当前位置:文档之家› 菱形的判定定理

菱形的判定定理

菱形的判定定理
菱形的判定定理

22.5菱形的判定学案(霍惠涛)

一、明确目标

1.掌握菱形的两个判定方法;

2.会用这些判定方法进行有关的论证和计算.

重点

掌握菱形的判定方法.

难点

用数学语言正确表达推理证明的条件和结论.

二、预习质疑

活动1 利用菱形的定义判定

菱形的定义是____________________________________

活动2 菱形的判定(1)

画两条等长的线段AB,AD,分别以B,D为圆心,AB为半径画弧,两弧相交于点C,连接BC,CD,得到四边形ABCD,猜一猜,这是什么四边形?

请你画一画.

通过探究,容易得到:的四边形是菱形.

证明上述结论:

已知:如图所示,四边形ABCD中,AB=BC=CD=DA.求证四边形ABCD是

菱形.

活动3菱形的判定(2)

已知:如图所示,在?ABCD中,对角线AC与BD相交于点O,AC⊥BD.求证:

?ABCD是菱形.

三、交流解惑

请你总结一下判定菱形的方法.

四、展示达标

1.已知:如图所示,在△ABC中,AD是∠BAC的平分线,DE∥AC,交AB于点E,DF∥AB,交AC于点F.

求证四边形AEDF是菱形.

2.已知:如图所示,在?ABCD中,对角线AC与BD相交于点O,AB=√5,OA=2,OD=1.

求证?ABCD是菱形.

五、总结拓展

1.下列命题中,真命题的是 ( )

A.对角线互相垂直且相等的四边形是菱形

B.四条边都相等的四边形是菱形

C.一组邻边相等的四边形是菱形

D.对角线相等的四边形是菱形

2.(2016·遵义中考)如图所示,在?ABCD中,对角线AC与BD交于点O,若增加一个条件,使?ABCD成为菱形,下列给出的条件不正确的是()

A.AB=AD

B.AC⊥BD

C.AC=BD

D.∠BAC=∠DAC

3.如图所示,在矩形ABCD中,E,F,G,H分别为AB,BC,CD,DA的中点,且AH∶EH=12∶13,又AE=5,则四边形EFGH的面积为()

A.240

B.60

C.120

D.169

4.如图所示,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.

若AC=4,则四边形CODE的周长是.

5.(2016·沈阳中考)如图所示,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:

(1)∠CEB=∠CBE;

(2)四边形BCED是菱形.

6.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE 的延长线于点F.

(1)求证△AEF≌△DEB;

(2)求证四边形ADCF是菱形;

(3)若AC=4,AB=5,求菱形ADCF的面积.

课堂检测

1.如图所示,已知菱形ABCD中,AE⊥BC于E,若S菱形ABCD=48且

AE=6,则菱形的边长为()

A.12

B.8

C.4

D.2

2.如图所示,CE是△ABC的外角∠ACD的平分线,AF∥CD交CE于点

F,FG∥AC交CD于点G.求证四边形ACGF是菱形.

3.如图所示,在直角三角形ABC中,∠ACB=90°,D,E分别为AB,AC边上的中点,连接DE,将△ADE绕点E旋转180°得到△CFE,连接AF.

(1)求证四边形ADCF是菱形;

(2)若BC=8,AC=6,求四边形ABCF的周长.

第二章 基本原理和定理

第2章基本原理和定理 2.1亥姆霍兹定理 亥姆霍兹定理:任一个矢量场由其散度、旋度以及边界条件所确定,都可以表示为一个标量函数的梯度与一个矢量函数的旋度之和。 定理指出,由于闭合面S 保卫的体积V 中任一点R 处的矢量场Fr 可分为用一标量函数的梯度小时的无旋场和用另一个适量函数的旋度表示的无散场两部分,即为 F A Φ=-?+?? 而式中的变量函数和适量函数分别于体积V 中矢量场的散度源和旋度源,以及闭合面S 上矢量场的法向分量和切向分量。 1()1()d d 44V S V Φπ π''''???''= -''--??F r n F r S r r r r 1()1()d d 44V S V π π''''???''= -''--??F r n F r A S r r r r 2.2唯一性定理 惟一性定理:给定区域V 内的源(ρ、J )分布的和场的初始条件以及区域V 的边界 S 上场的边界条件,则区域V 内的场分布是惟一的。 场、源;范围 —— 时间间隔、空间区域; 条件 —— 初始条件、边界条件。 有惟一解的条件: (1)区域内源分布是确定的(有源或无源),与区域外的 源分布无关; (2)初始时刻区域内的场分布是确定的; (3)边界面上或是确定的。

重要意义: (1)指出了获得惟一解所需给定的条件; (2)为各种求解场分布的方法提供了理论依据。 2.3镜像原理 镜像原理:等效源(镜像源)替代边界面的影响边值问题转换为无界空间问题;理论基础:惟一性定理 2.4等效原理 等效原理是基于唯一性定理建立的电磁场理论的另一个重要原理。考察某一有界区域,如果该去云内的源分布不变,而在该区域之外有不同分布的源,只要在该区域的边界上同时满足同样的边界条件,根据唯一性定理,就可以在该规定区域内产生同样的场分布。也就是说,在该区域外的这两种源的另一种源是另一种源的等效源。 基本思想:等效源替代真实源; 理论基础:惟一性定理。 1. 拉芙(Love)等效原理 将区域V1内的源和用分界面S上的等效源和来替代,且将区域V1内的场设为零,则区域V2内的场不会改变。 2Schelknoff 等效原理 (1)电壁+磁流源 在紧贴分界面S的内侧设置电壁,则 J不产生辐射场,区域内V2 的场由 S J产生。 2m S (2)磁壁+电流源 在紧贴分界面S的内侧设置电壁,则m J不产生辐射场,区域内V2 的场由 S J产生。 2 S

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明 以下内容作者为:青岛第四中学杨瀚书老师 一、 三角形中位线定理的几种证明方法 法1: 如图所示,延长中位线DE 至F ,使 ,连结CF ,则 ,有AD FC ,所以FC BD ,则四边形BCFD 是平行四边 形,DF BC 。因为 ,所以DE BC 2 1. 法2: 如图所示,过C 作 交DE 的延长线于F ,则 , 有FC AD ,那么FC BD ,则四边形BCFD 为平行四边形,DF BC 。 因为 ,所以DE BC 2 1. 法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF ,则四边形 ADCF 为平行四边形,有AD CF ,所以FC BD ,那么四边形BCFD 为平 行四边形,DF BC 。因为 ,所以DE BC 2 1.

法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC ,则四边形ABNM 为平行四边形,易证CEN AEM ???,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DE BC 21。 法5:如图所示,过三个顶点分别向中位线作垂线. 二、教学说明 1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维” 在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。

⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系? A C 图⑴: ⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗? C 图⑵: 说明:学生观察(几何画板制作的)课件演示:当△ABC的顶点A运动到直线B C上时,中位线DE也运动到BC上,这样由“二维”转化为“一维”,学生就不难猜想性质的两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.如果教师直接叫学生去度量角度和长度,是强扭的瓜不甜. 2、教学重点:本课重点是掌握和运用三角形中位线定理。

第一性原理简介

第一性原理是什么 第一性原理怎么用 1什么是第一性原理 根据原子核和电子互相作用的原理及其基本运动规律,运用,从具体要求出发,经过一些近似处理后直接求解的算法,称为第一性原理。广义 的第一原理包括两大类,以Hartree-Fock自洽场计算为基础的从头算和 (DFT计算。 从定义可以看出第一性原理涉及到量子力学、、Hartree-Fock自洽场、等许多对我来说很陌生的物理化学定义。因此我通过向师兄请教和上网查资料一点点的了解并学习这些知识。 2第一性原理的作用 以密度泛函理论(DFT)为基础以及在此基础上发展起来的简单而具有一定精度的局域密度近似(LDA)和广义梯度近似(GGA)的第一性原理电子结构计算方法,与传统的解析方法一样,不但能够给出描述体系微观电子特性的物理量如波函数、态密度、费米面、电子间互作用势等,以及在此基础上所得到的体现体系宏观物理特性的参量如结合能、电离能、比热、电导、光电子谱、穆斯堡尔谱等等,而且它还可以帮助人们预言许多新的

物理现象和物理规律。密度泛函计算的一些结果能够与实验直接进行比较一些应用程序的发展乃至商业软件的发布,导致了基于密度泛函理论的第 一原理计算方法的广泛应用。 密度泛函理论(DFT)为第一性原理中的一类,在物理系、化学、材料科学以及其他工程领域中,密度泛函理论(DFT及其计算已经快速发展成 为材料建模模拟的一种“标准工具”。 密度泛函理论可以计算预测固体的晶体结构、晶格参数、能带结构、态密度(DOS、光学性能、磁性能以及原子集合的总能等等。 3第一性原理怎么用 目前我所学到的利用第一性原理的软件为Material Studio 、VASP软件。其中Materials Studio (简称MS是专门为材料科学领域研究者幵发的一款可运行在PC上的模拟软件。使化学及材料科学的研究者们能更方便地建立三维结构模型,并对各种晶体、无定型以及高分子材料的性质及相关过程进行深入的研究。模拟的内容包括了催化剂、聚合物、固体及表面、晶体与衍射、化学反应等材料和化学研究领域的主要课题。 模块简介 Materials Studio 采用了大家非常熟悉的Microsoft标准用户界面, 允许用户通过各种控制面板直接对计算参数和计算结果进行设置和分析。 目前,Materials Studio 软件包括如下功能模块: Materials Visualizer: 提供了搭建分子、晶体及高分子材料结构模型所需要的所有工具,可以操作、观察及分析结构模型,处理图表、表格或文本等形式的数据,并提供软件的基本环境和分析工具以及支持Materials Studio 的其他产品。是Materials Studio 产品系列的核心模块。 Discover: Materials Studio 的分子力学计算引擎。使用多种分子力学和动力学 方法,以仔细推导的力场作为基础,可准确地计算出最低能量构型、分子体系的结构和动力学轨迹等。

高中物理公式定理定律

高中物理公式定理定律 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t 图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

三角形的证明-知识点汇总

三角形的证明知识点汇总 知识点1 全等三角形的判定及性质 判定定理简称 判定定理的内容 性质 SSS 三角形分别相等的两个三角形全等 全等三角形对应边相等、对应角相等 SAS 两边及其夹角分别相等的两个三角形全等 ASA 两角及其夹边分别相等的两个三角形全等 AAS 两角分别相等且其中一组等角的对边相等的两个三角形全等 HL (Rt △) 斜边和一条直角边分别相等的两个直角三角形全等 知识点2 等腰三角形的性质定理及推论 内容 几何语言 条件与结论 等腰三角形的性质定理 等腰三角形的两底角相等。简述为:等边对等角 在△ABC 中,若AB=AC ,则∠B=∠C 条件:边相等,即AB=AC 结论:角相等,即∠B=∠ C 推论 等腰三角形顶角的平分线、 底边上的中线及底边上的 高线互相垂直,简述为:三 线合一 在△ABC ,AB=AC ,AD ⊥BC , 则AD 是BC 边上的中线,且 AD 平分∠BAC 条件:等腰三角形中已知顶点的平分线,底边上的中线、底边上的高线之一 结论:该线也是其他两线 等腰三角形中的相等线段:1、等腰三角形两底角的平分线相等;2、等腰三角形两腰上的高相等;3、两腰上的中线相等;4、底边的中点到两腰的距离相等 知识点3 等边三角形的性质定理 内容 性质定理 等边三角形的三个内角都相等,并且每个角都等于60度 解读 (1)等边三角形是特殊的等腰三角形。它具有等腰三角形的一切性质 (2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一” 【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形 知识点4 等腰三角形的判定定理 内容 几何语言 条件与结论 等腰三角形的判定定理 有两个角相等的三角形是等腰三角形,简述为:等校对等边 在△ABC 中,若∠B=∠C 则AC=BC 条件:角相等,即∠B=∠C 结论:边相等,即AB=AC 解读 对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中” 拓展 判定一个三角形是等腰三角形有两种方法:1、利用等腰三角形;2、利用等腰三角形的判定定理,即“等角对等边” 知识点5 反证法 概念 证明的一般步骤

实验指导书(一)-第一性原理方法计算

《计算材料学导论》实验指导书 实验一:第一性原理方法计算模拟化合物的晶体结构和电子结构 实验目的: 1)近十年来,随着计算机技术和材料科学的发展,基于密度函数理论的第一性原理方法计算在材料科学中的应用十分普遍和活跃,发展异常迅速。其应用领域涉及材料晶体结构优化,态密度和能带结构等电子结构,掺杂效应,相变热力学、光、电磁学性质的计算和设计。量子化学计算软件包较多,如免费软件包ABINIT(详见教材), 商业化软件包V ASP, CASTEP,GAUSSIAN。本实验运用VASP4.6软件包,计算AB型的ZnS或相似结构的晶体结构和电子结构。 实验要求: 2)首先完成下列基础知识的问答填空,然后运用运用V ASP4.6软件包,计算AB型的ZnS或相似结构的晶体结构和电子结构,并画出图形。 实验内容: (一) 基础填空 1) 简述第一性原理方法(或从头算)的基本概念。 () 2)简述第一性原理方法在材料科学中有哪些具体应用? () 3) 什么叫多粒子体系的总能? () 4) 什么叫能带结构?它是如何形成的? () (二)第一性原理方法计算模拟AB型化合物(如ZnS)的晶体结构和电子结构。 1.ZnS具有多种晶形,如闪锌矿结构(The Zincblende (B3) Structure)和纤锌矿结构(The Wurtzite (B4) Structure),与之结构相同的化合物还有很多,不少化合物具有独特的光电特性。请根据计算指南和模板,计算ZnS或者ZnO, SiC, AlN, CdSe,AgI, AlAs, AlP, AlSb, BAs, BN, BP, BeS, BeSe, BeTe, CdS,CdSe,CdTe, CuBr, CuCl, CuF, CuI, GaAs, GaP, GaSb, HgS, HgSe, HgTe, INAs, InP, MnS, MnSe, SiC, ZnSe, ZnTe)的晶体结构(含晶胞参数a,b,c,V,原子位置的可变内部参数),电子结构(含

三角形中位线定理_练习题

三角形的中位线定理 1.三角形中位线的定义: 2.三角形中位线定理的证明: 如图,在△ABC 中,D 、E 是AB 和AC 的中点,求证:DE ∥BC ,DE=2 1 BC . 方法一: 方法二: 3.归纳:(1)几何语言: (2) 条中位线, 对全等, 个平行四边形 (3)面积 4.拓展:如图,在△ABC 中,D 是AB 的中点,DE ∥BC ,求证: DE= 2 1 BC . 【巩固练习】 1.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC . 2.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF= 1 2 BD . 3.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形. 4.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC . 5.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点.

求证:四边形DEFG 是平行四边形. 6.已知:如图,E 为□ABCD 中DC 边的延长线上的一点,且CE =DC ,连结AE 分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF .求证:AB =2OF . 7.如图,在四边形ABCD 中,AD=BC ,点E ,F ,G 分别是AB ,CD ,AC 的中点. 求证:△EFG 是等腰三角形。 8.如图,在四边形ABCD 中,点E 是线段AD 上的任意一点(E 与A D ,不重合),G F H ,,分别是BE BC CE ,,的中点.求证:四边形EGFH 是平行四边形; 9.如图,点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点. 求证:四边形EFGH 是平行四边形. 10.已知:如图,DE 是△ABC 的中位线,AF 是BC 边上的中线, 求证:DE 与AF 互相平分 11.如图所示,在四边形ABCD 中,DC∥AB,以AD ,AC 为边作□ACED ,延长DC?交EB 于. 求证:EF=FB .(多种方法)

第一性原理计算原理和方法

第二章 计算方法及其基本原理介绍 化学反应的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。这些近似和关于分子波函数的方程形成计算量子化学的数学基础。 2.1 SCF-MO 方法的基本原理 分子轨道的自洽场计算方法 (SCF-MO)是各种计算方法的理论基础和 核心部分,因此在介绍本文计算工作所用 方法之前,有必要对其关键的部分作一简 要阐述。 2.1.1 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献和教材中对这些方程已有系统的推导和阐述[1-5]。 确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger 方程 ''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??????? ?-++?-?-∑∑∑∑∑∑≠≠ (2.1) R AB =R 图2-1分子体系的坐标

其中分子波函数依赖于电子和原子核的坐标,Hamilton 算符包含了电子p 的动能和电子p 与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 (2.2) 以及原子核的动能 ∑?-=A A A N M H 2121? (2.3) 和电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? (2.4) 式中Z A 和M A 是原子核A 的电荷和质量,r pq =|r p -r q |,r pA =|r p -R A |和R A B =|R A -R B |分别是电子p 和q 、核A 和电子p 及核A 和B 间的距离(均以原子单位表示之)。上述分子坐标系如图2.1所示。可以用V(R,r)代表(2.2)-(2.4)式中所有位能项之和 ∑∑∑-+= ≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,12121),( (2.5) ● 原子单位 上述的Schrodinger 方程和Hamilton 算符是以原子单位表示的,这样表示的优点在于简化书写型式和避免不必要的常数重复计算。在原子单位的表示中,长度的原子单位是Bohr 半径 A == 52917725.042220e m h a e π 能量是以Hartree 为单位,它定义为相距1Bohr 的两个电子间的库仑排斥作用能 2 1a e Hartree = 质量则以电子制单位表示之,即定义m e =1 。 ● Born-Oppenheimer 近似 可以把分子的Schrodinger 方程(2.1)改写为如下形式

三角形的证明知识点汇总

百度文库- 让每个人平等地提升自我 1 三角形的证明知识点汇总 判定定理简称判定定理的内容性质SSS 三角形分别相等的两个三角形全等 全等三角形对 应边相等、对 应角相等SAS 两边及其夹角分别相等的两个三角形全等 ASA 两角及其夹边分别相等的两个三角形全等 AAS 两角分别相等且其中一组等角的对边相等的两个三角形全等 HL(Rt△)斜边和一条直角边分别相等的两个直角三角形全等 知识点2 等腰三角形的性质定理及推论 内容几何语言条件与结论 等腰三角形的性质定理等腰三角形的两底角相等。 简述为:等边对等角 在△ABC中,若AB=AC,则 ∠B=∠C 条件:边相等,即AB=AC 结论:角相等,即∠B=∠C 推论等腰三角形顶角的平分线、 底边上的中线及底边上的 高线互相垂直,简述为:三 线合一 在△ABC,AB=AC,AD⊥BC, 则AD是BC边上的中线,且 AD平分∠BAC 条件:等腰三角形中已知顶点的 平分线,底边上的中线、底边上 的高线之一 结论:该线也是其他两线 等腰三角形中的相等线段:1、等腰三角形两底角的平分线相等;2、等腰三角形两腰上的高相等;3、两腰上的中线相等;4、底边的中点到两腰的距离相等 知识点3 等边三角形的性质定理 内容 性质定理等边三角形的三个内角都相等,并且每个角都等于60度 解读(1)等边三角形是特殊的等腰三角形。它具有等腰三角形的一切性质 (2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一” 【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形 知识点4 等腰三角形的判定定理 内容几何语言条件与结论 等腰三角形的判定定理有两个角相等的三角形是等腰 三角形,简述为:等校对等边 在△ABC中,若∠B=∠C则AC=BC 条件:角相等,即∠B=∠C 结论:边相等,即AB=AC 解读对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中” 拓展判定一个三角形是等腰三角形有两种方法:1、利用等腰三角形;2、利用等腰三角形的判定定理,即“等角对等边” 知识点5 反证法 概念证明的一般步骤

三角形中位线定理的证明

备课偶得—— 三角形中位线定理的再证明 王贵林 皖南陵县烟墩镇烟墩中心初级中学 241313 三角形中位线定理:三角形的中位线平行第三边且等于第三边长的半。 关于它的证明方法,课本上给出了一种证法。笔者在备课中发现它的证法有8种之多,而且非常有趣,这里写出来与同仁共享,企斧正。 已知:如图1,△ABC 中,D 、E 分别为AB 、AC 的中点,求证:D E ∥BC 且 证法一、(构造法)如图2,延长DE 到F ,使EF=DE ,连结AF 、CF 、 DC ∵E 为AC 中点 ∴AE=CE ∵EF=DE ∴四边形ADCF 为平行四边形 ∴CF AD ∵D 为AB 中点 ∴AD=BD ∴BD CF ∴四边形DBCF 为平行四边形 ∴DF BC ∴DE=EF ∴DE ∥BC 且 证法二、(构造法)如图3,过CF 作CF ∥AB 交DE 的延长线于F ,则 ∠A=∠ACF ∵E 为AC 中点 ∴AE=CF ∴△AD E ≌△CFE (ASA ) ∴CF=AD ∵D 为AB 中点 ∴AD=BD ∴CF=BD ∵CF ∥BD ∴CF BD ∴四边形DBCF 为平行四边形 ∴DF BC ∴△ADE ≌△CFE ∴DE=EF ∴D E ∥BC 且 证法三、(同一法)如图4,过D 作D E ′∥BC ,交AC 于E ′,过E ′作E ′F ∥AB ,交BC 于F ,则 ∠B=∠ADE ′=∠E ′FC ,∠AE ′D=∠C 四边形DBFE ′是平行四边形 ∴E ′F=BD ∵D 为AB 中点 ∴AD=BD ∴E ′F=AD ∴△ADE ′≌△E ′FC (AAS ) ∴AE ′=CE ′即E ′为AC 中点 ∵E 为AC 中点 ∴E 与E ′重合即DE ∥BC ,△ADE ≌△EFC ,四边形DBFE 为平行四边形 ∴DE=CF DE=BF 即 ∴DE ∥BC 且 图1 B C A D E 图2 B C A D E F 图3 B C A D E F C 图4 B A D E F E ′ 图5 B C A D E 1 2 DE BC =1 2 DE BC =1 2DE BC =12 DE BC =1 2DE BC =

第一性原理计算方法讲义

第一性原理计算方法讲 义 标准化管理部编码-[99968T-6889628-J68568-1689N]

第一性原理计算方法 引言 前面讲述的有限元和有限差分等数值计算方法中,求解的过程中需要知道一些物理参量,如温度场方程中的热传导系数和浓度场方程中的扩散系数等,这些参量随着材料的不同而改变,需要通过实验或经验来确定,所以这些方法也叫做经验或者半经验方法。而第一性原理计算方法只需要知道几个基本的物理参量如电子质量、电子的电量、原子的质量、原子的核电荷数、布朗克常数、波尔半径等,而不需要知道那些经验或半经验的参数。第一性原理计算方法的理论基础是量子力学,即对体系薛定额方程的求解。 量子力学是反映微观粒子运动规律的理论。量子力学的出现,使得人们对于物质微观结构的认识日益深入。原则上,量子力学完全可以解释原子之间是如何相互作用从而构成固体的。量子力学在物理、化学、材料、生物以及许多现代技术中得到了广泛的应用。以量子力学为基础而发展起来的固体物理学,使人们搞清了“为什么物质有半导体、导体、绝缘体的区别”等一系列基本问题,引发了通讯技术和计算机技术的重大变革。目前,结合高速发展的计算机技术建立起来的计算材料科学已经在材料设计、物性研究方面发挥着越来越重要的作用。 但是固体是具有~1023数量级粒子的多粒子系统,具体应用量子理论时会导致物理方程过于复杂以至于无法求解,所以将量子理论应用于固体系统必须采用一些近似和简化。绝热近似(Born-Oppenheimei近似)将电子的运动和原子核的运动分开,从而将多粒子系统简化为多电子系统。Hartree-Fock近似将多电子问题简化为仅与以单电子波函数(分子轨道)为基本变量的单粒子问题。但是其中波函数的行列式表示使得求解需要非常大的计算量;对于研究分子体系,他可以作为一个很好的出发点,但是不适于研究固态体系。1964年,Hohenberg和Kohn提出了严格的密度泛函理论(Density Functional Theory, DFT)。它建立在非均匀电子气理论基础之上,以粒子数密度()r 作为基本变量。1965年,Kohn和Sham提出Kohn-Sham方程将复杂的多电子问题及其对应的薛定谔方程转化为相对简单的单电子问题及单电子Kohn-Sham方程。将精确的密度泛函理论应用到实际,需要对电子间的交换关联作用进行近似。局域密度近似(LDA)、广义梯度近似(GGA)等的提出,以及以密度泛函理论为基础的计算方法(赝

三角形的重心定理及其证明

三角形的重心定理及其证明 积石中学王有华 同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好. 已知:(如图)设ABC V 中,L 、M 、N 分 别是BC 、CA 、AB 的中点. 求证:AL 、BM 、CN 相交于一点G ,且 AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1. 证明1(平面几何法):(如图1)假设中 线AL 与BM 交于G ,而且假设C 与G 的连线与AB 边交于N ,首先来证明N 是AB 的中点. 现在,延长GL ,并在延长线上取点D ,使GL=LD 。因为四边形BDCG 的对角线互相平分,所以BDCG 是平行四边形.从而,B G ∥DC ,即GM ∥DC.但M 是AC 的中点,因此,G 是AD 的中点. 另一方面,GC ∥BD ,即NG ∥BD.但G 是AD 的中点,因此N 是AB 的中点. 另外,G 是AD 的中点,因此AG ﹕GL=2﹕1.同理可证: BG ﹕GM=2﹕1, CG ﹕GN=2﹕1. 这个点G 被叫做ABC V 的重心. 证明2(向量法):(如图2)在ABC V 中,设AB 边上的中B C

线为CN ,AC 边上的中线为BM ,其交点为 G ,边BC 的中点为L ,连接AG 和GL ,因 为B 、G 、M 三点共线,且M 是AC 的中点, 所以向量BG u u u r ∥BM u u u u r ,所以,存在实数1λ ,使得 1BG BM λ=uuu r uuu u r ,即 1()AG AB AM AB λ-=-u u u r u u u r u u u u r u u u r 所以,11(1)AG AM AB λλ=+-u u u r u u u u r u u u r =111(1)2 AC AB λλ+-u u u r u u u r 同理,因为C 、G 、N 三点共线,且N 是AB 的中点. 所以存在实数2λ,使得 22(1)AG AN AC λλ=+-u u u r u u u r u u u r = 221(1)2 AB AC λλ+-uu u r uuu r 所以 111(1)2AC AB λλ+-u u u r u u u r = 221(1)2 AB AC λλ+-u u u r u u u r 又因为 AB uuu r 、 AC u u u r 不共线,所以 1221112112λλλλ=-=-??? 所以 1223λλ== ,所以 1133AG AB AC =+uuu r uu u r uuu r . 因为L 是BC 的中点,所以GL GA AC CL =++u u u r u u u r u u u r u u r =111()332AB AC AC CB -+++u u u r u u u r u u u r u u u r =121()332AB AC AB AC -++-uuu r uuu r uuu r uuu r =1166 AB AC +uuu r uuu r ,即2AG GL =u u u r u u u r ,所以A 、G 、L 三点共线.故AL 、BM 、CN 相交于一点G ,且AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1 C

高性能计算平台_Dmol3算例

高性能计算平台Dmol3算例 郭军(justin.gcxy@https://www.doczj.com/doc/b89107968.html,),June. 2010 作者简介:郭军,中南大学化学化工学院功能材料所2006级博士研究生,师从黄可龙教授,主要研究方向为功能材料与分子的模拟计算。 引子 Dmol3和CASTEP是Materials Studio中基于第一性原理进行分子与材料模拟计算的两个重要的模块。有关CASTEP的相关操作,已有老师通过高性能计算平台的经验交流模块作了详细的介绍,本文就不再赘述。 本文就如何向我校高性能计算平台上提交Dmol3任务做一个简单的介绍,希望能到达抛砖引玉的目的。 本文主要内容分两部分,第一部分将在本地微机上建立一个Doml3的计算模型,第二部分介绍如何提交到计算平台上。 一、在本机MS Visualizer上建立模型 以对苯甲酰胺分子进行结构优化为例: 1、打开Materials Studio,建立一个新的3D Atomistic,重命名为benzamide,如下图:

图一 Materials Studio Visualizer的绘图功能强大,操作比较友好,模型库也比较丰富,它能够很方便的画出晶体,聚合物,分子等的结构。但它对于高对称性的分子的绘制略有不足,迄今我还没有找到比较好的方法。在本文中采用的方法是,先写出该高对称性分子的内坐标,然后在GaussianView中进行图形表达,再将文件另存为MDL Files格式,该格式可在MS中识别。 2、设置计算参数并建立计算任务

图二 由于每个人对计算的要求不一样,这里我们没有对计算的具体设置进行详细的讨论。值得注意的是,和CASTEP一样,由于我们是要在远程计算平台上提交任务,这里不直接Run,而是点击Files按钮,会弹出DMol3 Job Files对话框,按下Save Files,可以看到在Project中产生一个新的文件夹,里面包含了三个文件,如下图所示。 图三

三角形中位线定理证明

三角形中位线定理证明 性质1中位线平行于第三边 性质2等于第三边的一半 1定理 2证明 3逆定理 1定理三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。[1] 三角形的中位线 2证明 如图,已知△ABC中,D,E分别是AB,AC两边中点。 求证DE平行于BC且等于BC/2 方法一:过C作AB的平行线交DE的延长线于G点。 ∵CG∥AD ∴∠A=∠ACG ∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号) ∴△ADE≌△CGE (A.S.A) ∴AD=CG(全等三角形对应边相等) ∵D为AB中点 ∴AD=BD ∴BD=CG 又∵BD∥CG ∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴DG∥BC且DG=BC ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立. 方法二:相似法: ∵D是AB中点 ∴AD:AB=1:2 ∵E是AC中点 ∴AE:AC=1:2 又∵∠A=∠A ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2

∠ADE=∠B,∠AED=∠C ∴BC=2DE,BC∥DE 方法三:坐标法: 设三角形三点分别为(x1,y1),(x2,y2),(x3,y3) 则一条边长为:根号(x2-x1)^2+(y2-y1)^2 另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2) 这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2 最后化简时将x3,y3消掉正好中位线长为其对应边长的一半 方法4: 延长DE到点G,使EG=DE,连接CG ∵点E是AC中点 ∴AE=CE ∵AE=CE、∠AED=∠CEG、DE=GE ∴△ADE≌△CGE (S.A.S) ∴AD=CG、∠G=∠ADE ∵D为AB中点 ∴AD=BD ∴BD=CG ∵点D在边AB上 ∴DB∥CG ∴BCGD是平行四边形 ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立[2] 方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3] ∴DE//BC且DE=BC/2 3逆定理 逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。 如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。 证明:∵DE∥BC ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2 ∴AD=AB/2,AE=AC/2,即D是AB中点,E是AC中点。 逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。 如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2 三角形的中位线 证明:取AC中点E',连接DE',则有 AD=BD,AE'=CE' ∴DE'是三角形ABC的中位线 ∴DE'∥BC 又∵DE∥BC

高中物理重要定律,公式

高中物理公式、规律汇编表 穆再排尔?艾合麦提

3 2 a k T =一、力学公式 1、 胡克定律: F = Kx (x 为伸长量或压缩量,K 为倔强系数,只与弹簧的原长、粗细和材料有关) 2、 重力: G = mg (g 随高度、纬度、地质结构而变化) 3 、求F 1、F 2两个共点力的合力的公式: 合力的方向与F 1成α角: tg Φ= 212sin cos F F F q q +,当0 90=θ时tan φ=1 2F F 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤ F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、摩擦力的公式: (1 ) 滑动摩擦力: f= μN 说明 : a 、N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G b 、 μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力N 无关. (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一 定 夹角。 b 、摩擦力可以作正功,也可以作负功,还可以不作功。 c 、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d 、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用 5、开普勒行星运动定律 开普勒第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上, 开普勒第二定律:对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积, 开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。 6、 万有引力:公式表示:F=2 21r m Gm G=6.67×10-11Nm 2/kg 2 。 (1)、万有引力和重力 ①重力是由于地球的吸引而使物体受到的力,但重力不就是万有引力. ②在地球两极上的物体所受重力等于地球对它的万有引力,2 GMm mg R = ③若不考虑地球自转的影响,地面上质量为m 的物体所受重力mg 等于地球对物体的引力,即:2 GMm mg R = 式中M 为 1

电磁感应解题技巧及练习

基础回顾 (一)法拉弟电磁感应定律 1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比 E =n ΔΦ/Δt (普适公式) 当导体切割磁感线运动时,其感应电动势计算公式为E =BLVsin α 2、E =n ΔΦ/Δt 与E =BLVsin α的选用 ①E =n ΔΦ/Δt 计算的是Δt 时间内的平均电动势,一般有两种特殊求法 ΔΦ/Δt=B ΔS/Δt 即B 不变 ΔΦ/Δt=S ΔB/Δt 即S 不变 ② E =BLVsin α可计算平均动势,也可计算瞬时电动势。 ③直导线在磁场中转动时,导体上各点速度不一样,可用 V 平=ω(R 1+R 2)/2代入也可用E =n ΔΦ/Δt 间接求得出 E =BL 2 ω/2(L 为导体长度, ω为角速度。) (二)电磁感应的综合问题 一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的电源,求出电源参数E 和r 。再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。然后进行“力”的分析--------要分析力学研究对象( 如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。 【常见题型分析】 题型一 楞次定律、右手定则的简单应用 例题(2006、广东)如图所示,用一根长为L 、质量不计的细杆与一个上弧长为L 0 、下弧长为d 0 的金属线框的中点连接并悬挂于o 点,悬点正下方存在一个弧长为2 L 0、下弧长为2 d 0、方向垂直纸面向里的匀强磁场,且d 0 远小于L 先将线框拉开到图示位置,松手后让线框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是 A 、金属线框进入磁场时感应电流的方向为a →b →c →d → B 、金属线框离开磁场时感应电流的方向a →d →c →b → C 、金属线框d c 边进入磁场与ab 边离开磁场的速度大小总是相等 D 、金属线框最终将在磁场内做简谐运动。 题型二 法拉第电磁感应定律的简单应用 例题(2000、上海卷)如图所示,固定于水平桌面上的金属框架cdef ,处在坚直向下的匀强磁场中,金属棒ab 搁在框架上,可无摩擦滑动,此时abcd 构成一个边长为L的正方形,棒的电阻力为r ,其余部分电阻不计,开始时磁感强度为B 。 (1)若从t=0时刻起,磁感强度均匀增加,每秒增量为K ,同时保持棒静止,求棒中的感应电流,在图上标出感应电流的方向。 (2)在(1)情况中,始终保持棒静止,当t=t 1 秒未时需加的垂直于棒的水平拉力为多大? (3)若从t=0时刻起,磁感强度逐渐减小,当棒以速度v 向右做匀速运动时,若使棒中不产生感应电流,则磁感强度怎样随时间变化(写出B 与t 的关系式)? d a c B 0 e b f

相似三角形预备定理证明

课题:相似三角形的判定(预备定理) 教学目标:1 ?掌握预备定理以及用相似三角形的定义判断两三角形相似; 2 ?在探索相似三角形预备定理过程中,感受特殊到一般的思想方法,体验 分析解决 问题的方法; 3?通过思考交流与教师启发,获得探索问题的乐趣,增强数学学习的信心 与原动力。 教学重点: 预备定理的证明与应用。 教学难点: 预备定理的证明。 教学方法: 启发+探究+讲授 教学手段: 常规教学用具,计算机及课件 教学过程: 教学过程 教师活动 学生活动 设计意图 出示情境问题: 1、 什么叫相似三角形?什么叫相似比? 2、 如图,矩形草坪长20m 宽10m 沿草坪四 周有1m 宽的小路。小路的内外边缘所围成的 矩形相似吗? □—''~:—:—A ?—'—>:—?—A 3、 如图两个三角形相似吗?若相似,你是若 何判 断的,相似比是多少?若不相似,也请说 明。 4、 思考:如图:在AA BC 与厶DEF 中,/ A= / D, Z B=Z E ,请问 AA BC 与△ DEF 是否相似? 明确指出: 本节课将研究如何用相似三角形的定义判断 两三角形相似。 板书课题:相似三角形的判定 创 设 情 境 复习相似形 的有关概 思考回答问题: 念,明确否 1、2 口答 定两图形相 3题可能的方法: 似,指出一 ⑴直觉(引导有理有 个不满足的 据); 条件即可, ⑵度量角与边,再计 而冃疋两图 算(指引这种方法简 形相似,则 单易于操作,但有时 需要所有对 会对结果的精确程度 应角相等, 质疑) 对边成比 ⑶根据格点特性计算 例。 (积极鼓励) 而随后的思 考,是为了 给学生点引 一下,预备 定理为什么 叫预备定 理,后继学

高中物理公式定理定律概念大全

高中物理公式定理定律概念大全 第一章运动的描述 一、质点( A) (1)没有形状、大小,而具有质量的点。 (2)质点是一个理想化的物理模型,实际并不存在。 (3)一个物体能否看成质点,并不取决于这个物体的大小,而是看在所研究的问题中物体 的形状、大小和物体上各部分运动情况的差异是否为可以忽略的次要因素,要具体问题具体分析。 二、参考系(A) (1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。 (2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。 对参考系应明确以下几点: ①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果往往不同的。 ②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量 的简化,能够使解题显得简捷。 ③因为今后我们主要讨论地面上的物体的运动,所以通常取地面作为参照系。 三、路程和位移(A) (1)位移是表示质点位置变化的物理量。路程是质点运动轨迹的长度。 (2)位移是矢量,可以用以初位置指向末位置的一条有向线段来表示。因此,位移的大小 等于物体的初位置到末位置的直线距离。路程是标量,它是质点运动轨迹的长度。因此其大小与运动路径有关。 (3)一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单一方向的直线运 动时,路程与位移的大小才相等。图2-1-1 中质点轨迹 ACB的长度是路程, AB 是位移 S。 C C B B A A 图 2-1-1 (4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体 的确切位置。比如说某人从 O点起走了 50m路,我们就说不出终了位置在何处。 四、速度、平均速度和瞬时速度(A) (1)表示物体运动快慢的物理量,它等于位移s 跟发生这段位移所用时间t 的比值。即v=s/t 。速度是矢量,既有大小也有方向,其方向就是物体运动的方向。在国际单位制中, 速度的单位是( m/s)米/秒。 (2)平均速度是描述作变速运动物体运动快慢的物理量。 = 定义 v s/t 为物体在这段时间(或 这段位移)上的平均速度。平均速度也是矢量,其方向就是物体在这段时间内的位移的方向。(3)瞬时速度是指运动物体在某一时刻(或某一位置)的速度。从物理含义上看,瞬时速度指某一时刻附近极短时间内的平均速度。瞬时速度的大小叫瞬时速率,简称速率。

相关主题
文本预览
相关文档 最新文档