当前位置:文档之家› 弹性力学第9章—薄板的弯曲

弹性力学第9章—薄板的弯曲

第9章弯曲应力与弯曲变形习题解答

第9章 弯曲应力与弯曲变形 习题解答 题9 – 1 试计算下列各截面图形对z 轴的惯性矩I z (单位为mm )。 解:(a )mm 317400 250500350200 400250250500350≈?-???-??= c y ()()4 932 3mm 107314002502003171240025050035025031712500350?≈??? ? ????-+?-??? ? ????-+?=.I Z (b )mm 431550 400800500375 550400400800500≈?-???-??= c y ()()4 1032 3mm 1054615504003754311255040080050040043112800500?≈??? ? ????-+?-??? ? ????-+?=.I Z (c )()mm 306020206050 6020102060=?+???+??= c y ()()4 63 2 3mm 103616020503012602020601030122060?=??? ? ????-+?+? ?? ? ????-+?=.Z I (a) (b) (c) 题9-1图

题9–2 悬臂梁受力及截面尺寸如图所示。设q = 60kN/m ,F = 100kN 。试求(1)梁1 – 1截面上A 、B 两点的正应力。(2)整个梁横截面上的最大正应力和最大切应力。 解:(1)求支反力 kN 220100260=+?=A F (↑) m kN 32021001260?=?+??=A M ( ) (2)画F S 、M 图 (3)求1-1截面上A 、B 两点的正应力 m kN 1305016011001?=??+?=.M F M

弹性力学基础讲解

一、基本物理量 应力张量:在直角坐标系中,过弹性体内任一点取分别平行于三个坐标平面的三个微平面,它们的外法线方向分别为三个坐标轴的方向,将三个剪应力平行于坐标轴的两个分量;由此共得九个应力分量,记为: ??? ? ??????=zz zy zx yz yy yx xz xy xx ττττττττττ;每个分量的第一下标表示应力分量所在平面的外法线方向,第二下标表示应力分量 的方向。应力分量的正负号规定为:当应力分量所在平面的外法线方向与某坐标轴同向时,应力分量的方向也与相应坐标轴同向;当应力分量所在平面的外法线方向与某坐标轴反向时,应力分量的方向也与相应坐标轴反向。 3、应变 弹性体内某一点的正应变(线应变):设P 为弹性体内任意点,过P 点某一微元线段变形前的长度为l ?,变形后的长度为'l ?,定义P 点l 方向的正应变为:l l l l ll ??-?=→?'lim 0ε。即正应变表示单位长度线段的伸长 或缩短。 弹性体内某一点的剪应变(角应变):设r l ?和s l ?为过P 点的两微元线段,变形前两线段相互垂直,定义变形后两线段间夹角的改变量(弧度)为角应变,夹角减小则角应变为正。 应变张量:在直角坐标系中,过弹性体内任一点取分别平行三个坐标轴的线段,按上述原则定义各应变分 量,得:??? ? ? ?????=zz zy zx yz yy yx xz xy xx εεεεεεεεεε;两个下标相同的分量为正应变,其它为剪应变。 关于主应变和主应变方向的讨论与主应力基本相同,可以证明,主应变方向与主应力方向重合。 4、外力 体积力:作用于弹性体内部每一点上,如重力、电磁力、惯性力等。设V ?为包含P 点的微元体,作用于该微元体上的体积力为V F ?,则定义P 点的体积力为:{}T z y x V V f f f V =??=→?F f 0lim 。 表面力:作用于弹性体表面,如压力,约束力等。设S ?为包含P 点的微元面,作用于该微元面上的表面力为S F ?,则定义P 点的表面力为:{}T z y x S S s s s S =??=→?F s 0lim 。 二、基本方程 1、平衡方程

第12章 薄板的小挠度弯曲问题

第十二章薄板的小挠度弯曲问题知识点 薄板的基本概念 薄板的位移与应变分量 薄板广义力 薄板小挠度弯曲问题基本方程薄板自由边界条件的简化 薄板的莱维解 矩形简支薄板的挠度基尔霍夫假设 薄板应力 广义位移与薄板的平衡 薄板的典型边界条件 薄板自由边界角点边界条件挠度函数的分解 一、内容介绍 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板。薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。薄板的小挠度弯曲理论是由基尔霍夫基本假设作为基础的。 根据基尔霍夫假设,采用位移解法,就是以挠度函数作为基本未知量求解。因此,首先将薄板的应力、应变和内力用挠度函数表达。然后根据薄板单元体的平衡,建立挠度函数表达到平衡方程。 对于薄板问题,边界条件的处理与弹性力学平面等问题有所不同,典型形式有几何边界、混合边界和面力边界条件。 二、重点 1、基尔霍夫假设; 2、薄板的应力、广义力和广义位移; 3、薄板小 挠度弯曲问题的基本方程;4、薄板的典型边界条件及其简化。 §12.1 薄板的基本概念和基本假设

学习要点: 本节讨论薄板的基本概念和基本假设。 薄板主要几何特征是板的中面和厚度。首先,根据几何尺寸,定义薄板为0.5≤δ/b≥1/80,并且挠度小于厚度的五分之一,属于小挠度问题。对于小挠度薄板,在横向载荷作用下,将主要产生弯曲变形。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。 薄板的小挠度弯曲理论是由三个基本假设作为基础的,因为这些基本假设是由基尔霍夫首先提出的,因此又称为基尔霍夫假设。 根据上述假设建立的薄板小挠度弯曲理论是弹性力学的经典理论,长期应用于工程问题的分析。实践证明是完全正确的。 学习思路: 1、薄板基本概念; 2、基尔霍夫假设 1、薄板基本概念 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板 薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。 薄板的上下两个平行面称为板面,垂直于平行面的柱面称为板边,如图所示。两个平行面之间的距离称为板厚,用δ 表示。平分板厚的平面称为板的中面。 设薄板宽度为a、b,假如板的最小特征尺寸为b,如果δ/b≥1/5,称为厚板;

弹性力学--纳维解法(板壳理论)

板壳理论课程设计 对工科各专业说来,弹性力学的任务和材料力学、结构力学的任务一样,是分析各种结构或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。然而,它们之间还存在着一些不同。材力中,基本上只研究杆状结构,即长度远大于高度和宽度的构件。而材料力学中主要研究的是这种构件在拉压、剪切、弯曲、扭转作用下的应力和位移。结构力学中,主要是在材料力学的基础上研究杆状构件所组成的结构,即杆件系统。至于非杆状结构,则是弹性力学的主要研究内容。在弹性力学中,研究杆状结构一般都不用诸如一些关于构建的形变状态或应力分布的假定,因而得到的结果就比较精确。 从8个方程8个未知量,到圣维南原理、相容方程;从逆解法、半逆解法到差分法、变分法,邱老师的课讲的十分生动,同学们也听得十分认真。到弹性力学下册,也就是板壳理论,主要是研究薄板的小挠度变形及其应力、应变。求解四边简支矩形薄板在载荷下的挠度,以及矩形薄板的莱维法解及一般解法。另外,变厚度矩形和圆形薄板的挠度求解问题。差分法中引进了较为精确的边界条件以及在均布载荷和集中载荷下的不同解法。 在课程设计的过程中,在自学Matlab 的过程中完成了纳维解法中挠度表达式的表示和循环收敛过程,并且完成了差分法中不同网格划分下的差分方程化为矩阵形式后的求解过程。除此之外,还学会了使用ABAQUS 创建板并定义厚度以减少同等情况下创建实体添加边界条件不准确对计算结果产生的影响。尽管和差分法与精确解的误差分析相比,误差还是比较大,但相比于创建三维实体并在底边添加约束条件相比,误差还是减少了很多。 在计算过程中,先是采用厚度0.2m 薄板,有限元方法的误差过大,而当把薄板的厚度改为0.1m 时,误差变小。两种厚度的薄板都进行了同样的计算。 四边简支的薄板在均布载荷作用下位移的最大值,薄板的尺寸为长宽高: 110.1??,均布载荷为21000/q N m =,弹性模量E=205GPa ,泊松比=0.3μ, 分别用:纳维法、差分法以及有限元方法进行求解并比较求得的结果。 得到结果如下:

有限元4-薄板弯曲问题

第4章 弹性薄板弯曲问题的有限元法 薄板弯曲问题在理论上和应用上都具有重要意义,并有专门著作加以论述(如耀乾《平板理论》)。象其它弹性力学问题一样,用微分方程、差分法等经典方法所能求解的薄板问题很有限,一般只能解决等厚、小孔口、支承情况较简单的单跨板。故工程设计中以往多采用简化、近似、图表等方法来解决板的设计问题。 在板的分析中,常取板的中面为xoy 平面(如图)。平板结构按其厚度t 与短边a 的比值大小而分为: 厚板(Thick plate )和 薄板(Thin plate)两种。 当1<t w 为绝对柔性板。) 4.1 基本理论 一、基本假定 1、略去垂直于中面的法向应力。(0=z σ),即以中面上沿Z 方向的挠度W 代表板的挠度) 2、变形前垂直中面的任意直线,变形后仍保持为垂直中面的直线。(─法向假定 0=zx τ,0=zy τ) 3、板弯曲时,中面不产生应力。(─中面中性层假定) 上述假定常称为薄板小挠度问题假定(or 柯克霍夫假定)。符合上述假定的平板即为刚性板。 二、基本方法

有限元薄板弯曲问题分析

第4章 弹性薄板弯曲问题的有限元法 薄板弯曲问题在理论上和应用上都具有重要意义,并有专门著作加以论述(如杨耀乾《平板理论》)。象其它弹性力学问题一样,用微分方程、差分法等经典方法所能求解的薄板问题很有限,一般只能解决等厚、小孔口、支承情况较简单的单跨板。故工程设计中以往多采用简化、近似、图表等方法来解决板的设计问题。 在板的分析中,常取板的中面为xoy 平面(如图)。平板结构按其厚度t 与短边a 的比值大小而分为: 厚板(Thick plate )和 薄板(Thin plate)两种。 当1<t w 为绝对柔性板。) 4.1 基本理论 一、基本假定 1、略去垂直于中面的法向应力。(0=z σ),即以中面上沿Z 方向的挠度W 代表板的挠度) 2、变形前垂直中面的任意直线,变形后仍保持为垂直中面的直线。(─法向假定 0=zx τ,0=zy τ) 3、板弯曲时,中面不产生应力。(─中面中性层假定) 上述假定常称为薄板小挠度问题假定(or 柯克霍夫假定)。符合上述假定的平板即为刚性板。 二、基本方法

第9章 弯曲应力与弯曲变形综述

Engineering Mechanics (第3版) 普通高等教育“十一五”国家级规划教材 高等教育出版社

第9章弯曲应力与弯曲变形 9.1 纯弯曲时梁横截面上的正应力 9.2 横力弯曲时梁横截面上的正应力 9.3 弯曲切应力简介 9.4 弯曲变形的概念 9.5 梁的挠曲线近似微分方程 9.6 用积分法求弯曲变形 9.7 用叠加法求弯曲变形 9.8 梁的刚度校核 9.9 提高梁强度和刚度的措施 小结 思考题

第9章 弯 曲 应 力 与 弯 曲 变 形 9.1 纯弯曲时梁横截面上的正应力 9.1.1 梁的纯弯曲 前一章讨论了梁弯曲时梁横截面上的内力——剪力和弯矩。但要解决梁的强度问题,必须进一步了解横截面上应力的分布规律。剪力和弯矩是横截面上分布内力的 合成结果。切应力对应的内力为剪力,正应力对应的内力为弯矩。 梁(或某段梁)的各个横截面上仅有弯矩而无剪力,从而仅有正应力而无切应力的弯曲,称为纯弯曲。而横截面上同时存在弯矩和剪力,即既有正应力又有切应力的弯曲称为横力弯曲或剪切弯曲。 例如,图9 - 1a 所示简支梁。由图可知梁的CD 段为纯弯曲,AC 和DB 段为横力弯曲。 图9 – 1 y a a F F B x z A C (a) D x F S F F (c) a a F F B C D (b) A F A F B (d) Fa M x

9.1.2 纯弯曲时梁横截面上的正应力 研究纯弯曲时梁横截面上的正应力,需从几何、物理和静力关系等三方面考虑。 由以上试验结果可作如下假设:原为平面的横截面变形后仍保持为平面,且仍垂直于变形后梁的轴线,只是绕横截面内某一轴旋转一角度。这就是弯曲变形的平面假设。 1. 变形几何关系 取截面具有纵向对称轴(例如矩形截面)的等直梁,在其侧面画两条横向直线mm 及nn ,并在横向线间靠近顶面和底面画两条纵向线段aa 与 bb (图9 – 2a )。然后在梁的纵向对称面内两端施加一对等值、 反向的力偶,作梁的纯弯曲变形试验(图9 – 2b )。 a a b b m m n n (a) (b) m m n n y ρ M e M e O' O' b' b' a' a' d θy y z b' 中性轴 中性层 对称轴 (c) 图9 – 2 b' a a '' b b ''可观察到: (1)横向直线变形后仍为直线,且仍然垂直于已经变成弧线的 和 ,只是相对旋转了一个角度。 (2)靠近顶面的纵向线段aa 缩短,靠近底面的纵向线段bb 伸长。

第二章弹性力学基础(推荐文档)

第二章弹性力学基础 弹性力学又称弹性理论,它是固体力学的一个分支。弹性力学任务是确定结构或机械零件在外载荷作用或温度改变等原因而发生的应力、位移和应变。 弹性力学与材料力学总的任务是相同的,但弹性力学研究的问题比材料力学要更加深刻和精确,并研究材料力学所不能解决的一些问题。 材料力学-----研究杆状构件(长度>>高度和宽度)在拉压、剪切、弯曲、扭转作用下的应力和位移。 弹性力学-----研究板壳、挡土墙、堤坝、地基等实体结构。对杆状构件作较精确的分析,也需用弹性力学。 结构力学-----研究杆状构件所组成的结构。例如桁架、刚架。

第一节弹性力学假设 在弹性力学中,所研究的问题主要是理想弹性体的线性问题,所谓理想弹性体的线性问题,是指符合以下假定的物体。 1. 假设物体是线弹性的 假定物体服从虎克定律,即应变与引起该应变的应力成正比,反映这一比例关系的常数,就是弹性常数。即该比例关系不随应力、应变的大小和符号而变。 由材料力学已知: 脆性材料的物体:在应力≤比例极限以前,可作为近似的完全弹性体; 韧性(塑性)材料的物体:在应力<屈服极限以前,可作为近似的完全弹性体。 这个假定,使得物体在任意瞬时的应变将完全取决于该瞬时物体所受到的外力或温度变化等因素,而与加载的历史和加载顺序无关。 2. 假设物体是连续性的 假设整个物体的体积都被该物体介质完全充满,不留下任何空隙。有了这一假定决定了应力、应变、位移是连续的,可用坐标的连续函数来表示他们的变化规律。 注:实际上,一切物体都是由微粒组成的,都不能符合该假定。但是由于物体粒子的尺寸以及相邻粒子间的距离,

都比物体自己本身的尺寸小得很多,因此连续性假设不会引起显着的误差。 3. 假设物体是均匀性、各向同性的 整个物体是由同一材料组成的。这样整个物体的所有各部分才具有相同的弹性,因而物体的弹性常数不随坐标而变化,可以取出该物体的任意一小部分来加以分析,然后把分析所得结果应用于整个物体。 各向同性是指物体内一点的弹性在所的各个方向上都是相同的,故物体的弹性常数不随方向而变化。 对于非晶体材料,是完全符合这一假定。而由木材,竹材等做成的构件,就不能作为各向同性体来研究;钢材构件基本上是各向同性的。 弹性常数? 凡是符合以上三个假定的物体,就称为理想弹性体。 4. 假设物体的位移和应变是微小的 假定物体在载荷或温度变化等外界因素的作用下所产生的位移远小于物体原来的尺寸,应变分量和转角都远小于1。 因此 ①在建立物体变形以后的平衡方程时,可用变形前的尺寸代替变形后的尺寸,而不至于引起显著的误差。

61弹性力学-徐思朋

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 弹性力学是土木工程专业限定选修的一门专业提高课。它是为学生在理论力学、材料力学的基础上进一步学习变形体力学的基本概念及关于非杆件结构的基本研究方法而设置的专业理论课。本课程的任务是使学生在理论力学和材料力学等课程的基础上进一步掌握弹性力学的基本概念、基本原理和基本方法,了解弹性体简单的计算方法和有关解答,提高分析与计算的能力,为学习混凝土结构、钢结构和有限单元法等有关专业课程打下初步的弹性力学基础。 2.设计思路: 弹性力学是土木工程专业的专业基础课。本课程注重引导学生对弹性力学基本概念的理解和把握,培养学生严谨的科学思维习惯和从实际出发解决工程实际问题的能力。本课程以基本概念和基本理论为主,主要研究弹性体在外力等因素作用下而产生的应力、形变和位移。 本课程的课堂教学主要以黑板板书为主、多媒体教学为辅。作业及习题,主要以课堂思考为主,启发学生的思维能力及综合运用知识的能力;另外可设置4~6次的课后 - 5 -

作业量,巩固课堂教学成果。 3. 课程与其他课程的关系 与本课程联系较密切的先修课程有:高等数学、理论力学、材料力学。后置课程有:钢筋混凝土结构,有限单元法等。在学习本课程钱,学生必须具备高等数学、理论力学和材料力学等课程的基本知识。本课程为专业基础课,为学习后继专业课程提供必要的理论基础。 二、课程目标 本课程的目标是使学生进一步系统地学习变形体力学的基本概念和研究方法,加深学生的力学理论基础,培养学生的力学分析和计算的能力,为学习专业课程打下良好的理论基础,并为毕业后进行设计和科研工作提供一定的基本知识。 学生通过本课程的学习,在知识层面应达到以下具体要求: (1)深刻理解体力、面力、应力、应变、位移等基本概念,熟悉它们的记号、正负号等规定。正确区分平面应力问题和平面应变问题。 (2)掌握平面问题基本方程的推导。掌握按位移求解和按应力求解的方法。 (3)能够分清边界的主次并正确应用圣维南原理,从而能正确地写出边界条件。 (4)掌握应力函数在求解平面问题中的应用,了解几个典型解答的求解过程。 (5)了解空间问题的基本理论。 (6)基本掌握薄板横截面上内力分析的步骤。 三、学习要求 要完成所有的课程任务,学生必须: (1)按时上课,上课认真听讲,积极参与课堂讨论、随堂练习和测试。本课程将包含较多的随堂练习、讨论、小组作业展示等课堂活动,课堂表现和出勤率是成绩考核 - 5 -

弹性力学

《弹性力学》考试大纲 课程名称:《弹性力学》 适用专业:岩土工程 参考书目: 徐芝伦,《弹性力学简明教程》十五国家级规划教材,高教出版社,2002年版 或陆明万、罗学富,《弹性理论基础》(上册),清华大学出版社,2001年版考试内容要求: 1.绪论 了解弹性力学的性质、任务,掌握弹性力学中的基本假设及简化模型。 2.两类平面问题 能够推导平衡微分方程,掌握平面问题中的一点应力状态,几何方程、物理方程、刚体位移计算,边界条件处理,正确使用圣维南原理,能够用平面问题的位移法和应力法解决简单的弹性力学问题,相容方程的推导、常体力简化、应力函数 3.平面问题的直角坐标解答 会应用逆解法、半逆解法解决问题,掌握多项式解答、矩形深梁弯曲,位移分量求解方法,能够计算简支梁、楔形体受重力和液体压力下的应力分布 4.平面问题极坐标解答 掌握极坐标下的平衡方程、几何方程、物理方程,掌握应力分量的坐标转换,能够计算轴对称问题的应力和位移,对均布载荷圆环圆筒进行应力分析,计算压力燧道、圆孔应力集中、半平面体受力分析问题 5.差分法和变分法求解平面问题 掌握差分法介绍,能够进行应力函数差分解,能够推导弹性体的应变势能和外力势能,使用位移变分方程、位移变分法解决简单问题 6.有限元法解决平面问题 掌握基本量和基本方程的位移表示、理解有限元法基本思想,能够建立位移模式和分析收敛性收敛性,熟练建立单元应变应力列阵、节点力和刚度矩阵,节点载荷移置、节点载荷列阵,能够进行整体分析并对计算结果整理 7.薄板弯曲问题 了解薄板弯曲的概念和计算假定,能够建立弹性曲面微分方程,能够计算弹性薄板横截面内力,能够处理边界条件和等效剪力,能够使用重三角级数解法、单三角级数解法求解四边简支矩形薄板,能够解决圆形薄板的弯曲,圆形薄板的轴对成弯曲问题试题一般类型:计算题,分析证明题

薄板弯曲问题的有限元分析

变分原理与有限元素法课程报告 报告名称:薄板弯曲问题的有限元分析 姓名: 学号: 导师: 专业: 2015.5.15

目录 1.问题描述 (3) 2.理论基础 (3) 2.1矩形薄板弯曲单元 (3) 2.1.1挠度函数 (3) 2.1.2单元刚度矩阵 (5) 2.2四边简支矩形板的纳维叶解法 (5) 3.有限元模型 (6) 4.结果与分析 (7) 4.1均布载荷作用下四边简支板 (7) 4.2集中载荷作用下四边简支板 (8) 4.2均布载荷作用下四边固支板 (9) 4.2集中载荷作用下四边固支板 (10) 4.5总结 (11)

1.问题描述 一块方板,边长为L,厚度为t( 5 1 /801≤≤t L ) ,材料为铝,分别用不同密度的四节点12个自由度的矩形单元来划分网格。 要求:考虑四边简支和四边固支两种边界情况,分别计算受均匀载荷q 和在板中心处受集中载荷P 两种载荷情况下,板的中心挠度max ω(不超过板厚t 的1/5),进而计算出不同情况下的方板的中心挠度系数;将计算出的系数与精确解进行比较,通过比较发现不同有限元网格密度对薄板弯曲问题计算结果的影响。 本例中,方板边长L=40mm,厚度t=1mm,铝的弹性模量E=70GPa,泊松比 3.0=μ,粗略计算当q=0.1MPa 或者P=50N 时,板中心挠度小于板厚的1/5,属 于小挠度弯曲,因此载荷可取这两个值。 2.理论基础 2.1矩形薄板弯曲单元2.1.1挠度函数 薄板弯曲单元中比较简单的是四节点12个自由度的矩形单元,将矩形薄板沿坐标方向划分为若干矩形单元,如图1所示,每个单元设有四个节点,每个节点位移有三个分量:挠度w,绕x 轴的转角y w x ??=/θ,绕y 轴的转角x w y ?-?=/θ,即 )4,3,2,1()/()/(}{=? ???????????-??=?? ?????? ??=i x w y w w w i i i yi xi i i ??δ图1

相关主题
文本预览
相关文档 最新文档