当前位置:文档之家› 钢结构角焊缝裂纹分析

钢结构角焊缝裂纹分析

钢结构角焊缝裂纹分析
钢结构角焊缝裂纹分析

钢结构角焊缝裂纹分析及再现试验殷莉影

文章摘要:纵、横隔板角焊缝产生贯穿性裂纹,初步分析裂纹产生原因与钢板预处理时涂刷的富锌漆陈有关。通过模拟产品结构的再现试验裂纹分析及焊缝测氢试验,证明裂纹产生原因是由于富锌底漆的涂刷,使一些有害物质进入焊缝成为杂质,导致焊缝结晶时严重偏析,同时富锌底漆中的氢含量较高,使焊缝金属中的扩散氢含量增加,加之富锌底漆在焊接过程中产生大量气体导致焊缝出现密集气孔,在多种条件的作用下,致使焊缝产生裂纹。

文章主题:钢结构角焊缝裂纹富锌底漆扫描电镜测氢试验文章内容:焊接2004(5)钢结构角焊缝裂纹分析及再现试验哈尔滨焊接培训中心(150046)殷莉影摘要纵,横隔板角焊缝产生贯穿性裂纹,初步分析裂纹产生原因与钢板预处理时涂刷的富锌漆陈有关.通过模拟产品结构的再现试验裂纹分析及焊缝测氢试验,证明裂纹产生原因是由于富锌底漆的涂刷,使一些有害物质进入焊缝成为杂质,导致焊缝结晶时严重偏析,同时富锌底漆中的氢含量较高,使焊缝金属中的扩散氢含量增加,加之富锌底漆在焊接过程中产生大量气体导致焊缝出现密集气孔,在多种条件的作用下,致使焊缝产生裂纹.关键词:裂纹富锌底漆扫描电镜试验测氢试验0前言在太阳桥的施工中,纵,横隔板等组件全部采用板单元件的加工方法,角焊缝的焊接采用药芯焊丝,气体保护焊工艺,产品表面涂有环氧富锌底漆,带漆施焊.生产过程中有些角焊缝产生了纵,横向裂纹,给生产带来了困难.结构角焊缝发生严重裂纹现象实属罕见.桥体结构用的母材钢板为桥梁专用钢种16薄板(6=8~20),焊接采用半自动药芯焊丝气体保护焊工艺,焊丝采用国产药芯焊丝502,焊接材料是经过监理部门认可和哈焊所事先进行焊接工艺试验合格并推荐的,所有焊接工艺包括对接焊缝和角焊缝在投产前全部按1.5及有关技术条件进行评定合格.因此裂纹的产生与母材,焊材及焊接工艺无关.图1中隔板及顶板的形角焊缝裂纹大都是贯穿的,即已经开裂到焊缝根部,在对裂纹处进行碳弧气刨清除并采用手工电弧焊补焊后,又产生裂纹.1产生裂纹原因初步分析裂纹发生的部位在桥体纵向,横向隔板角焊缝及顶板与形角钢的角焊缝上,而且还有大量的密集气孑,见图1.图1裂纹发生的部位(1)环氧富锌底漆为太阳桥工程首次采用,首批下料的钢板在防锈处理时采用手工涂刷方法,涂层厚度不均匀,而且焊接时底漆层尚未干透.(2)焊接过程底漆受热变质并挥发出刺激性很强的烟雾,导致焊缝产生密集型气孑.(3)生产中桥体结构单元件包括钢板,形角钢等表面均涂有此类富锌底漆,且焊接区域未作任何清理直接在底漆上进行施焊.(4)底漆在焊接加热后,焊缝两侧近20左右范围全部变成灰白色,见图2,底漆成为一种杂质存在,在过多时会使焊缝金属结晶时严重偏析而导致裂纹的产生.图2焊后底漆变质情况裂纹在开始投产构件的(纵向隔板,横向隔板和顶板形角板)角焊缝中出现,而且大多为贯穿裂纹.这种偏析具有强烈的方向性,因此裂纹的产生具有规律性.一种是沿焊缝中心形成纵向裂纹,另一种是沿焊缝横向形成贯穿性裂纹.角焊缝根部母材表面由于涂有较厚的富锌底漆,有的在焊接时尚未干透,在焊接高温作用下发生分解发出刺激性烟雾,使电弧中产生有害气体,这是产生气孔的直接原因,同时也是促使产生氢致冷裂纹的根本原因.以至于焊条电弧焊多次补焊后裂纹仍然存在.焊接24(5)工艺试验52'盟2.1模拟产品结构再现裂纹试验试板按图3进行装焊2.1.1试验材料2.1.2焊接方法及焊接工艺参数母材为16;规格6=16;焊接材料为采用药芯焊丝焊工艺.焊接参数见表3.表1166=16钢扳化学成分和力学性能刚性厦定焊齄焊缱冷裂纹图3模拟产品焊接裂纹再现试验焊后24观察在焊缝纵向产生了贯穿性裂纹.表3焊接参数2.2扫描电镜试验及测定断面金属成分分析试验2.2.1扫描电镜试验在焊后48,将焊缝用机械加工方法加工成电镜试样,此时焊缝己全部裂透.通过扫描电镜观察裂纹全貌可看到.底漆在电弧高温作用下形成一层硬而脆的碳化物和杂质,见图4.在焊缝和底漆变质后的杂质中形成明显的空穴而使气体积聚,并向焊缝中扩散产生贯穿性或密集型气孔,见图5.桥体结构的刚度比较大,特别是顶板与形角钢的焊接是在单原件上进行,形角钢和疏型板全部组装成一体后进行焊接的,因此刚度相对较大,这些综合因素的存在为促使焊接冷裂纹的产生奠定了有利条件.裂纹是脆性断口,与产品的纵,横向裂纹刚好一致.图5

焊缝裂纹断面形貌及气孔焊接2004(5)?37?2.2.2断面金属成分分析通过电镜分析,裂纹断面含有大量的,杂质元素及碳化物,致使焊缝组织偏析,变脆.2.3焊缝金属测氢试验利用甘油法对焊缝金属进行扩散氢含量测定,分两组进行,一组试样刷上与产品相同的富锌底漆并带漆施焊,一组试样不刷底漆施焊.测氢试验试样制备,焊接材料准备,焊接及试验过程,试验结果的测量严格按照/3965--1995进行.甘油法两组试样试验数据见表4,其中~4为带底漆施焊,5~8为不刷底漆试样.根据熔敷金属扩散氢含量计算公式,可计算出每个试样的扩散氢含量.本实验测量值为101.1,计算结果见表4.表4测氢试验数据试验结果表明,带底漆施焊的熔敷金属扩散氢含量远远高于未带底漆施焊的焊缝金属,且高于一般焊缝金属中的扩散氢含量.3结论经分析,裂纹产生原因是由于环氧富锌底漆在焊接过程中产生了不利影响.(1)环氧富锌底漆的涂刷,使一些有害物质进入焊缝成为杂质,导致焊缝结晶时严重偏析;(2)环氧富锌底漆中的氢含量较高,使焊缝金属中的扩散氢含量增加;(3)环氧富锌底漆在焊接过程中产生大量气体,导致焊缝出现密集气孔.因此,在上述原因及应力的共同作用下,导致焊缝开裂.4防止措施(1)今后在钢板预处理中,如果带漆施焊,底漆的涂刷应采用专用工具,以防止底漆涂刷过厚,不均而影响焊接生产;(2)钢板预处理中所用的防锈底漆因具有良好的可焊性,不应影响焊接工艺及焊接质量;(4)防锈底漆的厚度不应超过20;(5)应严格控制防锈漆中的氢含量,以免焊缝中的扩散氢含量增加,增大产生裂纹倾向.(收稿日期20040106作者简介:殷莉影,1972年生,工程师.

焊缝裂纹的原因

有时候我发现焊道会有裂纹,这是怎么产生的, 如何解决这问题? 裂纹焊缝中原子结合遭到破坏,形成新的界面而产生的缝隙称为裂纹。 A、.裂纹的分类 根据裂纹尺寸大小,分为三类:(1)宏观裂纹:肉眼可见的裂纹。(2)微观裂纹:在显微镜下才能发现。(3)超显微裂纹:在高倍数显微镜下才能发现,一般指晶间裂纹和晶内裂纹。 从产生温度上看,裂纹分为两类: (1)热裂纹:产生于Ac3线附近的裂纹。一般是焊接完毕即出现,又称结晶裂纹。这种二裂纹主要发生在晶界,裂纹面上有氧化色彩,失去金属光泽。 (2)冷裂纹:指在焊毕冷至马氏体转变温度M3点以下产生的裂纹,一般是在焊后一段时间(几小时,几天甚至更长)才出现,故又称延迟裂纹。 按裂纹产生的原因分,又可把裂纹分为: (1)再热裂纹:接头冷却后再加热至500~700℃时产生的裂纹。再热裂纹产生于沉淀强化的材料(如含Cr、Mo、V、Ti、Nb的金属)的焊接热影响区内的粗晶区,一般从熔合线向热影响区的粗晶区发展,呈晶间开裂特征。 (2)层状撕裂主要是由于钢材在轧制过程中,将硫化物(MnS)、硅酸盐类等杂质夹在其中,形成各向异性。在焊接应力或外拘束应力的使用下,金属沿轧制方向的杂物开裂。 (3)应力腐蚀裂纹:在应力和腐蚀介质共同作用下产生的裂纹。除残余应力或拘束应力的因素外,应力腐蚀裂纹主要与焊缝组织组成及形态有关。 B、.裂纹的危害裂纹,尤其是冷裂纹,带来的危害是灾难性的。世界上的压力容器事故除极少数是由于设计不合理,选材不当的原因引起的以外,绝大部分是由于裂纹引起的脆性破坏。 C、.热裂纹(结晶裂纹) (1)结晶裂纹的形成机理热裂纹发生于焊缝金属凝固末期,敏感温度区大致在固相线附近的高温区,最常见的热裂纹是结晶裂纹,其生成原因是在焊缝金属凝固过程中,结晶偏析使杂质生成的低熔点共晶物富集于晶界,形成所谓"液态薄膜",在特定的敏感温度区(又称脆性温度区)间,其强度极小,由于焊缝凝固收缩而受到拉应力,最终开裂形成裂纹。结晶裂纹最常见的情况是沿焊缝中心长度方向开裂,为纵向裂纹,有时也发生在焊缝内部两个柱状晶之间,为横向裂纹。弧坑裂纹是另一种形态的,常见的热裂纹。 3 焊接缺陷及对策 热裂纹都是沿晶界开裂,通常发生在杂质较多的碳钢、低合金钢、奥氏体不锈钢等材料气焊缝中 (2)影响结晶裂纹的因素 a合金元素和杂质的影响碳元素以及硫、磷等杂质元素的增加,会扩大敏感温度区,使结晶裂纹的产生机会增多。 b.冷却速度的影响冷却速度增大,一是使结晶偏析加重,二是使结晶温度区间增大,两者都会增加结晶裂纹的出现机会; c.结晶应力与拘束应力的影响在脆性温度区内,金属的强度极低,焊接应力又使这飞部分金属受拉,当拉应力达到一定程度时,就会出现结晶裂纹。

Ⅲ类压力容器接管角焊缝裂纹分析正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.Ⅲ类压力容器接管角焊缝裂纹分析正式版

Ⅲ类压力容器接管角焊缝裂纹分析正 式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成 的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度 与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 前言 某燃气公司有100m3液化石油气贮罐15台,1996年6月投入运行,1997年7月首次开罐检验,发现有2台贮罐的温度计接管角焊缝出现裂纹;20xx年5月第二次开罐检验,同样又发现另2台的温度计接管角焊缝、1台人孔角焊缝出现裂纹。本文以其中一处温度计接管角焊缝裂纹为例,分析裂纹产生原因及处理办法。 1 贮罐技术特性 内径:Φ3000mm

壁厚:封头22mm,筒体20mm 主体材质:16MnR 设计压力:1.8MPa 设计温度:-19℃~+50℃ 介质:液化石油气 容器类别:Ⅲ类 2 缺陷情况 温度计接管位于贮罐封头中下部,接管规格为Φ32mm×3.5mm,材料为20#无缝钢管。对其罐内表面角焊缝做磁粉探伤检查时发现磁痕显示,用砂轮打磨,发现裂纹,长度沿周向扩展,最长62mm,磨深至6mm时出现空洞,证实为未焊透,而且是整圈未焊透,最深14mm。

第三章 钢结构的连接课后习题答案

第三章 钢结构的连接 3.1 试设计双角钢与节点板的角焊缝连接(图3.80)。钢材为Q235B ,焊条为E43型,手工焊,轴心力N=1000KN (设计值),分别采用三面围焊和两面侧焊进行设计。 解:(1)三面围焊 2160/w f f N mm = 123α= 213 α= 确定焊脚尺寸: ,max min 1.2 1.21012f h t mm ≤=?=, ,min min 1.5 1.512 5.2f h t mm ≥==, 8f h mm = 内力分配: 30.7 1.2220.78125160273280273.28w f f f N h b f N KN β=???=?????==∑ 3221273.281000196.69232 N N N KN α=- =?-= 3112273.281000530.03232N N N KN α=-=?-= 焊缝长度计算: 11530.032960.720.78160w w f f N l mm h f ≥==????∑, 则实际焊缝长度为 1296830460608480w f l mm h mm '=+=≤=?=,取310mm 。 22196.691100.720.78160 w w f f N l mm h f ≥==????∑, 则实际焊缝长度为 2110811860608480w f l mm h mm '=+=≤=?=,取120mm 。 (2)两面侧焊 确定焊脚尺寸:同上,取18f h mm =, 26f h mm = 内力分配:22110003333N N KN α== ?=, 11210006673 N N KN α==?= 焊缝长度计算: 116673720.720.78160 w w f f N l mm h f ≥==????∑,

浅谈TP321管道焊缝产生裂纹的原因及预防备课讲稿

浅谈TP321管道焊缝产生裂纹的 原因及其防止 【摘要】国外进口不锈钢越来越多地进入国内市场,在化工行业大到用于混合进料的Φ508的管子,小到用于仪表导压的Φ6的管子,近年来由于我国化工厂的不断升级,对管道的等级不断提高,TP321管道现场组对焊接过程中,由于施工环境、供货状态不良加之施工工期短,所以为了保证工期加快施工进度,有可能产生焊接质量问题。所以我们只有采用科学合理的施工组织设计与管理,并采取一定的有力措施才能有效的减少TP321管道焊缝裂纹的产生,从而保证球罐在生产过程中的安全性,稳定性。 【关键词】浅谈 TP321管道焊缝裂纹原因措施 一、概述 国外TP321材料向相当于国内0Cr18Ni10Ti,材料类别为18Cr-10Ni-Ti,属于铬镍奥氏体不锈钢,此材料由于强度高,塑性、韧性好,耐腐蚀性能强而被广泛的应用于各行业,但是所有的不锈钢并不是以一种单一的组织形式存在,如果中间的任何一个组织发生变化直接影响到材料的力学性能,一般情况下TP321材料具有良好的焊接性能,但是在施工现场作业时又会有以下因素的影响: 1.露天作业,施工环境的温度、湿度、风速变化较大,甚至有雨雪的威胁,焊接环境差。 2.高处作业增多,焊接空间位置受到较大限制,可达性差。 3.临时供电设施稳定性差,造成焊接工艺参数的失稳。 4.通风设施设置欠合理,对焊接质量、焊接效率有一定影响。 5.施工工期紧,对焊接时间的影响。 所以在现场组对、焊接的TP321管道在其焊接工艺的编制,现场施工的组织与管理都应该结合以上特点综合考虑,并采用一些相应的措施,才能保证焊接的质量和高效率。而TP321材料温度和焊接线能量是产生裂纹的主要原因,那么为提高焊接质量和效率,保证TP321在施工和生产中的安全性,我们有必要对TP321材料在焊接时裂纹产生的原因进行分析,并制定一些相应的预防措施。 二、TP321管道焊缝裂纹存在的形式 TP321管道焊缝裂纹大多以微观形式存在于焊缝区的内部。裂纹具有尖锐端头且开口位移长,是宽比率极高的断裂型非连续性晶间裂纹。裂纹是一个复杂的问题,即使形态相同,

钢构焊缝计算(受力)要点

钢结构的焊接连接 钢结构的连接方法可分为焊缝连接、螺栓连接和铆钉连接三种。焊接连接是现代钢结构最主要的连接方法。它的优点是:(1)焊件间可直接相连,构造简单,制作加工方便;(2)不削弱截面,用料经济;(3)连接的密闭性好,结构刚度大;(4)可实现自动化操作,提高焊接结构的质量。缺点是:(1)在焊缝附近的热影响区内,钢材的材质变脆;(2)焊接残余应力和变形使受压构件承载力降低;(3)焊接结构对裂纹很敏感,低温时冷脆的问题较为突出。 一、焊缝的形式 1.角焊缝 图 1 直角角焊缝截面 图 2 斜角角焊缝截面 角焊缝按其截面形式可分为直角角焊缝和斜角角焊缝。两焊脚边的夹角为90°的焊缝称为直角角焊缝,直角边边长h f 称为角焊缝的焊脚尺寸,h e =0.7h f 为直角角焊缝的计算厚度。斜角角焊缝常用于钢漏斗和钢管结构中。对于夹角大于135°或小于60°的斜角角焊缝,不宜用作受力焊缝(钢管结构除外)。 2.对接焊缝 对接焊缝的焊件常需加工成坡口,故又叫坡口焊缝。焊缝金属填充在坡口内,所以对接焊缝是被连接件的组成部分。 坡口形式与焊件厚度有关。当焊件厚度很小(手工焊≤t 6mm ,埋弧焊≤t 10mm )时,可用直边缝。对于一般厚度(t=10~20mm )的焊件可采用具有斜坡口的单边V 形或V 形焊缝。斜坡口和离缝c 共同组成一个焊条能够运转的施焊空间,使焊缝易于焊透;钝边p 有托

住熔化金属的作用。对于较厚的焊件(t>20mm),则采用U形、K形和X形坡口。对于V形缝和U形缝需对焊缝根部进行补焊。对接焊缝坡口形式的选用,应根据板厚和施工条件按现行标准《建筑结构焊接规程》的要求进行。 凡T形,十字形或角接接头的对接焊缝称之为对接与角接组合焊缝。 图3 对接焊缝的坡口形式 3.焊缝质量检验 《钢结构工程施工质量验收规范》规定焊缝按其检验方法和质量要求分为一级、二级和三级。三级焊缝只要求对全部焊缝作外观检查且符合三级质量标准;一级、二级焊缝则除外观检查外,还要求一定数量的超声波检验并符合相应级别的质量标准。焊缝质量的外观检验检查外观缺陷和几何尺寸,内部无损检验检查内部缺陷。 二、直角角焊缝的构造与计算 角焊缝按其与作用力的关系可分为正面角焊缝、侧面角焊缝和斜焊缝。正面角焊缝的焊缝长度方向与作用力垂直,侧面角焊缝的焊缝长度方向与作用力平行,斜焊缝的焊缝长度方向与作用力倾斜,由正面角焊缝、侧面角焊缝和斜焊缝组成的混合,通常称作围焊缝。 侧面角焊缝主要承受剪力,塑性较好,强度较低。应力沿焊缝长度方向的分布不均匀,呈两端大而中间小的状态。焊缝越长,应力分布不均匀性越显著。 正面角焊缝受力复杂,其破坏强度高于侧面角焊缝,但塑性变形能力差。斜焊缝的受力性能和强度值介于正面角焊缝和侧面角焊缝之间。 1.角焊缝的构造要求 (1)最小焊脚尺寸 t(1) h f≥1.5 2 式中t2—较厚焊件厚度,单位为mm。

焊接横向裂纹产生的原因及控制

焊接横向裂纹产生的原因及控制 焊接横向裂纹产生原因主要有以下几个方面: 1、应力作用。即钢管成型后的残余应力和焊接应力。 2、焊接工艺不合理。如焊缝成形系数过小、预热温度不够或未进行焊前预热、焊接线能量过大、焊接后热处理不当、保温时间太短等。 3、由于氢的存在。如焊剂烘干不够,预热温度不充分或未进行焊前预热、以及多层焊的层间温度不够。 4、冶金因素。焊接过程中有低熔点杂质进入,如铜及铜合金。铜的来源主要有焊丝表面所镀的用于防止焊丝锈蚀的铜,或者导电嘴、铜合金导电杆内壁被磨损产生的铜。这些铜屑从导电嘴内孔进入焊剂,在焊接过程中接触焊接熔池导致横向裂纹。 控制措施: 1、焊管成型。为了合理控制残余应力,不仅需要采用针对性的设备和工艺,还需要在钢管成型前进行必要的成型工艺评定,对成型的设备、材料、产品的规格、预弯的程度、成型的速度、成型的压力、参数等进行试验和评定,合格后方进行焊管成型。 2、焊前预热。要根据具体的材质、具体的工作环境确定预热及层间温度。 3、焊接工艺。 1)埋弧焊时,为了减少焊接热输入,不建议采用多丝焊,建议尽量采用单丝多道焊,焊道平行排列,且每条焊道的宽度控制在15min以内;层间温度控制在110-250℃。 2)严格控制焊道宽度 焊道越宽,产生横裂的可能性越大。焊接时,要尽量地采用窄焊道,多分道,减少焊道宽度,减少热输入。 4、焊接材料 1)焊丝。选择低强度的焊丝,这样可以适当降低焊缝的碳当量,提高焊缝的塑性,有助于减少焊接裂纹的产生。同时注意使用不镀铜的焊丝,防止铜或铜合金进入焊缝熔池。另外需要注意防潮和防生锈。 2)焊剂。焊剂在使用前必须按照焊剂厂家推荐的烘干工艺烘干,烘干后在烘箱内进行保温,不可烘干后就倒出来,防止受潮。及时对使用中的焊剂进行磁选,磁选后放进保温桶中储存,防止在空气中受潮。及时更换焊剂,防止流落到焊剂内的铜及铜合金交换污染。 3)焊后保温、缓冷。春秋两季,焊接好后可以在室温下直接暴露在空气中缓冷。春冬两季,焊接好以后可以在室温下用保温棉把焊缝两面覆盖,在空气中缓冷。 4) 消氢处理。具体做法:焊接完成后立即用陶瓷电热毯对焊缝及其附近区域加热至200℃,保温2h后关电缓冷。

钢结构焊缝基础知识(一)

钢结构焊缝基础知识(一) 一、钢结构焊缝的分类 依据《钢结构焊接规范》GB50661-2011,焊缝按照焊缝接头形式的不同,可分为对接接头、角接接头、搭接接头、T形接头、十字接头。 按照焊缝类型不同又分为对接焊缝、角焊缝和组合焊缝。 根据焊缝熔透情况又分为全熔透焊缝和部分熔透焊缝,全熔透焊缝一般主要应用于受力要求较高的承重部位的连接。 二、焊接缺陷类型 (一)定义 焊接缺欠:在焊接接头中因焊接产生的金属不连续、不致密或连接不良的现象。简称“缺欠”。 焊接缺陷:超过规定限值的缺欠。 (二)标准规范中缺欠和缺陷的分类 依据《金属熔化焊接头缺欠分类及说明》GB/T 6417.1-2005,焊缝欠缺可根据性质、特征分为6个大类:裂纹、孔穴、固体夹杂、未熔合及未焊透、形状和尺寸不良、其他缺欠。每种缺欠又可根据其位置和状态进行分类,相关缺欠示意图见规范。 1、裂纹:一种在固态下由局部断裂产生的缺欠,它可能源于冷却或应力效果。具体可分为微观裂纹、横向裂纹、放射状裂纹等。 2、孔穴:具体可分为气孔(球形气孔、均布气孔等)、缩孔(结

晶缩孔、弧坑缩孔等)。 3、固体夹杂:在焊缝金属中残留的固体杂物。具体可分为夹渣、焊剂夹渣、氧化物夹杂、皱褶等。 4、未熔合及未焊透:可分为未熔透、未焊透、根部未焊透、钉尖。 5、形状和尺寸不良:焊缝的外表面形状或接头的几何形状不良。可具体分为咬边、连续咬边、缩沟、凸度过大、下塌、焊瘤、烧穿等。 6、其他缺欠:可具体分为电弧擦伤、飞溅等等。 (三)常见的外部缺陷 1、焊缝过短或未焊满。 2、焊缝中间断开。 3、焊瘤:焊接过程中,熔化金属流淌到未熔化的母材上所形成的金属瘤;焊瘤存在于焊缝表面,在其下方往往存在未熔合、未焊透等缺陷。 4、焊穿:也称烧穿焊接过程中,熔化金属自坡口背面流出,形成穿孔的缺陷。 5、气孔:由于焊缝金属在熔化状态吸收的气体在其凝固过程中来不及逸出所造成的。 6、缩孔:气孔的一种,熔化金属在凝固过程中收缩而产生的。 7、咬边:由于焊接参数不当或工艺不正确,沿焊趾的母材部位产生的沟槽或凹陷,在立焊或仰焊位置或角焊缝上部边缘容易发生咬边。

钢结构拼接相关规范要求

钢结构拼接相关规范要求 一、《钢结构工程施工质量验收规范》GB50205-2001 8.2.1焊接H型钢的翼缘板拼接缝和腹板拼接缝的间距不应小于200mm。翼缘板拼接长度不应小于2倍板宽,腹板拼接宽度不应小于300mm,长度不应小于600mm。 二、《钢结构工程施工规范》GB50755-2012 9.2.1焊接H型钢的翼缘板拼接缝和腹板拼接缝的间距,不宜小于200mm。翼缘板拼接长度不应小于600mm;腹板拼接宽度不应小于300mm,长度不应小于600mm。 9.2.2箱型构件的侧板拼接长度不应小于600mm,相邻两侧板拼接缝的间距不宜小于 200mm,侧板在宽度方向不宜拼接,当宽度超过2400mm确需拼接时,最小拼接宽度不宜小于板宽的1/4。 9.2.3设计无特殊要求时,用于次要构件的热轧型钢可采用直口全熔透焊接拼接,其拼接长度不应小于600mm。 9.2.4钢管接长时每个节间宜为一个接头,最短接长长度应符合下列规定: 1.当钢管直径d≤500mm时,不应小于500mm; 2.当钢管直径500mm<d≤1000mm时,不应小于直径d; 3.当钢管直径>1000mm时,不应小于1000mm; 4.当钢管采用卷制方式加工成型时,可有若干个接头,但最短接长长度应符合第1~3款的要求。 9.2.5钢管接长时,相邻管节或管段的纵向焊缝应错开,错开的最小距离(沿弧长方向)不应小于钢管壁厚的5倍,且不应小于200mm。 9.2.6部件拼接焊缝应符合设计文件的要求,当设计无要求时,应采用全熔透等强对接焊缝。 三、《钢结构焊接规范》GB50661-2011 5.1.5焊缝质量等级应根据钢结构的重要性、荷载特性、焊缝形式、工作环境以及应力状态等情况,按下列原则选用: 1.在承受动荷载且需要进行疲劳验算的构件中,凡要求与母材等强连接的焊缝应焊透,其质量等级应符合下列规定:

各种焊接裂纹成因特点及防止措施这条必须收藏了

各种焊接裂纹成因特点及防止措施,这条必须收藏了 焊接裂纹就其本质来分,可分为热裂纹、再热裂纹、冷裂纹、层状撕裂等。下面仅就各种裂纹的成因、特点和防治办法进行具体的阐述。1.热裂纹是在焊接时高温下产生的,故称热裂纹,它的特征是沿原奥氏体晶界开裂。根据所焊金属的材料不同(低合金高强钢、不锈钢、铸铁、铝合金和某些特种金属等),产生热裂纹的形态、温度区间和主要原因也各不相同。目前,把热裂纹分为结晶裂纹、液化裂纹和多边裂纹等三大类。(1)结晶裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝中(含S,P,C,Si骗高)和单相奥氏体钢、镍基合金以及某些铝合金焊逢中。这种裂纹是在焊逢结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足,不能及时添充,在应力作用下发生沿晶开裂。防治措施为:在冶金因素方面,适当调整焊逢金属成分,缩短脆性温度区的范围控制焊逢中硫、磷、碳等有害杂质的含量;细化焊逢金属一次晶粒,即适当加入Mo、V、Ti、Nb等元素;在工艺方面,可以通过焊前预热、控制线能量、减小接头拘束度等方面来防治。(2)近缝区液化裂纹是一种沿奥氏体晶界开裂的微裂纹,它的尺寸很小,发生于HAZ近缝区或层间。它的成因一般是由于焊接时近缝区金属或焊缝层间金属,在高温下使这些区域的奥氏体晶界上的低熔共晶组成

物被重新熔化,在拉应力的作用下沿奥氏体晶间开裂而形成液化裂纹。这一种裂纹的防治措施与结晶裂纹基本上是一致的。特别是在冶金方面,尽可能降低硫、磷、硅、硼等低熔共晶组成元素的含量是十分有效的;在工艺方面,可以减小线能量,减小熔池熔合线的凹度。(3)多边化裂纹是在形成多边化的过程中,由于高温时的塑性很低造成的。这种裂纹并不常见,其防治措施可以向焊缝中加入提高多边化激化能的元素如Mo、W、Ti等。2.再热裂纹通常发生于某些含有沉淀强化元素的钢种和高温合金(包括低合金高强钢、珠光体耐热钢、沉淀强化高温合金,以及某些奥氏体不锈钢),他们焊后并未发现裂纹,而是在热处理过程中产生了裂纹。再热裂纹产生在焊接热影响区的过热粗晶部位,其走向是沿熔合线的奥氏体粗晶晶界扩展。防治再热裂纹从选材方面,可以选用细晶粒钢。在工艺方面,选用较小的线能量,选用较高的预热温度并配合以后热措施,选用低匹配的焊接材料,避免应力集中。3.冷裂纹主要发生在高、中碳钢、低、中合金钢的焊接热影响区,但有些金属,如某些超高强钢、钛及钛合金等有时冷裂纹也发生在焊缝中。一般情况下,钢种的淬硬倾向、焊接接头含氢量及分布,以及接头所承受的拘束应力状态是高强钢焊接时产生冷裂纹的三大主要因素。焊后形成的马氏体组织在氢元素的作用下,配合以拉应力,便形成了冷裂纹。他的形成一般是穿晶或沿晶的。冷裂纹一般分

大角焊缝裂纹

大角焊缝裂纹

大型储罐大角焊缝焊接裂纹 摘要:裂纹是焊接件中最常见的一种严重缺陷。在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏而形成的新界面所产生的缝隙。它具有尖锐的缺口和大的长宽比的特征。 在大型储罐焊接中储罐角焊缝产生的裂纹尤为明显特别。 本文从三个方面分析产生此类问题产生的原因。 第一:下料卷制壁板 国内大型储罐常见类型为10万方,由于储罐容积大,因此在制作安装此类储罐过程中采用三辊卷板机或是四辊卷板机卷制壁板,由于卷板机所能卷制最大壁板厚度为50mm,因此在施工现场卷制过程中所有钢板弧度并不是一次成型,现场卷板是通过四次卷板成型,制作好胎架来保证卷板的弧度,以此来消除卷板后带来的应力集中问题。 第二:现场焊接强行组对 由于储罐现场组对过程中,储罐基础存在一定的偏差,现场罐底板基础不平整,因此在组对边缘板时,采用楔子将边缘板垫起,调整到同一平面点焊,当现场安装到第三带壁板时进行储罐大角焊缝的焊接,由于基础存在问题,在边缘板四周采用了大量的楔子将边缘板垫起后进行大角焊缝焊接,在焊接完后未进行二次灌浆找平基础的情况将楔子去除,产生一个较大的拉力,这已经远远超出角焊缝的承受能力,当现场焊接完成后,由于未能及时的进行储罐的二次灌浆工作,导致储罐大角焊缝应力全部集中在第一带壁板每道立缝与边缘板的焊接处,在此时由于滚板产生的应力

及强行组对产生的应力导致裂纹产生。 第三:焊接管理不到位 由于大型储罐壁板为12MnNiVR的合金板,现场采用低氢型焊条焊接必须加温至125度至150度,才能保证焊接质量,焊接过程中溶于焊缝金属内的氢向热影响区扩散、偏聚,特别是在容易启裂的三轴拉应力集中区富集,引起氢脆,即降低金属在开裂位置(或裂纹前端)的临界应力,当此处的局部应力超过此临界应力时,就造成开裂。这种裂纹的形成有明显的时间延迟的特征,其原因在于氢扩散富集需要时间(孕育期)。产生此种裂纹的条件是存在着氢和对氢敏感的组织,同时又有较大的拘束应力。因此,它常产生在严重应力集中的焊件根部和缝边,以及过热区。现场对与焊接质量控制把关不严,造成大角焊缝开裂。 针对以上三个方面的原因,对于现场滚板下料问题,在卷制钢板过程中,必须充分完整的释放钢板应力,保证钢板弧度的同时,确保钢板应力已经全部释放完毕。现场严禁强行组对焊接,必须在有条件的情况下才能焊接,加强现场的焊接管理。

钢结构焊接裂纹的原因及防治措施

钢结构焊接裂纹的原因 及防治措施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

钢结构焊接裂纹的原因及防治措施本文基于焊接产生裂纹的理论知识,通过实践经验,对钢结构裂纹产生的内外在原因进行了深入分析。 焊接裂纹是钢结构在制造过程出现的危害最严重的缺陷,我公司主要承担为安阳钢铁备件制造、安装及系统检修,在钢结构的制造过程中,有时焊缝会出现焊接裂纹,给工程施工带来一定的影响,具体表现在:裂纹能引起严重的应力集中,降低焊接接头的承载能力,任其发展的话最终会导致焊接结构的破坏,降低工程质量,缩短结构寿命,严重时可能造成安全事故,间接延误工期并增加施工成本,影响公司的形象,所以说裂纹在钢结构的制造过程中一经发现必须彻底清除,进行修补,确保产品质量.以下对钢结构制造过程中裂纹产生的原因及其防治措施进行分析。 1.内在原因分析及相应的预防措施 一般焊接裂纹按其产生的温度和时间分为热裂纹、冷裂纹和再热裂纹。 1.1.热裂纹 热裂纹是指在焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区时产生的裂纹,故又称为高温裂纹.其产生的原因是由于焊接熔池在结

晶过程中存在偏析现象,偏析出的物质多为低熔点共晶和杂质.它们在结 晶过程中以液态间层形式存在,凝固以后的强度也较低,当焊接应力足够 大时就会将液态间层或刚凝固不久的固态金属拉开形成裂纹.此外如果母材的晶界上也存在低熔点共晶和杂质,则在加热温度超过其熔点的热影响区,这些低熔点化合物将熔化而形成液态间层,在一定条件下,焊接应力足够大时也会被拉开形成所谓热影响区液化裂纹.总之,热裂纹的产生是冶 金因素和力学因素共同作用的结果.热裂纹特征是:多贯穿在焊缝表面,且断口被氧化成氧化色.它主要的表现形式:纵向裂纹、横向裂纹、根部裂纹、弧坑裂纹及热影响区裂纹.针对其产生的原因采取以下预防措施:a) 限制钢材和焊材中的硫、磷元素的质量分数.b)改善熔池金属的一次结晶,细化晶粒提高焊缝金属的抗裂性:广泛采用的方法是向焊缝金属中加入细化晶粒的元素.c)控制焊接工艺参数,适当提高焊缝成型系数:可采用多层多道焊法,避免中心线偏析,可防止中心线裂纹。 1.2.冷裂纹 冷裂纹是焊接接头冷却到较低温度时产生的焊接裂纹.它与热裂纹不同, 是在焊后较低温度下产生的,可以焊后立即出现,有时要经过一段时间才 能出现,这种拖后一段时间才能出现的裂纹也称为延迟裂纹.冷裂纹主要 发生在中碳钢、高碳钢、低合金钢或中合金钢中,产生的原因主要有三个因素:1)钢的淬硬倾向大;2)焊接接头受到的拘束应力;3)较多的扩散氢的存在和浓集.这三个条件同时存在时,就容易产生冷裂纹.在许多情况下,

焊接裂纹的产生及防止措施

焊接裂纹与防止措施 填角焊接作业时常会出现部份焊道龟裂的情形,要如何预防与降低填角焊道龟裂的发生率? 近年来随着机械、能源、交通、石油化工等工业发展,各种焊接结构也不断朝向功能性与大型化发展,部分焊接结构还需要在高温、深冷以及强腐蚀介质等恶劣的环境下工作,因此各种高强度钢、高合金钢及特种合金的应用也日益增多,然而这些材料往往都比较容易产生各种焊接裂缝。 通常焊接裂纹可能出现在焊道和热影响区的表面,也可能出现在内部。部分焊接裂纹相当微细,不容易以肉眼检查发现,甚至使用放射线检测、超音波检测等方法也常造成漏检。 若要预防与降低焊接裂缝的发生,首先要识别它们的型态、特征与发生原因等,可以有助于焊接工程师找到防止裂纹的适当施工设计方案。以下将按照焊接裂纹的种类与防止措施以及焊接设计详细说明。 焊接裂纹的种类与防止措施 焊接裂纹的种类繁多,产生的机构与敏感条件也各不相同,有些焊接裂纹在焊后会立刻出现,有些则可能在焊后依段时间后才产生,也有些昰在使用过程中,在一定的外界条件诱发下产生。因此,焊接裂纹的复杂性使得焊接裂纹缺陷比其它的焊接缺陷的预防更加困难。 焊接裂纹大多按照裂纹之产生的部位、型态与发生之机制来分类。图1乃常见焊接裂纹的发生部位与型态。表1与表2分别显示一般热裂纹与冷裂纹发生原因与防止措施。当我们足够清楚掌握各种焊接裂纹的基本知识之后,我们不难发现,焊接裂缝缺陷是可以透过充分的焊接设计与施工来预防的。例如,主要构材之焊道起点与终点应焊上与母材同样材质之导焊板,再予焊接即可防止焊接缺陷发生,最后再将首尾之导焊板予以切除并磨平,而溢焊部位则视需要予以磨平以免应力集中。其避免或减低之改善措施与方法包括了彻底依照标准与规格要求来施工,以及焊后可由目视、使用焊道规或认可之样本比较等方法测出,再来补强与修正。 图1常见裂纹的发生部位与型态

Ⅲ类压力容器接管角焊缝裂纹分析

编号:AQ-JS-06693 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 Ⅲ类压力容器接管角焊缝裂纹 分析 Analysis of fillet weld crack of type Ⅲpressure vessel nozzle

Ⅲ类压力容器接管角焊缝裂纹分析 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 前言 某燃气公司有100m3液化石油气贮罐15台,1996年6月投 入运行,1997年7月首次开罐检验,发现有2台贮罐的温度计接管 角焊缝出现裂纹;2003年5月第二次开罐检验,同样又发现另2台 的温度计接管角焊缝、1台人孔角焊缝出现裂纹。本文以其中一处温 度计接管角焊缝裂纹为例,分析裂纹产生原因及处理办法。 1贮罐技术特性 内径:Φ3000mm 壁厚:封头22mm,筒体20mm 主体材质:16MnR 设计压力:1.8MPa 设计温度:-19℃~+50℃ 介质:液化石油气

容器类别:Ⅲ类 2缺陷情况 温度计接管位于贮罐封头中下部,接管规格为Φ32mm× 3.5mm,材料为20#无缝钢管。对其罐内表面角焊缝做磁粉探伤检查时发现磁痕显示,用砂轮打磨,发现裂纹,长度沿周向扩展,最长62mm,磨深至6mm时出现空洞,证实为未焊透,而且是整圈未焊透,最深14mm。 在锅炉压力容器检验中,我们经常看到接管角焊缝出现裂纹、泄漏而必须补焊的现象。 3原因分析 《压力容器安全技术监察规程》第54条规定,“……钢制压力容器的接管(凸缘)与壳体之间的接头设计……有下列情况之一的,应采用全焊透型式:1.介质为易燃或毒性为极度危害和高度危害的压力容器;……;3.第三类压力容器;……”。 液化石油气贮罐是贮存易燃介质的类压力容器,因此接管与壳体的连接角焊缝应采用全焊透型式。审查设计图纸亦标明为全焊透

钢结构焊接规范要点

钢结构焊接规范 钢结构从下料、组对、焊接、检验等工艺 钢结构手工电弧焊焊接施工工艺标准 依据标准: 《建筑工程施工质量验收统一标准》GB50300-2001 《钢结构工程施工质量验收规范》GB50205-2001 《钢焊缝手工超声波探伤方法和探伤结果分级法》GB11345 《钢熔化焊对接接头射线照相和质量分级》GB3323 《焊接球节点钢网架焊缝超声波探伤方法及质量分级法》JBJ/T3034.1 《螺栓球节点钢网架焊缝超声波探伤方法及质量分级法》JBJ/T3034.2 《建筑钢结构焊接技术规程》JGJ81 1、范围 本工艺标准适用于一般工业与民用建筑工程中钢结构制作与安装手工电弧焊焊接工程。 2、施工准备 2.1材料及主要机具 2.1.1电焊条:其型号按设计要求选用,必须有质量证明书。按要求施焊前经过烘焙。严禁使用药皮脱落、焊芯生锈的焊条。设计无规定时,焊接Q235 钢时宜选用E43系列碳钢结构焊条;焊接16Mn钢时宜选用E50系列低合金结构钢焊条;焊接重要结构时宜采用低氢型焊条(碱性焊条)。

按说明书的要求烘焙后,放入保温桶内,随用随取。酸性焊条与碱性焊条不准混杂使用。 2.1.2引弧板:用坡口连接时需用弧板,弧板材质和坡口型式应与焊件相同。 2.1.3主要机具:电焊机(交、直流)、焊把线、焊钳、面罩、小锤、焊条烘箱、 焊条保温桶、钢丝刷、石棉条、测温计等。 2.2作业条件 2.2.1熟悉图纸,做焊接工艺技术交底。 2.2.2施焊前应检查焊工合格证有效期限,应证明焊工所能承担的焊接工作。 2.2.3现场供电应符合焊接用电要求。 2.2.4环境温度低于0℃,对预热,后热温度应根据工艺试验确定。 3、操作工艺 3.1工艺流程: 作业准备→电弧焊接(平焊、立焊、横焊、仰焊)→焊缝检查。3.2钢结构电弧焊接 3.2.1平焊 3.2.1.1选择合格的焊接工艺,焊条直径,焊接电流,焊接速度,焊接电弧长度等,通过焊接工艺试验验证。 3.2.1.2清理焊口:焊前检查坡口、组装间隙是否符合要求,定位焊是否牢固,焊缝周围不得有油污、锈物。 3.2.1.3烘焙焊条应符合规定的温度与时间,从烘箱中取出的焊条,

焊接热裂纹的产生原因及防止方法

一、热裂纹产生的原因分析 1、焊缝中杂质和拉应力的存在 因为焊缝中的杂质在焊缝结晶过程中会形成低熔点结晶。原因是低熔点共晶物的存在.结晶时被推挤到晶界上,形成液态薄膜,凝固收缩时焊缝金属在拉应力作用下,液态薄膜承受不了拉应力而形成裂纹。热裂纹就轻易在焊缝金属中产生.所以要控制焊缝金属杂质的含量,减少低熔点共晶物的天生。同时由此可见结晶裂纹的产生是低熔点共晶体和焊接拉应力共同作用的结果,二者缺一不可。低熔点共晶体是产生结晶裂纹的内因,焊接拉应力是产生结晶裂纹的外因。 2、焊缝终端部位温度的变化 埋弧焊焊接时,当焊接热源靠近纵焊缝的终端部位时,焊缝端部正常的温度场将发生变化,越靠近终端其变化越大.由于引弧板的尺寸远比筒体小,其热容量也小得多,而熄弧板与筒体之间只靠定位焊连接,故可视为大部门不连续.所以终端焊缝部位的传热前提是很差的,致使该部位局部温度升高,熔池外形发生变化,熔深也将随之变大,同时熔池在高温下停留的时间也变长,熔池凝固的速度变慢,尤其当熄弧板尺寸过小、熄弧板与筒体之间的定位焊缝过短、过薄时更为明显. 焊缝外形对结晶裂纹的形成有显著的影响。熔宽与熔深比小易形成裂纹,熔宽与熔深比大抗结晶裂纹性较高。 3、焊接线能量的影响 因为埋弧焊所采用的焊接热输入量往往比其他焊接方法要大得多,焊接线能量的大小直接影响到焊缝的成形,而焊缝的成形外形又直接决定着焊缝凝固后的晶粒分布和低熔点共晶体的存在位置及受力情况,因而对结晶裂纹产生与否影响较大。另外,焊缝的横向收缩量远比间隙的张开量要小,使终端部位的横向拉伸力比其他焊接方法要大.这对开坡口的中厚板和不开坡口的较薄板尤为明显. 4、其他情况 如存在强制装配,装配质量不符合要求. 二、焊缝裂纹的性质及特点 终端裂纹形成的部位有时为终端,有时为距终端四周地区150mm范围内,有时为表面裂纹,有时为内部裂纹,而大多数情况是发生在终端四周的内部裂纹.裂纹与焊缝的波纹线相垂直,露在焊缝表面的有显著的锯齿外形。这些特征都是结晶裂纹的表现,除了结晶裂纹以外,其它类型的裂纹在低合金钢板自动埋弧焊时极为少见。在出产中我们发现低合金钢板自动埋弧焊结晶裂纹的产生有以下几个特点: 1、多泛起在第一遍焊接时。 2、厚度小于20mm的钢板的筒节纵缝的熄弧板处易产生结晶裂纹;而厚度大于20mm的低合金钢板在纵缝和环缝中都有可能无规律地泛起裂纹。 3、在钢板和焊剂的化学成分中碳及其它易产生热裂纹的有害合金成分偏上限或超过划定含量上限时易产生裂纹。 三、预防措施 从上述热裂纹产生原因分析可见,要克服埋弧焊热裂纹最主要的措施是: 1、减小焊接拉应力

大角焊缝裂纹

大型储罐大角焊缝焊接裂纹 摘要:裂纹是焊接件中最常见的一种严重缺陷。在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏而形成的新界面所产生的缝隙。它具有尖锐的缺口和大的长宽比的特征。在大型储罐焊接中储罐角焊缝产生的裂纹尤为明显特别。 本文从三个方面分析产生此类问题产生的原因。 第一:下料卷制壁板 国内大型储罐常见类型为10万方,由于储罐容积大,因此在制作安装此类储罐过程中采用三辊卷板机或是四辊卷板机卷制壁板,由于卷板机所能卷制最大壁板厚度为50mm,因此在施工现场卷制过程中所有钢板弧度并不是一次成型,现场卷板是通过四次卷板成型,制作好胎架来保证卷板的弧度,以此来消除卷板后带来的应力集中问题。 第二:现场焊接强行组对 由于储罐现场组对过程中,储罐基础存在一定的偏差,现场罐底板基础不平整,因此在组对边缘板时,采用楔子将边缘板垫起,调整到同一平面点焊,当现场安装到第三带壁板时进行储罐大角焊缝的焊接,由于基础存在问题,在边缘板四周采用了大量的楔子将边缘板垫起后进行大角焊缝焊接,在焊接完后未进行二次灌浆找平基础的情况将楔子去除,产生一个较大的拉力,这已经远远超出角焊缝的承受能力,当现场焊接完成后,由于未能及时的进行储罐的二次灌浆工作,导致储罐大角焊缝应力全部集中在第一带壁板每道立缝与边缘板的焊接处,在此时由于滚板产生的应力及强行组对产生的

应力导致裂纹产生。 第三:焊接管理不到位 由于大型储罐壁板为12MnNiVR的合金板,现场采用低氢型焊条焊接必须加温至125度至150度,才能保证焊接质量,焊接过程中溶于焊缝金属内的氢向热影响区扩散、偏聚,特别是在容易启裂的三轴拉应力集中区富集,引起氢脆,即降低金属在开裂位置(或裂纹前端)的临界应力,当此处的局部应力超过此临界应力时,就造成开裂。这种裂纹的形成有明显的时间延迟的特征,其原因在于氢扩散富集需要时间(孕育期)。产生此种裂纹的条件是存在着氢和对氢敏感的组织,同时又有较大的拘束应力。因此,它常产生在严重应力集中的焊件根部和缝边,以及过热区。现场对与焊接质量控制把关不严,造成大角焊缝开裂。 针对以上三个方面的原因,对于现场滚板下料问题,在卷制钢板过程中,必须充分完整的释放钢板应力,保证钢板弧度的同时,确保钢板应力已经全部释放完毕。现场严禁强行组对焊接,必须在有条件的情况下才能焊接,加强现场的焊接管理。

埋弧焊纵焊缝终端裂纹原因分析及预防措施

埋弧焊纵焊缝终端裂纹原因分析及预防措施 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

埋弧焊纵焊缝终端裂纹原因分析及预防措施一、概述 在压力容器制造中,当采用埋弧焊焊接筒体纵焊缝时,经常会在纵焊缝的 端部或靠近端部处产生裂纹(以下简称终端裂纹)。对此问题已有不少人 进行了研究,认为产生终端裂纹的主要原因是当焊接电弧接近纵焊缝终端时,焊缝在沿轴向膨胀变形的同时,还伴随有垂直轴向方向的横向张开变形;而筒体在卷制及制作装配过程中也存在着冷作硬化应力和组装应力; 在焊接过程中,因终端定位焊缝及引弧板的拘束作用,在焊缝终端产生较 大的拉伸应力;当电弧移动到终端定位焊缝和引弧板上时,由于该部位受 热膨胀变形,使焊缝终端的横向拉伸应力得到松弛,拘束力减小,便使焊缝终端刚刚凝固的焊缝金属受到较大的拉应力而形成终端裂纹。根据上述 原因分析提出了两项解决的对策:一是增加引弧板的宽度以增加其拘束力;二是采用开槽的弹性拘束引弧板。但是我们在实践中采取上述对策后,问题还是没有得到有效解决:如虽然采用了弹性拘束引弧板,但仍然会产生 纵焊缝的终端裂纹,且在焊接厚度较小,钢性较小而经强制装配的筒体时 也常有终端裂纹发生等;然而,当在筒体纵焊缝的延长部位带有产品试板时,虽然定位焊等情况与未带产品试板时相同,却很少产生纵缝产生终端 裂纹。经过反复试验和分析,我们认为纵缝终端裂纹的产生,虽然与终端 焊缝处不可避免地存在着较大的拉伸应力有关,同时还与其他几个极为重要的原因有关。

二、终端级故产生的旅因分析 1.终端焊缝部位温度场的变化 埋弧焊焊接时,当焊接热源靠近纵焊缝的终端部位时,焊缝端部正常的温 度场将发生变化,越靠近终端其变化越大。因为引弧板的尺寸远比筒体小,其热容量也小得多,而引弧板与筒体之间只靠定位焊连接,故可视为大部 分不连续。所以终端焊缝部位的传热条件是很差的,致使该部位局部温度升高,熔池形状发生变化,熔深也将随之变大,同时熔池在高温下停留的时间也变长,熔池凝固的速度变慢,尤其当引弧板尺寸过小,引弧板与筒体之间的定位焊缝过短、过薄时更为显着。 2.焊接热输入量的影晌 由于埋弧焊所采用的焊接热输人量往往比其他焊接方法要大得多,因而熔深大,熔敷金属量大,且有焊剂层的覆盖,所以熔池大,熔池凝固的速度和 焊缝冷却速度都比其他焊接方法要慢,致使晶粒较粗大,偏析较严重,这些都为热裂纹的产生创造了极为有利的条件。另外,且焊缝的横向收缩量远比间隙的张开量要小,使终端部位的横向拉伸力比其他焊接方法要大。这对开坡口的中厚板和不开坡口的较薄板尤为显着。

焊接裂纹分析

焊接裂纹 随着钢铁、石油化、,舰船和电力等工业的发展,在焊接结构方面都趋向大型化、大容量和高参数的方向发展,有的还在低、深冷、腐蚀介质等环境下工作。因此,各种低合金高强钢,中、高合金钢,超高强钢,以及各种合金材料的应用日益广泛。但是随着这些钢种和合金材料的应用,在焊接生产上带来了许多新的的问题,其中较为普遍而又十分严重的就是焊接裂纹。 一、焊接裂纹的危害性 焊接裂纹不仅给生产带来许多困难,而且可能带来灾难性的事帮。据统计,世界上焊接结构所出现各种事故中,除少数是由于设计不当、选材不合理和运行操作上的问题之外,绝大多数是由裂纹而引起的脆性破坏。因此,裂纹是引起焊接结构发生破坏事故的主要原因。 压力容器的破坏事帮常常造成巨大的损失。焊接结构中裂纹问题危害甚大,已造成世界各国所关注的课题。 二、焊接裂纹分类及其一般特征 在焊接生产中由于钢种和结构的类型不同,可能出现各种裂纹。裂纹的形态和分布特别征都是很复杂的,有焊缝的表面裂纹、内部裂纹,有热影响区的横向、纵向裂纹,有焊缝和焊道下的深埋裂纹、也有在弧坑处出现的所谓弧坑(火口)裂纹。 值得注意的是,裂纹有时出现在焊接过程中,也有时出现在放置或运行过程中,也就是所谓的延迟裂纹。因为这种裂纹在生产中无法检测,所以这种裂纹的危害性就更为严重。总而言之,焊接生产中所遇到的裂纹有多种多样,按产生裂纹的本质来分,林体上可分为五大类。 1、热裂纹(Hot Cracking) 热裂纹是在焊接时高温下产生的,故称热裂纹。 特征:是沿原奥氏体晶界开裂,根据所焊金属的材料不同(低合金高强钢、不锈钢、铸铁、铝合金和某些特种金属等)。产生热裂纹的形态、温度区间和主要原因也各有不同。因此,又把热裂纹分为结晶裂纹、液化裂纹和多边化裂纹等三类。 a:结晶裂纹焊缝结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足而不能及时填充,在应力作用下发生沿晶开裂,故称结晶裂纹。多数情况下,在发生裂纹的焊缝断面上,可以看到有氧化的彩色,说明这种裂纹是在高温下产生的。结晶裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝中(含S、P、C、Si偏高)和单相奥氏体钢、镍基合金以及某些铝合金的焊缝中。个别情况下,结晶裂纹也能在热影响区产生。 b:高温液化裂纹近缝区或多层焊的层间部位,在焊接热循环峰值温度的作用下,由于被焊金属含有较多的低熔共晶而被重新熔化,在拉伸应力的作用下沿奥氏体晶界发生开裂。 液化裂纹主要发生在含有铬镍的高强钢、奥氏体钢,以及某些镍基合金的近缝区或多层焊层间部位。母材和焊丝中的S、P、C、Si偏高时,液化裂纹的倾向将显著增高。 c:多边化裂纹焊接时焊缝或近缝区在固相线稍下的高温区间,由于刚凝固的金属中存在很多晶格缺陷(主要是位错和空位)及严重的物理和化学不均匀性,在一定的温度和应力作用下,由于这些晶格缺陷的迁移和聚集,便形成了二次边界,就是所谓“多边化边界”。因边界上堆积了大量的晶格缺陷,所以它的组织性能脆弱,高温时的强度和塑性都很差,只要有轻微的拉伸应力,就会沿多边界开裂,产生所谓“多边化裂纹”(Polygonixation Cracking) 多边化裂纹多发生在纯金属或单相奥氏体合金的焊缝中或近缝区,它是属于热裂纹的类型。 2、再热裂纹 厚板焊接结构,并采用含有某些沉淀强化合金元素的钢材,在进行消除应力处理或在一定温度下服役的过程中,在焊接热影响区晶部位发生的裂纹称为再热裂纹。 由于这种裂纹是在再次加热过程中产生的,故称为“再热裂纹”又称“消除应力处理裂纹(Stress Relief Cracking),简称SR裂纹。 再热裂纹多发生在低合金高强钢、珠光体耐热钢、奥氏体不锈钢和某些镍基合金的焊接

相关主题
文本预览
相关文档 最新文档