当前位置:文档之家› 直角三角形的性质与判定练习题

直角三角形的性质与判定练习题

直角三角形的性质与判定练习题
直角三角形的性质与判定练习题

13m

5m

直角三角形的性质与判定练习题

一、填空题

1在Rt △ABC 中,∠C=90°,a=1,

①∠A=30°,b=__,c=__. ②∠A=45°,b=__,c=__。

2.一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米。如果梯子的顶端沿墙下滑4分米,那么梯足将滑动( )

A. 9分米

B. 15分米

C. 5分米

D. 8分米

3.已知等边三角形的边长为2cm ,则它的高为 ,面积为 。

4.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )

A .42

B .32

C .42 或 32

D .37 或 33

5.有一只小鸟在一棵高4m 的小树梢上捉虫子,它的伙伴在离该树12m ,高20m 的一棵大树的树梢上发出友好的叫声,它立刻以4m/s 的速度飞向大树树梢,那么这只小鸟至少 秒才可能到达大树和伙伴在一起? 6.有一个角为30度的等腰三角形,若腰长为2,则腰上的高__________,三角形面积是________ 7.在△ABC 中,若a 2=b 2-c 2,则△ABC 是 三角形, 是直角;

8.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 。9.在Rt △ABC 中,∠C=90°

①若a=3,c=5,则b=___________;②若a=5,b=12,则c=___________;

③若c=25,b=7,则a=__________;④a=8,b=15,则c= 。 10已知一个Rt △的两边长分别为3和4,则第三边长是

11. 已知等腰三角形腰长是10,底边长是16,则这个等腰三角形面积为 。 12.直角三角形两直角边长分别为5和12,则它斜边上的高为__________。

13.如图,某会展中心在会展期间准备将高5m ,长13m,宽2m 的楼道上铺地毯,已知地毯每平方米18元,请你计算一下最少费用是多少?

14.已知△ABC 的三边长分别为1,3,2,则△ABC 是 三角形. 15. 等腰三角形的腰长为10,底边上的高为6,则底边的长为 . 16 如图,小方格都是边长为1的正方形,则四边形ABCD 的周长 是 .

17.在直角三角形中,两锐角之比为2:1,则两锐角的度数分别为 . 18.如图,以Rt △ABC 的三边向外作正方形,其面积分别为1S ,2S ,3S 且14S =,28S =,

则3S = ;以Rt ?ABC 的三边向外 作等边三角形,其面积分别为 1S ,2S ,3S , 则1S ,2S ,3S 三者之间的关系为 .

D

C

A

F

E

D

C

B

A

19. 如图,△ABC 中,∠C =90°,点D 在BC 上,DE ⊥AB 于E ,且AE=EB ,DE=DC ,B 的度数为 .

20.如图,△ABC 中,∠C =90°,AC=BC ,AD 平分∠BAC ,BD =3.5,BC =6,则△ABC 的周长是 . 21.如图,在△ABC 中,∠A =90,BD 是角平分线,若AD =m ,BC =n ,则△BDC 的面积为 .

22. 如图,将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形茶杯中,设筷子露在杯子外面的长为acm (茶杯装满水),则a 的取值范围是 。 23. 如图所示,在矩形ABCD 中,AB=16,BC=8,将矩形沿AC 折叠,点D 落在点E 处,且CE 与AB 交于点F ,那么AF= 。

24.第七届国际数学教育大会的会徽主题图案是由一连串如图所示的直角三角形演化而成的. 设其中的第一个直角三角形OA 1A 2是等腰三角形,OA 1=A 1A 2=A 2A 3=A 3A 4=……=A 8A 9=1请你计算

OA 9的长

二、选择题

1.等腰三角形底边上的高为8,周长为32,则三角形的面积为( )

A 、 56

B 、48

C 、40

D 、32 2.下列几组数中,能作为直角三角形三边长度的是 ( )

A. 4,5,6

B.1,1,2

C. 6,8,11

D. 5,12,23 3.一个正方形的面积为216cm ,则它的对角线长为 ( )

A. 4 cm

B.42cm

C.82 cm

D. 6cm

4.如图,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,且PD =PE ,则△APD 与△APE 全等的理由是( ) A .SAS B.AAS C. SSS D .HL

5. 三角形内到三边的距离相等的点是( )

A. 三条中线的交点

B. 三条高的交点

C. 三条角平分线的交点

D. 以上均不对 6. 如果梯子的底端离建筑物5 米,13 米长的梯子可以达到该建筑物的高度是( )

第20题

B

C

D E 第

21

A B

C

D

E

第19题

B

A

P D

E

第8题

A . 12 米 B. 13 米 C. 14 米 D. 15 米 7. 等边三角形的边长为2,则该三角形的面积为( ) A.43 B.3 C. 23 D. 3 8. 如图,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线 剪去∠C ,则∠1+∠2等于( )

A .315°

B .270°

C .180°

D .135°

9. 在△ABC 中,∠C =90°,角平分线AD 交BC 于点D ,若BC =32,BD ∶CD =9∶7,则D 点到AB 边的距离为( )

A . 18 B. 16 C. 14 D. 12

10. △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )

A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 11.△ABC 中,A

B =15,A

C =13,高A

D =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 12.下列条件不可以判定两个直角三角形全等的是 A.两条直角边对应相等

B.有两条边对应相等

C.一条边和一锐角对应相等

D.一条边和一个角对应相等

13. 2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股园方图》,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形式面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么(a+b)2

的值为 ( )

(A )13 (B )19 (C )25 (D )169

14. A 到墙根O 的距离为2m ,梯子的顶端B 到地面 距离为7m ,现将梯子的底端A 向外移到A ′,使梯子的底端A ′到墙根O 距离为3m ,同时梯子顶端B 下降至B ′,那么BB ′ ( )

(A )等于1m (B )小于1m (C )大于1m (D )以上都不对 15.已知x 、y 为正数,且

()

342

22=-+-y x ,如果以x 、y 的长为直角边作一个直角三角

形,那么以这个直角三角形的斜边为边长的正方形的面积为

A 、5

B 、25

C 、7

D 、15

三、解答题

1.(12分)如图所示,折叠矩形的一边AD ,使点D 落在BC 边上的点F 处,已知AB=8cm ,BC=10cm ,求EC 的长。

第13题 第14题

D C

B

A

2.(12分)求知中学有一块四边形的空地ABCD ,如下图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m ,BC=12m ,CD=13m ,DA=4m ,若每平方米草皮需要200元,问学校

需要投入多少资金买草皮?

3.在边长为c 的正方形中有四个斜边为c 的全等直角三角形,已知它们的直角 边长为a 、b .你能利用这个图形验证勾股定理吗?

4.(8分)观察下列各式,你有什么发现?

32

=4+5,52

=12+13,72

=24+25 92

=40+41…… 这到底是巧合,还是有什么规律蕴涵其中呢? (1)填空:132

= + (2)请写出你发现的规律。

(3)结合勾股定理有关知识,说明你的结论的正确性。

5.如图,南北向MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B.已知A 、C 两艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海?

A

M E

N

B

中考数学与直角三角形的边角关系有关的压轴题及答案

中考数学与直角三角形的边角关系有关的压轴题及答案 一、直角三角形的边角关系 1.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,圆心为E ,直线AC 交E e 于点D ,连接OD . (1)求证:直线OD 是E e 的切线; (2)点F 为x 轴上任意一动点,连接CF 交E e 于点G ,连接BG : ①当1 an 7 t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求 BG CF 的最大值. 【答案】(1)见解析;(2)①143,031F ?? ??? ,2(5,0)F ;② BG CF 的最大值为12. 【解析】 【分析】 (1)连接DE ,证明∠EDO=90°即可; (2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ??,得1 2 BG CF ≤,从而得解. 【详解】 (1)证明:连接DE ,则: ∵BC 为直径 ∴90BDC ∠=? ∴90BDA ∠=? ∵OA OB = ∴OD OB OA == ∴OBD ODB ∠=∠ ∵ EB ED = ∴EBD EDB ∠=∠

∴EBD OBD EDB ODB ∠+∠=∠+∠ 即:EBO EDO ∠=∠ ∵CB x ⊥轴 ∴90EBO ∠=? ∴90EDO ∠=? ∴直线OD 为E e 的切线. (2)①如图1,当F 位于AB 上时: ∵1~ANF ABC ?? ∴ 11 NF AF AN AB BC AC == ∴设3AN x =,则114,5NF x AF x == ∴103CN CA AN x =-=- ∴141tan 1037F N x ACF CN x ∠===-,解得:10 31 x = ∴150531AF x == 15043 33131 OF =-= 即143,031F ?? ??? 如图2,当F 位于BA 的延长线上时: ∵2~AMF ABC ?? ∴设3AM x =,则224,5MF x AF x == ∴103CM CA AM x =+=+ ∴241 tan 1037 F M x ACF CM x ∠===+ 解得:25 x =

压轴题解题策略直角三角形的存在性问题完整版

压轴题解题策略直角三 角形的存在性问题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

中考数学压轴题解题策略 直角三角形的存在性问题解题策略 2015年9月13日星期日 专题攻略 解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根. 一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程. 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便. 解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起. 如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便. 在平面直角坐标系中,两点间的距离公式常常用到. 怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点). 例题解析 例 如图1-1,在△ABC 中,AB =AC =10,cos ∠B =45.D 、E 为线段BC 上的两个动点,且DE =3(E 在D 右边),运动初始时D 和B 重合,当E 和C 重合时运动停止.过E 作EF //AC 交AB 于F ,连结DF .设BD =x ,如果△BDF 为直角三角形,求x 的值. 图1-1 【解析】△BDF 中,∠B 是确定的锐角,那么按照直角顶点分类,直角三角形BDF 存在两种情况.如果把夹∠B 的两条边用含有x 的式子表示出来,分两种情况列方程就可以了. 如图1-2,作AH ⊥BC ,垂足为H ,那么H 是BC 的中点. 在Rt △ABH 中,AB =10,cos ∠B =4 5 ,所以BH =8.所以BC =16. 由EF //AC ,得BF BE BA BC =,即31016BF x +=.所以BF =5(3)8x +. 图1-2 图1-3 图1-4 ①如图1-3,当∠BDF =90°时,由4cos 5BD B BF ∠= =,得45BD BF =. 解方程45(3)58x x =?+,得x =3. ②如图1-4,当∠BFD =90°时,由4cos 5BF B BD ∠= =,得45 BF BD =.

直角三角形的性质与判定

A C B 直角三角形的性质与判定 学习目标: 1、掌握“直角三角形的两个锐角互余”的定理。 2、巩固利用添辅助线证明有关几何问题的方法. 3、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用. 学习重点及难点 1、直角三角形斜边上的中线性质定理的证明思想方法. 2、直角三角形斜边上的中线性质定理的应用. 学习过程 一 、预习与交流 1、什么叫直角三角形? 2、直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质? 二、合作与探究 (1)研究直角三角形性质定理一 如图:∠A 与∠B 有何关系?为什么? 归纳:定理1: (2)猜一猜 量一量 证一证 直角三角形斜边上的中线等于斜边的一半吗? 命题:直角三角形斜边上的中线等于斜边的一半. 已知:在Rt △ABC 中,∠ACB=900,CD 是斜边AB 的中线. 求证:CD=2 1AB A C B D

C A B D 定理2:直角三角形斜边上的中线等于斜边的一半. 三。知识应用: 例:如果三角形一边上的中线等于这条边的一半,求证:这个三角形是直角三角形。 四:巩固练习 (1)在直角三角形中,有一个锐角为520,那么另一个锐角度数为 ; (2)在Rt △ABC 中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= ; (3)如图,在Rt △ABC 中,∠ACB=900,CD 是斜边AB 上的高,那么,与∠B 互余的角有 ,与∠A 互余的角有 ,与∠B 相等的角有 ,∠A 相等的角有 . 4、在△ABC 中, ∠ACB=90 °,CE 是AB 边上的中线,那么与CE 相等的线段有_________,与∠A 相等的角有_________,若∠A=35°,那么∠ECB= _________. 5、在直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为________. 五:作业.93页A 组1题 六:学习反思: A C B D

(完整版)二次函数压轴题等腰三角形存在性,直角三角形存在性

中考数学压轴题 一、等腰三角形存在性 1 解题思想:分类讨论 2 解题技巧:坐标系内线段长度表示 (1)线段在坐标轴上或平行于坐标轴 在x轴或平行于x轴:x右-x左 在y轴或平行于y轴:y上-y下 (2)线段为倾斜(斜线段)A(X A,Y A)B(X B,Y B)C(X C,Y C) 由勾股定理得:AB2= AC2= BC2= 3 解题方法 (1)代数法:(1)根据条件用坐标表示三边或三边的平方 (2)分三种情况列方程,解方程 (3)根据题目条件及方程解确定坐标(注意重根) (2)几何法:(1)先分三种情况A为顶点,B为顶点,C为顶点 (2)画图,作圆法,垂直平分线法 (3)计算:以两定点为腰则腰长已知,先求出腰长进行几何构造,注意不要漏解,以两定点为底则利用腰相等建立方程求解(表示腰长可结合代数法)。 例1. 如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B 两点,点C是抛物线与x轴的另一个交点(与A点不重合). (1)求抛物线的解析式; (2)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标. 代数法: 几何法: 例2 如图△ABC中,AB=AC=5,BC=6,D、E分别是边AB、AC上的两个动点(D不与A、B重合),且保持DE∥BC,以ED为边,在点A的异侧作正方形DEFG.

(1)试求△ABC 的面积; (2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设AD=x ,当△BDG 是等腰三角形时,求出AD 的长. 只能选择几何法 1 先分析三种情况 2 根据已知表示三边长度(相似) 3 列方程计算 同步练习: 1.如图,抛物线2 54y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC=BC . (1)写出A,B,C 三点的坐标并求抛物线的解析式; (2)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由. 2.如图,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置. A C B y x 0 1 1

(完整版)直角三角形的性质和判定

A C D C 直角三角形的性质和判定 一、知识要点 1、直角三角形的性质: (1)在直角三角形中,两锐角; (2)在直角三角形中,斜边上的中线等于__________的一半; (3)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于 ___________; (4)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于___________。 2、直角三角形的判定: (1)有一个角等于_________的三角形是直角三角形; (2)有两个角_____________的三角形是直角三角形; (3)如果三角形一边上的中线等于这条边的________,那么这个三角形是直角三角形。 二、知识运用典型例题 例1、在△ABC中,∠C=90°,∠A=30°, CD⊥AB, (1) 若BD=8,求AB的长; (2) 若AB=8,求BD的长。 例2、如图,在Rt△ABC中,CD是斜边上的中线,CE⊥AB,已知AB=10cm,DE=2.5cm,求CD和∠DCE。例3、如图,在△ABC中,∠C=90°,∠A=x°,∠B=2x°求x。 例4、如图,已知AB⊥BC,AE∥BC,∠1=45°,∠E=70°.求∠2,∠3,∠4的度数.

例5、如图,在△ABC中,∠ACB=90°, ∠A=15°,AB=8cm,CD为AB的中线,求△ABC的面积。 C 例6、如图,在△ABC中,∠ACB=90°,AD=AC,BE=BC,求∠DCE的度数。 三、知识运用课堂训练 1、在Rt△ABC中,∠C=90°,AB=2cm,AC=BC,CD⊥AB于D点,则CD=_______cm; 2、如果三角形的两条边上的垂直平分线的交点在第三条边上,那么这个三角形是( ) A.锐角三角形 B.等腰三角形 C.直角三角形 D.钝角三角形 3、已知三角形的的三个内角的度数之比为1:2:3,它的最大边长为6cm,那么它的最小边长为_________cm; 4、直角三角形中一个锐角为30°,斜边和较小的边的和为12cm,则斜边长为_____________; 5、如图,在△ABC中,∠ACB=90°,D是AB的中点,CD=4cm,∠B=30°, 则AC=_____cm A D C B

中考数学直角三角形的边角关系-经典压轴题附详细答案

中考数学直角三角形的边角关系-经典压轴题附详细答案 一、直角三角形的边角关系 1.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=2CD?OE; (3)若 314 cos, 53 BAD BE ∠==,求OE的长. 【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =35 6 . 【解析】 试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线; (2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得; (3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得. 试题解析:(1)DE为⊙O的切线,理由如下: 连接OD,BD, ∵AB为⊙O的直径, ∴∠ADB=90°, 在Rt△BDC中,E为斜边BC的中点, ∴CE=DE=BE=BC,

∴∠C=∠CDE, ∵OA=OD, ∴∠A=∠ADO, ∵∠ABC=90°, ∴∠C+∠A=90°, ∴∠ADO+∠CDE=90°, ∴∠ODE=90°, ∴DE⊥OD,又OD为圆的半径, ∴DE为⊙O的切线; (2)∵E是BC的中点,O点是AB的中点, ∴OE是△ABC的中位线, ∴AC=2OE, ∵∠C=∠C,∠ABC=∠BDC, ∴△ABC∽△BDC, ∴,即BC2=AC?CD. ∴BC2=2CD?OE; (3)解:∵cos∠BAD=, ∴sin∠BAC=, 又∵BE=,E是BC的中点,即BC=, ∴AC=. 又∵AC=2OE, ∴OE=AC=. 考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数 2.如图①,抛物线y=ax2+bx+c经过点A(﹣2,0)、B(4,0)、C(0,3)三点. (1)试求抛物线的解析式;

直角三角形的性质教案(完美版)

【知识与技能】 (1)掌握直角三角形的性质定理,并能灵活运用. (2)继续学习几何证明的分析方法,懂得推理过程中的因果关系.知道数学内容中普遍存在的运动、变化、相互联系和相互转化的规律. 【过程与方法】 (1)经历探索直角三角形性质的过程,体会研究图形性质的方法. (2)培养在自主探索和合作交流中构建知识的能力. (3)培养识图的能力,提高分析和解决问题的能力,学会转化的数学思想 方法. 【情感态度】 使学生对逻辑思维产生兴趣,在积极参与定理的学习活动中,不断增强主体意识、综合意识. 【教学重点】 直角三角形斜边上的中线性质定理的应用. 【教学难点】 直角三角形斜边上的中线性质定理的证明思想方法. 一、情境导入,初步认识 复习:直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质? 学生回答:(1)在直角三角形中,两个锐角互余; (2)在直角三角形中,两条直角边的平方和等于斜边的平方(勾股定理). 二、思考探究,获取新知 除了刚才同学们回答的性质外,直角三角形还具备哪些特殊性质?现在我们一起探索! 1.实验操作:要学生拿出事先准备好的直角三角形的纸片. (1)量一量边AB的长度; (2)找到斜边的中点,用字母D表示,画出斜边上的中线; (3)量一量斜边上的中线的长度. 让学生猜想斜边上的中线与斜边长度之间的关系.

网友可以在线阅读和下载这些文档地提升自我已知,如图,在Rt △ABC 中,∠ACB=90°,CD 是斜边AB 上的 中线. 求证:CD=12AB. 【分析】可“倍长中线”,延长CD 至点E ,使DE=CD ,易证四 边形ACBE 是矩形,所以 CE=AB=2CD. 思考还有其他方法来证明吗?还可作如下的辅助线. 4.应用: 例 如图,在Rt △ACB 中,∠ACB=90°,∠A=30°. 求证:BC=12AB 【分析】构造斜边上的中线,作斜边上的中线CD ,易证△BDC 为等边三角形,所以BC=BD=12AB. 【归纳结论】直角三角形中,30°角所对的直角边等于斜 边的一半. 三、运用新知,深化理解 1.如图,CD 是Rt △ABC 斜边上的中线,CD=4,则AB=______. 2.三角形三个角度度数比为1∶2∶3,它的最大边长是 4cm ,那么它的最小边长为______cm. 3.如图,在△ABC 中,AD 是高,CE 是中线,DC=BE ,DG ⊥CE,G 为垂足. 求证:(1)G 是CE 的中点; (2)∠B=2∠BCE.

2017-2018学年中考数学压轴题分类练习 动点直角三角形专题(无答案)

动点直角三角形专题 1.如图,在平面直角坐标系中,等腰直角三角形12OA A 的直角边1OA 在y 轴的正半轴上,且1121OA A A ==,以2OA 为直角边作第二个等腰直角三角形23OA A ,以3OA 为直角边作第三个等腰直角三角形20172018OA A ,则点2017A 的坐标为 . 2.如图,顺次连接腰长为2 的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n 个小三角形的面积为 . 3. 在平面直角坐标系xOy 中,抛物线22 ++=bx ax y 过点)0,2(-A ,,与y 轴交于点C . (1)求抛物线22 ++=bx ax y 的函数表达式; (2)若点D 在抛物线22 ++=bx ax y 的对称轴上,求ACD ?的周长的最小值; (3)在抛物线22 ++=bx ax y 的对称轴上是否存在点P ,使ACP ?是直角三角形?若存在,直接写出点P 的坐标,若不存在,请说明理由.

4.如图1,抛物线c bx ax y ++=2经过平行四边形ABCD 的顶点)30(, A 、)01(,- B 、)32(,D ,抛物线与x 轴的另一交点为E .经过点E 的直线l 将平行四边形ABCD 分割为面积相等的两部分,与抛物线交于另一点P .点P 为直线l 上方抛物线上一动点,设点P 的横坐标为t . (1)求抛物线的解析式; (2)当何值时,t 的面积最大?并求最大值的立方根; (3)是否存在点P 使PAE ?为直角三角形?若存在,求出t 的值;若不存在,说明理由. 5.如图,已知线段AB=2,MN ⊥AB 于点M ,且AM=BM ,P 是射线MN 上一动点,E ,D 分别是PA ,PB 的中点,过点A ,M ,D 的圆与BP 的另一交点C (点C 在线段BD 上),连结AC ,DE . (1)当∠APB=28°时,求∠B 和CM 的度数; (2)求证:AC=AB 。 (3)在点P 的运动过程中 ①当MP=4时,取四边形ACDE 一边的两端点和线段MP 上一点Q ,若以这三点为顶点的三角形是直角三角形,且

八年级数学下册 直角三角形的性质与判定教案

1.2直角三角形 第1课时直角三角形的性质与判定 1.复习直角三角形的相关知识,归纳并掌握直角三角形的性质和判定; 2.学习并掌握勾股定理及其逆定理,能够运用其解决问题.(重点,难点) 一、情境导入 古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后按如图所示的方法用桩钉钉成一个三角形,他们认为其中一个角便是直角.你知道这是什么道理吗? 二、合作探究 探究点一:直角三角形的性质与判定 【类型一】判定三角形是否为直角三角形 具备下列条件的△ABC中,不是直角三角形的是() A.∠A+∠B=∠C B.∠A-∠B=∠C C.∠A∶∠B∶∠C=1∶2∶3 D.∠A=∠B=3∠C 解析:由直角三角形内角和为180°求得三角形的每一个角的度数,再判断其形状.A中∠A+∠B=∠C,即2∠C=180°,∠C=90°,为直角三角形,同理,B,C 中均为直角三角形,D选项中∠A=∠B=3∠C,即7∠C=180°,三个角没有90°角,故不是直角三角形.故选D. 方法总结:在判定一个三角形是否为直角三角形时要注意直角三角形中有一个内角为90°. 【类型二】直角三角形的性质的应用 如图①,△ABC中,AD⊥BC于D,CE⊥AB于E. (1)猜测∠1与∠2的关系,并说明理由. (2)如果∠A是钝角,如图②,(1)中的结论是否还成立? 解析:(1)根据垂直的定义可得△ABD 和△BCE都是直角三角形,再根据直角三角形两锐角互余可得∠1+∠B=90°,∠2+∠B=90°,从而得解;(2)根据垂直的定义可得∠D=∠E=90°,然后求出∠1+∠4=90°,∠2+∠3=90°,再根据∠3、∠4是对顶角解答即可. 解:(1)∠1=∠2.∵AD⊥BC,CE⊥AB,∴△ABD和△BCE都是直角三角形,∴∠1+∠B=90°,∠2+∠B=90°,∴∠1=∠2; (2)结论仍然成立.理由如下:∵BD⊥AC,CE⊥AB,∴∠D=∠E=90°,∴∠1+∠4=90°,∠2+∠3=90°,∵∠3=∠4(对顶角相等),∴∠1=∠2. 方法总结:本题考查了直角三角形的性质,主要利用了直角三角形两锐角互余,同角或等角的余角相等的性质,熟记性质是解题的关键. 探究点二:勾股定理

(挑战)中考数学 压轴题第六版精选 1.3 因动点产生的直角三角形问题

例1 2012年广州市中考第24题 如图1,抛物线233 384 y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 、B 的坐标; (2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标; (3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式. 图1 动感体验 请打开几何画板文件名“12广州24”,拖动点M 在以AB 为直径的圆上运动,可以体验到,当直线与圆相切时,符合∠AMB =90°的点M 只有1个. 请打开超级画板文件名“12广州24”,拖动点M 在以AB 为直径的圆上运动,可以体验到,当直线与圆相切时,符合∠AMB =90°的点M 只有1个. 思路点拨 1.根据同底等高的三角形面积相等,平行线间的距离处处相等,可以知道符合条件的点D 有两个. 2.当直线l 与以AB 为直径的圆相交时,符合∠AMB =90°的点M 有2个;当直线l 与圆相切时,符合∠AMB =90°的点M 只有1个. 3.灵活应用相似比解题比较简便. 满分解答 (1)由2333 3(4)(2)848 y x x x x =--+=-+-, 得抛物线与x 轴的交点坐标为A (-4, 0)、B (2, 0).对称轴是直线x =-1. (2)△ACD 与△ACB 有公共的底边AC ,当△ACD 的面积等于△ACB 的面积时,点B 、D 到直线AC 的距

离相等. 过点B 作AC 的平行线交抛物线的对称轴于点D ,在AC 的另一侧有对应的点D ′. 设抛物线的对称轴与x 轴的交点为G ,与AC 交于点H . 由BD //AC ,得∠DBG =∠CAO .所以3 4 DG CO BG AO ==. 所以3944 DG BG ==,点D 的坐标为9 (1,)4-. 因为AC //BD ,AG =BG ,所以HG =DG . 而D ′H =DH ,所以D ′G =3DG 274= .所以D ′的坐标为27 (1,)4 . 图2 图3 (3)过点A 、B 分别作x 轴的垂线,这两条垂线与直线l 总是有交点的,即2个点M . 以AB 为直径的⊙G 如果与直线l 相交,那么就有2个点M ;如果圆与直线l 相切,就只有1个点M 了. 联结GM ,那么GM ⊥l . 在Rt △EGM 中,GM =3,GE =5,所以EM =4. 在Rt △EM 1A 中,AE =8,113 tan 4 M A M EA AE ∠==,所以M 1A =6. 所以点M 1的坐标为(-4, 6),过M 1、E 的直线l 为3 34 y x =-+. 根据对称性,直线l 还可以是3 34 y x =+. 考点伸展 第(3)题中的直线l 恰好经过点C ,因此可以过点C 、E 求直线l 的解析式. 在Rt △EGM 中,GM =3,GE =5,所以EM =4. 在Rt △ECO 中,CO =3,EO =4,所以CE =5. 因此三角形△EGM ≌△ECO ,∠GEM =∠CEO .所以直线CM 过点C . 例2 2012年杭州市中考第22题 在平面直角坐标系中,反比例函数与二次函数y =k (x 2 +x -1)的图象交于点A (1,k )和点B(-1,-k ).

直角三角形的性质习题

列举直角三角形有哪些性质? 1两个锐角:2含30度角3斜边上的中线4面积 测试题: 1.在直角三角形ABC中,∠ACB=90度,CD是AB边上中线,若CD=5cm,则AB=_____ 三角形ABC的面积=____________ 2. 在直角三角形ABC中,∠ACB=90度,CD是AB边上中线,图中有__________等腰三 角形. 3.如图,在△ABC中,∠B=∠C,D、E分别是BC、AC的中点,AB=6,求DE的长。 4.已知:四边形ABCD中,∠ABC= ∠ADC=90度,E、F分别是AC、BD的中点。 求证:EF⊥BD 5.如图,在△ABC中,∠B= 2∠C,点D在BC 边上,且AD ⊥AC. 求证:CD=2AB 再练习: 1、在直角三角形ABC中,∠C=90°,∠BAC=30°,BC=10,则AB=________. 2、顶角为30度的等腰三角形,若腰长为2,则腰上的高__________,三角形面积是 ________ 3、等腰三角形顶角为120°,底边上的高为3,则腰长为_________ 4、三角形ABC中,AB=AC=6,∠B=30°,则BC边上的高AD=_______________ 5、Rt△ABC中,∠C=90°,∠A=15°,AB的垂直平分线交AC于D,AB于E, 求证AD=2BC.

M F E D C B A 6、 已知:△ABC 中,AB=AC ,∠B=30°,AD ⊥AB , 求证:2DC=BD 7.如图,△ABC 中,∠C=90°,∠A=60 °,EF 是AB 的垂直平分线,判断CE 与BE 之间的关系 1.在直角三角形中,有一个锐角为52度,那么另一个锐角度数为 ; 2、在直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为________. 3、在△ABC 中, ∠ACB=90 °,CE 是AB 边上的中线,那么与CE 相等的线段有_________,与∠A 相等的角有_________,若∠A=35°,那么∠ECB= _________. 4、已知:∠ABC=∠ADC=90度,E 是AC 中点。求证:(1)ED=EB (2)图中有哪些等腰三角形? 5、如图,AB 、CD 交与点O,且BD=BO ,CA=CO ,E 、F 、M 分别是OD 、OA 、BC 的中点。求证:ME=MF. 6、在等边三角形ABC 中,点D 、EF 分别在AB 、AC 边上,AD=CE ,CD 与BE 交与F, DG ⊥BE 。 求证:(1)BE=CD;(2)DF=2GF C B A E F C B A G E F D C B A

压轴题-直角三角形

1、(2010江苏省徐州市中考网上阅卷作答训练)如图,在平面直角坐标 OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速 运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段 CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运 动,连接DP、DA. (1)请用含t的代数式表示出点D的坐标; (2)求t为何值时,△DP A的面积最大,最大为多少? (3)在点P从O向A运动的过程中,△DP A能否成为直角三角形?若能,求t的值;若不能,请说明理由; (4)请直接 ..写出随着点P的运动,点D运动路线的长.

2、(2010甘肃省天水市、庆阳市、定西市、白银市、嘉峪关市等九市联考)如图,抛物线与x轴交于A (-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D. (1)求该抛物线的解析式与顶点D的坐标; (2)以B、C、D为顶点的三角形是直角三角形吗?为什么? (3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

3、(2010贵州省铜仁地区)如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O (0,0),A (3,0),C (0,2),点P 是OA 边上的动点(与点O 、A 不重合).现将△P AB 沿PB 翻折,得到△PDB ;再在OC 边上选取适当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD 、PF 重合. (1)设P (x ,0),E (0,y ),求y 关于x 的函数关系式,并求y 的最大值; (2)如图2,若翻折后点D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式; (3)在(2)的情况下,在该抛物线上是否存在点M ,使△PEM 是以PE 为直角边的直角三角形?若不存在,说明理由;若存在,求出点M 的坐标. 图 1 图2

直角三角形性质应用(讲义及答案).

直角三角形性质应用(讲义) 课前预习 1.根据图中给出的边长及角度信息,在横线上补全下列直角三 角形的边长. 2.下列是不完整的弦图结构,请补全弦图.

知识点睛 直角三角形性质梳理: 1.从边与角的角度来考虑 ①直角三角形两锐角_______,且任一直角边长小于_______. ②勾股定理:直角三角形两直角边的______等于斜边的____; 勾股定理逆定理:如果三角形两边的______等于__________,那么这个三角形是_______三角形. 2.添加一些特殊的元素(中线或30°角) ①直角三角形斜边上的中线等于______________; 如果一个三角形____________________________,那么这个三角形是直角三角形. ②30°角所对的直角边是_____________________; 在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于_____________. 3.特殊的直角三角形

4.垂直(多个)①等面积法 ②弦图结构 外弦图(赵爽弦图)内弦图(毕达哥拉斯图) 精讲精练 1.如图,在Rt △ABE 中,∠B =90°,延长BE 到C ,使EC =AB , 分别过点C ,E 作BC ,AE 的垂线,两线相交于点D ,连接AD .若AB =3,DC =4,则AD 的长为___________. 第1题图 第2题图2.如图,在△ABC 中,点D ,E 分别在AC ,AB 边上,若DE =m , BC =n ,且∠EBC 与∠DCB 互余,则BD 2+CE 2=__________(用含m ,n 的式子表示).

八年级下册数学直角三角形的性质和判定教案

第1章直角三角形 1.1直角三角形的性质和判定(Ⅰ) 第1课时直角三角形的性质和判定 1.掌握“直角三角形两个锐角互余”,并能利用“两锐角互余”判断三角形是直角三角形;(重点) 2.探索、理解并掌握“直角三角形斜边上的中线等于斜边的一半”的性质.(重点、难点) 一、情境导入 在小学时我们已经学习过有关直角三角形的知识,同学们可以用手上的三角板和量角器作直角三角形,并和小组成员一同探究直角三角形的性质. 二、合作探究 探究点一:直角三角形两锐角互余 如图,AB∥DF,AC⊥BC于C,BC与DF交于点E,若∠A=20°,则∠CEF等 于() A.110°B.100°C.80°D.70° 解析:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=90°-∠A=90°-20°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°-∠1=180°-70°=110°.故选A. 方法总结:熟知直角三角形两锐角互余的性质,并准确识图是解决此类题的关键.变式训练:见《学练优》本课时练习“课堂达标训练”第2题

探究点二:有两个角互余的三角形是直角三角形 如图所示,已知AB ∥CD ,∠BAF =∠F ,∠EDC =∠E ,求证:△EOF 是直角三 角形. 解析:三角形内角和定理是解答有关角的问题时最常用的定理,是解决问题的突破口, 本题欲证△EOF 是直角三角形,只需证∠E +∠F =90°即可,而∠E =12 (180°-∠BCD ),∠F =12 (180°-∠ABC ),由AB ∥CD 可知∠ABC +∠BCD =180°,即问题得证. 证明:∵∠BAF =∠F ,∠BAF +∠F +∠ABF =180°,∴∠F =12 (180°-∠ABF ).同理,∠E =12(180°-∠ECD ).∴∠E +∠F =180°-12 (∠ABF +∠ECD ).∵AB ∥CD ,∴∠ABF +∠ECD =180°.∴∠E +∠F =180°-12 ×180°=90°,∴△EOF 是直角三角形. 方法总结:由三角形的内角和定理可知一个三角形的三个内角之和为180°,如果一个三角形中有两个角的和为90°,可知该三角形为直角三角形. 变式训练:见《学练优》本课时练习“课堂达标训练”第5题 探究点三:直角三角形斜边上的中线等于斜边的一半 如图,△ABC 中,AD 是高,E 、F 分别是AB 、AC 的中点. (1)若AB =10,AC =8,求四边形AEDF 的周长; (2)求证:EF 垂直平分AD . 解析:(1)根据直角三角形斜边上的中线等于斜边的一半可得DE =AE =12 AB ,DF =AF =12 AC ,再根据四边形的周长的公式计算即可得解;(2)根据“到线段两端点距离相等的点在线段的垂直平分线上”证明即可. (1)解:∵AD 是高,E 、F 分别是AB 、AC 的中点,∴DE =AE =12AB =12 ×10=5,DF =AF =12AC =12 ×8=4,∴四边形AEDF 的周长=AE +DE +DF +AF =5+5+4+4=18; (2)证明:∵DE =AE ,DF =AF ,∴E 是AD 的垂直平分线上的点,F 是AD 的垂直平分线上的点,∴EF 垂直平分AD . 方法总结:当已知条件含有线段的中点、直角三角形等条件时,可联想直角三角形斜边上的中线的性质,连接中点和直角三角形的直角顶点进行求解或证明. 变式训练:见《学练优》本课时练习“课堂达标训练”第6题

中考数学压轴题专题直角三角形的边角关系的经典综合题及答案

中考数学压轴题专题直角三角形的边角关系的经典综合题及答案 一、直角三角形的边角关系 1.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为 1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=, 2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到 1cm )? 【答案】 【解析】 过A 作AF CD ⊥于F ,根据锐角三角函数的定义用θ1、θ2表示出DF 、EF 的值,又可证四边形ABCE 为平行四边形,故有EC=AB=25cm ,再再根据DC=DE+EC 进行解答即可. 2.在矩形ABCD 中,AD >AB ,点P 是CD 边上的任意一点(不含C ,D 两端点),过点P 作PF ∥BC ,交对角线BD 于点F .

(1)如图1,将△PDF 沿对角线BD 翻折得到△QDF ,QF 交AD 于点E .求证:△DEF 是等腰三角形; (2)如图2,将△PDF 绕点D 逆时针方向旋转得到△P'DF',连接P'C ,F'B .设旋转角为α(0°<α<180°). ①若0°<α<∠BDC ,即DF'在∠BDC 的内部时,求证:△DP'C ∽△DF'B . ②如图3,若点P 是CD 的中点,△DF'B 能否为直角三角形?如果能,试求出此时tan ∠DBF'的值,如果不能,请说明理由. 【答案】(1)证明见解析;(2)①证明见解析;②12或 3 . 【解析】 【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF ,所以△DEF 是等腰三角形; (2)①由于PF ∥BC ,所以△DPF ∽△DCB ,从而易证△DP′F′∽△DCB ; ②由于△DF'B 是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论. 【详解】(1)由翻折可知:∠DFP=∠DFQ , ∵PF ∥BC , ∴∠DFP=∠ADF , ∴∠DFQ=∠ADF , ∴△DEF 是等腰三角形; (2)①若0°<α<∠BDC ,即DF'在∠BDC 的内部时, ∵∠P′DF′=∠PDF , ∴∠P′DF′﹣∠F′DC=∠PDF ﹣∠F′DC , ∴∠P′DC=∠F′DB , 由旋转的性质可知:△DP′F′≌△DPF , ∵PF ∥BC , ∴△DPF ∽△DCB , ∴△DP′F′∽△DCB ∴ ' ' DC DP DB DF = , ∴△DP'C ∽△DF'B ; ②当∠F′DB=90°时,如图所示, ∵DF′=DF=1 2 BD , ∴ '1 2 DF BD =, ∴tan ∠DBF′= '1 2 DF BD =;

(一)压轴题解题方法——直角三角形的存在性

直角三角形的存在性 A(1.5,0),B(4,0),C(0,-3) CA 垂直平分BB’ , 垂足为Q 在抛物线上是否存在一点P , 使△QCP 是以QC 为直角边的直角三角形? 第一步 寻找分类标准 以QC 为直角边的Rt △QCP 分两种情况: ①C 为直角顶点 ②Q 为直角顶点 ①C 为直角顶点 ②Q 为直角顶点 的Rt △QCP 有1个 的Rt △QCP 有2个 ①C 为直角顶点 那么△AOC ∽△CNP 21113 24 y x x =-+ -2 1 ==OC OA NP NC 于是 NC NP 2=因此) (2N C P y y x -=数形结合,

②Q 为直角顶点 画图无法精确 关键点必须准确,标注坐标 点P 容易找到 分类讨论,防止遗漏 求解实在麻烦 数形结合,当心负号 如果用代数法求解点P 的坐标? 又多了2大步求直线的解析式,错误系数更高 ) 34 11 21,(2-+-x x x P 设) 4 11 21(22x x x -=那么2 13 ,021= =x x 解得C x 的几何意义就是点01=P x 的几何意义就是点2 13 2= 2 1''= =OB OB MB MP 于是' 2MP MB =因此' '2P P B y x x =-数形结合,) 34 11 21,(2-+-x x x P 设) 34 11 21(242-+-=-x x x 那么2 5 ,421= =x x 解得2 5,421= =x x 解得B x 的几何意义就是点41=' 2 5 2P x 的几何意义就是点=???抛物线的解析式 的解析式直线方程组'BB ?? ?抛物线的解析式 的解析式 直线方程组CP

直角三角形性质应用(讲义及答案)

直角三角形性质应用(讲义) ? 课前预习 1. 根据图中给出的边长及角度信息,在横线上补全下列直角三角形的边长. 1 1 45° 30° 2 30° 45° 23 2. 下列是不完整的弦图结构,请补全弦图.

? 知识点睛 直角三角形性质梳理: 1. 从边与角的角度来考虑 ①直角三角形两锐角_______,且任一直角边长小于_______. ②勾股定理:直角三角形两直角边的______等于斜边的____; 勾股定理逆定理:如果三角形两边的______等于__________,那么这个三角形是_______三角形. 2. 添加一些特殊的元素(中线或30°角) ①直角三角形斜边上的中线等于______________; 如果一个三角形____________________________,那么这个三角形是直角三角形. ②30°角所对的直角边是_____________________; 在直角三角形中,如果一条直角边等于斜边的一半,那么这 条直角边所对的锐角等于_____________. 3. 特殊的直角三角形 A C B 45° 1130° 2 3 4 2 1 1 B C A B C A B C A a 2+ b 2=c 2 C B A C B A β α C A A B C A B C C B A 2m m A B C 30°

4. 垂直(多个) ①等面积法 ab=ch D h C B A c b a h h=h 1+h 2+h 3 h 3 h 2h 1 A C B ②弦图结构 外弦图(赵爽弦图) 内弦图(毕达哥拉斯图) ? 精讲精练 1. 如图,在Rt △ABE 中,∠B =90°,延长BE 到C ,使EC =AB ,分别过点C ,E 作BC , AE 的垂线,两线相交于点D ,连接AD .若AB =3,DC =4,则AD 的长为___________. E D C B A A E D C B 第1题图 第2题图 2. 如图,在△ABC 中,点D ,E 分别在AC ,AB 边上,若DE =m ,BC =n ,且∠EBC 与∠

全国中考二次函数与直角三角形压轴题

1.如图,已知二次函数2449 y x =-的图象与x 轴交于,A B 两点与y 轴交于点C ,⊙C 的 P 为⊙C 上一动点. (1)点,B C 的坐标分别为B ( ),C ( ); (2)是否存在点P ,使得PBC ?为直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由; (3)连接PB ,若E 为PB 的中点,连接OE ,则OE 的最大值= . 2在平面直角坐标系xOy 中,抛物线y=ax 2 +bx+2过点A (﹣2,0) ,B (2,2),与y 轴交于点C . (1)求抛物线y=ax 2+bx+2的函数表达式; (2)若点D 在抛物线y=ax 2+bx+2的对称轴上,求△ACD 的周长的最小值; (3)在抛物线y=ax 2+bx+2的对称轴上是否存在点P ,使△ACP 是直角三角形?若存在直接写出点P 的坐标,若不存在,请说明理由.

3如图1,抛物线c bx ax y ++=2 经过平行四边形ABCD 的顶点)30(, A 、)01(,- B 、)32(,D ,抛物线与x 轴的另一交点为E .经过点E 的直线l 将平行四边形ABCD 分割为面积相等的两部分,与抛物线交于另一点P .点P 为直线l 上方抛物线上一动点,设点P 的横坐标为t . (1)求抛物线的解析式; (2)当t 何值时,PFE ?的面积最大?并求最大值的立方根; (3)是否存在点P 使PAE ?为直角三角形?若存在,求出t 的值;若不存在,说明理由. 4.(12分)如图1,点A 坐标为(2,0),以OA 为边在第一象限内作等边△OAB ,点C 为x 轴上一动点,且在点A 右侧,连接BC ,以BC 为边在第一象限内作等边△BCD ,连接AD 交BC 于E . (1)①直接回答:△OBC 与△ABD 全等吗? ②试说明:无论点C 如何移动,AD 始终与OB 平行; (2)当点C 运动到使AC 2=AEAD 时,如图2,经过O 、B 、C 三点的抛物线为y 1.试问:y 1上是否存在动点P ,使△BEP 为直角三角形且BE 为直角边?若存在,求出点P 坐标;若不存在,说明理由; (3)在(2)的条件下,将y 1沿x 轴翻折得y 2,设y 1与y 2组成的图形为M ,函数y=x+m 的图象l 与M 有公共点.试写出:l 与M 的公共点为3个时,m 的取值.

相关主题
文本预览
相关文档 最新文档