当前位置:文档之家› 圆的垂径定理试题(附答案).

圆的垂径定理试题(附答案).

圆的垂径定理试题(附答案).
圆的垂径定理试题(附答案).

2013中考全国100份试卷分类汇编圆的垂径定理

1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).

A.24

B.28

C.52

D.54

2、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠=,3AC =,4BC =,以点C 为圆心,CA 为 半径的圆与AB 交于点D ,则AD 的长为( )

A.95

B. 245

C. 185

D. 52

3、(2013河南省)如图,CD 是O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与点D ,则下列结论中不一定正确的是( )

A. AG =BG

B. AB ∥BF

C.AD ∥BC

D. ∠ABC =ADC

4、(2013?泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB⊥CD,垂足为M ,且AB=8cm ,则AC 的长为( ) A. cm B. cm C. cm 或cm D. cm 或cm

5、(2013?广安)如图,已知半径OD 与弦AB 互相垂直,垂足为点C ,若AB=8cm ,CD=3cm ,则圆O 的半径为( )

A. cm

B. 5cm

C. 4cm

D. cm

6、(2013?绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面宽AB 为( )

A. 4m

B. 5m

C. 6m

D. 8m

7、(2013?温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()

A. B. C. D.

8、(2013?嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()

A. 2

B.

C.

D.

9、(2013?莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()

A. B. C. D. 3

2

10、(2013?徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()

A. 10

B. 8

C. 5

D. 3

11、(2013浙江丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截

面圆心O到水面的距离OC是

A. 4

B. 5

C.6

D.8

12、(2013?宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()

A. B. AF=BF C. OF=CF D. ∠DBC=90°

13、(2013?毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()

A. 5

B. 10

C. 8

D. 6

14、(2013?南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O 的半径为()

A. 4

B. 5

C. 4

D. 3

15、(2013年佛山)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()

A.3

B.4

C.5

D.7

16、(2013甘肃兰州4分、12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()

A.3cm B.4cm C.5cm D.6cm

17、(2013?内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.

18、(13年安徽省4分、10)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是()

19、(2013?宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为.

图20 图21 图22

20、(2013?宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为 cm.

21、(2013?包头)如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=度.

(2013?株洲)如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是度.22、

图23 图24 图25 图26 图27 图28

23、(2013?黄冈)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.

24、(2013?绥化)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB 的长为.

25、(2013哈尔滨)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O

的半径为5

2

,CD=4,则弦AC的长为.

26、(2013?张家界)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=.

27、(2013?遵义)如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=度.

28、(2013陕西)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为.29、(2013年广州市)如图7,在平面直角坐标系中,点O为坐标原点,点P在第一象限,P

Θ与

x轴交于O,A两点,点A的坐标为(6,0),P

Θ的半径为13,则点P的坐标为 ____________.

30、(2013年深圳市)如图5所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在图的半径的活动。小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径。

浙教版九年级上册 《圆的基本性质圆、图形旋转、垂径定理》知识点总结

《圆的基本性质:圆、图形旋转、垂径定理》知识点总结 1.圆的定义;在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的封闭曲线叫做圆。固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作☉O,读作“圆O” 2、与圆有关的概念 (1)弦和直径(连结圆上任意两点的线段BC叫做弦,经过圆心的弦AB叫做直径) (2)弧和半圆(圆上任意两点间的部分叫做弧,圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆),大于半圆的弧叫优弧(优弧用⌒和三个字母表示)、小于半圆的弧叫劣弧(用⌒和两个字母表示)。 (3)等弧:能够互相重合的两段弧 (4)等圆(半径相等的两个圆叫做等圆) (5)点和圆的位置关系: 如果P是圆所在平面内的一点,d 表示P到圆心的距离,r表示圆的半径,则: (1)dr → 圆外 (6)不在同一条直线上的三个点确定一个圆。 过不在同一条直线上的三点做圆,能找出圆的圆心 (7)三角形的外接圆 经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。三角形的外心到各顶点距离相等。 一个三角形有且仅有一个外接圆,但一个圆有无数内接三角形。 3、图形的旋转:原图形上的所有点都绕着一个固定的点,按同一个方向,转动同一个角度,这样的图形运 动叫做图形的旋转,这个固定的点叫做旋转中心。 图形经过旋转所得到的图形和原图形全等。 对应点到旋转中心的距离相等,任何一对对应点与旋转中心连线所成的角度等于旋转的角度。 旋转作图基本步骤:

1、明确旋转三要素(旋转中心、旋转方向、旋转角度); 2、找出关键点; 3、找出关键点的对应点; 4、作出新图形; 5、写出结论。 4、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)平分弧的直径,垂直平分弧所对的弦。 注:用于计算时,一般先连结过弦的一个端点的半径或者作弦心距,构造Rt△,再结合勾股定理求解. 推论:圆中两平行弦所夹的弧相等 选择题 1.如图,已知⊙O的直径AE=10 cm,∠B=∠EAC,则的长为() 【A】5cm【B】5cm【C】5cm【D】6cm 【答案】B. 【解答】连接EC,由圆周角定理得,∠E=∠B,∠ACE=90o, ∵∠B=∠EAC, ∴∠E=∠EAC, ∴CE=CA, ∴AC=AE=5cm, 故选B

圆的基本性质知识点

圆的基本性质 复习总标 1.知道圆及有关概念,确定圆的条件。三角形的内心和外心。 2.能灵活运用弧、弦、圆心角和圆心角的关系解决问题;掌握圆的轴对称性、中心对称和旋转不变性;探索并理解锤径定理。 3.会用垂径定理进行有关计算。 知识梳理 1.圆的有关概念 (1)圆心、半圆、同心圆、等圆、弦与弧。 (2)直径是经过圆心的弦。是圆中最长的弦。弧是圆的一部分。 2.圆周角与圆心角 (1)一条弧所对的圆周角等于它所对的圆心角的一半。 90圆周角所对的弦是圆的直径。(2)圆周角与半圆或直径:半圆或直径所对的圆周角是直角; (3)圆周角与半圆或等弧:同弧或等弧所对的圆周角相等;在同源或等圆中,相等的圆周角所对的弧相等。 3.圆的对称性 (1)圆是中心对称图形,圆心是它的对称中心。 (2)圆的旋转不变性:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其他各组量分别相等。 (3)圆的轴对称性:经过圆心都的任意一条直线都是它的对称轴。垂径定理是研究有关圆的知识的基础。垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。还可以概括为:如果有一条直线,1.垂直于弦;2.经过圆心;3.平分弦(非直径);4.平分弦所对的优弧;5.平分弦所对的劣弧,同时具备其中任意两个条件,那么就可以得到其他三个结论。 易错知识点

1.弧是圆的一部分,直径是圆中最长的弦,半径不是弦。 2.垂径定理的推论:平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧。 3.理解圆心角、弧、弦三者之间的关系时,应注意“同圆或等圆中”或“等弧”这个条件。 4.同一条弦所对的圆周角有两个,它们互补。 中考规律盘点及预测 本讲点内容在中考中,圆的基本性质在淡化与降低,证明难度成了考查知识的重点。旗本性质的应用 主要有两个方面,一是应用弧、弦、弦心距、圆心角、圆周角各对量之间的关系进行证明;二是应用半径、半弦和弦心距构成直角三角形进行相关计算。多数以填空题、选择题或中等难度解答题等基本题型出现,难度一般不大。 1、(2009年安徽)如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且 CD=, ,则AB 的长为…【 】 A 、2 B 、3 C 、4 D 、5 【解析】主要考察:垂径定理、勾股定理或相交弦定理.用垂径定理得 ,由勾股定理得HB=1 ,则()2 2 2 1R R =+-由此得2R=3 或由相交弦定理得 ()2 121R =?-,由此得2R=3,所以AB=3.选 B 2、(2008 绍兴)如图,量角器外缘边上有A P Q ,,三点,它们所表 示的读数分别是180,70,30,则PAQ ∠的大小为( ) A .10 B .20 C .30 D .40 【解析】主要考察:弧的度数与它所对的圆周角度数之间的关系。一条弧所对的圆周角 等于它所对圆心角的一半。()?=?-?==∠2030702 1 21Q P PAQ 选B 3、(2008年海南) 如图, AB 是⊙O 的直径,点C 在⊙O 上,∠BAC =30°,点P 在线段 OB 上运动.设∠ACP =x ,则x 的取值范围是 . 第9题图

圆的基本性质(拔高)

D B C O A E . A C O M N B B O A P 【圆及垂径定理】第3份 1、过一点可作 个圆。过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。过 的三点确定一个圆。 2、经过三角形三个顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做圆的 。三角形的外心是三角形三条边的 3、下列四个命题:① 经过任意三点可以作一个圆;② 三角形的外心在三角形的内部;③ 等腰三角形的外心必在底边的中线上;④ 菱形一定有外接圆,圆心是对角线的交点。其中真命题的个数( ) A.4个 B.3个 C.2个 D.1个 4、如图,AB 为⊙O 的直径,CD 为⊙O 的弦,AB 、CD 的延长线交于点E ,已知AB=2DE ,∠E=18°,求∠AOC 的度数 5、如图,平面直角坐标系中一第圆弧经过网格点A 、B 、C ,其中B 点坐标为(4,4),那么该圆弧所在圆的圆心坐标为 6、垂径定理:垂直于弦的直径 ,并且平分 7、垂径定理的逆定理1:平分弦( )的直径垂直于弦,并且平分 垂径定理的逆定理2:平分弧的直径 8、如图所示,直径CE 垂直于弦AB ,CD=1,且AB+CD=CE ,求圆的半径。 O C E D B A 9、工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小孔的直径AB 是 10、四边形ABCD 是直角梯形,AB ∥CD ,AB ⊥BC ,且BC=CD=2,AB=3,把梯形ABCD 分别绕直线AB ,CD 旋转 一周,所得几何体的表面积分别为S 1,S 2,则| S 1-S 2|=__________(平方单位) 11、点O 是两个同心圆的圆心,大圆的半径QA, OB 分别交小圆于点C, D .给出下列结论: ①AB CD =、② AB=CD ; ③AB 的度数=CD 的度数; ④AB 的长度=CD 的长度.其中正确的结论有( ) A. 1个 B. 2个 C.3 个 D.4 个 12、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点 P 从原点O 出发,沿这条曲线向右运动,速度为每秒 2 π 个单位长度,则第2015秒时,点P 的坐标是( ) A .(2014,0) B .(2015,-1) C . (2015,1) D . (2016,0) 13、在一个圆中,给出下列命题,其中正确的是( ) A .若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直 B .若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点 C .若两条弦所在直线不平行,则这两条弦可能在圆内有公共点 D .若两条弦平行,则这两条弦之间的距离一定小于圆的半径 【随堂练习】 1、下列命题:① 垂直于弦的直径平分这条弦;② 平分弦的直径垂直于弦;③垂直且平分弦的直线必定经过圆心。其中正确的有( ) A.0个 B.1个 C.2个 D.3个 2、如图,⊙O 的直径为10cm ,弦AB 为8cm ,P 是弦AB 上一点,若OP 的长是整数, 则满足条件的点P 有( )个 A.2 B.3 C.4 D.5 3、半径为5cm 的圆内有两条互相平行的弦,长度分别为6cm 和8cm ,则这两弦之间的距离为 cm 4、圆的半径等于23cm ,圆内一条弦长23cm ,则弦的中点与弦所对弧的中点的距离等于 5、如图,矩形ABCD 与⊙O 相交于M 、N 、F 、E ,如果AM=2,DE=1,EF=8,那么MN 的长为 6、如图,半径为5的⊙P 与y 轴交于点M (0,-4)、N (0,-10),函数y= k x (x<0)的图象过点P ,则k= 7、如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 8、如图,已知AB 、AC 为弦,OM ⊥AB 于点M , ON ⊥AC 于点N ,BC=4,则MN= x y O A B C 第5题 O P M y x N 第6题 第7题 P O 第12题 O 1 x y O 2 O 3

九年级数学上册第三章圆的基本性质3.3垂径定理第1课时垂径定理随堂练习(含解析)(新版)浙教版

3.3__垂径定理__ 第1课时 垂径定理 1.[2016·黄石]如图3-3-1,⊙的半径为13,弦AB 的长度是24,ON ⊥AB 垂足为N ,则ON =( A ) 图3-3-1 A .5 B .7 C .9 D .11 2.如图3-3-2,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论不一定正确的是( B ) 图3-3-2 A .CE =DE B .AE =OE C.B C ︵=B D ︵ D .△OC E ≌△ODE 【解析】 ∵AB ⊥CD , ∴CE =DE ,BC ︵=BD ︵, ∵CO =DO ,∠CEO =∠DEO , ∴△OCE ≌△ODE . 由已知条件不能确定AE 和OE 的关系.故选B. 3.[2017·泸州]如图3-3-3,AB 是⊙O 的直径,弦CD ⊥AB 于点E .若AB =8,AE =1,则弦CD 的长是( B ) A.7 B .27 C .6 D .8

图3-3-3 第3题答图 【解析】 如答图,连结OC , 则OC =OB =4,OE =OB -AE =4-1=3, CE =DE =OC 2-OE 2=7, CD =2CE =27. 4.[2017·长沙]如图3-3-4,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为__5__. 图3-3-4 第4题答图 【解析】 如答图,连结OC , ∵AB 为⊙O 的直径,AB ⊥CD , ∴CE =DE =12CD =12 ×6=3, 设⊙O 的半径为x ,则OC =x , OE =OB -BE =x -1, 在Rt △OCE 中,OC 2=OE 2+CE 2 , ∴x 2=32+(x -1)2,解得x =5,∴⊙O 的半径为5. 5.[2017·眉山]如图3-3-5,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8 cm ,DC =2 cm ,则OC =__5__cm. 图3-3-5 第5题答图 【解析】 如答图,连结OA ,

圆的基本性质和垂径定理

圆中的计算垂径定理 教学设计 【内容分析】 垂径定理及其推论是圆的性质部分非常重要的定理。垂径定理为圆的计算和作图提供了方法和依据,所以它在中考考点上属于高频考点。垂径定理的学习无论从知识上,还是从学生能力的培养及学习信心的提升都起着重要的作用。 【学情分析】 学生是我自己所任教班级的学生,整体学习能力薄弱,中下生若多。他们在初三上学期已经完成垂径定理的学习,在运用定理方面仍不够灵活、熟练,又因为圆的知识点长时间运用,遗忘率很高。学生的基础弱,遇到不懂的题目,容易放弃,他们的自信心明显不足,大部分学生口头语言表达能力较弱,自我探索解题思路欠缺,分析问题需要老师引导。目前,有大部分学生,肯在老师的引导下,努力解题,由被动转向主动学习。 【教学目标】 1.进一步熟悉垂径定理及其推论的应用; 2.通过教学,提高学生分析基本图形、添加适当的辅助线探索解题思路的能力;通过 把实际问题转化一个数学问题,了解数学建模的思想,培养学生分析问题、解决问 题的能力; 3.通过练习,总结常用解题方法,渗透方程、构造直角三角形等数学思想; 4. 学会与同学交流合作,培养团队精神,体验学习过程中成功的快乐,增强学习数学 的信心和热情。 【教学重点】 1.垂径定理及其推论的灵活运用; 2.定理应用过程的方法提炼和计算能力的训练提升。 【教学难点】 添加辅助线和把实际问题转化成数学问题,并用定理及其推论解决问题。 【任务分析】 学生中下面较广,知识点掌握不牢固,遗忘率很高。通过感知基础图形,动手画变式图形,达到巩固垂径定理,从而用垂径定理解决圆中有关计算。 【教学策略】 引入采用启发、类比,教学过程采用变式训练、分组训练、数学建模。

九年级数学上册第三章圆的基本性质微专题垂径定理有关的辅助线随堂练习含解析新版浙教版

微专题__垂径定理有关的辅助线 一 连半径构造直角三角形 (教材P78作业题第2题) 如图1,在⊙O 中,半径OC ⊥AB 于点D .已知⊙O 的半径为2,AB =3,求DC 的长(精确到0.01). 图1 教材母题答图 解:如答图,连结OA . ∵OC ⊥AB ,∴AD =12AB =12×3=32, ∴OD =OA 2 -AD 2 =22 -? ?? ??322 =72, ∴DC =OC -OD =2- 7 2 ≈0.68. 【思想方法】 求圆中的弦长或其他线段长时,通常连半径,由半径、弦的一半以及圆心到弦的距离构成直角三角形进行求解. [xx·呼和浩特]如图2,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为M ,若AB =12,OM ∶ MD =5∶8,则⊙O 的周长为( B ) A .26π B .13π C.96π5 D.3910π5 图2 变形1答图 【解析】 如答图,连结OA ,设OM =5x ,MD =8x ,∴OA =OD =13x ,又∵AB =12,由垂径定理可得AM =6,∴在Rt △AOM 中,(5x )2+62=(13x )2 ,解得x =12,∴半径OA =132,根据周长 公式C =2πr ,∴⊙O 的周长为13π. 如图3,已知⊙O 的半径为5,点A 到圆心O 的距离为3,则过点A 的所有弦中,最

短的弦长为( C ) 图3 A .4 B .6 C .8 D .10 已知⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,AB =8 cm ,且AB ⊥CD ,垂足为M ,则 AC 的长为( C ) A .2 5 cm B .4 5 cm C .2 5 cm 或4 5 cm D .2 3 cm 或4 3 cm 【解析】 如答图,连结AC ,AO . ∵⊙O 的直径CD =10 cm ,AB ⊥CD ,AB =8 cm , ∴AM =12AB =1 2×8=4(cm),OD =OC =5 cm. 当点C 位置如答图①所示时, ∵OA =5 cm ,AM =4 cm ,AB ⊥CD , ∴OM =OA 2 -AM 2 =52 -42 =3(cm), ∴CM =OC +OM =5+3=8(cm), ∴AC =AM 2 +CM 2 =42 +82 =45(cm); 变形3答图 当点C 位置如答图②所示时,同理可得OM =3 cm , ∵OC =5 cm ,∴MC =5-3=2(cm). 在Rt △AMC 中,AC =AM 2 +MC 2 =42 +22 =25(cm).故选C. 如图4,用一块直径为a 的圆桌布平铺在对角线长为a 的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x 为( B ) A. 2-12a B.2-24 a C .(2-1)a D .(2-2)a

圆的基本性质知识点整理

3.1 圆(1) 在同一平面内,线段0P 绕它固定的一个端点C 旋转一周,所经过的圭寸闭曲线叫做 圆,定点C 叫做,线段OF 叫做。 如果P 是圆所在平面内的一点,d 表示P 到圆心的距离,r 表示圆的半径,那么就有: d v r 0点P 在圆; dr 点;P 在圆上; d > r :-点P 在圆; 如图,在 ABC 中,/ BAC= Rt Z ,AO 是BC 边上的中线, 为一 C 的直径. (1) 点A 是否在圆上?请说明理由. (2) 写出圆中所有的劣弧和优弧. 如图,在A 岛附近,半径约250knm 勺范围内是一暗礁区, 往北300kn 有一灯塔B,往西400km 有一灯塔C.现有一渔船 沿CB 亢行,问:渔船会进入暗礁区吗? 3.1 圆(2) (1) 经过一个已知点能作个圆; (2) 经过两个已知点A,B 能作个圆;过点A,B 任意作一个圆 圆心应该在怎样的一条直线上? (3) 不在同一条直线上的三个点一个圆 经过三角形各个顶点的圆叫做,这个外接圆的圆心叫做三角形的,三角形叫做圆 的; 三角形的外心是的交点。 锐角三角形的外心在; 直角三角形的外心在; 钝角三角形的外心在。 BC

作图:已知△ ABC,用直尺和圆规作出△ ABC的外接圆 3.2图形的旋转 图形旋转的性质 图形经过旋转所得的图形和原图形; 对应点到的距离相等,任何一对对应点与连线所成的角度等于。 1、如图,射线0P经过怎样的旋转,得到射线0Q ? 3、如图,以点0为旋转中心,将线段AB按顺时针方向旋转60° ,作出经旋 转所得的线段AB,并求直线AB与直线AB所成的锐角的度数 -B 径定理(1) 圆是图形,它的对称轴是。 2、如图,以点O为旋转中心,将A ABC按顺时针方向旋转60° ,作出经旋 转所得的图形 根据对称性你能发现哪些相等的量?填一填:V CD是直径,CD丄AB

教案:24.2.2圆的基本性质之二:垂径定理(一)

24.2.2 圆的基本性质之二 ——垂径定理(第1课时) 教学目标: 1、经历利用圆的轴对称性对垂径定理的探索和证明过程,掌握垂径定理;并能初步运用垂径定理解决有关的计算和证明问题; 2、在研究过程中,进一步体验“实验——归纳——猜测——证明”的方法; 3、让学生积极投入到圆的轴对称性的研究中,体验到垂径定理是圆的轴对称性质的重要体现。 教学重点:使学生掌握垂径定理、记住垂径定理的题设和结论。 教学难点:对垂径定理的探索和证明,并能应用垂径定理进行简单计算或证明。 教学用具:圆规,三角尺,几何画板课件 教学过程: 一、复习引入 1、我们已经学习了圆怎样的对称性质? 2、圆还有什么对称性质?作为轴对称图形,其对称轴是?(直径所在的直线) 3、观察并回答: (1)在含有一条直径AB 的圆上再增加一条直径CD ,两条直径的位置关系? (两条直径始终是互相平分的) (2)把直径AB 向下平移,变成非直径的弦,弦AB 是否一定被直径CD 平分? 二、新课 (一)猜想,证明,形成垂径定理 1、猜想:弦AB 在怎样情况下会被直径CD 平分?(当C D ⊥AB 时)(用课件观察翻折验证) 2、得出猜想:在圆⊙O 中,CD 是直径,AB 是弦,当C D ⊥AB 时,弦AB 会被直径CD 平分。 3、提问:如何证明该命题是真命题?根据命题,写出已知、求证: 如图,已知CD 是⊙O 的直径,AB 是⊙O 的弦, 且AB ⊥CD ,垂足为M 。 求证:AE=BE 。 4、思考:直径CD 两侧相邻的两条弧是否也相等?如何证明? 5、给这条特殊的直径命名——垂直于弦的直径。并给出垂径定理:如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,且平分这条弦所对的弧。 (二)分析垂径定理的条件和结论 1、引导学生说出定理的几何语言表达形式

圆的基本性质 知识点整理

3.1 圆(1) 在同一平面内,线段OP绕它固定的一个端点O旋转一周,所经过的封闭曲线叫做圆,定点O叫做,线段OP叫做。 如果P是圆所在平面内的一点,d表示P到圆心的距离,r表示圆的半径,那么就有:d<点P在圆; d r 点P在圆上; d>点P在圆; 如图,在ABC中,∠BAC=Rt∠,AO是BC边上的中线,BC 为O的直径. (1)点A是否在圆上?请说明理由. (2)写出圆中所有的劣弧和优弧. 如图,在A岛附近,半径约250km的范围内是一暗礁区, 往北300km有一灯塔B,往西400km有一灯塔C.现有一渔船 沿CB航行,问:渔船会进入暗礁区吗? ====================================================================== 3.1圆(2) (1)经过一个 ..已知点能作个圆; (2)经过两个已知点A,B 能作个圆;过点A,B任意作一 个圆,圆心应该在怎样的一条直线上? (3)不在同一条直线上的三个点一个圆 经过三角形各个顶点的圆叫做,这个外接圆的圆心叫做三角形的,三角形叫做圆的; 三角形的外心是的交点。 锐角三角形的外心在; 直角三角形的外心在; 钝角三角形的外心在。

作图:已知△ABC ,用直尺和圆规作出△ABC 的外接圆 3.2图形的旋转 图形旋转的性质 图形经过旋转所得的图形和原图形 ; 对应点到 的距离相等,任何一对对应点与 连线所成的角度等于 。 1、如图,射线OP 经过怎样的旋转,得到射线OQ ? 2、如图,以点O 为旋转中心,将线段AB 按顺时针方向旋转60°,作出经旋转所得的线段B A '',并求直线B A ''与直线AB 所成的锐角的度数。 3、如图,以点O 为旋转中心,将△ABC 按顺时针方向旋转60°,作出经旋转所得的图形。

圆的基本性质课程教案(含规范标准答案)

D B 圆的基本性质 基础知识回放 集合: 圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹: 1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线 垂径定理: 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB ⊥CD ③CE=DE ④ ⑤ 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD ??BC BD =??AC AD =

B 圆心角定理 圆周角定理 圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半 即:∵∠AOB 和∠ACB 是 所对的圆心角和圆周角 ∴∠AOB=2∠ACB 圆周角定理的推论:

B A B A O 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧 即:在⊙O 中,∵∠C 、∠D 都是所对的圆周角 ∴∠C=∠D 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对 的弦是直径 即:在⊙O 中,∵AB 是直径 或∵∠C=90° ∴∠C=90° ∴AB 是直径 推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 即:在△ABC 中,∵OC=OA=OB ∴△ABC 是直角三角形或∠C=90° 注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜 边上的中线等于斜边的一半的逆定理。 弦切角定理: 弦切角等于所夹弧所对的圆周角 推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。 即:∵MN 是切线,AB 是弦 ∴∠BAM=∠BCA 切线的性质与判定定理 (1)判定定理:过半径外端且垂直于半径的直线是切 线

9年级数学--超经典圆的基本性质垂径定理弦切角定理切割线定理及相交弦定理

专题:圆的补充定理及基本性质 中考考点讲解及典型例题 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等 1.圆内两弦相交,一弦长8cm且被交点平分,另一弦被交点分为1∶4,则另一弦长为()A.8cm B.10cm C.12cm D.16cm 2.⊙O的弦AB、CD相交于点P,PA=8,PB=9,①若PC=4,则PD=______,CD=______;②若PC=PD,则CD=______; ③若PC∶PD=2∶3,则PC=______,PD=______. 3.如图2,AB为⊙O的直径,弦CD⊥AB,垂足为G,F是CG的中点,延长AF交⊙O于E,CF=2,AF=3,则EF的长是______. 4.在⊙O中,弦AB和CD相交于点P,若PA=4,PB=7,CD=12,则以PC、PD的长为根的一元二次方程为() A.x2+12x+28=0 B.x2-12x+28=0 C.x2-11x+12=0 D.x2+11x+12=0 5.如下图,点P为弦AB上一点,连结OP,过PC作PC⊥OP,PC交⊙O于C,若AP=4, PB=2,则PC的长是() A.2B.2 C.22D.3 弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. 6.弦切角分圆成两部分,其中一部分比另一部分大44°,求这个弦切角的度数 7.已知:如图7-156,PA,PC切⊙O于A,C两点,B点 8.已知:如图7-154,⊙O的半径OA⊥OB,过A点的直线交OB于P,交⊙O于 Q,过Q引⊙O的切线交OB延长线于C,且PQ=QC.求∠A的度数.

9.已知:如图7-155,⊙O内接四边形ABCD,MN切⊙O于C,∠BCM=38°,AB为⊙O直径.求∠ADC的度数. 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项10. 如下右图,割线PAB、PCD分别交⊙O于AB和CD,若PC=2,CD=16,PA∶AB=1∶2,则AB=______.11.如下左图,在△ABC中,AB=AC,∠C=72°,⊙O过AB两点且与BC切于B,与AC相交于D,连BD,若 BC=5-1,则AC=________. 综合题 12已知:如图7-159,PA切圆于A,BC为圆直径,∠BAD=∠P,PA=15cm,PB=5cm.求BD的长. 圆的基本性质 垂径定理

圆的基本性质教案(含答案)

D B 圆的基本性质 基础知识回放 集合: 圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹: 1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线 垂径定理: 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB ⊥CD ③CE=DE ④ ⑤ 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD 圆心角定理 圆周角定理 圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半 即:∵∠AOB 和∠ACB 是 所对的圆心角和圆周角 ∴∠AOB=2∠ACB BC BD =AC AD =

B B A O M A P 圆周角定理的推论: 推论1弧 即:在⊙O 中,∵∠C 、∠D 都是所对的圆周角 ∴∠C=∠D 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径 即:在⊙O 中,∵AB 是直径 或∵∠C=90° ∴∠C=90° ∴AB 是直径 推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 即:在△ABC 中,∵OC=OA=OB ∴△ABC 是直角三角形或∠C=90° 注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。 弦切角定理: 弦切角等于所夹弧所对的圆周角 推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。 即:∵MN 是切线,AB 是弦 ∴∠BAM=∠BCA 切线的性质与判定定理 (1)判定定理:过半径外端且垂直于半径的直线是切线 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN ⊥OA 且MN 过半径OA 外端 ∴MN 是⊙O 的切线 (2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点 推论2:过切点垂直于切线的直线必过圆心 以上三个定理及推论也称二推一定理: 即:过圆心过切点垂直切线中知道其中两个条件推出最后一个条件 ∵MN 是切线 ∴MN ⊥OA 切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。 即:∵PA 、PB 是的两条切线 ∴PA=PB PO 平分∠BPA

超经典圆的基本性质垂径定理弦切角定理切割线定理及相交弦定理

青鸟教育中考总复习 专题:圆的补充定理及基本性质 (命题人:佟) 中考考点讲解及典型例题 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等 1.圆内两弦相交,一弦长8cm且被交点平分,另一弦被交点分为1∶4,则另一弦长为( ) A.8cm ??B.10cm???C.12cm??D.16cm 2.⊙O的弦AB、CD相交于点P,PA=8,PB=9,①若PC=4,则PD=______,CD=______;②若PC=PD,则CD=______;③若PC∶PD=2∶3,则PC=______,PD=______. 3.如图2,AB为⊙O的直径,弦CD⊥AB,垂足为G,F是CG的中点,延长AF交⊙O于E,CF=2,AF=3,则EF的长是______. 4.在⊙O中,弦AB和CD相交于点P,若PA=4,PB=7,CD=12,则以PC、PD的长为根的一元二次方程为( ) A.x2+12x+28=0 B.x2-12x+28=0 C.x2-11x+12=0 D.x2+11x+12=0 5.如下图,点P为弦AB上一点,连结OP,过PC作PC⊥OP,PC交⊙O于C,若AP=4, PB=2,则PC的长是( ) A.2????B.2???C.22???D.3 弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. 6.弦切角分圆成两部分,其中一部分比另一部分大44°,求这个弦切角的度数 7.已知:如图7-156,PA,PC切⊙O于A,C两点,B点

8.已知:如图7-154,⊙O的半径OA⊥OB,过A点的直线交OB于P,交⊙O于Q,过Q引⊙O的切线交OB延长线于C,且PQ=QC.求∠A的度数. 9.已知:如图7-155,⊙O内接四边形ABCD,MN切⊙O于C,∠BCM=38°,AB为⊙O直径. 求∠ADC的度数. 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项10.如下右图,割线PAB、PCD分别交⊙O于AB和CD,若PC=2,CD=16,PA∶AB=1∶2,则AB=______. 11.如下左图,在△ABC中,AB=AC,∠C=72°,⊙O过AB两点且与BC切于B,与AC相交于D,连BD,若BC=5-1,则AC=________. 综合题 12已知:如图7-159,PA切圆于A,BC为圆直径,∠BAD=∠P,PA=15cm,PB=5cm.求BD的长.

《圆的基本性质》的知识点及典型例题

第三章 《圆的基本性质》的知识点及典型例题 1、垂径定理:垂直于弦的直径 ,并且平分 垂径定理的逆定理1:平分弦( )的直径垂直于弦,并且平分 2、圆心角定理:在同圆或等圆中,相等的圆心角所对的 ,所对的 圆心角定理的逆定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么 都相等。 3、圆周角定理:一条弧所对的圆周角都 ;且等于它所对的 一半。 圆周角定理推论:半圆(或直径)所对的圆周角是 ;90°的圆周角所对的弦是 5、拓展一下:圆内接四边形的对角之和为 6、弧长公式:在半径为R 的圆中,n °的圆心角所对的弧长l 的计算公式为l = 7、扇形面积公式1:半径为R ,圆心角为n °的扇形面积为 。 扇形面积公式2:半径为R ,弧长为l 的扇形面积为 8、沿圆锥的母线把圆锥剪开并展平,可得圆锥的侧面展开图是一个 ,圆锥的侧面积等于这个扇形的面积,其半径等于圆锥的 ,弧长等于圆锥的 9、圆锥的母线长l ,高h ,底面圆半径r 满足关系式 10、已知圆锥的底面圆半径r 和母线长l ,那么圆锥的侧面展开图的圆心角为 练习 一、选择题 1、下列命题中:① 任意三点确定一个圆;②圆的两条平行弦所夹的弧相等;③ 任意一个三角形有且仅有一个外接圆;④ 平分弦的直径垂直于弦;⑤ 直径是圆中最长的弦,半径不是弦。正确的个数是( ) A.2个 B.3个 C.4个 D.5个 2、如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA AB BO -- 的路径运动一周.设OP 为s ,运动时间为t ,则下列图形能大致地刻画s 与t 之间关系的是( ) 3、如图所示,在△ABC 中,∠BAC=30°,AC=2a ,BC=b ,以AB 所在直线为轴旋转一周得到一个几何体,则这个几何体的全面积是( ) A. 2πa B. πab C. 3πa2+πab D. πa (2a+b ) 4、如图,有一圆心角为120°,半径长为6cm 的扇形,若将OA 、OB 重合后围成一圆锥侧面,那么圆锥的高是( ) A. 42cm B. 35 C. 26 D. 23 P A O B s t O s O t O s t O s t A . B . C . D . A C 第4题 第3题

圆的基本性质优秀教案

圆的基本性质 【教学内容】 垂径分弦 【教学目标】 1.经历利用圆的轴对称性对垂径定理的探索和证明过程,掌握垂径定理;并能初步运用垂径定理解决有关的计算和证明问题; 2.在研究过程中,进一步体验“实验——归纳——猜测——证明”的方法; 3.让学生积极投入到圆的轴对称性的研究中,体验到垂径定理是圆的轴对称性质的重要体现。 【教学重难点】 重点:使学生掌握垂径定理、记住垂径定理的题设和结论。 难点:对垂径定理的探索和证明,并能应用垂径定理进行简单计算或证明。 【教学过程】 一、复习引入 观察并回答: 1.在含有一条直径AB 的圆上再增加一条直径CD ,两条直径的位置关系?(两条直径始终是互相平分的) 2.把直径AB 向下平移,变成非直径的弦,弦AB 是否一定被直径CD 平分? 二、新课 (一)猜想,证明,形成垂径定理 1.猜想:弦AB 在怎样情况下会被直径CD 平分?(当CD ⊥AB 时)(用课件观察翻折验证)

2.得出猜想:在圆⊙O中,CD是直径,AB是弦,当CD⊥AB时,弦AB会被直径CD 平分。 3.提问:如何证明该命题是真命题?根据命题,写出已知、求证: 如图,已知CD是⊙O的直径,AB是⊙O的弦, 且AB⊥CD,垂足为M。 求证:AE=BE。 4.思考:直径CD两侧相邻的两条弧是否也相等?如何证明? 5.给这条特殊的直径命名——垂直于弦的直径。并给出垂径定理:如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,且平分这条弦所对的弧。 (二)分析垂径定理的条件和结论 1.引导学生说出定理的几何语言表达形式 (1)CD是直径、AB是弦 1)AE=BE 2) (2)CD⊥AB 3) 2.利用反例、变式图形对定理进一步引申,揭示定理的本质属性,以加深学生对定理的 本质了解。 例(1)看下列图形,是否能使用垂径定理?

九年级数学上册 第3章 圆的基本性质 3.3 垂径定理(2)练习 (新版)浙教版

3.3垂径定理(2) (见A本25页) A 练就好基础基础达标 1.下列命题中,正确的是( B) A.平分弦的直径必垂直于这条弦 B.平分弧的直径垂直于这条弧所对的弦 C.弦的垂线必经过这条弦所在圆的圆心 D.平分弦的直线必经过这个圆的圆心 第2题图 2.如图所示,已知⊙O的半径为6,弦AB的长为8,则圆心O到AB的距离为( B) A. 5 B.2 5 C.27 D.10 3.已知⊙O中的一条弦AB与直径CD垂直相交于点E,并且CE=1,DE=3,那么弦AB 的长等于( B) A. 3 B.2 3 C.2 D.4 4.如图所示,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点,AB=10 cm,CD=6 cm,则AC的长为( D) A.0.5 cm B.1 cm C.1.5 cm D.2 cm 4题图 5题图 5.如图所示,⊙O的弦AB,AC的夹角为50°,MN分别为弧AB和弧AC的中点,OM,ON分别交AB,AC于点E,F,则∠MON的度数为( C) A.110°B.120°C.130°D.100° 第6题图 6.如图所示,AB为半圆直径,O为圆心,C为半圆上一点,E是弧AC的中点,OE交弦AC于点D.若AC=8 cm,DE=2 cm,则OD的长为 3 cm. 7.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16 m,半径OA=10 m,

则中间柱CD 的高度为__4__m. 7题图 8题图 8.xx·西宁中考如图所示,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP =2,BP =6,∠ APC =30°,则CD 的长为. 第9题图 9.如图所示,残破的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D. 已知:AB =24 cm ,CD =8 cm. (1)求作此残片所在的圆(不写作法,保留作图痕迹); (2)求(1)中所作圆的半径. 解:(1)图略 (2)连结OA ,设OA =x (cm),AD =12 (cm),OD =(x -8) cm. 则根据勾股定理列方程x 2=122+(x -8)2 . 解得x =13. ∴圆的半径为13 cm. 第10题图 10.如图所示,AB 和CD 分别是⊙O 上的两条弦,过点O 分别作ON⊥CD 于点N ,OM ⊥AB 于点M ,若ON =12AB.求证:OM =1 2 CD.

圆的基本性质练习(含标准答案)

圆的基本性质 考点1 对称性 圆既是________①_____对称图形,又是______②________对称图形。任何一条直径所在的直线都是它的____③_________。它的对称中心是_____④_______。同时圆又具有旋转不变性。 温馨提示:轴对称图形的对称轴是一条直线,因此在谈及圆的对称轴时不能说圆的对称轴是直径。 考点2 垂径定理 定理:垂直于弦的直径平分______⑤______并且平分弦所对的两条___⑥________。 常用推论:平分弦(不是直径)的直径垂直于______⑦_______,并且平分弦所对的两条_____⑧___________。 温馨提示:垂径定理是中考中的重点考查内容,每年基本上都以选择或填空的形式出现,一般分值都在3分左右,这个题目难度不大,只要在平时的练习中,多注意总结它所用的数学方法或数学思想等,以及常用的辅助线的作法。在这里总结一下:(1)垂径定理和勾股定理的有机结合是计算弦长、半径等问题的有效方法,其关键是构造直角三角形;(2)常用的辅助线:连接半径;过顶点作垂线;(3)另外要注意答案不唯一的情况,若点的位置不确定,则要考虑优弧、劣弧的区别;(4)为了更好理解垂径定理,一条直线只要满足:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧; 考点3 圆心角、弧、弦之间的关系 定理:在同圆或等圆中,相等的圆心角所对的弧______⑨______,所对的弦也_____⑩________。 常用的还有:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角___○11____________,所对的弦_____○12___________。 (2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角____○13___________,所对的弧______○14 __________。 方法点拨:为了便于理解和记忆,圆心角、弧、弦之间的关系定理,可以归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应地其余各组量也都相等。 温馨提示:(1)上述定理中不能忽视“在同圆或等圆中”这个条件。否则,虽然圆心角相等,但是所对的弧、弦也不相等。以同心圆中的圆心角为例,相等的圆心角在同心圆中,所对的弧与弦都不相等。 (2)在由弦相等推出弧相等时,这里的弧要么是优弧,要么是劣弧,不能既是优弧又是劣弧。 考点4 圆周角定理及其推论 定理:在同圆或等圆中,同弧或等弧所对的圆周角______○15__________,都等于这条弧所对的圆心角的______○16________。 推论:半圆或直径所对的圆周角是_______○17________,90°的圆周角所对的弦是______○18__________。

浙教版九年级数学 第三章 圆的基本性质 33垂径定理同步讲义无答案

3.3 垂径定理1:利用垂径定理求线段的长度考查角度132的长为 (AB= 在弦,点CAB上,且AC=)AB,则OC【例1】如图所示,?的半径为2,弦O472332 C.D.A. B. 23)CD = 6,则DE等于(1:如图所示,AB是?的直径,AB 丄CD于点E,若检测O D.6 C.5 B. 4 A. 3 OE = 3cm,则①CDAB丄于点E,?中,CD是?的直径,弦AB的长为8 cm,2检测:如图所示,已知在OO cm. 弧=AD;②?的半径为,BC = 弧O . CD= ,则OC= ,AB = 6检测3:如图所示,DE是?的直径,弦AB丄ED,垂足为C,若,CE= 1O:利用垂径定理求角的度数考查角度22AED?. ,则= 交于点?的直径AB与弦CD E,AE=5,BE=1,CD=4 2【例】如图,O3?OMN 的度数MN的距离及. ,半径OM = 4,求圆心O到弦检测4:如图所示,?中弦MN的长为4O考查角度3:利用垂径定理进行有关证明 ?OCD为等腰三角形,求证:. 是直线,DAB上两点,且AC=BD【例3】如图,在?中,AB为?的弦,C OO?CD,垂足分别为E,F,求证CDO的直径,是弦,AE丄CD,BE:EC = FD. 检测5:如图所示,AB是半圆考查角度4:利用垂径定理作图 【例4】如图,已知弧AB,求作弧AB的中点M,并找出弧AB所在圆的圆心. 检测6:如图为一自行车内胎的一部分,如何利用所学知识将它平均分给四个小朋友作玩具?考查角度5:在运用垂径定理解题时思考问题不严密,出现漏解的情况 【例5】用圆形纸片剪一个梯形ABCD,AB ∕∕CD,若AB = 48,CD = 20,?的半径为26,则剪 下的梯形ABCD的面O积是多少? 检测7:已知?的半径为13 cm,弦AB//CD,AB = 10 cm,CD = 24 cm,,求AB与CD间的距离. O考查角度6:利用垂径定理的推论进行有关证明 【例6】如图所示,在?中,已知C是弧AB的中点,且OA = AC,AB,OC交于点P,求证:四边形OACB是菱形. O?OMN??ONM. 的中点,且AB,CD分别是,中的两条弦,?CDAB8检测:如图①所示,,是MN O(1)求证:AB = CD;

相关主题
文本预览
相关文档 最新文档