当前位置:文档之家› 激光二极管抽运的被动调QNd_GdVO_4激光器

激光二极管抽运的被动调QNd_GdVO_4激光器

激光二极管抽运的被动调QNd_GdVO_4激光器
激光二极管抽运的被动调QNd_GdVO_4激光器

激光二极管的特性

激光二极管的特性 1、伏安特性 半导体激光器是半导体二极管,具有单向导电性,其伏安特性与二极管相同。反向电阻大于正向电阻,可以通过用万用表测正反向电阻确定半导体激光二极管的极性及检查它的PN结好坏。但在测量时必须用1k以下的档,用大量程档时,激光器二极管的电流太大,容易烧坏。 2、P—I特性 激光二极管的出射光功率P与注入电流I的关系曲线称为P-I 曲线。 注入电流小于阈值电流I th时,激光器的输 出功率P很小,为自发辐射的荧光,荧光的输 出功率随注入电流的增加而缓慢增加。 注入电流大于Ith时,输出功率P随注入 电流的增加而急剧增加,这时P—I曲线基本上 是线性的。当I再增大时,P—I曲线开始弯曲呈非线性,这是由于随着注入电流的增大,使结温上升,导致P增加的速度减慢。 判断阈值电流的方法:在P—I特性曲线中,激光输出段曲线的向下延长线与电流轴的交点为激光二极管的阈值电流。 3、光谱特性

激光二极管的发射光谱由两个因素决定:谐振腔的参数,有源介质的增益曲线。 腔长L确定纵模间隔,宽W和高H决定横模性质。如果W和H 足够小,将只有单横模TEM00存在。 多模激光二极管在其中心波长附近呈现出多个峰值的光谱输出。单纵模激光器只有一个峰值。 工作在阈值以上的1mm腔长的增益导引LD的典型发射光谱 激光二极管是单模或多模还与泵浦电流有关。折射率导引LD,在泵浦电流较小、输出光功率较小时为多模输出;在电流较大、输出光功率较大时则变为单模输出。而增益导引LD,即使在高电流工作

下仍为多模。 折射率导引激光器光谱随光功率的变化发射光谱随注入电流而变化。IIt 发射激光,光谱突然变窄。因此,从激光二极管发射光谱图上可以确定阈值电流。当注入电流低于阈值电流时光谱很宽,当注入电流达到阈值电流时,光谱突然变窄,出现明显的峰值,此时的电流就是阈值电流。 IIt 激光辐射

激光二极管通讯模块生产测试系统详解

激光二极管通讯模块生产测试系统详解 概述: 随着互联网的快速普及,Giga级带宽网络通讯的广泛应用以及ATM/Sonet,通用电话制造业等相关通讯产品的不断发展, 运用WDM(Wavelength Division Multiplexed)技术的宽带大容量的接入系统正逐渐成为业界的主流发展趋势。使用这种接入系统可以在避免重复安装新的通讯线路的基础上,大大增加现有光纤通讯线路的传输带宽。 WDM技术的应用使得将不同波长的光信号通过一路光纤进行传输成为了现实。由于该系统要求体积小,功耗低,因此激光二极管(Laser Diodes)已经成为了该系统中不可或缺的核心元件。在WDM系统中,每隔一段特定的距离,光信号被掺铒光纤放大器(EDFA:Erbium Doped Fiber Amplifiers)放大。某些公司,如朗讯科技已将这一技术进一步发展成为具有一个Terabit容量的Dense and Ultra-Dense WDM 系统。 本质上讲,激光二极管(LD)就是一个在有正向电流激励的条件下的半导体发光器件。其波长从最高1550nm(红外区)到最低750nm(绿光区),输出功率通常从几个毫瓦到几瓦不等。其工作模式可以是脉冲的(pulse)也可以是持续的(continuous wave)。激光二极管对温度变化极为敏感-----几个摄氏度的温度变化可能导致其“模式跳变”(mode hopping)或者输出光波长的阶跃。 目前,在光通讯系统中大量使用的有两种激光二极管:FP(Fabry-Perot)和DFB(Distributed Feedback)。二者的区别主要表现在输出光特性的不同。FP激光器能够产生包含有若干种离散波长的光,而DFB激光器则发出具有额定波长的光。通常在DFB激光器中有一个反射分选器(reflection gratings)用来消除除了额定波长之外的其它光波。 由于WDM技术要求具有多种不同波长的光信号同时进行传输,因此在现今所有的WDM系统中均使用DFB激光器。而FP激光器则大多用于那种一个光纤通路对应一个收发器(transceiver)的系统,如Local Area Networks(LANs), Fiber To The Curb(FTTC)和Fiber To The Home(FTTH)。 图一激光二极管通讯模块加工过程示意图

激光二极管LIV测试仪

激光二极管LIV测试仪 苏美开 (济南福来斯光电技术研究室,flsoe@https://www.doczj.com/doc/b210858793.html,) 1.概述 激光二极管LIV测试仪是测量半导体激光器(LD)主要性能参数和特性指标的仪器。通过给受试LD提供不同的工作电流,采集不同工作条件下受试LD的各种参数信号,计算得出该LD的光电转换特性、伏安特性、光谱特性、远场/近场特性(近场特性正在开发中)和热特性。打印测试报告,保存数据。主要特点是: 1.1系统按功能模快化,采用单片机控制, 性能稳定可靠,维修使用方便; 1.2 测试功率覆盖范围宽:mW~1000W以上; 1.3 测试封装类型多:TO系列、光纤输出系列、Bar系列、管芯系列以及各种组件等等; 1.4 高质量的LD驱动电源:既可连续工作,又可脉冲工作,具有LD过流保护功能,低噪声、无浪涌和过脉冲; 1.5自动化程度高:整个测试、数据采集和数据处理、显示及打印都由系统自动完成; 1.6操作简单、测量速度快。 1.7 USB/RS232接口自选 2 功能 系统主要功能包括测量LD的光电特性(LI和LI M)、伏安特性(VI)、光谱特性(SP)、远场特性(FF)和热特性(R),具体如下: 曲线,检测、推算工作电流、输出光功率、 2.1进行LIV和LI测试,绘制LIV曲线和LI M 工作电压、阈值电流、功率效率、斜率效率、微分电阻、背光电流等参数; 2.2进行光谱测试:绘制光谱曲线,推算峰值波长、光谱谱宽; 2.3进行远场测试: 绘制远场曲线,推算水平发散角、垂直发散角; 2.4进行热阻测试; 2.5测试数据能够保存、导入,可打印标准测试报告。 2.6可测量参数见表1: 表1 可测量参数 3主要技术指标 测试仪按照功率分类应包括小功率测试仪(0-100mW);中功率测试仪(0-10W),大功率测试仪(0-100W以上)。表2给出了不同功率类型仪器的主要技术指标。

半导体激光器特性测量

半导体激光器特性测量实验 摘要:激光器的三个基本组成部分是:增益介质、谐振腔、激励能源。本实验通过测量半导体激光器的输出特性、偏振度和光谱特性,进一步了解半导体激光器的发光原理,并掌握半导体激光器性能的测试方法。 关键字:半导体激光器偏振度阈值光谱特性 一、引言 半导体激光器是用半导体材料作为工作物质的激光器,常用工作物质有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。半导体激光器件,可分为同质结、单异质结、双异质结等几种。半导体激光器发射激光必须具备三个基本条件:(1)产生足够的粒子数反转分布;(2)合适的谐振腔起反馈作用,使受激辐射光子增生,从而产生激光震荡;(3)满足阀值条件,使光子的增益≥损耗。半导体激光器工作原理是用某种激励方式,将介质的某一对能级间形成粒子数反转分布,在自发辐射和受激辐射的作用下,将有某一频率的光波产生(用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔),在腔内传播,并被增益介质逐渐增强、放大,输出激光。 二、实验仪器 半导体激光器装置、WGD-6型光学多道分析器、电脑、光功率指示仪等。 三、实验原理 3.1半导体激光器的基本结构 半导体激光器大多数用的是GaAs或Gal-xAlxAs材料,p-n结激光器的基本结构如图1所示,p-n结通常在n型衬底上生长p型层而形成。在p区和n区都要制作欧姆接触,使激励电流能够通过,这电流使结区附近的有源区内产生粒子数反转,还需要制成两个平行的端面其镜面作用,为形成激光模提供必须的光反馈。图1中的器件是分立的激光器结构,它可以与光纤传输连成线,如果设计成更完整的多层结构,可以提供更复杂的光反馈,更适合单片集成光电路。

半导体激光器输出特性的影响因素

半导体激光器输出特性的影响因素 半导体激光器是一类非常重要的激光器,在光通信、光存储等很多领域都有广泛的应用。下面我将探讨半导体激光器的波长、光谱、光功率、激光束的空间分布等四个方面的输出特性,并分析影响这些输出特性的主要因素。 1. 波长 半导体激光器的发射波长是由导带的电子跃迁到价带时所释放出的能量决定的,这个能量近似等于禁带宽度Eg(eV)。 hf=Eg f(Hz)和λ(μm)分别为发射光的频率和波长 且c=3×108m/s ,h=6.628×10?34J ·s ,leV=1.60×10?19J 得 决定半导体激光器输出光波长的主要因素是半导体材料和温度。 不同半导体材料有不同的禁带宽度Eg ,因而有不同的发射波长λ:GaAlAs-GaAs 材料适用于0.85μm 波段,InGaAsP-InP 材料适用于1.3~1.55μm 波段。 温度的升高会使半导体的禁带宽度变小,导致波长变大。 2. 光功率 半导体激光器的输出光功率 其中I 为激光器的驱动电流,P th 为激光器的阈值功率;I th 为激光器的阈值电流;ηd 为外微分量子效率;hf 为光子能量;e 为电子电荷。 hf 、e 为常数,Pth 很小可忽略。由此可知,输出光功率主要取决于驱动电流I 、阈值电流I th 以及外微分量子效率ηd 。驱动电流是可随意调节的,因此这里主要讨论后两者。除此之外,温度也是影响光功率的重要因素。 1)阈值电流 半导体激光器的输出光功率通常用P-I 曲线表示。当外加正向电流达到某一数值时,输出光功率急剧增加,这时将产生激光振荡,这个电流称为阈值电流,用I th 表示。当激励电流II th 时,有源区不仅有粒子数反转,而且达到了谐振条件,受激辐射为主,输出功率急剧增加,发出的是激光,此时P-I 曲线是线性变化的。对于激光器来说,要求阈值电流越小越好。 阈值电流主要与下列影响因素有关: a) 晶体的掺杂浓度越大,阈值电流越小。 b) 谐振腔的损耗越小,阈值电流越小。 c) 与半导体材料结型有关,异质结阈值电流比同质结小得多。 d) 温度越高,阈值电流越大。 2)外微分量子效率 ) (th d th I I e hf P P -+=ηλ c =f

激光器测试验收报告

谷老师谈话整理——激光器验收 一、仪器基本情况及关键指标 锁模紫外激光器主要技术参数:1)波长(nm):355;2)输出模式:TEM00(高斯光);3)工作模式:锁模,准连续激光(由于脉冲频率很高,几乎相当于连续的);4)重复频率(MHz):100±1;5)平均功率(mW):150;6)功率稳定性(over 8 hours):< ±1% rms; 7)脉宽:﹥10ps;8)预热时间(minutes):<10;9)光斑发散角(mrad): <2.0;10) 光斑直径(mm):0.9 ±15%;11) 工作温度(℃):15~ 35;12) 偏振:水平偏振。 二、验收项目 1)波长(nm):355;4)重复频率(MHz):100±1;5)平均功率(mW): 150;6)功率稳定性(over 8 hours) :< ±1% rms;7)脉宽: ﹥10ps; 9)光斑发散角: (mrad):<2.0;10) 光斑直径: (mm):0.9 ±15%;11) 工作温度(℃):15~35;12) 偏振:水平偏振。 关键验收指标:激光器的稳定性、均匀性、持续时间,涉及到的关键指标有:脉冲宽度、重复频率、平均功率(峰值功率)、光斑发散角 注:以上指标在不同温度下测试 三、验收仪器 波长计(光谱仪)、光电探测器(将光信号转换为电信号)、示波器、功率计、光束分析仪(光斑分析仪) 四、验收方法与操作流程

1)结合光电探测器+示波器:通过示波器可观看到激光的脉冲宽度、重复频率、功率峰值大小,并观察其稳定性情况,正 常情况下各项指标误差在±2%以内; 2)功率计:测试平均功率密度; 注:结合偏振片还可测试偏振方向,改变偏振片取向看功率 计中入射功率的变化。 3)波长计或光谱仪:测试波长纯度,应满足误差不超过±1%; 4)光束分析仪或光斑分析仪:测试光斑直径大小和衍射角注:当没有上述仪器时,可以简单设计以下测试方案:即,在激光光路上的不同位置记录下光斑直径的大小,测量相应位置距离,即可计算出衍射角大小 5) 功率均匀性测试方法:光束先后经过透镜、光阑,光束经过光阑调制后进入功率计,测试不同位置功率大小。 6)BBO晶体正入射的调制方法:光束经透镜聚焦后经过光阑调制进入BBO晶体,如果BBO没有垂直放置的话,经BBO反射的激光将不能反射返回进入光阑中(聚焦透镜应该选择吸收和散射较少的,一般要求石英制作透镜)。 注意:1)355nm激光不能直接打到光电探测器上,2)观察各项测试指标在其连续工作数小时后是否保持稳定,可以每隔一小时测试一次;

半导体激光器pi特性测试实验

太原理工大学现代科技学院 课程实验报告 专业班级 学号 姓名 指导教师

实验名称 半导体激光器P-I 特性测试实验 同组人 专业班级 学号 姓名 成绩 一、 实验目的 1. 学习半导体激光器发光原理和光纤通信中激光光源工作原理 2. 了解半导体激光器平均输出光功率与注入驱动电流的关系 3. 掌握半导体激光器P (平均发送光功率)-I (注入电流)曲线的测试方法 二、 实验仪器 1. ZY12OFCom13BG 型光纤通信原理实验箱 1台 2. 光功率计 1台 3. FC/PC-FC/PC 单模光跳线 1根 4. 万用表 1台 5. 连接导线 20根 三、 实验原理 半导体激光二极管(LD )或简称半导体激光器,它通过受激辐射发光,(处于高能级E 2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E 1,这个过程称为光的受激辐射。所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。)是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW )辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm ),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz )直接调制,非常适合于作高速长距离光纤通信系统的光源。 P-I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小,I th 对应P 值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比(测试方法见实验四)大, ……………………………………装………………………………………订…………………………………………线………………………………………

1392nmDFB蝶形激光器(水气检测专用)

1392nmDFB蝶形激光器(水气检测专用) 1,描述 该激光器采用量子阱结构的DFB 激光器,内置半导体制冷器,先进的激光焊接工艺实现蝶形尾纤式封装,结构紧凑,体积小,半导体制冷器高精度温度控制下,激光器功率高稳定、波长高稳定的优势,使得激光器在光纤传感器领域得到广泛应用。 产品特点主要应用 采用进口气体检测专用芯片封装波长稳定 高输出功率 气密性温控封装光纤气体检测系统 气体检测用无源器件生产检测光源 极限参数 参数符号单位参数值 激光二极管正向电流If(LD)mA120 激光二极管反向电压Vr(LD)V 2 背光探测器工作电流If(PD)mA 2 背光探测器反向电压Vr(PD)V 20 致冷器工作电流ITEC A 2.4 致冷器工作电压VTEC V 2.9 工作温度Topr ℃-20~+70 储存温度Tstg ℃-40~+85 管脚焊接温度/时间Tsld ℃/s 260/10 技术参数 参数符号单位最小值典型值最大值出纤功率P0 mw 10 阈值电流Ith mA 12 18 工作电流Iop mA 80 工作电压Vop V 1.5 2 线宽Lw Mhz 2MHZ 中心波长λ c nm 1392 波长随温度变化漂移系数Δλ/T nm 0.1 波长随电流变化漂移系数Δλ/I Nm 0.01 背光监视电流Im mA 0.1 2 背光探测器暗电流Id nA 10 边模抑制比SMSR Db 35 芯片工作温度T ℃25 热敏电阻@25℃R KΩ10

备注: 气体检测中,根据HITRAN 提供的吸收谱线数据,同一种气体通常几个吸收峰,客户应先根据自己的系统需要选择最 佳中心波长位置. 封装尺寸 引脚定义

激光器功率检测报告

激光器功率测试报告 一、搭建激光功率检测系统的目的 (1)、只有通过激光功率的测试,才能追踪晶体内部质量、加工工艺、镀膜工艺等各环节对激光输出的影响,从根本上来改进各方面技术,提高晶体质量,提高公司的声誉。(2)。。。 (3)。。。。 (4)。。。 二、激光功率测试原理 (1)激光测试系统 激光功率测试系统主要由激光器部分和功率计测试部分组成,其中激光器部分直接就决定了激光输出,功率计直接影响测试的准确性。 激光器由工作物质、谐振腔和泵浦源三大部分组成。工作物质是激光器的核心,作用是为激光的产生提供反转粒子数;谐振腔是激光器的重要部件,它不仅是形成激光振荡的必要条件,而且还对输出激光的模式、功率、光束发散角等均有着很大影响。泵浦源是为实现粒子数反转提供外界能量的系统。 泵浦源输出镜 全反镜 工作物质

激光器三大部分的选择: (a)工作物质的选择 较高的光学质量和荧光量子效率 能掺入较高浓度的激活离子,荧光寿命长 掺入激活离子具有有效的激励光谱和较大的受激发射截面 针对某一泵浦源有较强的光谱吸收 良好的物理、化学和机械特性,热导率高,热膨胀系数小 机械强度高可承受高功率密度,化学稳定性好 制备简单,加工容易,成本低,足够尺寸 (b)泵浦源 泵浦源是为实现粒子数反转提供外界能量的系统。 主要激励方式有光激励、放电激励、热能激励、化学能激励、核能激励 固体激光器采用光泵浦方式工作。电源的电能首先变为泵浦光源的光能,然后再转变成固体激光工作物质的储能。可分为连续和脉冲固体激光电源两大类 (c)谐振腔 光学谐振腔是激光器的重要组成部分,常见的谐振腔是由两个球面镜或平面镜构成,其形式与结构参数直接影响激光器的功率输出,光束发散角、光束质量、激光模式、光斑大小和谐振频率。 (d)功率计 功率计由探头和功率显示器两部分组成,探头的防噪性能,灵敏度,显示器的量程,精确度等都直接影响测量结果的可靠性。 (2)激光功率测试 1064nm激光为不可见光,而且我们主要要求测量直径为7、8mm,长度为145mm以上的棒,基本都是大功率输出,所以测试过程必须把此套封闭在一定的区域内,确保安全性。 需要测量不同晶体棒的如下参数: ●阈值能量Eth=1/2C*U*U(阈值能量越高,在同一注入能量 的情况下,输出功率越低) ●同一注入能量的情况下,比较各晶体棒的输出功率(定性的 确定晶体棒输出功率的稳定性、高低性) 注入能量J 1 2 3 4 晶体编号

半导体激光器参数测试仪(精)

半导体激光器(LD)参数测试仪 苏美开 (济南福来斯光电技术研究室,flsoe@https://www.doczj.com/doc/b210858793.html,) 1.概述 LD参数测试仪是测量半导体激光器主要性能参数和特性指标的仪器。通过给受试LD 提供不同的工作电流,采集不同工作条件下受试LD的各种参数信号,计算得出该LD的光电转换特性、伏安特性、光谱特性、远场/近场特性(近场特性正在开发中)和热特性。打印测试报告,保存数据。主要特点是: 1.1系统按功能模快化,采用单片机控制, 性能稳定可靠,维修使用方便; 1.2 测试功率覆盖范围宽:mW~1000W以上; 1.3 测试封装类型多:TO系列、光纤输出系列、Bar系列、管芯系列以及各种组件等等; 1.4 高质量的LD驱动电源:既可连续工作,又可脉冲工作,具有LD过流保护功能,低噪声、无浪涌和过脉冲; 1.5自动化程度高:整个测试、数据采集和数据处理、显示及打印都由系统自动完成; 1.6操作简单、测量速度快。 1.7 USB/RS232接口自选 2 功能 系统主要功能包括测量LD的光电特性(PI和PI M)、伏安特性(VI)、光谱特性(SP)、远场特性(FF)和热特性(R),具体如下: 曲线,检测、推算工作电流、输出光功率、 2.1进行PIV和PI测试,绘制PIV曲线和PI M 工作电压、阈值电流、功率效率、斜率效率、微分电阻、背光电流等参数; 2.2进行光谱测试:绘制光谱曲线,推算峰值波长、光谱谱宽; 2.3进行远场测试: 绘制远场曲线,推算水平发散角、垂直发散角; 2.4进行热阻测试; 2.5测试数据能够保存、导入,可打印标准测试报告。 2.6可测量参数见表1: 表1 可测量参数 3主要技术指标 测试仪按照功率分类应包括小功率测试仪(0-100mW);中功率测试仪(0-10W),大功率测试仪(0-100W以上)。表2给出了不同功率类型仪器的主要技术指标。

半导体激光器输出特性的影响因素

半导体激光器输出特性的影响因素

半导体激光器输出特性的影响因素 半导体激光器是一类非常重要的激光器,在光通信、光存储等很多领域都有广泛的应用。下面我将探讨半导体激光器的波长、光谱、光功率、激光束的空间分布等四个方面的输出特性,并分析影响这些输出特性的主要因素。 1. 波长 半导体激光器的发射波长是由导带的电子跃迁到价带时所释放出的能量决定的,这个能量近似等于禁带宽度Eg(eV)。 hf = Eg f (Hz)和λ(μm)分别为发射光的频率和波长 且c=3×108m/s , h=6.628×10?34 J ·s ,leV=1.60×10?19 J 得 决定半导体激光器输出光波长的主要因素是半导体材料和温度。 λ c =f ) ( )(24.1m eV Eg μλ=

不同半导体材料有不同的禁带宽度Eg ,因而有不同的发射波长λ:GaAlAs-GaAs 材料适用于0.85 μm 波段, InGaAsP-InP 材料适用于 1.3~1.55 μm 波段。 温度的升高会使半导体的禁带宽度变小,导致波长变大。 2. 光功率 半导体激光器的输出光功率 其中I 为激光器的驱动电流,P th 为激光器的阈值 功率;I th 为激光器的阈值电流;ηd 为外微分量 子效率;hf 为光子能量;e 为电子电荷。 hf 、e 为常数,Pth 很小可忽略。由此可知,输出光功率主要取决于驱动电流I 、阈值电流I th 以及外微分量子效率ηd 。驱动电流是可随意调节 的,因此这里主要讨论后两者。除此之外,温度也是影响光功率的重要因素。 1)阈值电流 半导体激光器的输出光功率通常用P-I 曲线 ) (th d th I I e hf P P -+=η

半导体激光器的光学特性测试

实验八半导体激光器的光学特性测试 [实验目的] 1、通过实验熟悉半导体激光器的光学特性。 2、掌握半导体激光器耦合、准直等光路的调节。 3、根据半导体激光器的光学特性考察其在光电子技术方面的应用。 [实验仪器] 1、半导体激光器及可调电源 2、光谱仪 3、可旋转偏振片 4、旋转台 5、光功率计 图1. 半导体激光器的结构 [实验原理] 1、半导体激光器的基本结构 至今,大多数半导体激光器用的是GaAs或Ga1-x Al x As材料,p-n结激光器的基本结构如图1所示。P—n结通常在n型衬底上生长p型层而形成。在p区和n区都要制作欧姆接触,使激励电流能够通过,这电流使结区附近的有源区内产生粒子数反转,还需要制成两个平行的端面起镜面作用,为形成激光模提供必须的光反馈。图1中的器件是分立的激光器结构,它可以与光纤传输线连接,如果设计成更完整的多层结构,可以提供更复杂的光反馈,更适合单片集成光路。 2、半导体激光器的阈值条件:

当半导体激光器加正向偏臵并导通时,器件不会立即出现激光振荡。小电流时发射光大都来自自发辐射,光谱线宽在数百唉数量级。随着激励电流的增大,结区大量粒子数反转,发射更多的光子。当电流超过阈值时,会出现从非受激发射到受激发射的突变。实际上能够 观察到超过阈值电流时激光的突然发生,只要观察在光功率对激励电流曲线上斜率的急速突变,如图2所示;这是由于激光作用过程的本身具有较高量子效率的缘故。从定量分析,激光的阈值对应于:由受激发射所增加的激光模光子数(每秒)正好等于由散射、吸收激光器的发射所损耗的光子数(每秒)。据此,可将阈值电流作为各种材料和结构参数的函数导出一个表达式: )]1 (121[820 2R n a D en J Q th +?= ληγπ (1) 这里,Q η是内量子效率,O λ是发射光的真空波长,n 是折射率,γ?是自发辐射线宽,e 是电子电荷,D 是光发射层的厚度,α是行波的损耗系数,L 是腔长,R 为功率反 射系数。 3、横膜和偏振态 半导体激光器的共振腔具有介质波导的结构,所以在共振腔中传播光以模的形式存在。每个模都由自己的传播常数m β和横向电场分布,这些模就构成了半导体激光器中的横模。横膜经端面出射后形成辐射场。辐射场的角分布沿平行于结面方向和垂直于结面方向分别成为侧横场和正横场。

激光二极管的特性

激光二极管的特性 激光二极管的特性 1、伏安特性 半导体激光器是半导体二极管,具有单向导电性,其伏安特性与二极管相同。反向电阻大于正向电阻,可以通过用万用表测正反向电阻确定半导体激光二极管的极性及检查它的PN结好坏。但在测量时必须用1k以下的档,用大量程档时,激光器二极管的电流太大,容易烧坏。 2、P—I特性 激光二极管的出射光功率P与注入电流I的关系曲线称为P-I曲线。 注入电流小于阈值电流Ith时,激光器的输出功率P很小,为自发辐射的荧光,荧光的输出功率随注入电流的增加而缓慢增加。 注入电流大于Ith时,输出功率P随注入电流的增加而急剧增加,这时P—I曲线基本上 是线性的。当I再增大时,P—I曲线开始弯曲呈非线性,这是由于随着注入电流的增大,使结温上升,导致P增加的速度减慢。 判断阈值电流的方法:在P—I特性曲线中,激光输出段曲线的向下延长线与电流轴的交点为激光二极管的阈值电流。 3、光谱特性 激光二极管的发射光谱由两个因素决定:谐振腔的参数,有源介质的增益曲线。 腔长L确定纵模间隔,宽W和高H决定横模性质。如果W和H 足够小,将只有单横模TEM00存在。 多模激光二极管在其中心波长附近呈现出多个峰值的光谱输出。单纵模激光器只有一个峰值。 工作在阈值以上的1mm腔长的增益导引LD的典型发射光谱 激光二极管是单模或多模还与泵浦电流有关。折射率导引LD,在泵浦电流较小、输

出光功率较小时为多模输出;在电流较大、输出光功率较大时则变为单模输出。而增益导引LD,即使在高电流工作 下仍为多模。 折射率导引激光器光谱随光功率的变化 发射光谱随注入电流而变化。IIt 发射激光,光谱突然变窄。因此,从激光二极管发射光谱图上可以确定阈值电流。当注入电流低于阈值电流时光谱很宽,当注入电流达到阈值电流时,光谱突然变窄,出现明显的峰值,此时的电流就是阈值电流。 IIt 激光辐射 4、温度特性 半导体激光器的阈值电流随温度的升高而增加,变化关系可表示为: T/T0) Ith(T)?Aexp(式中T0是衡量阈值电流Ith对温度变化敏感程度的参数——叫特征温度,取决于器件的材料和结构等因素,T0值越大,表示Ith对温度变化越不敏感,器件的温度特性越好。A是常数。 因Ith随温度升高而增大,因此P—I特性曲线也随温度变化。随着温度升高,在注入电流不变的情况下,输出光功率会变小。这就是为什么LD工作一段时间后输出功率会下降。 阈值—温度特性与其结构有关,一般说,异质结构比同质结的温度特性好。 温度变化还将引起激光器输出光谱的改变,出现跳模(mode hop)现象。原因:温度改变,使腔的参数(折射率, 腔长)发生较大变化,引起激发模式发生变化。在模式跳跃之前,因折射率和腔长随温度升高而有少量增加,致使波长随温度升高而缓慢增大(下图a)。如要避免跳模,必须增大模式间隔(下图b)。 对于多模增益导引半导体激光器,波长随温度的变化是由于带隙随温度变化而产生的,温度变化主要影响光增益曲线而不是腔的参数,因此变化曲线是连续的(下图c)。 半导体激光器必须加制冷器,进行温度控制。

激光二极管知识

激光二极管本质上是一个半导体二极管,按照PN结材料是否相同,可以把激光二极管分为同质结、单异质结(SH)、双异质结(DH)和量子阱(QW)激光二极管。量子阱激光二极管具有阈值电流低,输出功率高的优点,是目前市场应用的主流产品。同激光器相比,激光二极管具有效率高、体积小、寿命长的优点,但其输出功率小(一般小于2mW),线性差、单色性不太好,使其在有线电视系统中的应用受到很大限制,不能传输多频道,高性能模拟信号。在双向光接收机的回传模块中,上行发射一般都采用量子阱激光二极管作为光源。 半导体激光二极管的基本结构如图所示,垂直于PN结面的一对平行平面构成法布里——珀罗谐振腔,它们可以是半导体晶体的解理面,也可以是经过抛光的平面。其余两侧面则相对粗糙,用以消除主方向外其它方向的激光作用。 半导体中的光发射通常起因于载流子的复合。当半导体的PN结加有正向电压时,会削弱PN结势垒,迫使电子从N区经PN结注入P区,空穴从P区经过PN结注入N区,这些注入PN结附近的非平衡电子和空穴将会发生复合,从而发射出波长为λ的光子,其公式如下: λ = hc/Eg (1) 式中:h—普朗克常数;c—光速;Eg—半导体的禁带宽度。 上述由于电子与空穴的自发复合而发光的现象称为自发辐射。当自发辐射所产生的光子通过半导体时,一旦经过已发射的电子—空穴对附近,就能激励二者复合,产生新光子,这种光子诱使已激发的载流子复合而发出新光子现象称为受激辐射。如果注入电流足够大,则会形成和热平衡状态相反的载流子分布,即粒子数反转。当有源层内的载流子在大量反转情况下,少量自发辐射产生的光子由于谐振腔两端面往复反射而产生感应辐射,造成选频谐振正反馈,或者说对某一频率具有增益。当增益大于吸收损耗时,就可从PN结发出具有良好谱线的相干光——激光,这就是激光二极管的简单原理。 随着技术和工艺的发展,目前实际使用的半导体激光二极管具有复杂的多层结构。 常用的激光二极管有两种:①PIN光电二极管。它在收到光功率产生光电流时,会带来量子噪声。②雪崩光电二极管。它能够提供内部放大,比PIN光电二极管的

激光器测试验收报告

锁模紫外激光器主要技术参数:1)波长(nm ): 355; 2)输出模式: TEMOO (高斯光);3)工作模式:锁模,准连续激光(由于脉冲 频率很高,几乎相当于连续的);4)重复频率(MHz ) : 100±; 5) 平均功率(mW ): 150; 6)功率稳定性(over 8 hours ): < ±% rms; 7)脉宽:> 10ps; 8)预热时间(minutes ):<10; 9)光斑发散角 (mrad ): <2.0; 10)光斑直径(mm ): 0.9 15%; 11)工作温度 「C ): 15? 35; 12)偏振:水平偏振。 二、 验收项目 1)波长(nm ):355; 4)重复频率(MHz ): 100±1; 5)平均功率 (mW ): 150; 6)功率稳定性(over 8 hours ) :< 1% rr±s; 7)脉宽:> 10ps; 9)光斑发散角:(mrad ):<2.0; 10)光斑直径:(mm ): 0.9 ±5%; 11) 工作温度「C ): 15?35; 12)偏振:水平偏振。 关键验收指标:激光器的稳定性、均匀性、持续时间,涉及到的 关键指标有:脉冲宽度、重复频率、平均功率(峰值功率)、光 斑发散角 注:以上指标在不同温度下测试 三、 验收仪器 波长计(光谱仪)、光电探测器(将光信号转换为电信号)、示波器、 谷老师谈话整理 仪器基本情况及关键指标 激光器验收

功率计、光束分析仪(光斑分析仪) 四、验收方法与操作流程 1)结合光电探测器+示波器:通过示波器可观看到激光的脉冲宽 度、重复频率、功率峰值大小,并观察其稳定性情况,正常情 况下各项指标误差在生%以内; 2)功率计:测试平均功率密度; 注:结合偏振片还可测试偏振方向,改变偏振片取向看功率计 中入射功率的变化。 3)波长计或光谱仪:测试波长纯度,应满足误差不超过±1%; 4)光束分析仪或光斑分析仪:测试光斑直径大小和衍射角 注:当没有上述仪器时,可以简单设计以下测试方案:即,在激光光路上的不同位置记录下光斑直径的大小,测量相应位置距离,即可计算出衍射角大小 5)功率均匀性测试方法:光束先后经过透镜、光阑,光束经过光阑调制后进入功率计,测试不同位置功率大小。 6)BBO晶体正入射的调制方法:光束经透镜聚焦后经过光阑调制进入BBO晶体,如果BBO没有垂直放置的话,经BBO反射的激光将不能反射返回进入光阑中(聚焦透镜应该选择吸收和散射较少的,一般要求石英制作透镜)。 注意:1)355nm激光不能直接打到光电探测器上,2)观察各项测试指标

激光器种类及其特点调研

激光器种类及特点调研 *激光器基本结构:工作物质、泵浦源和光学谐振腔 工作物质:激光器核心,是激光器产生光的受激辐射放大作用的源泉 泵浦源:为在工作物质中实现粒子数反转分布提供所需能源 光学谐振腔:为激光振荡的建立提供正反馈,同时谐振腔的参数影响输出激光束的质量 *激光器的分类及输出特性 1、按工作物质分 1)气体激光器 激励方式:一般采用气体放电激励,还可以采用电子束激励、热激励、化学反应激励等,使得发生不同能量状态之间跃迁从而产生激光 波长范围:真空紫外——远红外波段 特点:激光谱线上万条,具有输出光束质量高(方向性级单色性好)、连续输出功率大(如CO2激光器)等输出特性、器件结构简单,造价低廉 2)固体激光器 固体工作物质通常是在基质材料,如晶体或玻璃中掺入少量的金属离子(激活离子),激光跃迁发生在激活离子的不同工作能级之间 波长范围:可见光——近红外波段 特点:激光谱线数数千条,具有输出能量大、运转方式多样等特点,器件结构紧凑、牢靠耐用、易于与光纤耦合进行光纤传输 3)液体激光器 波长范围:紫外——近红外波段(300nm—1.3μm) 特点:激光波长连续可调谐,但稳定性比较差 4)半导体激光器 波长范围:近红外波段(920nm—1.65μm),其中1.3μm与1.55μm为光纤传输的两个窗口 特点:能量转换效率高、易于进行高速电流调制、超小型化、结构简单、使用寿命长 5)化学激光器 6)自由电子激光器 工作物质是通过电子加速器加速的高能电子,将相对论电子束的动能转变为激光辐射能 特点:具有非常高的能量转换效率、输出激光波长连续可调谐 7)X射线激光器 8)光纤激光器 工作物质:以掺入某些激活离子的光纤,或者利用光纤自身的非线性光学效应制成的激光器 分类:晶体光纤激光器、稀土类掺杂光纤激光器、塑料光纤激光器和非线性光学效

试验二半导体激光器P―I特性曲线的绘制

实验二半导体激光器P―I特性曲线的绘制 一、实验目的 1、学习半导体激光器的发光原理。 2、了解半导体激光器输出光功率与注入电流的关系。 3、掌握半导体激光器P-I特性曲线的测试及绘制方法。 二、实验内容 测量半导体激光器的输出光功率和注入电流,并画出P-I关系曲线。 三、实验原理 半导体激光器的输出光功率与驱动电流的关系如图2-1所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用I th表示。在阈值电流以下,激光器工作于自发发射,输出荧光,光功率很小。在门限电流以上,激光器工作于受激发射,输出激光,光功率随驱动电流迅速上升,基本成线性关系;激光器的电流与电压的关系类似于正向二极管的特性,如图2-2所示。 图2-1 激光器的功率特性图2-2 激光器的伏安特性 阈值条件就是光谐振腔中维持光振荡的条件。设受激发射所产生的光介质的平均增益系数(单位长度上的增益)为g,光介质的平均损耗系数为a,则光谐振腔产生和维持 光振荡的条件为光子在光谐振腔中来回反射一次所产生的光能增益大于或等于光能的损耗,用公式表示为: (2-1)

式中L 为光谐振腔的长度,r1、r2分别为光谐振腔两端镜面的反射系数(O1为电流侧向扩展因子,可使ξ接近1,故能获得小的门限电流。激光器功率特性的线性程度对模拟光纤传输系统的非线性失真指标影响很大。 半导体激光二极管(LD)或简称半导体激光器与发光二极管LED 不同,它通过受激辐射发光,是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW)辐射,而且输出光发散角窄(垂直发散角为30—50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄,适用于高比特工作,载流子复合寿命短,能进行高速(>20GHz)直接调制。 对于线性度良好的半导体激光器,输出功率可以表示为: (2-4) 其中 (2-5) 这里的量子效率ηint ,表征注入电子通过受激辐射转化为光子的比例。在高于阈值区域,大多数半导体激光器的ηint 接近1。 式(2-4)表明,激光输出功率决定于内量子效率和光腔损耗,并随着电流而增大,当注入电流I>I th 时,输出功率与I 成线性关系,其增大的速率即P-I 曲线的斜率,称为斜率效率 D e q h dI dP ηω2= (2-6)

激光二极管正向电特性的精确检测

第27卷 第1期2006年1月 半 导 体 学 报 CHIN ESE J OURNAL OF SEMICONDUCTORS Vol.27 No.1 J an.,2006 3国家自然科学基金资助项目(批准号:60376027) 通信作者.Email :hz.chx @https://www.doczj.com/doc/b210858793.html, ;lnlshc @https://www.doczj.com/doc/b210858793.html, 2005207220收到,2005209201定稿 ν2006中国电子学会 激光二极管正向电特性的精确检测 3 丛红侠1, 冯列峰1 王 军1 朱传云1 王存达1 谢雪松2 吕长志2 (1天津大学应用物理学系,天津 300072) (2北京工业大学电子信息与控制工程学院,北京 100022) 摘要:采用正向交流特性结合I 2V 特性的方法,检测了激光二极管的串联电阻、理想因子、结电压和结电容与外加 电压或电流的关系.首次发现,激光二极管的结电压、串联电阻、理想因子和结电容在阈值附近同时出现了明显的阶跃,之后结电压呈现饱和.此外还观察到,在较低的测试频率和较大的正向电压下,激光二极管的结电容具有负值. 关键词:正向交流特性;激光二极管;激光阈值;阶跃;结电压饱和;负电容PACC :0150K;4255P 中图分类号:TN304107 文献标识码:A 文章编号:025324177(2006)0120105205 1 引言 激光二极管(LD )在光纤通信、光盘存储、全色显示、激光印刷、激光加工、医疗卫生和军事技术等众多方面,有着越来越重要的应用.通常激光二极管工作在注入电流较大的光激射状态下,对于此时电特性的准确检测将有助于对器件工作状况及其相应的微观机制的研究,并为改进现有器件和研制新型器件提供可靠信息.但遗憾的是,长期以来一直缺乏表征两端子器件正向电特性的精确方法.直流下的电流2电压(I 2V )法是检测半导体二极管最常用的方法,然而单独的I 2V 法不能提供足够的信息量,所用的各种数据分析方法无不假设串联电阻为常数,并因其他种种不同的简化假设而各显现出局限性[1~5].传统的电容2电压(C 2V )法[6,7]都基于并联模式,并采用了反向电压下的耗尽层模型.这种C 2V 法忽略了二极管串联电阻的影响,通常把测试的并联表观电容直接看作结电容,这个假设在反向和很小的正向电压下一般都能很好地近似成立.然而在较大的正向电压下,实际的结电容可能比表观电容大得多. 本文采用正向交流特性结合I 2V 特性的方法来测试和分析激光二极管的正向电特性.这种方法类似于已经成功地检测了肖特基二极管电参数的串联模式方法[8,9],不同的是它利用半导体二极管的并联模式测试电路.虽然不论采用哪种模式最终都应 得到相同的结果,但是对于激光二极管在阈值附近 的行为,采用并联模式的直接测量结果更为直观一些.本文分别用电导数技术[4,5]和我们的方法对激光二极管进行了测试和比较.首次发现,激光二极管的串联电阻、理想因子、结电压和结电容在阈值附近同时出现了明显的阶跃,之后结电压呈现饱和;此外还在测试的激光二极管中观察到了负电容现象. 2 理论分析 不论是p 2n 结或是肖特基结的半导体二极管,其等效电路通常都由结电容C 、结电导G 和串联电阻r s 组成,如图1(a )所示.C 2V 法通常采用图1(b )所示的并联等效电路,其中G p 和C p 分别为表观电导和表观电容.比较图1(a ),(b )两个电路,有: G p =G (1+r s G )+r s (ωC ) 2 (1+r s G )2+(ωr s C ) 2 (1)C p = C (1+r s G )2 +(ωr s C ) 2 (2) 其中  ω是测试时所加交流小信号的角频率.现把二极管的I 2V 特性表示为: I =I s (exp (qV j /nk T )-1) (3)其中 I s 是饱和电流;q 是电子电荷;n 是理想化因子;k 是玻耳兹曼常数;T 是温度,结电压V j =V -r s I.当V j μnk T/q 时,结电导的主要部分在正向电压下可表示为: G =d I d V j = qI nk T 1-V j n ×d n d V j (4)

激光二极管的结构及性能特点

新闻标题:激光二极管的结构及性能特点 英文新闻标题:ROHM semiconductor group 新闻来源:深圳圣新电子科技有限公司 激光二极管的结构及性能特点: 在VCD机中,半导体激光二极管是激光头的核心部件之一,它大多是由双异质结构的镓铝砷(AsALGA)三元化合物构成的,是一种近红外半导体器件,波长为780~820 nm,额定功率为3~5 mw。另外,还有一种可见光(如红光)半导体激光二极管,也广泛应用于VCD机以及条形码阅读器中。 激光二极管的外形及尺寸如图1所示。

其内部结构类型有三种,如图2所示。 由图2可见,激光二极管内包括两个部分: 第一部分是激光发射部分(可用LD表示),它的作用是发射激光, 如图中电极(2); 第二部分是激光接受部分(可用PD表示),它的作用是接受、监测『JD发出的激光(当然,若不需监测LD的输出,PD部分则可不用), 如图中电极(3); 这两个部分共用公共电极(1),因此,激光二极管有三个电极。 激光二极管具:有体积小、重量轻、耗电低、驱动电路简单、调制方便、耐机械冲击以及抗震动等优点,但它对过电流、过电压以及静电干扰极为敏感。 因此,在使用时,要特别注意不要使其工作参数超过其最大允许值,可采用的方法如下:(1)用直流恒流源驱动激光二极管。

(2)在激光_极管电路上串联限流电阻器,并联旁路电容器。 (3)由于激光二极管温度升高将增大流过它的电流值,因此,必须采用必要的散热措施,以保证器件工作在一定的温度范围之内。 (4)为了避免激光二极管因承受过大的反向电压而造成击穿损坏,可在其两端反并联上快速硅二极管。

相关主题
文本预览
相关文档 最新文档