当前位置:文档之家› 理论力学简明教程第二版课后答案

理论力学简明教程第二版课后答案

理论力学简明教程第二版课后答案
理论力学简明教程第二版课后答案

第零章 数学准备

一 泰勒展开式

1 二项式的展开

()()()()()m 23m m-1m m-1m-2

f x 1x 1mx+x x 23=+=+++K !

2 一般函数的展开

()()()()()()()()230000000f x f x f x

f x f x x-x x-x x-x 123!

''''''=++++K !

特别:00x =时,

()()()()()23

f 0f 0f 0f x f 0123!

x x x ''''''=++++K

!!

3 二元函数的展开(x=y=0处)

()()00f f f x y f 0x+y x y ????=++ ?????,22222

000221f f f x 2xy+y 2x x y y ?????++ ? ???????

K !

评注:以上方法多用于近似处理与平衡态处的非线性问题向线

性问题的转化。在理论力问题的简单处理中,一般只需近似到三阶以内。

二 常微分方程

1 一阶非齐次常微分方程: ()()x x y+P y=Q

通解:()()()P x dx P x dx y e c Q x e dx -????=+ ?

??

? 注:()()(),P x dx

P x dx Q x e dx ?

±??积分时不带任意常数,()x Q 可为

常数。

2 一个特殊二阶微分方程

2y A y B =-+&

& 通解:()02B

y=Kcos Ax+A

θ+

注:0,K θ为由初始条件决定的常量 3 二阶非齐次常微分方程

()x y ay by f ++=&&&

通解:*y y y =+;y 为对应齐次方程的特解,*y 为非齐次方程的一个特解。

非齐次方程的一个特解 (1) 对应齐次方程

0y ay by ++=&&&

设x y e λ=得特征方程2a b 0λλ++=。解出特解为1λ,2λ。 *若12R λλ≠∈则1

x 1y e λ=,2

x 2y e λ=;12

x x 12y c e c e λλ=+

*若12R λλ=∈则1

x 1y e λ=,1

x 2y xe λ=; 1

x 12y e (c xc )λ=+

*若12i λαβ=±则%x 1y e cos x αβ=,%x 2y e

sin x αβ=;x 12y e (c cos x c sin x)αββ=+

(2) 若()2000x f a x b x c =++为二次多项式

*b 0≠时,可设*2y Ax Bx C =++ *b 0≠时,可设*32y Ax Bx Cx D =+++

注:以上1c ,2c ,A,B,C,D 均为常数,由初始条件决定。

三 矢量

1 矢量的标积

x x y y z z A B=B A=A B cos =A B +A B +A B θ??r r

r r

注:常用于一矢量在一方向上的投影 2 矢量的矢积

n x

y z x

y

z i

j k A B=-(B A)=A B sin e =A A A B B B θ?? ??? ? ???

r r r r r r r r x y z y z x x z x y y x (A B A B )i (A B A B )j (A B A B )k =-+-+-r r r

四 矩阵

此处仅讨论用矩阵判断方程组解的分布情形。

111122133211222233311322333a x a x a x 0a x a x a x 0a x a x a x 0++=??

++=??++=? 令11

121321

222331

32

33a a a D a a a a a a ?? ?= ? ???

*D=0时,方程组有非零解 *D ≠0时,方程只有零解

第一章 牛顿力学的基本定律

万丈高楼从地起。整个力学大厦的地基将在此筑起,三百年的人类最高科学智慧结晶将飘来他的古朴与幽香。此时矢量言语将尽显英雄本色,微积分更是风光占尽。

【要点分析与总结】 1 质点运动的描述

(1) 直线坐标系

r xi yj zk

r xi yj zk a r xi yj zk

υυ=++==++===++r r r r

r r r r r &&&&&r r r r r r &&&&&&&&& (2) 平面极坐标系

r r 2r r re re r e a (r r )e (r 2r )e θθ

υθθθθ==+=-++r r

r r r &&r r r &&&&&&& (3) 自然坐标系

t 2t n

e v a e e υυυρ

==+r

r

r

r r & (4) 柱坐标系

2t n

z v a e e e e ze ρθυρ

υρρθ=+=++r r r

&r

r

r r

&&&

〈析〉 上述矢量顺序分别为:r k t n b z i,j,k;e ,e ,e ;e ,e ,e ;e ,e ,e .θρθr r r r r r r r r r r r

矢量微分:r k r k r k k k de e e e dt de e e e dt de e e 0dt

θ

θθθθθθθ=?==?=-=?=r

r r r &&r

r r r &&r

r r &

(其它各矢量微分与此方法相同) 微分时一定要注意矢量顺序

2 牛顿定律

惯性定律的矢量表述

22d r ma m F dt

==r

r

r

(1) 直角坐标系中

x y z F mx

F my

F mz

?=?

=??=?&&&&&& (2) 极挫标系中

2r k

F m(r r )F m(r 2r )F 0θθθθ?=-?=+??=?&&&&&&& (3) 自然坐标系中

2n b F m F m F 0

τυ

υρ=??

?

=??

?=?&

3 质点运动的基本定理 几个量的定义:

动量 P m υ=r r

角动量

L r m r P υ=?=?r r r r r 冲量 21I P P =-r r r

力矩 M r F =?r r

r

冲量矩 21

t 21t H I I Mdt =-=?r r r r

动能 21T m 2

υ=

(1) 动量定理 dP

F dt

=r r

?e

l 方向上动量守恒:dP

??e F e 0dt

==l l r

r g g (2) 动量矩定理 dL

M dt

=r r

(3) 动能定理 d dT

F m dt dt

υυυ==

r r r r g g 4机戒能守恒定理 T+V=E

〈析〉势函数V: V V V dV dx dy dz F dr x y z

???=

++=-???r r g V V V F (i j k)x y z

???=-+

+???r r r

r 稳定平衡下的势函数:

()0

x x x dV 0dx

==;

()0

2x x x dV 0dx

=>

此时势能处极小处m V

且能量满足M m

V E 00E V E <

<∞??<∞?质点再平衡点附近振动质点逃逸-质点逃逸+

【解题演示】

1 细杆OL 绕固定点O 以匀角速率ω转动,并推动小环C 在固定的钢丝AB 上滑动,O 点与钢丝间的垂直距离为d ,如图所示。求小环的速度υr 和加速度a r

解:依几何关系知:x d tan θ=

又因为:222

d d x xi i i cos d

ωυωθ+===r r r

r

& 故:2222

2(d x )x a 2xx i i d d ωυω+===r r r && 2 椭圆规尺AB 的两端点分别沿相互垂直的直线O χ与Oy 滑动,已知B 端以匀速c 运动,如图所示。求椭圆规尺上M 点的轨道方程、速度及加速度的大小υ与α。 解:依题知:B y (b d)cos θ=+

且:B y C (b d)sin θθ=-=-+&&

得:C

*(b d)sin θθ

=

+&K K

又因M 点位置:M M x bsin ,y d cos θθ==

故有:M M M x i |y j b cos i d sin j υθθθθ=+=-r r r r

r

&&&&

代入(*)式得:M bccot dc i j b d b d

θυ=-++r r

r

即:υ= 2

M M

222bc bc a i i (b d)sin (b d)sin θυθθ

==-=++&r r r r &

3 一半径为r 的圆盘以匀角速率ω沿一直线滚动,如图所示。求

圆盘边上任意一点M 的速度υr

和加速度a r

(以O 、M 点的连线与铅直线间的夹角θ表示);并证明加速度矢量总是沿圆盘半径指向圆心。

解:设O 点坐标为(0Rt x ,R ω+)。则M 点坐标为

(0Rt x R sin ,R R cos ωθθ+++)

故:M M M x i y j (R R cos )i R υωωθ=+=+-r r r

r

&&

222M M a R sin i R cos j R (sin i cos j)υωθωθωθθ==--=-+r r r r r r &

4 一半径为r 的圆盘以匀角深度ω在一半经为R 的固定圆形槽内作无滑动地滚动,如图所示,求圆盘边上M 点的深度υ和加速度α(用参量θ,Ψ表示)。

解:依题知:r r

R r

R r

θω?

=-=---&&

且O 点处:k r e cos()e sin()e θθ?θ?=---r

r

r

则:

2020年智慧树知道网课《理论力学(西安交通大学)》课后章节测试满分答案

绪论单元测试 1 【多选题】(2分) 下面哪些运动属于机械运动? A. 发热 B. 转动 C. 平衡 D. 变形 2 【多选题】(2分) 理论力学的内容包括:。 A. 动力学 B. 基本变形 C. 运动学 D. 静力学

3 【单选题】(2分) 理论力学的研究对象是:。 A. 数学模型 B. 力学知识 C. 力学定理 D. 力学模型 4 【多选题】(2分) 矢量力学方法(牛顿-欧拉力学)的特点是:。 A. 以变分原理为基础 B. 以牛顿定律为基础 C.

通过力的功(虚功)表达力的作用 D. 通过力的大小、方向和力矩表达力的作用 5 【多选题】(2分) 学习理论力学应注意做到:。 A. 准确地理解基本概念 B. 理论联系实际 C. 熟悉基本定理与公式,并能在正确条件下灵活应用 D. 学会一些处理力学问题的基本方法 第一章测试 1 【单选题】(2分)

如图所示,带有不平行的两个导槽的矩形平板上作用一力偶M,今在槽内插入两个固连于地面的销钉,若不计摩擦,则。 A. 板不可能保持平衡状态 B. 板必保持平衡状态 C. 条件不够,无法判断板平衡与否 D. 在矩M较小时,板可保持平衡 2 【单选题】(2分)

A. 合力 B. 力螺旋 C. 合力偶 3 【单选题】(2分) 关于力系与其平衡方程式,下列的表述中正确的是: A. 在求解空间力系的平衡问题时,最多只能列出三个力矩平衡方程式。 B. 在平面力系的平衡方程式的基本形式中,两个投影轴必须相互垂直。 C. 平面一般力系的平衡方程式可以是三个力矩方程,也可以是三个投影方程。

D. 任何空间力系都具有六个独立的平衡方程式。 E. 平面力系如果平衡,则该力系在任意选取的投影轴上投影的代数和必为零。 4 【单选题】(2分)

《理论力学基本教程》课程大纲

《理论力学基本教程》课程大纲第一部分:课程性质、课程目标与教学要求《理论力学基本教程》作为理论物理学的第一门课程,是高等师范院校物理 专业的一门基础理论课,因此把它设定为物理专业的本科专业必修课程。 《理论力学基本教程》的课程目标是:使学生系统地掌握理论力学的基本概念,基本规律及其中的物理思想和研究方法,具备分析问题和解决问题的能力,并为后继相关课程奠定基础;同时结合本课程特点,培养学生的辩证唯物主义世界观。 《理论力学基本教程》作为后续理论课程的基础课,并与高等数学密切相关,不仅要介绍物体的机械运动规律,还要引导学生如何应用数学去描写和分析物理问题;同时作为科学就必须使用严谨的方法去表达,去描写,去推演,去总结自然规律,因而我们重点放在培养学生正确理解和应用基本概念,基本方法上,在教学过程中注重贯彻少而精的原则,密切联系物理实际问题,注重培养分析问题和解决问题的能力。为此学习者必须先学习大学物理、线性代数、高等数学等课程,同时加强课后练习来帮助加深对该课程教学内容的理解。 第二部分:关于教材与学习参考书的建议 本课程拟采用科学出版社出版的、由管靖等人编写的《理论力学简明教程》作为本课程的主教材。 为了更好地理解和学习课程内容,建议学习者可以进一步阅读以下几本重要的参考书: 1、卢圣治主编:《理论力学基本教程》,北京师范大学出版社,2004年。 2、陈世民主编:《理论力学简明教程》,高等教育出版社,2001年。 3、周衍柏主编:《理论力学教程(第二版)》, 高等教育出版社出版,1986年。 4、金尚年等主编:《理论力学(第二版)》,高等教育出版社,2002年。 5、吴德明主编: 《理论力学基础》,北京大学出版社,1995年。 6、张宏宝主编: 《理论力学教程学习辅导书》,高等教育出版社,2004年。 7、H.戈德斯坦[美]著:《经典力学》(第二版),科学出版社,1996 年。 第三部分:教学内容与考试要求 绪论第一章质点运动学 §1.1质点运动的矢量描述与直角坐标描述 §1.2 质点运动的平面极坐标描述 §1.3质点运动的柱坐标描述 §1.4质点运动的球坐标描述 §1.5质点运动的自然坐标描述 本章要求: 1.掌握在直角坐标系、极坐标系、柱坐标、自然坐标系中描述质点运动的状态(位移、速度、加速度)和在球坐标系中质点速度表示式,并会推导质点的位移、速度、加速度在平面极坐标系、自然坐标系的分量式。(注意矢量要用

陈世民理论力学简明教程(第二版)课后答案

第零章 数学准备 一 泰勒展开式 1 二项式得展开 ()()()()()m 23m m-1m m-1m-2 f x 1x 1mx+x x 23=+=+++K ! ! 2 一般函数得展开 ()()()()()()()()230000000f x f x f x f x f x x-x x-x x-x 123! ''''''=++++K ! ! 特别:00x =时, ()()()()()23 f 0f 0f 0f x f 0123! x x x ''''''=++++K !! 3 二元函数得展开(x=y=0处) ()()00f f f x y f 0x+y x y ????=++ ?????,22222 000221f f f x 2xy+y 2x x y y ?????++ ? ??????? K ! 评注:以上方法多用于近似处理与平衡态处得非线性问题向线 性问题得转化。在理论力问题得简单处理中,一般只需近似到三阶以内。 二 常微分方程 1 一阶非齐次常微分方程: ()()x x y+P y=Q 通解:()()()P x dx P x dx y e c Q x e dx -????=+ ? ?? ? 注:()()(),P x dx P x dx Q x e dx ? ±??积分时不带任意常数,()x Q 可为 常数。 2 一个特殊二阶微分方程

2y A y B =-+& & 通解:()02B y=Kcos Ax+A θ+ 注:0,K θ为由初始条件决定得常量 3 二阶非齐次常微分方程 ()x y ay by f ++=&&& 通解:*y y y =+;y 为对应齐次方程得特解,*y 为非齐次方程得一个特解。 非齐次方程得一个特解 (1) 对应齐次方程 0y ay by ++=&&& 设x y e λ=得特征方程2a b 0λλ++=。解出特解为1λ,2λ。 *若12R λλ≠∈则1 x 1y e λ=,2 x 2y e λ=;12 x x 12y c e c e λλ=+ *若12R λλ=∈则1 x 1y e λ=,1 x 2y xe λ=; 1 x 12y e (c xc )λ=+ *若12i λαβ=±则%x 1y e cos x αβ=,%x 2y e sin x αβ=;x 12y e (c cos x c sin x)αββ=+ (2) 若()2000x f a x b x c =++为二次多项式 *b 0≠时,可设*2y Ax Bx C =++ *b 0≠时,可设*32y Ax Bx Cx D =+++ 注:以上1c ,2c ,A,B,C,D 均为常数,由初始条件决定。 三 矢量 1 矢量得标积 x x y y z z A B=B A=A B cos =A B +A B +A B θ??r r r r

清华大学理论力学课后习题答案大全

第6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?cos )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0ω=0?= 0 22 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ??+=A 因动齿轮纯滚,故有? ? =CP CP 0,即 θ?r R = ?θr R = , ??r r R A += (4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ?? ??? +=+=+=22 2212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂 线的夹角 表示杆的角速度。 解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。则角速度杆AB 为 6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。试问当拖车以速度v 前进时, 轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。 解:R v R v A A ==ω R v R v B B 22==ω B A ωω2= 6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。设杆BC 在水平位置时,滚子的角速度=12 rad/s ,=30,=60,BC =270mm 。试求该瞬时杆BC 的角速度和点C 的速度。 习题6-1图 A B C v 0 h 习题6-2图 P AB v C A B C v o h 习题6-2解图 习题6-3解图 习题6-3图 v A = v v B = v

陈世民理论力学简明教程(第二版)答案第五张_刚体力学

第五张 刚体力学 平动中见彼此,转动中见分高低.运动美会让你感受 到创造的乐趣.走过这遭,也许会有曾经沧海难为水的感叹.别忘了,坐标变换将为你迷津救渡,同时亦会略显身手. 【要点分析与总结】 1 刚体的运动 (1)刚体内的任一点的速度、加速度(A 为基点) A r υυω'=+? ()()A d r a a r dt ωωω'?'=++?? (2)刚体内的瞬心S :()21 s A A r r ωυω =+ ? 〈析〉ω 为基点转动的矢量和,12ωωω=++ A r r r '=+ dr dt υ= *A A A dr dr d r r r dt dt dt υωυω''''= +=++?=+? ()A d r d d a dt dt dt ωυυ'?==++ ()r ωω'?? 值得注意的是:有转动时r ' 与r ω'? 的微分,引入了r ω'? 与 ()r ωω'?? 项。 2 刚体的动量,角动量,动能 (1)动量:c P m υ=

(2)角动量: x x xx xy xz i i i y yx yy yz y zx zy zz z z L J J J L r m L J J J J J J J L ωυωωω???? ??-- ? ? ?=?===-- ? ? ? ? ? ?--???? ?? ∑ 式中: 转动惯量()()()2222 22xx yy zz J y z dm J z x dm J x y dm ?=+? ?=+?? =+????? 惯量积xx yy zz J xydm J yzdm J zxdm ?=? ?=?? =????? 且c c c L r m L υ'=?+ * l e 方向(以l 为轴)的转动惯量: (),,l l J e J e J ααβγβγ?? ? == ? ??? 222222xx yy zz yz zx xy J J J J J J αβγβγγααβ =++--- (,,αβγ分别为l e 与,,x y z 轴夹角的余弦) * 惯量主轴 惯量主轴可以是对称轴或对称面的法线 若X 轴为惯量主轴,则含X 的惯量积为0,即: 0==xy xz J J 若,,x y z 轴均为惯量主轴,则:xx yy zz L J i J j J k =++ 〈析〉建立的坐标轴轴应尽可能的是惯量主轴,这样会降低解题繁度。 (3) 动能:22211112222c i i c c i T m m m J υυυωω'=+=+∑

理论力学简明教程复习题题库(物理专业用)

理论力学复习题 计算题题库 第一章质点力学 点沿空间曲线运动,在点M 处其速度为j i v 34+= ,加速度a 与速度 v 夹角030=β,且2/10s m a =。求轨迹在该点密切面内的曲率半径ρ和 切向加速度τa 。 答:由已知条件j i v 34+=得 s m v /53422=+= 法向加速度20/530sin s m a a n == 则曲率半径m a v n 52 ==ρ 切向加速度 20/66.830cos s m a a ==τ 一点向由静止开始作匀加速圆周运动,试证明点的全加速度和切向加速度的夹角α与其经过的那段圆弧对应的圆心角β之间有如下关系βα2tan = 证明:设点M 沿半径为R 的圆作圆周运动,t 时刻走过的路程为AM=s ,速度为v ,对应的 圆心角为β。由题设条件知() ()b C ds dv v dt dv a a Ra v a a n === ==τττα2 tan C 为常数 积分(b)式得??=s v ds a vdv 0 τ 所以()c s a v τ22= 将(c )式代入(a ),并考虑βR s =,所以βα2tan = 质点M 的运动方程为)(2),(32m t y m t x == 求t=1秒时,质点速度、切

向加速度、法向加速度的大小。 解:由于)(44),(3s m t y s m x === 所以有() s m y x v 516922=+=+= 又:222169t y x v +=+= 则 ()() ()s m t t t t v a t 2.3169232321692 12 1 21 21 2=+=?+==- () ()() s m a a a s m y x a s m y x t n 4.22.3164,4,02 2222=-=-==+=== 点M 沿半径为R 的圆周运动。如果 K K a a n (-=τ 为已知常数),以初始位置为原点,原点初速度为0v 。求点的弧坐标形式的运动方程及点的速度减少一半时所经历的时间。 解:设点的初始位置为A 。依题意 KR v K a a dt dv n 2 -=-==τ 积分上式??-=v v t dt KR v dv 0021 KR t v v -=-110 得t v KR RKv v 00+= 则弧坐标形式的运动方程为?? ? ?? +=+=?KR t v KR dt t k KR KRv s t 00001ln 当2 0v v = 时0v KR t = 一质点沿圆滚线θsin 4a s =的弧线运动,如θ 为常数,则其加速度亦为一常数,试证明之。式中θ为圆滚线某点P 上的切线与水平线(x 轴)所成的角度,s 为P 点与曲线最低点之间的曲线弧长。 解:因θsin 4a s = 故θωθθ cos 4cos 4a a dt ds v ===

理论力学简明教程复习题题库--(物理专业用) 新 优质文档

《理论力学》复习题 题库 第一章质点力学 点沿空间曲线运动,在点M 处其速度为j i v 34+= ,加速度a 与速度 v 夹角030=β,且2/10s m a =。求轨迹在该点密切面内的曲率半径ρ和 切向加速度τa 。 答:由已知条件j i v 34+=得 s m v /53422=+= 法向加速度20/530sin s m a a n == 则曲率半径m a v n 52 ==ρ 切向加速度 20/66.830cos s m a a ==τ 一点向由静止开始作匀加速圆周运动,试证明点的全加速度和切向加速度的夹角α与其经过的那段圆弧对应的圆心角β之间有如下关系βα2tan = 证明:设点M 沿半径为R 的圆作圆周运动,t 时刻走过的路程为AM=s ,速度为v ,对应的 圆心角为β。由题设条件知 () ()b C ds dv v dt dv a a Ra v a a n === ==τττα2 tan C 为常数 积分(b)式得??=s v ds a vdv 00τ 所以()c s a v τ22= 将(c )式代入(a ),并考虑βR s =,所以βα2tan =

质点M 的运动方程为)(2),(32m t y m t x == 求t=1秒时,质点速度、切向加速度、法向加速度的大小。 解:由于)(44),(3s m t y s m x === 所以有() s m y x v 516922=+=+= 又:222169t y x v +=+= 则()() ()s m t t t t v a t 2.3169232321692 12 121 21 2=+=?+==- () ()() s m a a a s m y x a s m y x t n 4.22.3164,4,02 2222=-=-==+=== 点M 沿半径为R 的圆周运动。如果 K K a a n (-=τ 为已知常数),以初始位置为原点,原点初速度为0v 。求点的弧坐标形式的运动方程及点的速度减少一半时所经历的时间。 解:设点的初始位置为A 。依题意 KR v K a a dt dv n 2 -=-==τ 积分上式??-=v v t dt KR v dv 00 2 1 KR t v v -=-110 得t v KR RKv v 00+= 则弧坐标形式的运动方程为?? ? ?? +=+=?KR t v KR dt t k KR KRv s t 00001ln 当20v v = 时0 v KR t = 一质点沿圆滚线θsin 4a s =的弧线运动,如θ 为常数,则其加速度亦为一常数,试证明之。式中θ为圆滚线某点P 上的切线与水平线(x 轴)所成的角度,s 为P 点与曲线最低点之间的曲线弧长。

清华大学版理论力学课后习题答案大全_____第6章刚体平面运动分析汇总

6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?c o s )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0ω=0?= 0 22 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ??+=A 因动齿轮纯滚,故有? ? =CP CP 0,即 θ?r R = ?θr R = , ??r r R A += (4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ?? ??? +=+=+=22 2212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂线的夹角θ 表示杆的角速度。 解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。则角速度杆AB 为 h v AC v AP v AB θθω2 000cos cos === 6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。 解:R v R v A A == ω R v R v B B 22==ω B A ωω2= 6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。设杆BC 在水平位置时,滚子的角速度ω=12 rad/s ,θ=30?,?=60?,BC =270mm 。试求该瞬时杆BC 的角速度和点C 的速度。 习题6-1图 习题6-2图 习题6-2解图 习题6-3解图 习题6-3图 v A = v v B = v ωA ωB

理论力学课后习题答案

高等教育出版社,金尚年,马永利编著的理论力学课后习题答案 第一章 1.2 写出约束在铅直平面内的光滑摆线 上运动的质点的微 分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关. 解: 设s 为质点沿摆线运动时的路程,取 =0时,s=0 S= = 4 a (1 ) X Y

设 为质点所在摆线位置处切线方向与x 轴的夹角,取逆时针为正, 即切线斜率 = 受力分析得: 则 ,此即为质点的运动微分方程。 该质点在平衡位置附近作振动时,振动周期与振幅无关,为. 1.3 证明:设一质量为m 的小球做任一角度0θ的单摆运动 运动微分方程为θθθ F r r m =+)2(&&&& θθ sin mg mr =&& ① 给①式两边同时乘以d θ θθθθ d g d r sin =&& 对上式两边关于θ&积分得 c g r +=θθcos 2 12& ② 利用初始条件0θθ=时0=θ &故0cos θg c -= ③ 由②③可解得 0cos cos 2-θθθ -?=l g & 上式可化为dt d l g =?-?θθθ0cos cos 2-

两边同时积分可得θθθθθθθθd g l d g l t ??--- =-- =0 2 02 2 200 2 sin 12 sin 1001 2cos cos 12 进一步化简可得θθθθd g l t ?-= 0002 222sin sin 1 2 1 由于上面算的过程只占整个周期的1/4故 ?-==0 2 2 2 sin 2 sin 12 4T θθθ θd g l t 由?θθsin 2 sin /2sin 0= 两边分别对θ?微分可得??θ θθd d cos 2 sin 2cos 0= ?θθ 20 2 sin 2 sin 12 cos -= 故?? θ? θθd d 20 2 sin 2 sin 1cos 2 sin 2 -= 由于00θθ≤≤故对应的2 0π ?≤≤ 故?? θ ? θ?θθ θθπ θd g l d g l T ??-=-=20 20 2 2 cos 2 sin sin 2 sin 1/cos 2 sin 4 2 sin 2 sin 2 故?-=2 022sin 14π??K d g l T 其中2 sin 022θ=K 通过进一步计算可得 g l π 2T =])2642)12(531()4231()21(1[224222ΛΛΛΛ+????-????++??++n K n n K K 1.5

理论力学课后习题及答案

应按下列要求进行设计(D ) A.地震作用和抗震措施均按8度考虑 B.地震作用和抗震措施均按7度考虑 C.地震作用按8度确定,抗震措施按7度采用答题(共38分) 1、什么是震级什么是地震烈度如何评定震级和烈度的大小(6分) 震级是表示地震本身大小的等级,它以地震释放的能量为尺度,根据地震仪记录到的地震波来确定(2分) 地震烈度是指某地区地面和各类建筑物遭受一次地震影响的强弱程度,它是按地震造成的后果分类的。(2分) 震级的大小一般用里氏震级表达(1分) 地震烈度是根据地震烈度表,即地震时人的感觉、器物的反应、建筑物破坏和地表现象划分的。(1分) D.地震作用按7度确定,抗震措施按8度采用 4.关于地基土的液化,下列哪句话是错误的( A )A.饱和的砂土比饱和的粉土更不容易液化 B.地震持续时间长,即使烈度低,也可能出现液化 C.土的相对密度越大,越不容易液化 D.地下水位越深,越不容易液化 5.考虑内力塑性重分布,可对框架结构的梁端负弯矩进行调幅( B ) A.梁端塑性调幅应对水平地震作用产生的负弯矩进行 B.梁端塑性调幅应对竖向荷载作用产生的负弯矩进行 C.梁端塑性调幅应对内力组合后的负弯矩进行 D.梁端塑性调幅应只对竖向恒荷载作用产生的负弯矩进行 6.钢筋混凝土丙类建筑房屋的抗震等级应根据那些因素查表确定( B ) A.抗震设防烈度、结构类型和房屋层数 B.抗震设防烈度、结构类型和房屋高度 C.抗震设防烈度、场地类型和房屋层数 D.抗震设防烈度、场地类型和房屋高度 7.地震系数k与下列何种因素有关 ( A ) A.地震基本烈度 B.场地卓越周期 一、 C.场地土类 1.震源到震中的垂直距离称为震源距(×)2.建筑场地类别主要是根据场地土的等效剪切波速和覆盖厚度来确定的(√)3.地震基本烈度是指一般场地条件下可能遭遇的超越概率为10%的地震烈度值 (×)4.结构的刚心就是地震惯性力合力作用点的位置(×)5.设防烈度为8度和9度的高层建筑应考虑竖向地震作用(×)6.受压构件的位移延性将随轴压比的增加而减小 C.地震作用按8度确定,抗震措施按7度采用答题(共38分) 1、什么是震级什么是地震烈度如何评定震级和烈度的大小(6分) 震级是表示地震本身大小的等级,它以地震释放的能量为尺度,根据地震仪记录到的地震波来确定(2分) 地震烈度是指某地区地面和各类建筑物遭受一次地震影响的强弱程度,它是按地震造成的后果分类的。(2分) 震级的大小一般用里氏震级表达(1分) 地震烈度是根据地震烈度表,即地震时人的感觉、器物的反应、建筑物破坏和地表现象划分的。(1分) D.地震作用按7度确定,抗震措施按8度采用 4.关于地基土的液化,下列哪句话是错误的( A )E.饱和的砂土比饱和的粉土更不容易液化 F.地震持续时间长,即使烈度低,也可能出现液化 G.土的相对密度越大,越不容易液化

理论力学教程思考题答案第三版.doc

第一章思考题解答 1.1答:平均速度是运动质点在某一时间间隔内位矢大小和方向改变的平均快慢速度,其方向沿位移的方向即沿对应的轨迹割线方向;瞬时速度是运动质点在某时刻或某未知位矢和方向变化的快慢程度其方向沿该时刻质点所在点轨迹的切线方向。在的极限情况,二者一致,在匀速直线运动中二者也一致的。 1.2答:质点运动时,径向速度和横向速度的大小、方向都改变,而中的只反 映了本身大小的改变,中的只是本身大小的改变。事实上,横向速度方向的改变会引起径向速度大小大改变,就是反映这种改变的加速度分量;经向速度的方向改变也引起的大小改变,另一个即为反映这种改变的加速度分量,故,。这表示质点的径向与横向运动在相互影响,它们一起才能完整地描述质点的运动变化情况 1.3答:内禀方程中,是由于速度方向的改变产生的,在空间曲线中,由于恒位于密切面内,速度总是沿轨迹的切线方向,而垂直于指向曲线凹陷一方,故总是沿助法线方向。质点沿空间曲线运动时,z 何与牛顿运动定律不矛盾。因质点除受作用力,还受到被动的约反作用力,二者在副法线方向的分量成平衡力,故符合牛顿运动率。有人会问:约束反作用力靠谁施加,当然是与质点接触的周围其他物体由于受到质点的作用而对质点产生的反作用力。有人也许还会问:某时刻若大小不等,就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同,质点的位置也在改变,副法线在空间中方位也不再是原来所在的方位,又有了新的副法线,在新的副法线上仍满足。这反映了牛顿定律得瞬时性和矢量性,也反映了自然坐标系的方向虽质点的运动而变。 1.4答:质点在直线运动中只有,质点的匀速曲线运动中只有;质点作变速运动时即有。 1.5答: 即反应位矢大小的改变又反映其方向的改变,是质点运动某时刻的速度矢量,而只表示大小的改变。如在极坐标系中,而。在直线运动中,规定了直线的正方向后,。且的正负可表示的指向,二者都可表示质点t t t ?+→t ?0→?t r V θV r a r r V θa θθ r r +θV θ V r V 2θ r -r V θV θ r 2θ r r a r -=.2θθθ r r a +=n a a v n a v n a 0,0≠=b b F a F R 0=+b b R F 0=b a b b R F 与b a b a 00==+b b b a R F 即n a a 而无ττa a n 而无n t a a 又有dt d r r dt dr r j i r θ r r dt d +=r dt dr =dt d dt dr r =dt dr dt d r

第01章习题答案

魏 泳 涛 1.1举例说明由r F r F ?=?21,或者由r F r F ?=?21,不能断定21F F =。 解:若1F 与2F 都与r 垂直,则021=?=?r F r F ,但显然不能断定21F F =; 若1F 与2F 都与r 平行,则021=?=?r F r F ,也不能断定21F F =;

魏 泳 涛 1.2给定力)32(3k j i F ++-=,其作用点的坐标为)6,4,3(---。已知OE 轴上的单位矢量)(3 3k j i e ++=,试求力F 在OE 轴上的投影以及对OE 轴之矩。 解:力F 在OE 轴上的投影 4321)(3 3)32(3=++-=++?++-=?=k j i k j i e F OE F 力F 对坐标原点O 之矩

魏 泳 涛 1.3长方体的长、宽和高分别为cm 8=a 、cm 4=b 、cm 3=h ,力1F 和2F 分别作用于棱角A 和B ,方向如图示,且N 101=F ,N 52=F 。试求1F 在图示各坐标轴上的投影和2F 对各坐标轴之矩。 解:力1F 在坐标轴上的投影

魏 泳 涛 1.4 轴AB 在Ayz 平面内,与铅锤的Az 轴成α角。悬臂CD 垂直地固定在AB 轴上,与Ayz 平面成θ角,如图所示。如在D 点作用铅直向下的力P F 。并设a CD =,h AC =,试求力P F 对A 点之矩及对AB 轴之矩。 解:由于力P F 平行于z 轴,所以,0P P ==y x F F ,P P F F z -=, 0)(P P P =-=y x z yF xF m F )(P F x m 和)(P F y m 只与D 的x 及y 坐标有关。 D 的x 坐标:θsin a ; D 的y 坐标:αθαcos cos sin a h +; P F 对x 轴之矩:)cos cos sin ()(P P αθαa h F m x +-=F ; P F 对y 轴之矩:θsin )(P P a F m y =F ; 所以P F 对点A 之矩为:j F i F F m )()()(P P P y x A m m += 轴AB 的方向向量:)cos (sin k j e αα+= 于是得到P F 对轴AB 之矩:αθsin sin )()(P P P a F m A AB =?=e F m F

清华大学版理论力学课后习题答案大全_____第12章虚位移原理及其应用习题解

解:如图(a ),应用虚位移原理: F 1 ?術 F 2 ? 8r 2 = 0 书鹵 / 、 8r 1 8r 2 tan P 如图(b ): 8 廿y ; 8 厂乔 8r i 能的任意角度B 下处于平衡时,求 M 1和M 2之间的关系 第12章 虚位移原理及其应用 12-1图示结构由8根无重杆铰接成三个相同的菱形。 试求平衡时, 解:应用解析法,如图(a ),设0D = y A = 2l sin v ; y^ 61 sin v S y A =21 cos :心; 溉=61 COST 心 应用虚位移原理: F 2 S y B - R ? S y A =0 6F 2 —2R =0 ; F i =3F 2 习题12-1图 F 2之值。已知:AC = BC 12-2图示的平面机构中, D 点作用一水平力F t ,求保持机构平衡时主动力 =EC = DE = FC = DF = l 。 解:应用解析法,如图所示: y A =lcos ) ; x D =3lsin v S y A - -l sin^ 心;S x D =3I COS ^ & 应用虚 位移原理: —F 2 ? S y A - F I 8x^0 F 2sin J - 3F t cos ^ - 0 ; F 2 = 3F t cot^ 12-3图示楔形机构处于平衡状态,尖劈角为 小关系 习题12-3 B 和3不计楔块自重与摩擦。求竖向力 F 1与F 2的大 F i F 2| (a ) (b) F i 8i - F 2 12-4图示摇杆机构位于水平面上,已知 OO i = OA 。机构上受到力偶矩 M 1和M 2的作用。机构在可

考研院校航天领域高校排名

考研院校航天领域高校排名 神舟十号载人飞船于6月11日17时38分在酒泉卫星发射中心成功发射,飞行乘组由男航天员聂海胜、张晓光和女航天员王亚平组成,聂海胜担任指令长。神十升天,燃起了很多考研学子的航天梦,根据教育部学位中心发布的《2012年学科评估结果》,在“航天宇航科学与技术”领域实力排名的高校情况如下:Top.1 北京航空航天大学 学科整体水平得分 92分 北京航空航天大学,简称“北航”,成立于1952年,由当时的清华大学、北洋大学、厦门大学、四川大学等八所院校的航空系合并组建,是新中国第一所航空航天高等学府,现隶属于工业和信息化部。 航空科学与工程学院 航空学院前身是清华大学航空系,是1952年北航成立时最早的两个系之一,当时称飞机系(设飞机设计和飞机工艺专业),1958年更名为航空工程力学系,1970年更名为五大队,1972年更名为五系,1989年定名为飞行器设计与应用力学系,2003年成立航空科学与工程学院。早期的航空学院荟萃了一批当时国内著名的航空领域的专家,如屠守锷、王德荣、陆士嘉、沈元、王俊奎、吴礼义、张桂联、徐鑫福、徐华舫、何庆芝、伍荣林、史超礼、叶逢培等教授,屠守锷院士是第一任系主任,他们为本院发展奠定了坚实基础。在北航发展史上,航空学院不断输出专业和人才,

先后参与组建七系、三系、十四系、宇航学院、飞行学院、无人机所、土木工程系、交通学院等院系。 Top.2国防科学技术大学学科整体水平得分 88分 国防科技大学是国防部和教育部双重领导下的国家重点综合性大学,列入国家“985工程”和“211工程”的重点建设。学校的前身是1953年创建于黑龙江省哈尔滨市的军事工程学院,简称“哈军工”。 航天与材料工程学院 航天与材料工程学院前身是哈尔滨军事工程学院下设的导弹工程系,创建于1959年。学院以航天和新材料技术为特色,主要从事卫星、导弹等各种飞行器总体设计技术、推进技术、控制和测试发射技术、新材料技术、应用化学技术等方面的高素质人才培养和科学研究工作。 Top.3西北工业大学 学科整体水平得分 87分 西北工业大学坐落于古都西安,是我国唯一一所以同时发展航空、航天、航海工程教育和科学研究为特色,以工理为主,管、文、经、法协调发展的研究型、多科性和开放式的科学技术大学,隶属工业和信息化部。 航空学院 岁月如梭,光阴荏苒,源于1933年的西北工业大学航空学院历经了从初期的交通大学航空门(1935年)、南京大学(原中央大学)航空工程教育(1935年)和浙江大学航空工程教育(1933年),到1952年成立于南京的华东航空学院飞机工程系,再到西迁后的西

理论力学课后习题及标准答案

理论力学课后习题及答案

————————————————————————————————作者:————————————————————————————————日期: 2

应按下列要求进行设计(D ) A.地震作用和抗震措施均按8度考虑 B.地震作用和抗震措施均按7度考虑 C.地震作用按8度确定,抗震措施按7度采用答题(共38分) 1、什么是震级?什么是地震烈度?如何评定震级和烈度的大小?(6分) 震级是表示地震本身大小的等级,它以地震释放的能量为尺度,根据地震仪记录到的地震波来确定(2分) 地震烈度是指某地区地面和各类建筑物遭受一次地震影响的强弱程度,它是按地震造成的后果分类的。(2分) 震级的大小一般用里氏震级表达(1分) 地震烈度是根据地震烈度表,即地震时人的感觉、器物的反应、建筑物破坏和地表现象划分的。(1分) D.地震作用按7度确定,抗震措施按8度采用 4.关于地基土的液化,下列哪句话是错误的(A)A.饱和的砂土比饱和的粉土更不容易液化 B.地震持续时间长,即使烈度低,也可能出现液化 C.土的相对密度越大,越不容易液化 D.地下水位越深,越不容易液化 5.考虑内力塑性重分布,可对框架结构的梁端负弯矩进行调幅(B )A.梁端塑性调幅应对水平地震作用产生的负弯矩进行 B.梁端塑性调幅应对竖向荷载作用产生的负弯矩进行 C.梁端塑性调幅应对内力组合后的负弯矩进行 D.梁端塑性调幅应只对竖向恒荷载作用产生的负弯矩进行 6.钢筋混凝土丙类建筑房屋的抗震等级应根据那些因素查表确定( B )A.抗震设防烈度、结构类型和房屋层数 B.抗震设防烈度、结构类型和房屋高度 C.抗震设防烈度、场地类型和房屋层数 D.抗震设防烈度、场地类型和房屋高度 7.地震系数k与下列何种因素有关? ( A ) A.地震基本烈度 B.场地卓越周期 一、 C.场地土类 1.震源到震中的垂直距离称为震源距(×)2.建筑场地类别主要是根据场地土的等效剪切波速和覆盖厚度来确定的(√)3.地震基本烈度是指一般场地条件下可能遭遇的超越概率为10%的地震烈度值 (×)4.结构的刚心就是地震惯性力合力作用点的位置(×)5.设防烈度为8度和9度的高层建筑应考虑竖向地震作用(×)6.受压构件的位移延性将随轴压比的增加而减小C.地震作用按8度确定,抗震措施按7度采用答题(共38分) 1、什么是震级?什么是地震烈度?如何评定震级和烈度的大小?(6分) 震级是表示地震本身大小的等级,它以地震释放的能量为尺度,根据地震仪记录到的地震波来确定(2分) 地震烈度是指某地区地面和各类建筑物遭受一次地震影响的强弱程度,它是按地震造成的后果分类的。(2分) 震级的大小一般用里氏震级表达(1分) 地震烈度是根据地震烈度表,即地震时人的感觉、器物的反应、建筑物破坏和地表现象划分的。(1分) D.地震作用按7度确定,抗震措施按8度采用 4.关于地基土的液化,下列哪句话是错误的(A)E.饱和的砂土比饱和的粉土更不容易液化 F.地震持续时间长,即使烈度低,也可能出现液化 G.土的相对密度越大,越不容易液化

理论力学参赛讲义

理论力学讲义 绪论 一、理论力学研究对象和任务: 1、研究对象; 研究物体机械运动普遍遵循的基本规律并将其用严密的数学表述,使其完全可以用严格的分析方法来加以处理。 机械运动物体在空间的相对位置随时间而改变的现象。 2、任务:归纳机械运动的规律。(借助严密的数学规律进行归纳) 3、表达方式;(理论力学分为矢量力学和分析力学两大部分。) (1)、矢量力学(牛顿力学) 从物体之间的相互作用出发,借助矢量分析这一数学工具,运用形象思维方法,通过牛顿定律揭示物体受力与其运动状态之间的因果关系来确定物体的运动规律。特点:形象直观,易于处理简单的力学问题,范围:仅能解决经典力学问题。(在矢量力学中,涉及量多数是矢量,如力、动量、动量矩、力矩、冲量等。力是矢量力学中最关键的量。) (2)、分析力学: 从牛顿力学的基础上发展起来的,它借助数学分析这一工具,运用抽象思维方法,研究力学体系整体位形变化。特点“从各种运动形态通用的物理量—能量出发,它的运用远远超出经典力学范围,也适用非力学体系。(分析力学中涉及的量多数是标量,如动能、势能、拉格朗日函数、哈密顿函数等。动能和势能是最关键的量。) (分析力学是由拉格朗日、哈密顿等人建立并完善起来的经典力学理论,它的理论体系和处理问题方法,完全不同于牛顿力学,它代表经典力学的进一步发展,它揭示出支配宏观机械运动的更普遍的规律,以致能用比较统一的方法处理力学体系的运动问题,它揭示出力学规律与其他物理的过渡起了重要作用,分析力学已经成为学习后继课程的必要基础。) 二、理论力学的研究内容 1、运动学:从几何的观点来研究物体位置随时间的变化规律,而未研究引起这种变化的物理原因。 2、动力学:研究物体运动和物体间相互作用的联系,阐明物体运动的原因。 3、静力学:研究物体相互作用下的平衡问题。(它可以看作动力学的一部分,质点、质点系,刚体) 三、理论力学的研究方法

理论力学课后习题及答案解析

第一章 习题4-1.求图示平面力系的合成结果,长度单位为m。 解:(1) 取O点为简化中心,求平面力系的主矢: 求平面力系对O点的主矩: (2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。 习题4-3.求下列各图中平行分布力的合力和对于A点之矩。 解:(1) 平行力系对A点的矩是:

取B点为简化中心,平行力系的主矢是: 平行力系对B点的主矩是: 向B点简化的结果是一个力R B和一个力偶M B,且: 如图所示; 将R B向下平移一段距离d,使满足: 最后简化为一个力R,大小等于R B。其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。 (2) 取A点为简化中心,平行力系的主矢是: 平行力系对A点的主矩是: 向A点简化的结果是一个力R A和一个力偶M A,且:

如图所示; 将R A向右平移一段距离d,使满足: 最后简化为一个力R,大小等于R A。其几何意义是:R的大小等于载荷分布的 三角形面积,作用点通过三角形的形心。 习题4-4.求下列各梁和刚架的支座反力,长度单位为m。 解:(1) 研究AB杆,受力分析,画受力图: 列平衡方程:

解方程组: 反力的实际方向如图示。 校核: 结果正确。 (2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图: 列平衡方程: 解方程组: 反力的实际方向如图示。校核: 结果正确。

(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图: 列平衡方程: 解方程组: 反力的实际方向如图示。 校核: 结果正确。 习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。 解:(1) 研究整体,受力分析(BC是二力杆),画受力图:

理论力学课后习题答案 第4章 运动分析基础

(b) 第4章 运动分析基础 4-1 小环A 套在光滑的钢丝圈上运动,钢丝圈半径为R (如图所示)。已知小环的初速度为v 0,并且在运动过程中小环的速度和加速度成定角θ,且 0 < θ <2 π,试确定小环 A 的运动规律。 解:R v a a 2n sin ==θ,θsin 2 R v a = θθtan cos d d 2 t R v a t v a ===,??=t v v t R v v 02d tan 1d 0θ t v R R v t s v 00tan tan d d -==θθ ??-=t s t t v R R v s 0000d tan tan d θθ t v R R R s 0tan tan ln tan -=θθθ 4-2 已知运动方程如下,试画出轨迹曲线、不同瞬时点的 1.?? ???-=-=225.1324t t y t t x , 2.???==t y t x 2cos 2sin 3 解:1.由已知得 3x = 4y (1) ???-=-=t y t x 3344 t v 55-= ? ??-=-=34y x 5-=a 为匀减速直线运动,轨迹如图(a ),其v 、a 图像从略。 2.由已知,得 2 arccos 213arcsin y x = 化简得轨迹方程:2 9 4 2x y -= (2) 轨迹如图(b ),其v 、a 图像从略。 4-3 点作圆周运动,孤坐标的原点在O 点,顺钟向为孤坐标的正方向,运动方程为 22 1Rt s π= ,式中s 以厘米计,t 以秒计。轨迹图形和直角坐标的关系如右图所示。当点第一 次到达y 坐标值最大的位置时,求点的加速度在x 和y 轴上的投影。 解:Rt s v π== ,R v a π== t ,222 n Rt R v a π== y 坐标值最大的位置时:R Rt s 2 2 1 2π π= = ,12 =∴t R a a x π==t ,R a y 2 π-= 4-4 滑块A ,用绳索牵引沿水平导轨滑动,绳的另一端绕在半径为r 的鼓轮上,鼓轮以匀角速度ω转动,如图所示。试求滑块的速度随距离x 的变化规律。 A 习题4-1图 习题4-2图 习题4-3图

相关主题
文本预览
相关文档 最新文档