x f x ?,则()f x 可测 5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))(' x f 在],[b a 上L 可积 (D) ? -=b a a f b f dx x f )()()(' 二. 填空题(3分×5=15分) 1、()(())s s C A C B A A B ??--=_________ 2、设E 是[]0,1上有理点全体,则 ' E =______,o E =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都 _________________________________,则称E 是L 可测的 4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”) 5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为 [],a b 上的有界变差函数。 三、下列命题是否成立?若成立,则证明之;若不成立,则举反例

实变函数试题库(5)及参考答案

实变函数试题库及参考答案(5) 本科 一、填空题 1.设,A B 为集合,则___(\)A B B A A 2.设n E R ?,如果E 满足0 E E =(其中0 E 表示E 的内部),则E 是 3.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ?且,a G b G ??,则(,)a b 必为G 的 4.设{|2,}A x x n n ==为自然数,则A 的基数a (其中a 表示自然数集N 的基数) 5.设,A B 为可测集,B A ?且mB <+∞,则__(\)mA mB m A B - 6.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是 7.若()E R ?是可数集,则__0mE 8.设 {}()n f x 为可测集E 上的可测函数列,()f x 为E 上的可测函数,如果 .()() ()a e n f x f x x E →∈,则()()n f x f x ?x E ∈(是否成立) 二、选择题 1、设E 是1 R 中的可测集,()x ?是E 上的简单函数,则 ( ) (A )()x ?是E 上的连续函数 (B )()x ?是E 上的单调函数 (C )()x ?在E 上一定不L 可积 (D )()x ?是E 上的可测函数 2.下列集合关系成立的是( ) (A )()()()A B C A B A C = (B )(\)A B A =? (C )(\)B A A =? (D )A B A B ? 3. 若() n E R ?是闭集,则 ( ) (A )0 E E = (B )E E = (C )E E '? (D )E E '= 三、多项选择题(每题至少有两个以上的正确答案) 1.设{[0,1]}E =中的有理点 ,则( ) (A )E 是可数集 (B )E 是闭集 (C )0mE = (D )E 中的每一点均为E 的内点

实变函数论试题及答案

实变函数论测试题 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ == 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以 ∞ +=∈ 1 n m m A x ∞ =∞ =? 1n n m m A , 则可知n n A ∞ →lim ∞=∞ =? 1n n m m A 。设 ∞=∞ =∈1n n m m A x ,则有n ,使 ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →= ∞ =∞ =1n n m m A 。 2、设(){}2 2 2,1E x y x y =+<。求2E 在2 R 内的'2 E ,0 2E ,2E 。 解:(){}2 2 2,1E x y x y '=+≤, (){}222,1E x y x y =+< , (){}222,1E x y x y =+<。 3、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令 ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 4、试构造一个闭的疏朗的集合[0,1]E ?,12 m E =。 解:在[0,1]中去掉一个长度为1 6的开区间5 7 ( , )1212 ,接下来在剩下的两个闭区间 分别对称挖掉长度为11 6 3 ?的两个开区间,以此类推,一般进行到第n 次时, 一共去掉12-n 个各自长度为1 116 3 n -? 的开区间,剩下的n 2个闭区间,如此重复 下去,这样就可以得到一个闭的疏朗集,去掉的部分的测度为 11 11212166363 2 n n --+?++ ?+= 。

实变函数试题库(4)及参考答案

实变函数试题库及参考答案(4) 本科 一、填空题 1.设,A B 为两个集合,则__c A B A B - . 2.设n E R ?,如果E 满足E E '?(其中E '表示E 的导集),则E 是 3.若开区间(,)αβ为直线上开集G 的一个构成区间,则(,)αβ满(i) )(b a ,G (ii),a G b G ?? 4.设A 为无限集.则A 的基数__A a (其中a 表示自然数集N 的基数) 5.设12,E E 为可测集,2mE <+∞,则1212(\)__m E E mE mE -. 6.设{}()n f x 为可测集E 上的可测函数列,且()(),n f x f x x E ?∈,则由______定理可知得,存在{}()n f x 的子列{}()k n f x ,使得.()() ()k a e n f x f x x E →∈. 7.设()f x 为可测集E (n R ?)上的可测函数,则()f x 在E 上的L 积分值存在且|()|f x 在E 上L 可积.(填“一定”“不一定”) 8.若()f x 是[,]a b 上的绝对连续函数,则()f x 是[,]a b 上的有 二、选择题 1.设(){},001E x x =≤≤,则( ) A 1mE = B 0mE = C E 是2R 中闭集 D E 是2R 中完备集 2.设()f x ,()g x 是E 上的可测函数,则( ) A 、()()E x f x g x ??≥??不一定是可测集 B 、()()E x f x g x ??≠??是可测集 C 、()()E x f x g x ??≤??是不可测集 D 、()() E x f x g x ??=??不一定是可测集 3.下列集合关系成立的是() A 、(\)A B B A B = B 、(\)A B B A = C 、(\)B A A A ? D 、\B A A ? 4. 若() n E R ?是开集,则 ( ) A 、E 的导集E ? B 、E 的开核E =C 、E E =D 、E 的导集E =

实变函数论课后答案第三章4

实变函数论课后答案第三章4 第三章第四节习题 1. 举例说明对p q R +中的可测集E 确实有可能存在p x R ∈使x E 不是q R 中的可测集 解:令{} 20E S R =??,这里 S 为(0,1)上的任一不可测集( S 存在!见 P66) 则从(0,1)S ∧ ?知 {}{}00(0,1)S ∧???,P72Th1则{}{}{}0(0,1)0(0,1)0m m m ?=?=,区间 可测,故显然,0n ?>,{}11 0(0,1)(,)(0,1)n n ??-? 则{}**1111(0(0,1))((,)(0,1))((,)(0,1))m m m n n n n ?≤-?=-? 1122(,)(0,1)(0,1)0m m m n n n n =-?=?=→(P72Th1) 即{}*(0(0,1))0m ?=从而有{}**()(0(0,1))0m E m ≤?= 故从P60Th1, 2E R ?为可测的, 然而 {}{}{}{}0|(0,)|(0,)0|E y y E y y S y y S S ∧∧∧=∈=∈?=∈=不可测. 2. 试在二维平面2R 中作一开集G ,使G 的边界点所构成的测度大于零(提示:参考§3习题1) 解:在§3习题1中已知存在(0,1)中的开集G 使[0,1]G =,且mG mG >,故 G G G ?=-,,()0G G G m G mG mG ?=-?=-> 令(0,1)E G =?,则从G 为1R 中开集,(0,1)为1R 中开集,易知E 为2R 着开集 我们来证明

①0(0,1)G E E E ????=- ②((0,1))0m G ??>,从而*()0m E ?> ①之证,00(,)(0,1)x y G ?∈??,则0x G ∈?,0(0,1)y ∈, 故000,(,)x x ηηη'''?>-+中既有G 中的点x η',已有c G 中的点x η'',且0η''?>使00(,)(0,1)y y ηη''''-+?,取0δ?>,当0η>充分小时 000000((,),)(,)(,)B x y x x y y δηηηη?-+?-+ 则0000(,)(0,1)((,)((,),))x y G E x y B x y ηηδ''∈?=∈, 0(,)(0,1)c x y G η''?? 故0(,)x y E η''?,00(,)x y E ∈?,即(0,1)G E ???? 因\G G G ?=可测于1R ,(0,1)G ??也可测于2R (P72Th ) ②((0,1))()(0,1)m G m G m ??=??()0m G =?> 即()(0,1)0m E m E m ?≥??>,证毕.

(完整版)《实变函数及泛函分析基础》试卷及答案

试卷一: 一、单项选择题(3分×5=15分) 1、1、下列各式正确的是( ) (A )1lim n k n n k n A A ∞ ∞ →∞ ===??; (B )1lim n k n k n n A A ∞ ∞ ==→∞ =??; (C )1lim n k n n k n A A ∞ ∞ →∞ ===??; (D )1lim n k n k n n A A ∞ ∞ ==→∞ =??; 2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P =' (D) P P =ο 3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( ) (A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数 (C ){}inf ()n n f x 是可测函数;(D )若()()n f x f x ?,则()f x 可测 5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))(' x f 在],[b a 上L 可积 (D) ? -=b a a f b f dx x f )()()(' 二. 填空题(3分×5=15分) 1、()(())s s C A C B A A B ??--=_________ 2、设E 是[]0,1上有理点全体,则' E =______,o E =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都有

(完整版)《实变函数》考试说明解读

《实变函数》考试说明 近世代数是广播电视大学数学专业(本科)的一门重要的专业基础课,本期近世代数期末考试内容是教材《实变函数》的内容。试题有填空题、证明题,试题的难易程度和教材《实变函数》的习题相当。希望同学们在期末复习时,做好教材《实变函数》中的每章的习题。 第一章集合 一提要 第一节集合及其运算。 第二节映射及其基数。 第三节可列集 第四节不可列集 二教学要求 1)理解集的概念,分清集的元与集的归属关系,集与集之间的包含关系的区别。 2)掌握集之间的交、差、余运算。 3)掌握集列的上、下限集的概念及其交并表示。 4)理解集列的收敛、单调集列的概念。 5)掌握――映射,两集合对等及集合基数等概念。 6)理解伯恩斯坦定理(不要求掌握证明),能利用定义及伯恩斯坦定理证明两集合对等。 7)理解可数集,不可数集的意义,掌握可数集、基数为C的集合的性质, 理解不存在最大基数的定理的意义。

第二章点集 一.提要 第一节聚点、内点、界点等概念 第二节开集、闭集、完备集。 第三节直线上的开集、闭集及完备集的构造。 第四节点集间的距离 第五节康托集及其性质 二.基本要求 1)明了n维欧氏空间中极限概念主要依赖于距离这个概念,从而了解邻域概念在极限理论中的作用。 2)理解聚点,孤立点、内点、外点、界点的意义,掌握有关性质。 3)理解开集、闭集、完备集的意义,掌握其性质。 4)理解直线上开集、闭集、完备集的构造。 5)理解康托集的构造、特性。 第三章勒贝格测度论 一.提要 第一节勒贝格外测度及其内测度。 第二节勒贝格可测集及其性质。 第三节勒贝格可测集的构造。

二.基本要求 1)理解测度的意义。 2)理解外测度的意义,掌握其有关性质。 3)理解可测集的定义,掌握可测集的性质。 4)了解并掌握不可测集的存在性这一结论。 第四章勒贝格可测函数 一.提要 第一节点集上和函数。 第二节勒贝格右测函数。 3)可测函数列的收敛性。 4)可测函数的构造。 二.基本要求 1)掌握可测函数的定义及等价定义。 2)掌握可测函数的有关性质。 3)理解简单函数的定义,掌握可测函数与简单函数的关系。 4)掌握可测函数列的收敛点集和发散点集的表示方法。 5)掌握叶果洛夫定理,鲁津定理。 6)理解依测度收敛的意义,掌握依测度收敛与a·e收敛的联系与区别。

实变函数综合练习题

实变函数综合练习题 《实变函数》综合训练题(一) (含解答) 一、选择题(单选题) 1、下列集合关系成立的是( A ) (A )(\)A B B A B ?=? (B )(\)A B B A ?= (C )(\)B A A A ?? (D )(\)B A A ? 2、若n E R ?是开集,则( B ) (A )E E '? (B )E 的内部E = (C )E E = (D )E E '= 3、设P 是康托集,则( C ) (A )P 是可数集 (B )P 是开集 (C )0mP = (D )1mP = 4、设E 是1R 中的可测集,()x ?是E 上的简单函数,则( D ) (A )()x ?是E 上的连续函数 (B )()x ?是E 上的单调函数 (C )()x ?在E 上一定不L 可积 (D )()x ?是E 上的可测函数 5、设E 是n R 中的可测集,()f x 为E 上的可测函数,若()d 0E f x x =?,则( A ) (A )在E 上,()f z 不一定恒为零 (B )在E 上,()0f z ≥ (C )在E 上,()0f z ≡ (D )在E 上,()0f z ≠ 二、多项选择题(每题至少有两个或两个以上的正确答案) 1、设E 是[0,1]中的无理点全体,则(C 、D ) (A )E 是可数集 (B )E 是闭集 (C )E 中的每一点都是聚点 (D )0mE > 2、若1E R ?至少有一个内点,则( B 、D )

(A )*m E 可以等于零 (B )* 0m E > (C )E 可能是可数集 (D )E 是不可数集 3、设[,]E a b ?是可测集,则E 的特征函数()E X x 是 (A 、B 、C ) (A )[,]a b 上的简单函数 (B )[,]a b 上的可测函数 (C )E 上的连续函数 (D )[,]a b 上的连续函数 4、设()f x 在可测集E 上L 可积,则( B 、D ) (A )()f z +和()f z - 有且仅有一个在E 上L 可积 (B )()f z + 和()f z - 都在E 上L 可积 (C )()f z 在E 上不一定L 可积 (D )()f z 在E 上一定L 可积 5、设()f z 是[,]a b 的单调函数,则( A 、C 、D ) (A )()f z 是[,]a b 的有界变差函数 (B )()f z 是[,]a b 的绝对连续函数 (C )()f z 在[,]a b 上几乎处处连续 (D )()f z 在[,]a b 上几乎处处可导 三、填空题(将正确的答案填在横线上) 1、设X 为全集,A ,B 为X 的两个子集,则\A B =C A B ? 。 2、设n E R ?,如果E 满足E E '?,则E 是 闭 集。 3、若开区间(,)αβ是直线上开集G 的一个构成区间,则(,)αβ满足(,)G αβ?、 ,G G αβ??。 4、设A 是无限集,则A 的基数A ≥ a (其中a 表示可数基数) 。 5、设1E ,2E 为可测集,2mE <+∞,则12(\) m E E ≥ 12mE mE -。 6、设()f x 是定义在可测集E 上的实函数,若对任意实数a ,都有[()]E x f x a > 是 可测集 ,则称()f x 是可测集E 上的可测函数。

实变函数论考试试题及答案

实变函数论考试试题及答案 证明题:60分 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ ==UI 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以I ∞ +=∈ 1 n m m A x Y I ∞=∞ =?1n n m m A , 则可知n n A ∞ →lim YI ∞ =∞ =?1n n m m A 。设YI ∞ =∞ =∈1n n m m A x ,则有n ,使I ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →=YI ∞=∞ =1n n m m A 。 2、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令I ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 3、设在E 上()()n f x f x ?,且1()()n n f x f x +≤几乎处处成立,Λ,3,2,1=n , 则有{()}n f x .收敛于)(x f 。 证明 因为()()n f x f x ?,则存在{}{}i n n f f ?,使()i n f x 在E 上.收敛到()f x 。设 0E 是()i n f x 不收敛到()f x 的点集。1[]n n n E E f f +=>,则00,0n mE mE ==。因此 ()0n n n n m E mE ∞∞==≤=∑U 。在1 n n E E ∞ =-U 上,()i n f x 收敛到()f x , 且()n f x 是单调的。 因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。 即除去一个零集1n n E ∞ =U 外,()n f x 收敛于()f x ,就是()n f x . 收敛到()f x 。

实变函数第三章复习题及解答

第三章 复习题 一、判断题 1、设()f x 是定义在可测集n E R ?上的实函数,如果对任意实数a ,都有[()]E x f x a >为可测集,则()f x 为E 上的可测函数。(√ ) 2、设()f x 是定义在可测集n E R ?上的实函数,如果对某个实数a ,有[()]E x f x a >不是可测集,则()f x 不是E 上的可测函数。(√ ) 3、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对某个实数a , [()]E x f x a ≥为可测集。(× ) 4、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对任意实数a , [()]E x f x a =为可测集。(× ) 5、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对任意实数a , [()]E x f x a ≤为可测集。(√ ) 6、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对任意实数a 和b (a b <), [()]E x a f x b ≤<为可测集。(× ) 7、设E 是零测集,()f x 是E 上的实函数,则()f x 为E 上的可测函数。(√ ) 8、若可测集E 上的可测函数列{()n f x }在E 上几乎处处收敛于可测函数()f x ,则{()n f x }在E 上“基本上”一致收敛于()f x 。(× ) 9、设()f x 为可测集E 上几乎处处有限的可测函数,则()f x 在E 上“基本上”连续。(√ ) 10、设E 为可测集,若E 上的可测函数列()()n f x f x ?(x E ∈),则{()n f x }的任何子列都在E 上几乎处处收敛于可测函数()f x 。(× ) 11、设E 为可测集,若E 上的可测函数列()()n f x f x →..a e 于E ,则()()n f x f x ?(x E ∈)。(× )

实变函数复习题

1.若E有界,则m*E<正无穷 2.可数点集的外测度为零 3.设E是直线上一有界集合,m*E>0,则对任意小于m*E的正数c,恒有E的子集E1,使m*E=c 4.设S1,S2,…,Sn是一些互不相交的可测集合,Ei包含于Si,i=1,2,3...n,求证m*(E1并E2并E3...并En)=m*E1+m*E2+…+m*En 5.若m*E=0,则E可测。

6.证明康托尔(Cantor)集合的测度为0 7.设A,B包含于Rp,且m*B<正无穷,若A是可测集,证明m*(A并B)=mA+m*B-m*(A 交B) 8.证明:若E可测,则对于任意e〉0,恒有开集G及闭集F,使F包含于E包含于G,而m (G-E)〈e,m(E-F)〈e

9.设E包含于Rq,存在两列可测集{An},{Bn},使得An包含于E包含于Bn且m(Bn-An)--> 0(n-->无穷),则E可测。 10.设是一列可测集,证明和都是可测集且

11.设{En}是一列可测集,若求和m(En)<正无穷,证明m(En上极限)=0 12.设E是[0,1]中可测集,若m(E)=1,证明对任意可测集A包含于[0,1],m(E交A)=m(A) 13.设{En}是[0,1]中可测集列,若m(En)=1,n=1,2,...,则 定理5.6设E是任一可测集,则一定存在型集G,使G包含E,且m(G-E)=0。 设E是任一可测集,则一定存在型集F,使F包含于E,且m(E-F)=0。 次可数可加性证明

卡拉泰奥多里条件:m*T=m*(T交E)+m*(T交Ec)极限的测度等于测度的极限

1.证明:f(x)在E上为可测函数的充要条件是对任一有理数r,E[f〉r]可测,如果集E[f=r]可测,问f(x)是否可测?

实变函数试题库及参考答案

实变函数试题库及参考答案(1) 本科 一、填空题 1.设,A B 为集合,则()\A B B U A B U (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E U 12mE mE +(用描述集合间关系的符号填写) 6.设n E ??是可数集,则*m E 0 7.设()f x 是定义在可测集E 上的实函数,如果1a ?∈?,()E x f x a ??≥??是 ,则称()f x 在E 上可测 8.可测函数列的上极限也是 函数 9.设()()n f x f x ?,()()n g x g x ?,则()()n n f x g x +? 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题 1.下列集合关系成立的是( ) 2.若n R E ?是开集,则( ) 3.设(){}n f x 是E 上一列非负可测函数,则( ) 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( ) A E 是不可数集 B E 是闭集 C E 中没有内点 D 1m E = 2.设n E ??是无限集,则( ) A E 可以和自身的某个真子集对等 B E a ≥(a 为自然数集的基数) 3.设()f x 是E 上的可测函数,则( ) A 函数()f x 在E 上可测 B ()f x 在E 的可测子集上可测 C ()f x 是有界的 D ()f x 是简单函数的极限

4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( ) A ()f x 在[],a b 上可测 B ()f x 在[],a b 上L 可积 C ()f x 在[],a b 上几乎处处连续 D ()f x 在[],a b 上几乎处处等于某个连续函数 四、判断题 1. 可数个闭集的并是闭集. ( ) 2. 可数个可测集的并是可测集. ( ) 3. 相等的集合是对等的. ( ) 4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题 1. 简述无限集中有基数最小的集合,但没有最大的集合. 2. 简述点集的边界点,聚点和内点的关系. 3. 简单函数、可测函数与连续函数有什么关系? 4. [],a b 上单调函数与有界变差函数有什么关系? 六、计算题 1. 设()[]23 0,1\x x E f x x x E ?∈?=?∈??,其中E 为[]0,1中有理数集,求 ()[] 0,1f x dx ?. 2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121 ,,00,1\,,n n n x r r r f x x r r r ∈??=?∈??L L ,求()[] 0,1lim n n f x dx →∞?. 七、证明题 1.证明集合等式:(\)A B B A B =U U 2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE = 3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 4.设()f x 是E 上的可测函数,则对任何常数0a >,有1 [|()|]|()|E mE x f x a f x dx a ≥≤ ? 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞ =,则 实变函数试题库及参考答案(1) 本科 一、填空题

实变函数历年考试真题汇总

第 1 页 共 6 页 陇东学院2011—2012学年第一学期实变函数(A) 一.填空.(每空2分,共20分) 1给出自然数集+N 与整数集Z 之间的一一对应关系 . 2设B A ,是两集合,B A <是指 . 3?? ?????????????=≠==0,00,1sin ),(x x x y y x E ,在2 R 内求= E ,='E , 4.设, ,(),[0,1]\. x x x P f x e x P ∈?=? ∈?其中P 是Cantor 集,则[] =?1,0)(dx x f ________. 5.设n E R ?,则称E 是L 可测的是指: . 6.设()sin f x x =,[0,2]x π∈,则()f x + = ; ()f x -= . 7.称)(x f 为可测集E 上的简单函数是指 8.设⑴mE <∞;⑵ {}()n f x 是 E 上一列几乎处处有限的可测函数;⑶ lim ()()n n f x f x →∞ =..a e 于E ,且()f x <∞..a e 于E .则0δ?>,E E δ??,使得 mE δδ<,而{}()n f x 在 上一致收敛于()f x . 二.选择(每题2分,共10分) 1.若A 是有限集或可数集,B 是不可数集,则以下不对的是( ). A .A B 是可数; B .A B 是不可数; C .A B c =; D .A B B = 2.设E 是任一可测集,则( ). A .E 是开集; B .0ε?>,存在开集G E ?,使得(\)m G E ε<; C .E 是闭集; D . E 是 F σ型集或 G δ型集. 3.下列关系式中成立的是( ) ①()A B B A =\ ,②()A B B A = \,③()B A B A ''=' , ④() B A B A =,⑤()B A B A =,其中B A ,是二集合. A .①② B .③④⑤ C .③⑤ D .①②③④⑤ 4. 设n E R ?,mE <+∞,{}()n f x 在E 上几乎处处收敛于()f x .则( ). A .{}()n f x 在E 上处处收敛于()f x ; B .存在{}()n f x 的子列{}()i n f x ,使得{} ()i n f x 在E 上一致收敛于()f x . C . {}()n f x 在E 上一致收敛于()f x ; D . {}()n f x 在 E 上依测度收敛于()f x ; 5.设q R E ?为可测集,{}()n f x 是E 上的一列非负可测函数,则( ) A ??∞→∞ →≤E n n n E n dx x f dx x f )(lim )(lim B ??∞→∞ →≥E n n n E n dx x f dx x f )(lim )(lim C ??∞→∞ →=E n n n E n dx x f dx x f )(lim )(lim D ??∞→∞ →=E n n n E n dx x f dx x f )(lim )(lim 三.判断题(每题2分,共10分) 1. 0mE =E ?是有限集或可数集. ( ) 2. 若开集1G 是开集2G 的真子集,则12mG mG < ( ) 3. 直线上的开集至多是可数多个互不相交的开区间的并 ( ) 4. 设()f x ,()g x 是可测集E 上的可测函数,则()()f x g x 也是E 上的可测函数 ( ) 5.可测函数)(x f 在E 上L 可积?)(x f 在E 上L 可积 ( ) 四.证明题(每题8分,共40分) 1.证明: 设()f x 是(,)-∞+∞上的实值连续函数,则a R ?∈,{} ()E x f x a =>是 试 卷 密 封 装 订 线 院 系 班 级 姓 名 学 号

《实变函数》复习题

《实变函数》复习题 黔南民族师范学院数学系 2006年7月

第一章 集 合 论 基 础 一、填空题 1.设?? ????≤≤+?=i x i x A i 1111,,则U =_________________. N i ∈∞ =1i i A 2.设??? ? ??+<≤=i x x A i 110,,则_________________. N i ∈=∞ =I 1i i A 3.??????+?=+1212,012m A m ,??? ???+=m A m 211,02,L ,2,1=m ,则 =n n A lim ____________,=n n A lim ______________. 4.,,2,1),,0(1 ,0(212L ===?m m A m A m m 则 =n n A lim ____________, =n n A lim _______________. 5.欲使{自然数全体}~{正奇数全体},只须令映照=)(n ?___________,为自然数. n 6.欲使~),0(+∞),(+∞?∞,只须令映照=)(x ?_____________,x 为正实数. 7.设M ={代数数全体},则M =___________,=M R \1 ___________________. 8.设{实数列全体},则的势为___________. E ∞=E ∞ 9.设[0,1]中无理数全体所成集为E ,则=E _________. 10.设集合A 、B 、满足:,若C A B C ??A ~,则___________________. C 二、证明题

实变函数测试题与答案

实变函数测试题 一,填空题 1. 设1,2n A n ??=????, 1,2n =L , 则lim n n A →∞ = 、 2. ()(),,a b -∞+∞:,因为存在两个集合之间的一一映射为 、 3. 设E 就是2R 中函数1cos ,00,0 x y x x ?≠?=?? =?的图形上的点所组成的 集合,则E '= , E ?= 、 4. 若集合n E R ?满足E E '?, 则E 为 集、 5. 若(),αβ就是直线上开集G 的一个构成区间, 则(),αβ满足: , 、 6. 设E 使闭区间[],a b 中的全体无理数集, 则mE = 、 7. 若()n mE f x →()0f x ??=?? , 则说{}()n f x 在E 上 、 8. 设n E R ?, 0n x R ∈,若 ,则称0x 就 是E 的聚点、 9. 设{}()n f x 就是E 上几乎处处有限的可测函数列, ()f x 就是E 上 几乎处处有限的可测函数, 若0σ?>, 有 , 则称{}()n f x 在E 上依测度收敛于()f x 、

10. 设()()n f x f x ?,x E ∈, 则?{}()n f x 的子列{} ()j n f x , 使得 、 二, 判断题、 正确的证明, 错误的举反例、 1. 若,A B 可测, A B ?且A B ≠,则mA mB <、 2. 设E 为点集, P E ?, 则P 就是E 的外点、 3. 点集11,2,,E n ??=???? L L 的闭集、 4. 任意多个闭集的并集就是闭集、 5. 若n E R ?,满足*m E =+∞, 则E 为无限集合、 三, 计算证明题 1、 证明:()()()A B C A B A C --=-U I 2、 设M 就是3R 空间中以有理点(即坐标都就是有理数)为中心, 有理数为半径的球的全体, 证明M 为可数集、 3、 设n E R ?,i E B ?且i B 为可测集, 1,2i =L 、根据题意, 若有 ()()*0,i m B E i -→ →∞, 证明E 就是可测集、 4. 设P 就是Cantor 集, ()[]32ln 1,(),0,1x x P f x x x P ?+ ∈? =? ∈-?? 、 求1 0(L)()f x dx ?、 5. 设函数()f x 在Cantor 集0P 中点x 上取值为3x , 而在0P 的余

实变函数与泛函分析总复习题

第一章 复习题(一) 一、判断题 1、大人全体构成集合。(× ) 2、小个子全体构成集合。(× ) 3、所有集合都可用列举法表示。(× ) 4、所有集合都可用描述法表示。(√ ) 5、对任意集合A ,总有A ??。(√ ) 6、()A B B A -?=。(× ) 7、()()A B B A B B A A -?=?=-?。(√ ) 8、若B A ?,则()A B B A -?=。(√ ) 9、c A A ?≠?,c A A X ?=,其中X 表示全集。(× ) 10、A B B A ?=?。(× ) 11、()c c c A B A B ?=?,()c c c A B A B ?=?。(× ) 12、()()()A B C A C B C ??=???,()()()A B C A C B C ??=???。(√ ) 13、若A B ,B C ,则A C 。(√ ) 14、若A B ,则A B =,反之亦然。(√ ) 15、若12A A A =?,12B B B =?,且11A B ,22A B ,则A B 。(× ) 16、若A B ?,则A B ≤。(√ ) 17、若A B ?,且A B ≠,则A B <。(× ) 18、可数集的交集必为可数集。(× ) 19、有限或可数个可数集的并集必为可数集。(√ ) 20、因整数集Z ?有理数集Q ,所以Q 为不可数集。(× ) 21、()c c A A =。(√ ) 第二章 复习题 一、判断题 1、设P ,n Q R ∈,则(,)0P Q ρ=?P Q =。(× ) 2、设P ,n Q R ∈,则(,)0P Q ρ>。(× ) 3、设123,,n P P P R ∈,则121323(,)(,)(,)P P P P P P ρρρ≥+。(× ) 4、设点P 为点集E 的内点,则P E ∈。(√ )

相关主题
文本预览