当前位置:文档之家› 测井储层评价方法

测井储层评价方法

测井储层评价方法
测井储层评价方法

{页岩气测井评价技术特点及评价方法探讨}

3页岩气测井系列、解释方法及研究方向

3.1页岩气与其他储层测井解释的差异性分析

(1)成藏与存储方式不同。页岩具自生自储的特点,页岩气主要以吸附状态存在,游离气较少;而常规油气主要以游离状态存在。

(2)储层性质不同。页岩气储层属致密储层,其岩性与裂缝是影响页岩气开发的重要因素,与常规油气藏相比,岩石矿物组成与裂缝识别尤为重要(见表2)。

(3)评价侧重不同。页岩气储层有机碳含量、成熟度等相关参数的评价极为关键;常规油气藏主要是评价其含油气性。

(4)开采方式不同。页岩气储层均需经过压裂改造才能开发,因此对压裂效果的预测至关重要。

3.2页岩气测井技术系列探讨

(1)常规测井系列。包括自然伽马、自然电位、井径、深浅侧向电阻率、岩性密度、补偿中子与声波时差测井,能满足页岩储层的识别要求。自然伽马强度能区分含气页岩与普通页岩;自然电位能划分储层的有效性;深浅电阻率在一定程度上能反映页岩的含气性;岩性密度测井能定性区分岩性;补偿中子与声波时差在页岩储层为高值。通常密度随着页岩气含量的增加变小、中子与声波时差测井随着页岩气含量的增加而变大[29],因此利用常规测井系列能有效地区分页岩储层。但该系列对于页岩储层矿物成分含量的计算、裂缝识别与岩石力学参数的计算等方面存在不足,常规测井系列并不能完全满足页岩储层评价的要求,因此还需开展特殊测井系列的应用。

(2)特殊测井系列。应用于页岩储层的特殊测井系列可选择元素俘获能谱(ECS)测井、偶极声波测井、声电成像测井等。ECS元素测井可求取地层元素含量,由元素含量计算出岩石矿物成分。它所提供的丰富信息,能满足评价地层各种性质、获取地层物性参数、计算黏土矿物含量、区别沉积体系、划分沉积相带和沉积环境、推断成岩演化、判断地层渗透性等的需要。偶极声波测井能提供纵波时差、横波时差资料,利用相关软件可进行各向异性分析处理,判断水平最大地层应力的方向,计算地层水平最大与最小地层应力,求取岩石泊松比、杨氏模量、剪切模量、破裂压力等重要岩石力学参数,满足岩石力学参数计算模型建立的要求,指导页岩储层的压裂改造。声、电成像测井具有高分辨率、高井眼覆盖率和可视性特点,在岩性与裂缝识别、构造特征分析方面具有良好的应用效果。识别页岩储层裂缝的类型,对指导页岩气的改造、评定页岩储层的开发效果有着重要的意义。

3.3页岩气测井评价技术探讨

(1)页岩气有效储层评价技术。主要依托常规测井系列,可在一定程度上满足页岩气储层的孔隙度、渗透率、含气饱和度的评价需要。

(2)岩石力学参数评价技术。主要依托特殊测井系列与岩石物理实验[30-31],如全波列声

波测井、偶极声波测井等,结合岩石物理分析,建立岩石力学计算模型,计算岩石力学参数,进行压裂效果预测与压裂效果检测等。

(3)页岩气矿物成分和储层结构评价技术。主要依托常规测井、特殊测井组合系列及岩石物理实验[32-34],在岩石物理实验的基础上,利用岩心刻度测井技术,进行页岩气矿物成分分析和裂缝评价,确定页岩矿物成分、裂缝类型,寻找高产稳产层。(4)综合测井评价解释方法。综合利用测井、岩心、录井等资料[34],建立页岩气储层参数的解释模型,评价页岩气储层的有机碳含量、有机质成熟度、有效厚度,建立页岩储层的评价标准。页岩矿物成分、储层结构评价、页岩储层标准的建立、裂缝类型识别与岩石力学参数评价等方面的研究,是下一步页岩气测井评价技术的重点。

3.4页岩气测井技术研究方向探讨

中国页岩气储层与国外相比,地质条件和分布特点存在重大差异。相对美国,中国页岩气黏土含量相对较高,硅质含量相对较低,脆性物质较少,埋藏深度深。因此,具有中国特点的地质问题成为制约中国页岩气研究及勘探的因素之一,故美国的页岩气产业发展模式难以复制。针对中国页岩气储层的特点,建议关注4方面的页岩气测井技术研究。

(1)页岩气储层岩石物理实验研究。其目的重在探索建立适合中国地质背景的测井解释模型,为测井解释提供依据。主要体现为进行流体及储集空间结构实验研究。着手页岩的物性参数、阿尔奇公式参数、饱和度、储层矿物成分、裂缝特征描述、岩石力学参数分析等。

(2)页岩矿物成分分析。其目的在于弄清页岩储层的矿物构成及确定储层岩石骨架,为孔隙度等参数计算提供依据。页岩气储层为低孔隙度特低渗透率致密储层,页岩气的有效开发都需经过储层改造,页岩中脆性矿物成分含量的高低决定了储层改造的效果,因此,对页岩矿物成分的有效分析,为提高页岩气的开发效率有着重要的意义。

(3)岩石力学参数评价。其目的为水平井储层压裂提供参考依据。当前普遍认为页岩储层识别容易开采难。页岩气在储层中主要以吸附气存在,页岩气的开采主要以水平井开采技术为主。因此,侧重岩石力学参数评价,可为钻井、钻井液及储层改造提供其必需的参数。

(4)深层页岩气评价技术。其研究的主要目的在于为降低中国深层页岩气勘探开发风险提供技术依据。针对中国现状,深层页岩气储层的测井解释技术不能完全借鉴国外成功经验,需加强成像测井、元素俘获能谱测井在页岩气评价技术中的应用,建立页岩有效储层研究方法、储层产能评价与研究方法,建立适合中国深层页岩特点的测井评价技术。

页岩气储层参数的测井评价方法

1. 引言页岩气是一种赋存于富含有机质的泥页岩及其粉砂质岩类夹层中的非常规天然气资源,具有自生自储的特性,因此页岩气储层评价参数及方法与常规天然气有着较大的区别。除了计算储层的孔、渗、饱参数外,还需要研究评估页岩生烃能力的总有机碳含量、热成熟度指数等参数。地球物理测井可以连续、快速地从井中获取地层的多种物理响应数据,通过实验和理论分析研究,进行页岩气储层参数的测井评价。

2. 页岩气储层测井响应特点

根据页岩气储层的地质特点,采用能够反映页岩有机质特征及气体指示的地球物理测井方法进行储层识别。页岩气常规测井方法有井径、自然伽马、双侧向或双感应、补偿中子、补偿声波、岩性密度等。页岩的矿物成分为粘土,且富含较高生烃能力的有机质,表现出高到非常高的自然伽马值和容易产生扩径的井径曲线特征;泥质粘土及其所含束缚水会造成较低的电阻率值,而较高丰度的有机质及所含气体均为高电阻率值响应特征,因此页岩气储层电阻率总体表现为低值,局部出现高值特征,双侧向或双感应曲线大体重合,局部亦有可能出现负差异甚至正差异;页岩的主要组成为低速的粘土矿物及有机质,因此具有较高的声波时差值,且在含气泥岩裂缝储层中多有周波跳跃现象发生;中子测井主要反映的是含氢指数,

由于页岩的束缚水饱和度大于含气饱和度,而水的含氢指数大于气体的含氢指数,另外有机质中的氢含量也会使孔隙度偏大,而在页岩气储集层段,中子孔隙度值显示为低值;此外,页岩的粘土矿物及有机质组成具有较低的密度及光电吸收截面指数的测井响应特征。因此含气页岩测井响应特征可以归结为“四高两低一扩”,即高自然伽马、高电阻率、高声波时差、高中子孔隙度,低密度、低光电吸收指数,和扩径特征。

3. 页岩气储层孔渗参数计算

孔隙度和渗透率的计算是页岩气储层渗透流体能力大小的度量,是页岩气开采中关键的参数。其中页岩气储层孔隙度包括了基质孔隙度和裂缝孔隙度。采用常规三孔隙度测井方法结合岩心实验数据进行校正,可以计算页岩孔隙度。其计算公式为:log loglog logmes maf maφ?=? (1)式中,φ为孔隙度值,logmes、logma、logf分别为实测、基质骨架、孔隙中的流体测井值,可以是声波、中子、密度测井中的任意一种方法,由声波测井计算得到基质孔隙度,而由中子测井或密度测井计算得到总孔隙度。裂缝孔隙度则可以通过双侧向测井响应值进行估算,其计算公式为:11 1 1 1mffLLS LLD mf wR R R R φ?? ?? ??=??? ??? ??? ???? ? ? ??? (2)式中,φf为裂缝孔隙度,RLLS、RLLD、Rmf、Rw分别为浅侧向、深侧向、泥浆滤液、地层水的电阻率值。mf 为裂缝胶结指数。通过岩心实验分析孔隙度与渗透率之间的拟合关系,即可利用测井孔隙度估算渗透率参数。而页岩气含水饱和度的分析可以借鉴美国Barnett 地区经验公式:1/ 29( )wwi md i tRSφR= (3)式中,Swi为含水饱和度,为从密度孔隙度得出的估计孔隙度(99%d i dφ=φ? );Rt为地层电阻率;m为岩石的胶结指数。此外,也可以通过核磁共振测井方法得到精确度较高的孔隙度和渗透率参数计算方法。 1 11 exp( )nwNMR w wii wiTHITφφ=? ?= ? ?? ?? ?∑(4)32 22( )2NMRTKφρτ= (5)式中,φNMR为核磁共振计算的孔隙度,HIw指水的含氢指数,通常等于1;φwi、T1wi分别指第i 个孔隙水的孔隙度和纵向弛豫时间,Tw指极化时间。T2、ρ2分别为横向弛豫时间和弛豫强度,τ为弯曲因子。

4. 页岩气储层生烃能力参数计算

页岩作为烃源岩的生烃能力评价是页岩气储层测井评价的又一重要内容,通常采用总有机碳含量(TOC)和热成熟度指数(MI)这两个参数来反映生烃能力。有机质含量是生烃强度的主要影响因素,随着有机质含量的增大,电阻率和声波时差也会随着变化,在有机质含量较低层段,电阻率和密度会相互重合或平行,而在富含有机质层段,声波时差明显增大,而烃类的存在,会使两条曲线产生较大的分离特征。针对这一理论认识,采用声波时差—电阻率曲线叠加计算,可以建立其与对应层位TOC 之间的回归关系。此外,有关研究表明亦表明,自然伽马、体积密度等参数与TOC 之间的亦呈线性相关关系,根据这些理论,可以得到测井资料预测TOC 的有关方程式:lg lg( / ) ( )t base baseΔR =R R +k ? Δt ?Δt (6)0( lg ) 10a R bTOC R? += Δ? (7)TOC =c ?GR +d (8)TOC =e ?DEN +f (9)式中,GR、DEN 分别为自然伽马、密度测井在页岩气储层的平均响应值,Rt、Rbase分别为页岩气储层测量电阻率值和非烃岩电阻率基线值,Δt、Δtbase分别为页岩气储层测量声波时差值和非烃岩声波时差基线值,R0为镜质反射率,a、b、c、d、e、f、k 为拟合系数。当页岩中TOC 达到一定指标后,有机质的成熟度则成为页岩气源岩生烃潜力的重要预测指标,含气页岩的成熟度越高表明页岩生气量越大。定义热成熟度指数MI,其测井方法计算公式为:1/ 21 9 75(1 )Ni n i w iNMIφS==?∑(10)式中,N 为取样深度处密度孔隙度dφ≥9%且含水饱和度Swi≤75%的数据样本总数;n9iφ为每个取样深度的dφ≥9%时的中子孔隙度;Sw75i为每个取样深度的dφ≥9%且Swi≤75%时的含水饱和度。

页岩气储层测井评价及进展

3页岩气储层测井系列

大多数页岩气田均进行了测井数据采集,以满足页岩气储层评价的需要。除了常规三组合测井外,地球化学测井在美国页岩气勘探中是一种普遍采用的测井方式,它主要用于确定总有机碳含量和矿物、岩性。在北美,偶极声波成像测井在探井是常规必测项目,以帮助刻度地震属性。电成像测井主要用于识别裂缝和断层,划分页岩层[8]。页岩气储层使用的测井系列:

(1)Appalachian盆地大多数采用空气钻井,采用测井系列包括双感应、岩性密度、井壁中子、自然伽马能谱、井下电视和温度测井。

(2)北美FortWorth盆地泥盆系Barnett页岩,典型测井系列包括自然伽马、井径、密度、中子、岩性密度、感应、地球化学测井。

(3)对于薄互层的Haynesville页岩,测井系列包括自然伽马、双井径、阵列感应(AIT)、中子、体积密度、自然伽马能谱、光电吸收截面指数测井。

(4)墨菲石油公司等(2010年)根据页岩气储层评价需求,提出了较为全面的页岩气测井系列,包括自然伽马、井径、电阻率、密度、中子、核磁共振、阵列声波和电声成像测井。

4页岩气储层测井评价及进展

4.1页岩气储层定性识别

4.1.1判断含气页岩层

美国的页岩气开发主要针对富含有机质的硅质页岩。页岩气储层的特点决定了其测井评价除了计算储层有效厚度、孔隙度、渗透率、含气饱和度外,侧重点更在于计算总有机碳与成熟度、确定页岩矿物成分、识别裂缝,用声波测井资料计算岩石力学参数满足压裂需求。页岩气具有不导电、密度小、含氢指数低、传播速度慢等特点。通常,页岩气层的测井响应特征不是很明显。与普通页岩相比,好的页岩气层具有自然伽马强度高、电阻率大、低补偿中子、低地层体积密度、高声波时差和低光电效应等测井响应特征。利用测井曲线形态和测井曲线幅值相对大小可以快速直观地识别页岩气储层,现在,依据孔隙度差异识别气层技术拓展到利用密度-核磁共振孔隙度或者中子-核磁共振孔隙度之间的幅度差异判别气层。好气层在微电阻率成像测井图(静态)上会出现气斑或者白化现象,气斑的多少与井筒中的含气量有关可以利用vp/vs或vp/vs-Δt判识气层。好气层在地层压力梯度上也有显示,可以用核磁共振测井的差谱、移谱判识气层。用中子时间推移测井下套管后最佳时间测量的中子与固井后24h内测量的中子曲线重叠,利用其差值识别气层[9]。Miller(2010年)[10]对比了页岩层不同镜质体反射率RO的各种测井曲线响应特征,认为RO影响测井曲线的变化:当RO在1.8~2.0范围内时,密度为低值,密度和中子曲线重叠,地层电阻率高值达到100Ω·m;当RO>4.5时,密度为高值,密度和中子曲线分开,地层电阻率非常小(小于1Ω·m)(见图1)。

4.1.2识别黏土矿物

Boonen等[11]介绍了已用于现场的随钻三中子孔隙度测量值间的幅度差说明黏土矿物的存在。在EagleFord和Haynesville页岩地层,使用过一种随钻测井密度-中子测井仪,它有近、中、远3个不同源距的中子探头。由近探头与远探头、中探头与远探头、近探头与中探头的计数率比值计算出三中子孔隙度,即近/远、中/远、近/中中子孔隙度。对三中子孔隙度进行环境校正。在页岩和泥质砂岩,三中子孔隙度始终以中/远中子孔隙度最大、近/中中子孔隙度最小的相同幅度分离。地层中黏土矿物含量越高,中子孔隙度越大。在地层孔隙度小于10%时,三中子孔隙度幅度差一般小,指示黏土会有大的波动。对中子孔隙度需要进行黏土校正。黏土对三中子孔隙度值的影响不同,用MonteCarlo模拟研究人造地层中黏土对中子孔隙度值的影响。该方法利用近

/中、近/远中子孔隙度之间的差异对近/远中子孔隙度进行黏土影响校正[11]。校正后的中子孔隙度与密度孔隙度重叠能更好地指示页岩气。

4.1.3识别裂缝/层理/断层

HamedSoroush等人指出[12],为了防止页岩地层井眼垮塌,通常采用油基泥浆钻井。微电阻率成像测井是识别裂缝最好的工具,现已发展到能在油基泥浆水平井中用随钻电阻率成像识别裂缝甚至层理、断层,其技术已经成熟(见图2)。评价裂缝通常用油基泥浆电阻率成像测井(OBMI)和超声成像测井(UBI)。

4.2页岩气储层定量评价及进展

4.2.1页岩气储层划分

4.2.2计算矿物成分和确定岩性

4.2.3计算孔隙度、渗透率、饱和度进展

4.2.4确定总有机碳(TOC)

4.2.5确定页岩热成熟度指数(MI)

4.2.6计算储层岩石力学参数

4.2.7评价裂缝及确定天然气地质储量

页岩气储层测井评价有关问题的探讨

煤层气与页岩气各方面的不同

页岩气储层特征及测井评价方法

提出了从含气页岩识别、页岩生烃潜力评价及含气页岩储集参数评价等三方面开展页岩气测井评价工作。

2 页岩气测井评价方法

页岩的储层特征与砂岩有很大的区别,页岩中的天然气既有游离态方式,又有吸附态方式。因而,页岩气测井评价方法与常规油气测井评价方法相比,具有其特殊性。

2.1 含气页岩测井方法识别页岩地层有以下测井响应:

a. 一般表现为扩径;

b. 自然伽玛值高;

c. 深浅测向电阻率为中、低值,随着粉砂质含量的增大,电阻率增大;

d. 三孔隙度(声波、中子和密度)测井曲线呈高值。含气页岩层段测井响应特征为“四高两低”特征,即高自然伽玛值、高电阻率值、高声波时差、高中子孔隙度、低密度、低光电效应(图1)。

2.2 页岩生烃潜力测井评价

页岩是否具有生烃潜力,与页岩中所含的有机质类型、丰度和热成熟度有关。测井方法可以用于评价干酪根类型、有机质丰度和热成熟度。

2.2.1 总有机碳含量(TOC)

干酪根一般是在放射性元素铀(U)含量比较高的还原环境中形成的,因而它使自然伽玛测井曲线表现为高值。利用自然伽玛测井和元素俘获能谱测井(ECS)分析铀(U)、钍(Th)、钾(K)等主要放射性元素的丰度,可以定量确定总有机碳含量。干酪根的密度较低,通常介于0.95~1.05 g/cm3之间,会降低地层的体积密度。?lgR方法可以用于页岩有机碳含量的计算,它是使用补偿声波测井曲线叠合在一条电阻率曲线上。明显的?lgR幅度差异反应富含有机质烃源岩地层、含烃储集层段和岩性差异情况[29]。

储层预测中有关测井参数的分析及应用

第7卷第3期2010年6月   CHIN ESE J OURNAL OF EN GIN EERIN G GEOP H YSICS Vol 17,No 13 J une ,2010 文章编号:1672—7940(2010)03—0296—04doi :10.3969/j.issn.1672-7940.2010.03.006 储层预测中有关测井参数的分析及应用 曾 婷,桂志先,何加成,易寒婷,章雪松 (油气资源与勘探技术教育部重点实验室,长江大学地球物理与石油资源学院,湖北荆州434023) 作者简介:曾 婷(1985-),女,湖北天门人,硕士研究生,地球探测与信息技术专业,主要从事地震资料解释工作。E -mail : zt851129@https://www.doczj.com/doc/b915293398.html, 摘 要:根据研究区56口井,笔者对岩心、自然伽马、自然电位、声波时差、密度、中子等钻井、测井资料进行 多种统计和交会分析,研究速度、密度、波阻抗、孔隙度与深度、岩性,波阻抗与孔隙度等的关系,分析储层物性特征,并作相关交会图,建立规律关系式。经比较得出利用波阻抗进行下一步的反演工作会比较合理。根据砂岩孔隙度与波阻抗之间的函数关系,可以利用砂岩波阻抗估算砂岩孔隙度。为下一步储层预测研究提供良好的基础资料。 关键词:储层预测;岩性;波阻抗;孔隙度 中图分类号:P631文献标识码:A 收稿日期:2010-03-29 Analysis and Application of Logging Parameters in R eservoir Prediction Zeng Ting ,Gui Zhixian ,He Jiacheng ,Y i Hanting ,Zhang Xuesong (Key L aboratory of Ex ploration Technology f or Oil and Gas Resources (Yangtze Universit y ) Minist ry of Education ,J ingz hou H ubei 434023,China ) Abstract :This paper collect s various logging data of core ,nat ural gamma ,spo ntaneous po 2tential ,acoustic t ravel time ,density ,neut ron etc.and t ries to st udy t he relationship s of t he speed ,density ,wave impedance and porosity wit h t he dept h ,lit hology ,as well as t he relationship s between wave impedance and poro sity.Then it analyzes t he characteristics of t he reservoir forecast.Through comparison ,it is reasonable to go on wit h t he next inver 2sion task by using wave impedance.Based on t he relationship between sand porosity and wave impedance ,we can use t he sand wave impedance to estimate t he sand porosity.This st udy p rovides very good information for t he reservoir p redict research.K ey w ords :reservoir prediction ;lit hology ;wave impedance ;porosity 1 引 言 储层预测是综合地质、地震、测井、试井、分析化验等各种资料研究储集层的分布、岩性变化、厚 度变化、物性特征、所含流体、油气藏等等的一项 综合性研究课题[1]。其目标是发现有利储集体,提高勘探开发的整体效益。地层参数关系的分析是储层研究中一项非常关键的基础工作。在前人研究成果基础上,从本研究区特点出发,在储层预

复杂油气藏的解释评价及测井系列-测井技术06

复杂岩性油气藏的测井系列及解释评价 魏钢王忠东 (辽河石油勘探局测井公司,辽宁盘锦 124011) 摘要:近些年来,在各种碳酸盐岩、火成岩、变质岩等复杂岩性地层中均发现了较为可观的工业油、气藏,但要如何高效、准确的利用测井资料来寻找开发此类油气藏,如何有效地对这类油气藏进行解释评价,仍然是较为复杂的难题。本文针对辽河油田复杂油气藏类型多的特点,充分利用丰富的测井资料及测井新技术对几种复杂岩性油气藏的配套测井系列及测井解释评价提出几点认识。 关键词:复杂油气藏测井系列新技术储层评价 WEI GANG,WANG ZHONGDONG WELL-LOGGING SERIES AND INTERPRETATION TO COMPLICATED OIL AND GAS RESERVOIRS. (Well logging Co.,Liaohe Petroleum Exploration Bureau,Panjin,liaoning 124011 ,China) ABSTRACT: Recent years,considerable industrial oil and gas reservoirs were found in all kinds of carbonatite、igneous rock、metamorphic rock,but how to use well-logging material high efficiently and accurately continue to find these kinds of oil and gas reservoirs ,and how to evaluate these reservoirs is still very complicate difficult problem.According to the feature of various oil and gas reservoir in LiaoHe oil field,efficiently useing abundant well-logging material and advance well-logging technology ,this paper gives some cognitions about well-logging interpretation and well-logging series to several complicate oil and gas reservoirs. Subject Terms: complicate oil and gas reservoir low resistivity sand rock well-logging series advance technology reservoir evaluation 引言 辽河油田含油气储层的岩性多种多样,既有常见的沉积岩,也有岩浆岩和变质岩。具体岩性有砂泥岩、灰岩、白云岩、灰质白云岩、白云质灰岩、泥质白云岩、花岗岩、粗面岩、玄武岩、凝灰岩、辉绿岩、安山岩、英安岩、角砾岩以及石英岩等。其中碳酸盐岩、火成岩、及变质岩复杂岩性地层电阻率普遍较高,三孔隙度曲线接近骨架值,很难反映储层的特征,用常规测井曲线较难判断储层参数(φ,k,Sw),结合测井新技术较为容易地解决了这一困难,针对这些特殊岩性油气藏主要加测了微电阻率扫描成像测井或井周声波成像测井,另外在其中部分井又增加了核磁测井、阵列声波测井,其应用评价效果比较显著。

测井储层评价

1、测井资料评价孔隙结构 储集岩的孔隙结构特征是指岩石所具有的孔隙和喉道的几何形状、大小、分布及其相互连通关系,对于碳酸盐岩来说其孔隙结构主要是指岩石具有的孔、洞、缝的大小、形状及相互连通关系。储集层岩石的孔隙结构特征是影响储层流体(油、气、水)的储集能力和开采油、气资源的主要因素,因此明确岩石的孔隙结构特征是发挥油气层的产能和提高油气采收率的关键。 常规岩石孔隙结构特征的描述方法主要包括:室内实验方法和测井资料现场评价法。室内实验方法是目前最主要,也是应用最广泛的描述和评价岩石孔隙结构特征的方法,主要包括:毛管压力曲线法(半渗透隔板法、压汞法和离心机法等)、铸体薄片法、扫描电镜法及CT扫描法利用测井资料研究岩石孔隙结构特征则为室内实验开辟了另一条途径,且测井资料具有纵向上的连续性,大大方便了储层孔隙结构的研究。 1.1 用测井资料研究孔隙结构 1.1.1 用电阻率测井资料研究岩石孔隙结构 利用电阻率测井资料研究储层岩石的孔隙结构特征,主要还是建立在岩石导电物理模型和Archie公式的基础之上。 电阻率测井资料反应的是岩石复杂孔隙结构内在不同流体(油、气、水)时的电阻率,因此储层岩石不同的孔隙结构特征一定会对电阻率测井响应产生影响。国内外关于岩石微观孔隙结构模型、物理模型也较多,包括毛管束模型、曲折度模型、电阻网络模型和渗流理论、有效介质理论等。毛志强等采用网络模型模拟岩石孔喉大小及分布、水膜厚度、孔隙连通性等微观孔隙结构特征参数的变化对含两相流体岩石电阻率的影响,得出了影响油气层电阻率变化规律的2个主要因素分别是孔隙连通性(以孔喉配位数表示)和岩石固体颗粒表面束缚水水膜厚度。孔隙连通性差的储集层具有较高的电阻率;相反,当岩石颗粒表面束缚水水膜厚度增加时,储集层的电阻率则明显降低。杨锦林等采用简化的岩石导电物理模型,定义了一个岩石孔隙结构参数S,综合反映了储层孔隙孔道的曲折程度及其大小。如果孔隙孔道越大越平直,S值越大,说明储层条件越好;反之孔隙孔道越小,越曲折,S值越小,说明储层条件越差。利用测井资料求取S的公式为: S=0.564(R w/R0)0.75φ—0.25 (1) 式中:R w为地层水电阻率,Ω·m;R0为岩石100%含水时的电阻率,Ω·m;φ为岩石孔隙度。 Archie公式表明,地层的电阻率因素F主要决定于岩石孔隙度,且与岩石性质、胶结程度和孔隙结构有关。李秋实等研究表明,Archie公式中的电阻率因素F不但与储层孔隙度、孔隙曲折度有关,还与储层的孔喉比有关,孔喉比越小,F值越低。 同时地层电阻率指数n值的大小也主要受储层孔喉比的影响,当储层是孔喉比为1的管状孔时,n最小(等于1),孔喉比越大,n值越大。n值反映的是储层孔喉比的大小。 1.1.2 用核磁共振测井研究岩石孔隙结构 核磁共振测井是20世纪90年代以来投入使用的最新测井技术之一,它是通过研究地层中孔隙流体的原子核磁性及其在外加磁场作用下的振动特性,来研究各种流体孔隙度,进而评价岩石的孔隙结构。 核磁共振测井测量的信号是由不同大小的孔隙内地层水的信号叠加,经过复杂的数学拟合得到核磁共振T2分布,因此T2的分布反映了岩石孔隙大小的分布,大孔隙内的组分对应长的T2分布,小孔隙组分对应短的T2分布,这就是利用核磁共振测井资料研究储层岩石孔隙结构的基础。目前利用核磁共振测井资料研究地层孔隙结构的方法都是进行室内实验,将岩心的压汞毛管压力曲线和核磁共振T2分布对比,建立其相关性,进而通过核磁共振T2分布,间接地利用岩石的毛管压力分布曲线来研究岩石的孔隙结构。

储层物性参数解释方法研究

储层物性参数解释方法研究 宋岩竹 (大庆油田有限责任公司第十采油厂黑龙江大庆 166405) 摘要:首先以测井曲线的分辨率、探测原理为基础,优选出与孔隙度、渗透率相关性较高的声波时差曲线和自然伽玛曲线来建立孔隙度和渗透率的解释方程,并且用非建立关系的密闭取心井和评价井进行验证,解释结果比较合理,为多学科油藏研究奠定良好的基础。 主题词:孔隙度渗透率多元回归 Study on reservoir physical property interpretation method Song Yanzhu (No.10 Oil Production Plant of Daqing Oilfield Co.,Ltd.,Heilongjiang Daqing 166405) 「Abstract」It is a difficult problem in the Oilfield.First,we choose the well log of AC and GR to establish the reservoir physical property interpretation equation,in the base of the differentiated rate and exploration principle of well log.Then it is verified that the result is reasonable based on datas of sealing core drill well and assessment well,and it lays a favorable foundation for the study on multidisciplinary reservoir. 「Keywords」porosity;permeability;multiple regression 1 前言 统计某油田扶余油层探明区内86口探井、几千个样品分析结果表明,油层砂岩平均孔隙度15.3%,平均渗透率10.8×10-3μm2。 作者简介:宋岩竹,工程师,1994年毕业于大庆石油学院采油工程专业,主要从事精细地质描述工作。E-mail:songyanz@https://www.doczj.com/doc/b915293398.html,

友谊油田复杂储层测井综合评价方法研究与应用

友谊油田复杂储层测井综合评价方法研究与应用 为进一步提高目标区块水淹层、薄互层和高阻水层的解释精度,提高测井解释符合率,为开发调整决策提供可靠依据,本文以友谊油田为例,通过开展测井曲线标准化、储层四性关系研究、建立油气水层判别标准等工作,建立了一套较为系统的精度更高的测井解释模型和解释标准。 标签:测井曲线标准化;储层四性关系;油气水层判别 1 研究区概况 友谊油田位于羊二庄油田主体部位西南约6km,为赵北断层控制下的一个逆牵引鼻状构造,区域构造属羊二庄断阶带,断层十分发育,含油面积3.7 km2,探明地质储量445×104t。该油田为岩性、构造双重控制的复杂油气藏,储层横向变化大,碳酸岩含量高,受储层物性、钻井、测井等多因素影响,测井解释符合率较低。通过统计历史上51个单试层的试油结果,测井解释符合率仅60.8%,严重制约油田开发效果。因此需建立一套系统的精度更高的测井解释模型和标准,进一步提高目标区块水淹层、薄互层和高阻水层的解释精度,为开发调整决策提供可靠依据。 2 测井曲线标准化 不同测井系列的测井仪器的测量结果可能存在误差,为确保研究工作的準确性及进行多井评价和横向对比,必须对测井曲线进行标准化。 泥浆与地层放射性的差别越大,即泥浆的密度越大,对地层放射性响应的影响与干扰也就越大。井径大小的变化,对自然伽马曲线测量值会产生重要的影响。一般来说,泥浆的放射性明显低于地层,同时又吸收地层自然伽马射线。所以,当井径扩大与泥浆密度增加时,将会造成自然伽马测井曲线数值的显著降低。基于上述考虑,需对自然伽马测井曲线进行井径与泥浆密度校正。 在进行储层“四性”关系研究时,使用的是自然伽马相对值与泥质含量建立关系图版。采用相对值法求泥质含量可消除测井仪器非标准化对测井值的影响,因此求自然伽马相对值本身也就对自然伽马曲线进行标准化。 在友谊油田65口处理井中,选择沙一中的稳定泥岩段进行标准化,基本上该段声波时差在310-320μs/m之间。同时根据所确定的声波时差标准,利用直方图平移技术对所处理井的声波时差曲线进行标准化。例如庄1608-1井在该段的声波时差标准值峰值在320-330μs/m之间,与该段的声波时差标准相差10μs/m,通过直方图平移技术对其进行标准化,保证以后计算的准确性。 3 储层四性关系研究

作好测井评价擦亮地质家的眼睛

作好测井评价擦亮地质家的眼睛-工程论文 作好测井评价擦亮地质家的眼睛 令狐松 将油气从地下采到地面,要用到地震、测井、钻井等多种技术。其中,测井技术被称为地质家的“眼睛”,它将专业仪器放入井内,沿钻井剖面向上测量地层的各种物理参数。测井学是应用地球物理学的一个重要分支,从基础、研发到应用层次,分为测井方法理论、测井仪器与数据采集、测井数据处理和综合解释评价三部分,测井评价就是测井技术直接与地质家交流的环节。通过油气测井评价可以找出油气隐藏在地下的具体位置,帮助地质家回答如下问题:地下是否有油气?有多少可开采?开采时间?开采效率?下一口井布在哪里?这也是测井为什么被称为地质家的“眼睛”的原因。 油气测井评价是一项贯穿于油田勘探开发全过程的工作,利用从井中测量的各种测井信息(曲线),以岩石物理实验为基础,通过先进数学统计方法、计算机处理手段评价地下储层信息,最终提供给地质家。油气测井评价的核心是将地层的声、电、核磁等物理参数反演为孔隙度、渗透率和饱和度的地层地质参数过程。 按照不同储层地质对象,油气测井评价可分为泥质砂岩测井评价、碳酸盐岩测井评价、火成岩测井评价、煤层气测井评价、致密油气测井评价和页岩气测井评价等类型。每一类对象地质特点不同,测井评价重点有很大差异,这也是不同测井评价的难点所在。 单井测井评价研究包括资料预处理、成像测井处理、岩石物理实验、储层四性关系(岩性、物性、电性、含油性)研究、油气定性解释、油气定量评价等

方面,可以为地质提供岩性剖面、储层划分原则、油气水层判别标准、孔隙度饱和度等参数信息。以单井解释为基础,可以开展多井油气藏测井综合评价。测井评价技术涉及面很广,下面就针对一些关键方面进行介绍。 测井定量评价的核心是确定孔隙度、渗透率和饱和度等几个储层地质参数,通过这些参数,解决了“地下是油是水?有多少?”的问题。孔隙度的计算,理论上是采用体积模型方法。以声波测井为例,在压实和胶结良好的纯砂岩中,按照体积模型,有声波时差公式: Rw——地层水电阻率,Ω·m; R1_地层电阻率,Ω·m; Ф——孔隙度,%。

测井储层评价方法

{页岩气测井评价技术特点及评价方法探讨} 3页岩气测井系列、解释方法及研究方向 3.1页岩气与其他储层测井解释的差异性分析 (1)成藏与存储方式不同。页岩具自生自储的特点,页岩气主要以吸附状态存在,游离气较少;而常规油气主要以游离状态存在。 (2)储层性质不同。页岩气储层属致密储层,其岩性与裂缝是影响页岩气开发的重要因素,与常规油气藏相比,岩石矿物组成与裂缝识别尤为重要(见表2)。 (3)评价侧重不同。页岩气储层有机碳含量、成熟度等相关参数的评价极为关键;常规油气藏主要是评价其含油气性。 (4)开采方式不同。页岩气储层均需经过压裂改造才能开发,因此对压裂效果的预测至关重要。 3.2页岩气测井技术系列探讨 (1)常规测井系列。包括自然伽马、自然电位、井径、深浅侧向电阻率、岩性密度、补偿中子与声波时差测井,能满足页岩储层的识别要求。自然伽马强度能区分含气页岩与普通页岩;自然电位能划分储层的有效性;深浅电阻率在一定程度上能反映页岩的含气性;岩性密度测井能定性区分岩性;补偿中子与声波时差在页岩储层为高值。通常密度随着页岩气含量的增加变小、中子与声波时差测井随着页岩气含量的增加而变大[29],因此利用常规测井系列能有效地区分页岩储层。但该系列对于页岩储层矿物成分含量的计算、裂缝识别与岩石力学参数的计算等方面存在不足,常规测井系列并不能完全满足页岩储层评价的要求,因此还需开展特殊测井系列的应用。 (2)特殊测井系列。应用于页岩储层的特殊测井系列可选择元素俘获能谱(ECS)测井、偶极声波测井、声电成像测井等。ECS元素测井可求取地层元素含量,由元素含量计算出岩石矿物成分。它所提供的丰富信息,能满足评价地层各种性质、获取地层物性参数、计算黏土矿物含量、区别沉积体系、划分沉积相带和沉积环境、推断成岩演化、判断地层渗透性等的需要。偶极声波测井能提供纵波时差、横波时差资料,利用相关软件可进行各向异性分析处理,判断水平最大地层应力的方向,计算地层水平最大与最小地层应力,求取岩石泊松比、杨氏模量、剪切模量、破裂压力等重要岩石力学参数,满足岩石力学参数计算模型建立的要求,指导页岩储层的压裂改造。声、电成像测井具有高分辨率、高井眼覆盖率和可视性特点,在岩性与裂缝识别、构造特征分析方面具有良好的应用效果。识别页岩储层裂缝的类型,对指导页岩气的改造、评定页岩储层的开发效果有着重要的意义。 3.3页岩气测井评价技术探讨 (1)页岩气有效储层评价技术。主要依托常规测井系列,可在一定程度上满足页岩气储层的孔隙度、渗透率、含气饱和度的评价需要。 (2)岩石力学参数评价技术。主要依托特殊测井系列与岩石物理实验[30-31],如全波列声

致密砂岩储层评价研究现状

致密砂岩储层评价研究现状 致密砂岩油气藏作为一种特殊非常规油气藏,已受到石油工业界的高度关注。目前致密砂岩储层的评价主要是在地层层组划分的基础上,依据测井解释、岩心物性分析、X-衍射分析、显微薄片鉴定等分析和实验资料,结合产能情况,对储层岩性、储层的物性下限、脆性、厚度和分布范围等多个方面进行评价。 标签:致密砂岩储层储层评价研究现状 0引言 致密砂岩油气藏作为一种特殊非常规油气藏,已受到石油工业界的高度关注。自20世纪80年代以来多位石油地质专家提出了深盆气(Masters,1979)、盆地中心气(Rose,1986)和连续型油气藏(Schmoker,1995)等新概念,就是针对非常规储层用新的思维以及创新的技术方法[1~3]。中国致密储层天然气的分布十分广泛勘探潜力巨大,形成了以四川盆地须家河组、鄂尔多斯盆地苏里格地区二叠系为代表的致密砂岩大气区[4]。 目前致密砂岩储层的评价主要是在地层层组划分的基础上,依据测井解释、岩心物性分析、X-衍射分析、显微薄片鉴定等分析和实验资料,结合产能情况,对储层岩性、储层的物性下限、脆性、厚度和分布范围等多个方面进行评价。 1岩性评价 岩性评价是致密砂岩储层评价的重要组成部分之一,且较常规储层评价的要求更高。致密砂岩储层储集空间小,测井信息中所包含的孔隙部分贡献相对较低,因此,为了求准测井孔隙度,要求更加精细的岩性组分以保障骨架参数的准确性。此外,岩性评价能够十分有助于致密砂岩储层的压裂设计,如可根据岩性类别及其组分确定出的脆性指数以及黏土矿物类型及其各种黏土相对含量,均是压裂设计着重考虑的因素。 常规测井评价岩性的方法主要为:以自然伽马测井计算泥质含量,以密度、中子和声波孔隙度测井确定岩性骨架类别及其比例大小。如果有自然伽马能谱测井资料,可进一步确定出黏土类型。最后以岩性实验分析(如X衍射)刻度测井计算结果。近年来,斯伦贝谢公司研发的新一代地球化学元素测井技术-元素俘获谱测井(ECS)已在我国推广应用,丰富了测井岩性评价的内容,提升了岩性组分的计算精度[5~7] [14](如图1)。 2有效储层物性下限评价 有效储层物性下限是指储集层能够成为有效储层应具有的最低物性。有效储层是指在现有工艺技术及经济条件下能够产出具有商业价值油气流的储层。有效储层的物性下限值主要包括储层孔隙度、渗透率和含油饱和度下限值。有效储层

作好测井评价擦亮地质家的眼睛

作好测井评价擦亮地质家的眼睛

————————————————————————————————作者:————————————————————————————————日期:

作好测井评价擦亮地质家的眼睛-工程论文 作好测井评价擦亮地质家的眼睛 令狐松 将油气从地下采到地面,要用到地震、测井、钻井等多种技术。其中,测井技术被称为地质家的“眼睛”,它将专业仪器放入井内,沿钻井剖面向上测量地层的各种物理参数。测井学是应用地球物理学的一个重要分支,从基础、研发到应用层次,分为测井方法理论、测井仪器与数据采集、测井数据处理和综合解释评价三部分,测井评价就是测井技术直接与地质家交流的环节。通过油气测井评价可以找出油气隐藏在地下的具体位置,帮助地质家回答如下问题:地下是否有油气?有多少可开采?开采时间?开采效率?下一口井布在哪里?这也是测井为什么被称为地质家的“眼睛”的原因。 油气测井评价是一项贯穿于油田勘探开发全过程的工作,利用从井中测量的各种测井信息(曲线),以岩石物理实验为基础,通过先进数学统计方法、计算机处理手段评价地下储层信息,最终提供给地质家。油气测井评价的核心是将地层的声、电、核磁等物理参数反演为孔隙度、渗透率和饱和度的地层地质参数过程。 按照不同储层地质对象,油气测井评价可分为泥质砂岩测井评价、碳酸盐岩测井评价、火成岩测井评价、煤层气测井评价、致密油气测井评价和页岩气测井评价等类型。每一类对象地质特点不同,测井评价重点有很大差异,这也是不同测井评价的难点所在。 单井测井评价研究包括资料预处理、成像测井处理、岩石物理实验、储层四性关系(岩性、物性、电性、含油性)研究、油气定性解释、油气定量评价

基于岩石物理相分类的测井储层参数精细解释建模

第29卷第4期2005年8月 测井技术 WELL LOGGING T ECH NOLOGY V ol.29N o.4 Aug2005 文章编号:1004O1338(2005)04O0328O05 基于岩石物理相分类的测井储层参数精细解释建模 石玉江,张海涛,侯雨庭,时卓 (长庆油田分公司勘探开发研究院,陕西西安710021) 摘要:研究表明,储层岩石物理相对低渗透岩性油气藏的成藏作用和油水分布具有重要的控制作用,同一种岩石物理相通常具有相似的岩性、物性、孔隙结构和含油气性特征,测井响应特征类似。在储层地质分类的基础上,根据其测井响应特征,用数学方法将鄂尔多斯盆地榆林地区上古生界山2段储层划分为3类岩石物理相,分类建立了山2段气层的测井精细解释模型和气层识别标准,从而将非均质、非线性问题转化为均质、线性问题解决。实际应用效果表明,气层的解释符合率比原来提高了17%,达到87%,利用新标准开展老井复查,建议3口井开展老井试气,均获得中高产工业气流。 关键词:测井解释;储层参数;岩石物理相;低渗透率油气藏;数理统计;模型;方法 中图分类号:T E122122;P62813文献标识码:A The Fine Logging Interpretation Method Based on Petrophysical Faces SHI Y u-jiang,ZHA N G H a-i tao,HO U Y u-ting,SHI Z huo (Exploration an d Development Resear ch In stitute of Changqing Oilfield C om pany,Xi c an,Shaanx i760021,China) Abstract:M ore fine interpr etatio n m odel has to be developed to reso lve the pr oblem s such as low pre-cision and poo r adaptability in routine logg ing interpr etatio n m odels for low por ous and permeable res-ervo ir s.In low per meability reservoir,the petr ophysical faces have great controlling effect on the for ming o f litholo gy reservoir and distribution of w ater and o il.T he sam e petrophy sical face has sim-i lar litho logy,physical property,pore structur e and log ging response char acters.Based on the r eser-v oir's geolog ic classification,w e divided shan-2reservo ir in Yulin g as field of Er dos basin into three petrophy sical faces by m athem atical metho d.Then w e established different log ging interpretation models and standards all identify ing g as zones for each catego ry.T hus we transfo rm inhom ogeneo us and nonlinear problems into homo geneous and linear pro blems.T he application show ed that the inter-pretation ag reement rate of g as zone has increased by17percent,up to87percent.A cco rding to the new standards all three oi-l testing w ells gained industrial airflow ag ain. Key words:log interpretation;reserv oir parameter;petrophysical face;low perm eability reservo ir; mathematical statistics;mo del;m ethod 0引言 低孔隙度低渗透率油气藏主要特点概括为/两低两非0,即低信噪比、低分辨力、非均质、非线性。提高低孔隙度低渗透率储层测井评价效果的途径除在采集上多采用核磁共振、成像等高性能测井系列外,在解释方法上主要基于常规测井资料,研究适合低渗透率、非均质油气藏特点的测井解释模式也是一项十分重要的内容。 测井解释建模的传统做法是分区分层建立模型,其前提是假设同一区块同一层段的储层是均质的或其不均质性,可以用线性方式进行描述。在低渗透率储层中的宏观和微观非均质性大大超过了/区块0或/层段0所表述的储层单元界限,难以用一个统一的解释模型对储层进行表述。通过储层分类建立测井解释模型是解决非均质、非线性问题的有效途径。 本文以鄂尔多斯盆地榆林地区山2气藏为例,分析了岩石物理相对低渗透岩性油气藏储层岩性、物性、电性及含油性的/四性0关系的控制作用,采用聚类分析及判别分析方法,基于岩石物理相分类建立了山2储层的测井参数解释模型和气层识别标准,探讨了利用测井资料进行储集层岩石物理相研究和储集层质量评价的方法。

鄂尔多斯盆地致密砂岩气层测井评价新技术

作者简介:杨双定,1966年生,高级工程师;1991年毕业于西南石油学院测井专业,1999年获西南石油学院地球探测与信息专业硕士学位;现从事测井资料综合解释及方法研究工作。地址:(710201)陕西省西安市长庆路方元大厦。电话:(029) 86029722。E 2mail :cjc_ysd @https://www.doczj.com/doc/b915293398.html, 鄂尔多斯盆地致密砂岩气层测井评价新技术 杨双定 (中国石油集团测井有限公司长庆事业部) 杨双定.鄂尔多斯盆地致密砂岩气层测井评价新技术.天然气工业,2005;25(9):45~47 摘 要 鄂尔多斯盆地上古生界以陆相、海陆交互相碎屑岩为主,属于低孔、低渗的致密砂岩储集层。由于其低孔、低渗、非均质性强等原因,使利用常规测井资料正确识别气层的难度增大。文章分析认为,上古生界气田测井特征受岩性物性作用比较明显,石英砂岩和岩屑砂岩的测井特征与含气特征不同,电性上高低电阻率气层共存。在综合利用成象测井新技术提供的新方法及多信息、高精度参数,在分析储层特征的基础上,结合实验数据确定了核磁共振变等待时间的测井参数,提出了对致密气层识别有效的气层识别新方法,主要为基于核磁共振测井的差谱法、移谱法,基于交叉偶极声波测井纵波差值法。通过实例分析,证明了方法的有效性,较好地解决了低孔、低渗致密气层和低阻砂岩储层的气层识别问题,提高了测井识别的准确率,解释符合率达85%以上。 主题词 鄂尔多斯盆地 核磁测井 声波测井 致密砂岩 储集层 流体 一、储层特征 鄂尔多斯盆地上古生界以陆相、海陆交互相碎屑岩为主。自下而上发育着石炭系本溪组、太原组、 二叠系山西组、石盒子组和石千峰组。其中太原组、山西组、石盒子组是主要储集层,储集层岩性为浅灰色含砾粗砂岩,灰—灰白色中粒石英砂岩,灰绿色岩屑质石英砂岩,岩屑砂岩等。 上古生界主要储集层砂岩经历了漫长而复杂的成岩后生作用的改造,储集岩中的原生孔隙大部分遭受破坏,仅存残余粒间孔、自生溶孔以及高岭石晶间孔,从而构成了上古生界低孔、低渗砂岩的储集体系。通过12口井的岩心分析样品统计,其物性特征如表1所示。 表1 储层物性统计表 地 层孔隙度(%)平均孔隙度(%) 渗透率(10-3μm 2) 平均渗透率 (10-3μm 2) 石盒子组3~169.60.05~6.79 1.09山西组 4~10 6.1 0.01~5.63 0.69 该类储层一般必须经压裂改造才有产能,是否产气的影响因素多,即使采用成像测井,也存在多解 性,测井解释难度大。 二、电性特征 在鄂尔多斯盆地上古生界气田,测井特征受岩 性物性作用比较明显,随岩石中岩屑含量增加,或粒度变细,孔隙度减小,渗透率降低,密度增大,电阻率增大,双测向曲线趋于重合。相反,随岩石中岩屑含量减小,或粒度变粗,孔隙度增大,渗透率升高,密度变小,双测向曲线幅度差异变大。一般纯石英砂岩的自然伽马值小于35A PI ,Pe 值小于2b/e ,骨架密度值为2.65g/cm 3,井径正常或缩径;岩屑砂岩自然伽马值大于40A PI ,Pe 介于2.2~3.2b/e ,骨架密度值为2.7g/cm 3,常扩径。高低阻气层并存,山2 段储层电阻率在100Ω?m 可能出水,而盒8段电阻率20Ω?m 可出纯气。 三、气层测井识别新方法 常规测井识别气层主要是通过气层与水层的电阻率差异来识别,对于低孔、低渗、低阻气层识别难度较大。测井新技术的应用,为气层识别提供了新的依据。利用核磁共振测井、交叉偶极声波测井等成象测井资料提取气层识别方法,提高气层识别精度。 ? 54?第25卷第9期 天 然 气 工 业 地质与勘探

页岩气储层测井解释

页岩气储层测井解释 1.页岩油气储层地质特征 (1)连续型油气聚集单元 页岩油气藏的形成和富集有着自身独特的特点,其分布在盆地内,沉积厚度大、分布范围广的页岩地层中,自生自储,页岩即是烃源岩,也做为储集层,与常规油气藏不同,没有油水界面、气水界面等流体界面概念,属于连续型油气聚集单元。 (2)岩石矿物组成复杂 页岩油气储层不只是指黑色页岩,一切富含有机质,且天然气以吸附态、游离态赋存于岩石中的致密细碎屑岩都可统称为页岩油气储层。页岩油气储层矿物组成十分复杂,主要有石英、方解石、粘土矿物、黄铁矿等,而且不同盆地页岩油气储层的矿物含量差别很大。根据矿物组成的不同,页岩油气储层大致可分为三类:一类是富含方解石的钙质页岩油气储层;另一类是富含石英的硅质页岩油气储层,以及符合粘土矿物的粘土质页岩油气储层。 (3)富含有机质,储集空间类型复杂 页岩油气储层既是储集层,又是烃源岩,富含有机质,储集空间类型复杂,主要孔隙类型以粒间孔隙和有机质成熟后热解生成的孔隙为主,部分储层还发育天然裂缝。 (4)基质渗透率极低 页岩油气储层物性极差,储层孔隙度一般小于10%,基质渗透率一般为 0.0001~0.001mD,渗透率极低,一般以长距离水平钻井结合多级压裂方式求产。 (5)游离与吸附态两种赋存方式 页岩气主要有游离态、吸附态两种赋存状态,游离气是以游离状态赋存于孔隙和微裂缝中的天然气;吸附气则是吸附于有机质和粘土矿物表面的天然气,以有机质吸附为主,粘土矿物吸附可以忽略。致密砂岩气则主要是游离气,煤层气主要是吸附气。 2.页岩油气储层测井评价 在页岩油气储量评估中,测井专业的主要任务可分为两个部分内容:一是储层的定性识别;二是储层参数的定量计算。在储层参数的定量计算中主要包括有机碳含量、有机质成熟度、孔隙度、饱和度以及吸附气含量等几个要点。 (1)页岩油气储层定性识别 页岩油气储层由于含有丰富的有机质,测井响应特征与常规储层有明显不同。通常情况下,干酪根形成于还原环境,可以使铀沉淀下来,从而具有高自然伽马放射性特征,干酪根的密度较低,介于0.95~1.05g/cm3之间。干酪根的存在大大降低了储层体积密度,干酪根还具有较高的含氢指数和较低的光电吸收指数,导致储层具有高中子孔隙度、低光电俘获截面特征。页岩油气储层中含烃饱

致密储层孔隙度测井表征方法及应用

127 致密油气储层[1]的孔隙度低,准确计算孔隙度的难度非常大,因为较小的绝对误差就可以产生较大的绝对误差。而且储层中的孔隙类型多样、孔隙结构复杂,进一步加大了测井物性的评价难度。 1?实验室分析及测井解释模型的建立1.1?岩石类型及孔隙度实验室分析 从所收集340多块X衍射实验分析数据来看,研究区主要包含4种岩性,包括含碳酸盐油页岩、 云质泥岩、泥质泥晶云岩和含泥泥晶粒屑云岩4种岩性。岩石的骨架矿物分为四大类,分别是黏土、碳酸盐(包含方解石和白云石)、石英(包含石英和长石)和黄铁矿,岩石 图1?不同岩石分析孔隙度分布图 从岩心实验分析物性上看,这4种岩性的物性差别较大,见图1。含碳酸盐油页岩孔隙度平均为3.89%;云岩泥质孔隙度平均为6.54%;泥质泥晶云岩孔隙度平均为4.94%;含泥泥晶粒屑云岩孔隙度平均为6.8%。 研究区目的层由于岩性复杂,岩石骨架参数变化快,物性差,孔隙较小,孔隙度评价极其困难。 1.2?孔隙度测井解释模型 从不同测井曲线与岩心分析孔隙度关系可以看出,补偿密度、声波时差、补偿中子、自然伽玛与岩心实验分析孔隙度的关系非常差,而通过多矿物模型计算出来的岩石骨架密度与岩心实验分析孔隙度关系要好于补偿密度、声波时差、补偿中子与岩心实验分析孔隙度的关系,因此本次研究选用了多矿物模型计算出来的骨架密度来对孔隙度进行计算。 由于不同层段的骨架密度与岩心实验分析孔隙度关系是不一致的,因此分不同层段建立了孔隙度公式。 在矿物组分计算结果基础上,新构建一条岩石骨架密度曲线,对地层物性进行分析。骨架密度计算公 式如下: S\U S\U TXD TXD FDU FDU FOD\FOD\'(19'(19'(19'(19'(10 式中:DENM 为骨架密度,g/cm 3 ;V clay 为粘土含量,%;DEN clay 为粘土密度,g/cm 3;V car 为碳酸盐含量,%;DEN car 为碳酸盐密度,g/cm 3;V qua 为碳酸盐含量,%;DEN qua 为碳酸盐密度,g/cm 3;V pyr 为碳酸盐含 量,%;DEN pyr 为碳酸盐密度,g/cm 3。 由于目的层可以分成上、中、下3段,因此物性计算公式也分成上、中、下3段来建立。上段物性计算模型:POR=9.3623*DENM -17.442。中段物性计算模型:POR=14.859*DENM -34.796。下段物性计算模型:POR=7.6493*DENM -15.89。上式中:POR为计算孔隙度,单位为%;DENM为骨架密度,单位为g/cm 3; 2?结果分析 应用以上方法和模型就可以对孔隙度进行计算。用所建立的模型分别对研究区块的xx井计算孔隙度。从计算的结果来看,模型计算的孔隙度总体趋势上与岩心实验分析的结果是基本吻合的,能够满足解释评价需求。 图3?xx井上段物性计算成果图 3?结束语 由于致密油储层非均质强,岩石骨架矿物组分纵向变化快,孔隙结构复杂,单一利用孔隙度曲线难以准确评价物性参数,利用多矿物模型首先计算岩石骨架密度,进而利用岩石骨架密度和孔隙度的关系建立模型精度更高、误差较小,构建的孔隙度评价模型能够满足解释评价的需求,适合推广到整个区块。 参考文献 [1]?赖锦.库车坳陷致密储层岩石物理相测井定量表征方法及应用[D].北京:中国石油大学(北京),2016. 致密储层孔隙度测井表征方法及应用 罗旭 中国石油测井有限公司辽河分公司 辽宁 盘锦 124010 摘要:本文通过多矿物模型计算出来的岩石骨架密度与岩心实验分析孔隙度建立测井解释模型,精度得到了提高,效果更好。 关键词:致密储层?全体积模型?测井?孔隙度 Logging?Characterization?Method?of?Porosity?in?Dense?Reservoir?and?Its?Application Luo?Xu Liaohe Branch of China Petroleum Logging Co.,Ltd.,Liaoning Panjin 124010 Abstract:In?this?paper,a?logging?interpretation?model?is?established?by?calculating?the?skeleton?density?of?rock?and?analyzing?the?porosity?through?core?experiments?based?on?the?multi-mineral?model.The?accuracy?has?been?improved?and?the?effect?is?better. Keywords:tight?reservoir;Total?product?model;Logging;porosity

储层测井精细解释研究word版本

储层测井精细解释研 究

5 储层测井精细解释方法研究 工区三叠系克拉玛依组和百口泉组碎屑岩储层岩性复杂、且具有中-低孔、低渗和中低电阻率及地层水性质多变的特征,采用常规的测井解释方法和程序难以取得理想的地质效果,为此需要探索适用于工区实际储层情况的测井精细解释方法与技术。 5.1 测井曲线的平滑和井眼影响校正处理 测井资料的精细处理解释,一是要求原始资料质量可靠,二是对储层有比较正确的认识,即解释模型要正确合理。当原始测井曲线存在某种质量问题时,需要进行一些必要的校正处理。 5.1.1 测井曲线的平滑滤波处理 常规测井曲线,例如GR 、AC 和DEN 曲线等或数字化后的测井曲线数据,常出现许多与地层性质无关的统计起伏变化或毛刺干扰等无用信息。在测井资料预处理中,必须设法把这些干扰滤掉,只保留曲线上反映地层特性的有用成分,为此可用滑动平均数字滤波法来解决这个问题。在平滑滤波中采用深度域上的滤波,即将测井曲线作抛物线最佳数值拟合,求出其滑动均值替代原测井值,取其趋势、去其剩差。根据测井曲线上的毛刺干扰情况,可采用最小二乘滑动平均法和加权滑动平均法。 工区有多种系列的测井资料,其中部分探井的AC 曲线等存在明显的与地层性质无关的毛刺干扰等无用信息,例如Wu8井、Wu9井、Wu16井、Wu26井、Wu27井、Wj320井、Wj321井、Wj322井、Wj323井的AC 测井曲线。研究发现,采用五点二次函数平滑效果较好,其平滑滤波公式分别为: )](3)(1217[35 1 2211+-+-+-++= i i i i i i y y y y y Y (5-1-1) 式中:i y 、i Y 分别为平滑前、平滑后测井曲线上第i 点的采样值,1-i y 、1+i y 、 2-i y 、2+i y 为平滑前测井曲线上第i-1点、第i+1点、第i-2点、第i+2点的采样值。 5.1.2 测井曲线的井眼影响校正处理 井眼环境影响校正主要是消除由于大井眼(井眼垮塌或崩落等)对测井曲线的影响,例如井径扩大使地层密度测井值明显降低、声波时差测井值和中子测井值增高、深中浅电阻率测井曲线值降低等。

相关主题
文本预览
相关文档 最新文档