当前位置:文档之家› 数学思想方法在生活中的运用

数学思想方法在生活中的运用

数学思想方法在生活中的运用
数学思想方法在生活中的运用

数学思想方法在生活中的运用摘要:现阶段的数学学习过程中,正不断的从多元化角度来开展,尤其是在数学思想方法方面,不能总是局限在理论层面上,应坚持加强在生活中的应用,开展这样学习方式的好处在于,能够促进学生的知识能力以及个人素养的提升,为学生以后学习奠定坚实的基础。相对而言,数学思想方法在生活中的应用,不能总是按照老旧的模式来开展,应不断得开阔综合应用,促使数学思想方法在生活中更好的展示出来,而后才能得到良好的指引。文章针对数学思想方法在生活中的应用展开讨论,并提出合理化建议。

关键词:数学思想;方法;生活;应用

与既往学习有所不同,现如今的学习创新力度正在不断的提升,通过对数学思想方法在生活中有效的应用,可以最大限度的开阔学生的思维。从长远的角度来分析,数学思想方法的转变,已经成为了必然的趋势,固有的一些学习模式,或者是应用方法,偏向于老旧的模式,造成思维受限,无法提升学生的生活能力。所以,应加强数学思想方法的合理拓展,加强在生活中的有效应用。

一、数学思想方法的特点

首先,数学思想方法的研究和实践,是前人不断积累的结果。例如,数学思想方法的几何知识应用,充分证明了三角形才是最稳定的图形,这对于很多的生活内容与工作内容,都具有良好的推动作用,对于生活中的数学而言,必须在日后更好的展现。其次,数学思想方法的研究过程中,会与生活的不同内容来进行良好的结合,确保数学

思想方法的实用性得到良好的提升。第三,数学思想方法的内容较为丰富。现阶段的很多学生对于自身的生活都在高度关注,他们希望在生活的质量上更好的提升。利用数学思想方法来解决生活的问题,能够获得较为充足的依据,对于学生产生的指导效果较为显著。但是,数学思想方法的应用,学生必须不断的去学习和总结,从而在生活经验上持续性的增加。

二、数学思想方法在生活中的应用

(一)化繁为简的方法

例如,学生在上学、放学的路线选择上,可以根据“两点之间、线段最短”的原则来选择,一方面可以减少弯路,另一方面还能够对数学思想方法的具体实践,达到深有感悟的效果,从而在今后的学习和进步中,不断的取得更好的成效。化繁为简的思想,在于通过生活上的实践来完成,帮助学生对于数学思想方法,能够拥有正确的认知,在日后的成长、进步过程中,不断的获得更好的成就。从这一点来看,化繁为简的方法应用,能够帮助学生在自身的生活方面,对于一些难以解答的问题,做出更好的分类处理,从细节上出发,从而在生活问题的解决过程中,不断的取得更好的成绩。

(二)分类的方法

例如,学生在日常生活当中,对于不同的时间安排,都要拥有明确的内容、明确的努力,从清晨起床、到夜晚睡眠,都必须控制好时间,这样才能减少浪费的现象。另一方面,在日常的知识学习过程中,要对于课堂上的学习、笔记,课下的复习,以及考前的预习等,都做

出充分的准备,结合自身的生活需求来完成,从而减少过于效仿他人的情况。分类方法是数学思想方法的重要组成部分,能够促使生活表现的更加规律。相对而言,分类方法是数学思想方法的重要组成部分,同时在学生生活的应用过程中,能够让学生结合自己的生活特点、生活内容来应用。对于分类方法做出良好的运用后,很多学生的日常生活、学习,都表现为规律化的特点,在固有的不规律问题,或者是懒惰问题的解决上,都可以取得不错的效果,有利于学生的生活水平提升。

(三)统一的方法

从数学思想方法本身而言,自身所包含的内容是比较多的,统一的方法应用,能够对生活的进步,产生更好的推动作用。例如,每一个学期的数学知识学习,都需要通过大型的考试来完成,由此来验证学生是否获得良好的进步,是否能够在思维上不断的改善。同样的,学生在日常的生活当中,每一个月的学习目标,或者是生活目标,以及每一个学期的目标,都应该做出统一设定、规划,不断的朝着自己的奋斗目标来开展学习、锻炼,不能总是出现拖沓、懒惰的现象。值得注意的是,在统一方法的应用过程中,必须让学生对自己的生活拥有明确的认知。

(四)总结的方法

对于数学思想方法而言,其是一个不断积累、不断推陈出新的过程,现阶段所得到的所有数学知识,都经过大量的推敲以后的结果,而且在数学界内的很多知识,还在不断的去验证和改善。所以,学生

的日常生活中,必须借用数学思想方法,来对自己做出正确的总结,分析现有的问题,并且寻找到正确的解决方法。例如,学生的学习成绩较差的情况下,应坚持在成绩较差的原因上有效分析,观察学习习惯、学习方法、学习手段等方面的缺失和漏洞,而后按照逐步改善的原则,对于自身的不足更好的解决,从而不断的取得更好的学习成绩,巩固自身的综合成绩。由此可见,数学思想方法在生活中的应用,可以对学生产生较多的帮助。

三、数学思想方法的应用要点

从主观的角度来分析,数学思想方法在生活中的应用,的确可以提供较多的帮助和指导,但是考虑到今后的学习挑战和学生成长,还有很多的问题需要面对,在数学思想方法的应用过程中,可以适当的通过小组形式来完成,减少过大的生活压力、学习压力。另一方面,数学思想方法的应用过程中,必须做出阶段性的灵活调节,单纯按照生硬的应用模式来开展,很容易导致日后的成长、进步,出现较为严重的阻碍现象,这对于未来的成就提升,同样会产生非常不好的影响。所以,我们在数学思想方法的生活应用中,需要适当正确分析和判断,减少错误的应用模式。

四、总结

通过在生活中有效应用数学思想方法,能够在很大程度上,提高学生的自身素养和思维能力,并且在动手锻炼方面,也提供了较好的指引。日后,应继续在数学思想方法的应用上,尽量按照多元化的方式来完成,减少生活当中的不足,在挑战的应对过程中,不断的获得

更好的成就。相信在数学思想方法的应用中,可以获得更加丰富的成果。

参考文献:

[1]其其格玛.数学思想方法在小学数学教学中的作用分析[J].中国高新区,2018(09):112.

[2]张衡博.数学思想方法在生活中的应用[J].中国高新区,2018(06):98.

[3]祖晓丽.浅析高中数学函数教学对数学思想方法的渗透[J].中国校外教育,2017(26):76-77.

作者:冯于栖单位:成都棠湖外国语学校

论文:数学思想方法

数学思想方法 河南省虞城县李老家乡第二初级中学;高华增数学思想方法一般是指人们在数学的发生、形成、发展过程中总结概括出来的数学规律的本质认识,是利用数学知识去解决问题的思维策略和指导思想,它为数学知识的学习和运用提供了方向,是解决数学问题的“向导”,数学思想的产生并作用于数学学习的整个过程中,尤其是在解决复杂的综合题时,数学思想的合理运用起着关键性的决定作用,数学思想方法是数学思想的具体体现,不仅是学习和运用数学知识的解决数学问题应具备的、最基本的思想方法.而且是新课标改革的方向和中考试题解题特征 常见的数学思想方法有:化归思想方法、数形结合思想方法、分类讨论思想方法、数学建模思想方法、方程思想方法、函数思想方法、整体思想方法,对此类问题的突破,方法具体如下: 类型一:化归思想方法:重难点突破:解决问题的基本思想就是化未知为已知,把复杂的问题简单化,把生疏的问题熟悉化,把实际问题数学化,不同的数学问题相互转化,也体现了把不易解决的问题转化为有章可循,容易解决的问题的思想

【例1】 如下图中每个阴影部分是以多边形各顶点为圆心,1为半径 的扇形,并且所有多边形的每条边都大于2,则第n 个多边形中,所有扇形面积之和是______.(结果保留π) 分析:本题考察了扇形面积和n 边形内角和公式,解题关键是:是求第n 个图形中(n +2)个半径为1的扇形的面积之和 解析:[]ππ2n 1802-2)(n 3601S 2 =?+?=,答案;π2 n

类型二:数形结合: 重难点突破: 根据数学问题的题设和结论之间的内在联系,分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙结合,充分利用这种结合探究解题思路,使问题得以解决; 【例2】(09重庆)如图,在矩形ABCD 中,A B =2,BC =1,动点P 从点B 出发,沿路线B →C →D 作匀速运动,那么△ABP 的面积S 与点P 运动的路程x 之间的函数图象大致是 ( ) 分析:本题考查点是运动变化为前提,根据几何图形的面积变化特征,通过分段讨论,确立相应函数关系,进而确定函数图象,这是一道典型的数形结合与分类讨论的综合题,是这几年中招试题常见题型,解题关键是能否充分利用分类的讨论思想,难点是能否把所有情况分别讨论,很多同学因考虑不全而丢分. 解析:当点P 在BC 上时,即0<x ≤1时 x x 2PB AB S 2121PAB =??=?=? 当点P 在CD 上时,即1<x ≤3时

数学知识在生活中的运用

数学知识在生活中的运用 随着课程改革的深入,给教育工作者带来了更多的思考空间。在小学数学教学中,要求教师要认真做好生活实际化的教学,正如《义务教育数学课程标准(实验稿)》所提及的,“数学教学是数学活动的教学,教师应紧密联系学生周围的实际生活环境,从学生已有的生活经验出发,创设生动的数学情景……”这就要求学生在实际生活的情境中体验数学问题,主要让学生自觉地把所学到的数学知识应用到生活实际当中去,也就是说,让学生把数学知识生活化,才能更好地提高学生的数学素养。 笔者从事小学教育多年,一直从事数学课堂的教学活动,针对学生学习数学的实际情况。我认为数学生活化的教学,有利于学生理论联系实际,其作用如下: 一、情景的再现有利于激发学生学习数学的兴趣 俗话说:“兴趣是最好的老师。”的确,兴趣是学生学习的动力与源泉。而数学学习是抽象化的思维,单纯的理论知识可能少部分人会接受,这样就不利于学生学习兴趣的培养。课堂效率也就会提高得很慢。而通过生活化的教学,教师随时会把身边常见的事物引入到课堂中,学生应用自己的生活经验,可以体验到数学公式与定理的新奇与奥秘。会

使课堂效率事半功倍,但要注意,对于小学生而言,能简单的尽量简单化,以免超出学生的思维范围,使得知识掌握得不理想。 二、生活化的教学对于学生创新能力的培养有很好的推动作用 以往的“填鸭式”教学,只是教师的主动教与学生的被动学。而“生活化”的数学教学则更注重学生的自主、合作、探究的学习模式,注重培养学生的创新意识,动手能力。例如,在教学“圆柱表面积”这一部分内容时,对于无盖现象,学生容易混淆,但是如果让学生动手实践,想象一下,生活中的水桶等物体就很容易解决此类问题,而且通过学习,学生既获得了知识又能独立思考,进而体验到了学习的乐趣,提高了创新能力。 既然“生活化”的教学,能把所学知识与生活实际有机地结合起来,拓宽了学生分析问题和解决问题的能力,并逐步达到了“学数学,用数学”的目的,那么,我们又该怎样进行“生活化”的教学呢? 1.让生活情境走入数学课堂 教学中,积极创设与学生生活贴近的生活情境,这样的导入,让学生感受到数学的神奇,仿佛数学时刻就在我们身边。就如同我们的影子一样,比如,教学“分数的意义”这一部分内容时,对“一家三口人一起吃西瓜,谁吃得多,

初中数学思想方法主要有哪些

一、用字母表示数的思想,这是基本的数学思想之一 在代数第一册第一章“代数初步知识”中,主要体现了这种思想。例如: 设甲数为a,乙数为b,用代数式表示:(1)甲乙两数的和的2倍:2(a+b) (2)甲数的1/3与乙数的1/2差:1/3a-1/2b 二、数形结合的思想 “数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。实中数学教材中下列内容体现了这种思想。 1、数轴上的点与实数的一一对应的关系。 2、平面上的点与有序实数对的一一对应的关系。 3、函数式与图像之间的关系。 4、线段(角)的和、差、倍、分等问题,充分利用数来反映形。 5、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。 6、“圆”这一章中,贺的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。 7、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。实际上就是通过“形”来反映数据扮布情况,发展趋势等。实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。 三、转化思想 在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,它是数学基本思想方法之一。下列内容体现了这种思想: 1、分式方程的求解是分式方程转化为前面学过的一元二次方程求解,这里把待解决的新问题化为已解决的问题来求解,体现了转化思想。 2、解直角三角形;把非直角三形问题化为直角三角形问题;把实际问题转化为数学问题。 3、“圆”这一章中,证明圆周角定理进所做的分析:证明弦切角定理的思路:求两圆的切线长的问题。这些转化都是通过辅助线来完成的。 4、把三角形或多边形中的某种线段或面积问题化为相似比问题来解决。 四、分类思想 集合的分类,有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关生活经验等都是通过分类讨论的。 五、特殊与一般化思想

整体的思想方法

整体的思想方法 一、知识要点概述 解数学题时,人们往往习惯于从问题的局部出发,将问题分解成若干个简单的子问题,然后再各个击破、分而治之.但思考方法并非对所有题目都适用,它常常导致某些题解题过程繁杂、运算量大,甚至半途而废.其实,有很多数学问题,如果我们有意识地放大考察问题的“视角”,往往能发现问题中隐含的某个“整体”,利用这个“整体”对问题实施调节与转化,常常能使问题快速获解.一般地,我们把这种从整体观点出发,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题思想方法,称为整体思想方法. 在数学思想中整体思想是最基本、最常用的数学思想。它是通过研究问题的整体形式、整体结构,并对其进行调节和转化使问题获解的一种方法.简单地说就是从整体去观察、认识问题、从而解决问题的思想。运用整体思想,可以理清数学学习中的思维鄣碍,可以使繁难的问题得到巧妙的解决。它是数学解题中一个极其重要而有效的策略,是提高解题速度的有效途径。 高考中,整体思想方法是一个重点考查对象,在选择题、填空题、解答题中都有不同层次的渗透。 二、解题方法指导 1.运用整体的思想方法解题,要有强烈的整体意识,要认真分析问题的条件或结论的表达形式、内部结构特征,不拘泥于常规,不着眼于问题的各个组成部分,从整体上观察,从整体上分析,从整体结构及原有问题的改造、转化入手,寻找解题的途径。 2.运用整体的思想方法解题,在思维方向上,既有正向的,也有逆向的;在思维形态上,既有集中的,也有发散的,既有直观的,也有抽象的。 3.运用整体的思想方法解题,常与换元法结合起来,对题目进行整体观察、整体变形、整体配对、整体换元、整体代入,在运用整体的思想进行转化问题时一定要注意等价性。 三、整体的思想方法主要表现形式 1、整体补形 【例1】甲烷分子(CH4)由一个碳原子和四个氢原子组成,其空间构型为一个各条棱都相等的四面体,其中四个氢原子分别位于该四面体的四个顶点上,碳原子位于该四面体的中心,它与每个氢原子的距离都相等.若视氢原子、碳原子为一个点,四面体的棱长为a,求碳原子到各个氢原子的距离. 思路:透过局部→整体补形→构建方程

感受数学在日常生活中的作用

20世纪中叶以来,数学自身发生了巨大的变化。一方面,数学因其日益公理化、形式化而忽视与现实生活的密切联系。另一方面,因数学应用的发展,数学几乎渗透到每一个学科领域及人们生活的方方面面。割断数学与现实生活的联系的教学内容、教学方式,不仅会极大地降低学生数学学习的热情与动力,而且会造成学生对数学学科的错误理解,更无法让学生感受到数学在日常生活中的作用。因此,必须沟通生活中的数学与教科书上的数学之间的联系,使数学与生活融为一体。 数学可以帮助人们对日常生活中大量纷繁复杂的信息作出恰当的选择与判断,为人们在日常生活中交流信息提供一种简捷、有效地手段,数学的思想、方法、技术是人们解决实际问题的有力工具。《数学课程标准》在“总体目标”中明确提出:“通过义务教育阶段的数学学习,使学生能够体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。”并在“学段目标”中指出:使学生“了解可以用数和形来描述某些现象。认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。”在实际教学中,如何使学生感受到数学在日常生活中的这些作用呢?我们应主要做好以下三个方面的工作: 1、把学生的现实生活作为数学教学的课程资源加以开发和利用。联系学生的现实生活,激活学生的生活经验,让学生在广泛的现实背景下进行数学学习活动,感受、体验数学与日常生活的密切联系。 2、从现实生活中产生数学问题,借助学生的生活经验和已有知识,让学生自主建构对数学知识的理解,有效引导学生经历“数学化”的过程,感受、体验数学来源于生活,提炼于生活。 3、引导学生把所学的数学知识应用到现实生活中去,解决身边的数学问题,感受、体验数学应用于生活,服务于生活。 【教学片断】 片断一:《最小公倍数》教学片断 情境创设:陈飞的爸爸是一名火车司机,每工作3天后休息1天。妈妈是一名飞机乘务员,每工作2天后休息1天。有一位远方的朋友,想趁他们一起休息的日子去看望他们,如果陈飞的爸爸、妈妈在9月1日同时开始工作,那么在这个月里,这位朋友可以选哪些日子去呢?师:可以用什么办法找出陈飞的爸爸、妈妈一起休息的日子? 生:可以在九月份的日历上去找。 师:怎样找? 生:先在日历上找出陈飞爸爸的休息日,再找出他妈妈的休息日,最后再看看哪些天是他们一起的休息日。 师:请你们拿出九月份的日历,用△标出陈飞爸爸的休息日,用○标出陈飞妈妈的休息日,再看看哪些天是他们一起休息的日子。 (学生兴趣盎然地投入到“找共同休息日”的活动中,找到答案的同学,脸上流露着成功的喜悦) 教师根据学生的回答,逐步完成如下板书: 爸爸的休息日:4、8、12、16、20、24、28 妈妈的休息日:3、6、9、12、15、18、21、24、27、30 共同的休息日:12、24 其中最早的共同休息日:12 ……

初中数学中的主要数学思想方法

初中数学中的主要数学思想方法 初中数学中蕴含的数学思想很多,其中最主要的数学思想方法包括转化思想、数形结合思想、分类讨论思想、函数与方程思想等. (1) 转化思想.转化思想就是人们将需要解决的问题,通过演绎、归纳等转化手段,归结为另一种相对容 易解决或已经有解决方法的问题,从而使原来的问题得到解决.转化思想体现在数学解题过程中就是将未知的、 陌生的、复杂的问题通过演绎和归纳转化为已知的、熟悉的、简单的问题. 初中数学中诸如化繁为简、化难为易、化未知为已知等均是转化思想的具体体现.具体而言,代数式中加法与减法的转化,乘法与除法的转化,用换元法解方程,在几何中添加辅助线,将四边形的问题转化为三角形 的问题,将一些角转化为圆周角并利用圆的知识解决问题等等都体现了转化思想.在初中数学中,转化思想运用 的最为广泛.

(2) 数形结合思想.数学是研究现实世界空间形式和数量关系的科学,因而,在某种程度上可以说数学研究 是围绕着数与形展开的.初中数学中的“数”就是代数式、方程、函数、不等式等符号表达式,初中数学中的“形”就是图形、图象、曲线等形象表达式.数形结合思想的实质是将抽象的数学语言(“数” ) 与直观的图象(“形“ ) 结合起来,数形结合思想的关键就是抓住“数”与“形”之间本质上的联系,以“形”直观地表达“数”, 以“数”精确地研究“形”,实现代数与几何之间的相互转化.数形结合思想包括“以形助数”和“以数辅形” 两个方面,它可以使代数问题几何化,几何问题代数化.“数无形时不直观,形无数时难入微.”数形结合是研究数学、解决数学问题的重要思想,在初中数学中有着广泛应用. 譬如,在初中数学中,通过数轴将数与点对应,通过直角坐标系将函数与图象对应均体现了数形结合思想的 应用.再比如,用数形结合的思想学习相反数、绝对值等概念,学习有理数大小比较的法则,研究函数的性质等,从形象思维过渡到抽象思维,从而显著降低了学习难度. (3) 分类讨论思想.分类讨论思想就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同的 种类.分类是以比较为基础的,它有助于揭示数学对象之间的内在联系与规律,有助于学生总结归纳数学知识、

案例分析:现实数学观与生活数学观[1]

案例分析:现实数学观与生活数学观 课题:平均数 课时:一课时 材料准备:教师的讲台上有一个“工具箱”,里面预先准备了一些粉笔头、一些碎纸、一些纱线,一些正方体的小积木,而学生则准备有铅笔盒、记录本等。 临床描述 在本节课的一开始,教师就先向学生呈现了一段录像,在录像中描述了这样一段情节(简述): 在一个幼儿园的某一个教室里,十几个幼儿正围坐在一起,玩着“搭纸”游戏。这时,一位女教师手捧一个纸盒走进来,从镜头中可以看到,里面有许多有着漂亮包装的糖果。教师将这个纸盒放在学生前面的一个小桌上(类似于教师的讲台),又匆匆出去了。 小朋友们开始好像并没有太多的注意,老师拿了什么进来,又为什么要出去。但是,因为这位老师好久没有进来,小朋友们就开始有些奇怪了。先是窃窃私语,然后是出声的争论。这时可以听到他们议论最多的是,盒子里面究竟是什么。再后,有一个小朋友大着胆子走上前,看到了纸盒里是好多的糖果,大为兴奋,挥着小手大声地告诉大家。于是,小朋友纷纷上前探个究竟。开始是二、三个,然后就有许多小朋友上来看。 瞧这些小朋友,有些兴奋和骚动。还有几个小朋友的小手开始不停地动着,而且头不断地向前张望着。 终于,一个小朋友忍不住悄悄上来,在纸盒前驻足片刻,拿了一颗糖果。于是,又有几个小朋友开始学样,上来向纸盒伸手,但并未看清他们都拿了多少糖果。再后,就是所有小朋友都一拥而上,纷纷伸手去抓糖果。 这下可好,那些小朋友坐的、站的都有;有的在将糖果往自己的小口袋放,有的在向别人要糖果,有的则在哭, ……。 此时,教师进来了,看到小朋友们乱作一团的场景,再看纸盒,里面早已空了,就知道是怎么回事了。 教师免不了要向幼儿做一番教育。然后问了他们几个问题:你们想过没有,为什么有的小朋友很高兴,有的小朋友很不高兴?应该怎样做,才能使大家都高兴?接下来你们应该怎么做?想一想,然后老师可能会怎么做?(录像结束) 接着,教师边播放第二遍录像,边让全班学生思考幼儿园老师的问题。提出,可以每四个同学组成一组进行讨论,并利用自己的学习用品来模拟刚才幼儿园小朋友的行为过程,提出自己想要弄懂的问题。 于是,学生有的用画线段图的方式,有的用用摆小物品(如一些长短不一的细绳)的方式,也有的利用教师预先给出的正方体小积木,纷纷根据教师提出的问题,去尝试解决的方法。 可以看到,有一个小组先是将一堆小积木分成多少不一的几堆,然后是试着将多的积木往少的地方放。可能是由于积木的块数不巧,加上多少相差太大,所以,四个人边动手,边争论,最终也没有获得成功。突然,其中一个学生提出,为什么不将这些积木先全部集中起来,然后来重新分呢?这次,小组获得了成功,他们先将不同块数的几堆积木堆在了一起,然后像“发牌”一样,每次一块,一次发给每一堆。 这时,教师正好在巡视中走了过来,她向小组的同学提了一个问题:想想看,还有什么办法能更快的解决问题呢?于是,小组又展开了讨论。新的方法出现了,就是先数出积木的总数目,然后数一数要放几堆,用除法一算,就知道每一堆应该有几块,这样,只要直接将积木一次发给每一堆就可以了。

数学思想方法的应用

数学思想方法的应用 徐英 数学思想是解决数学问题的灵魂,在初中数学中蕴含着丰富的数学思想方法.需要我们去挖掘并实施于解题过程. 数形结合思想指把数量和图形结合起来进行综合分析解决问题的一种数学思想方法.在解决数学问题时,我们可以把代数知识应用到解决几何问题中,也可以用图形来解决代数问题, 例1如图1(单位:m ),等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重合.设x 秒时,三角形与正方形重叠部分的面积为y 2 m . (1)写出y 与x 的函数关系式; (2)当x =2,3.5时,y 分别是多少? (3)当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间? 图1 图2 分析:解决问题需要根据图形进行分析,找出y 与x 之间的关系式.如图2,设移动x 秒后点C 移动点C ,三角形与正方形重叠部分为△DCC ′,由图形数据可知△DCC ′为等腰直角三角形,且CC ′=CD=2x ,根据三角形的面积可以写出y 与x 之间的关系式. 解:(1)因为CC ′=2x ,CD=2x ,所以S △CDC ′= 21×2x ×2x=2x 2,所以y =2x 2 (2)当x=2,时y=8;当x=3.5时,y=24.5 (3)由2x 2=2 1×10×10=50,解得x 1=5,x 2=-5(舍去). 所以当重叠部分的面积是正方形面积的一半时,三角形移动了5秒. 评注:本题通过图形分析找到y 与x 之间的数量关系,是对数形结合思想方法掌握情况的考查. 所谓建模思想,就是从实际问题中建立数学模型,将实际问题转化为数学问题解决的一种数学思想.根据实际问题建立方程模型立方程模型、建立函数模型等等都是建模思想的重要体现. 例2甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价9折优惠.设顾客预计累计购物x 元(x >300). (1) 请用含x 代数式分别表示顾客在两家超市购物所付的费用; (2) 试比较顾客到哪家超市购物更优惠?说明你的理由. 分析:本题是一道与购物有关的实际问题,要判断顾客到哪家 图3 超市购物更优惠,我们可以从实际问题构构建函数模型,通过函数的图象比较如何选择,才使购物更实惠。 解:(1)设在甲超市购物的所付的费用为y 甲,在乙超市所付的购物费用为y 乙,

中考数学思想方法专题之整体思想

初中数学思想之整体思想 整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 一.数与式中的整体思想 【例1】 已知代数式3x 2-4x+6的值为9,则2463x x -+的值为 ( ) A .18 B .12 C .9 D .7 【例2】.已知114a b -=,则2227a ab b a b ab ---+的值等于( ) A.6 B.6- C. 125 D.27- 【例3】已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值. 二.方程(组)与不等式(组)中的整体思想 【例4】已知24122x y k x y k +=+?? +=+? ,且03x y <+<,则k 的取值范围是 【例5】已知关于x ,y 的二元一次方程组3511x ay x by -=??+=?的解为56 x y =??=?,那么关于x , y 的二元一次方程组3()()5()11x y a x y x y b x y +--=??++-=? 的解为为 【例6】.解方程 22523423x x x x +-=+ 三.函数与图象中的整体思想 【例7】已知y m +和x n -成正比例(其中m 、n 是常数)(1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式 四.几何与图形中的整体思想

数学在生活中的应用

数学在生活中的应用 摘要:在日常生活中,我们出处离不开数学。学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。只要我们勤于思考,善于发现总结,那么会有很多意想不到的收获。0.618多么简单的数字,我们学习了这一比例的来源和含义之后。懂得了原来这么简单的数字是很多建筑学家设计现代建筑物的重要依据,建筑师们深谙其中的意义。懂得了利用这一比例设计出具有观赏性又有实用性的建筑作品。生活中很多地方都用到这一比例。可以说这个比例是数学在美学中应用的很好典范。数学中的很多原理、结论在生活中都有非常广泛的应用。物理学中的波理论和光理论都是以三角函数作为研究的数学模型。建立这些数学模型是研究物理学很多领域的基础。三角形的稳定性在建筑结构的设计,建筑、桥梁的承重计算中是必不可少的基础理论知识,古代中国就懂得利用三角形的稳定性来设计梁的结构,三角形稳定性在中国传统建筑文化中占有很重要的地位。即使在现代建筑中也离不开它。现代生活中如何购房成为讨论越来越多的话题,数学中的指数模型可以很好地解释其中的道理。 关键词:黄金分割建筑美学0.618 三角函数三角形稳定性建筑结构购房中的数学 1. 黄金分割数0.618 1.1 黄金分割的起源 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 1.2 黄金分割数0.618的数学解释 如下图所示,分已知线段为两部分,使其中一部分是全线段与另一部分的比例中项,这就是在中学几何课本中提到的黄金分割问题。若C为线段AB的满足条件的分点,则可求得AC 约为0.618AB。这个分割在课本上被称作黄金分割,我们有时也可说是将线段分成中末比、中外比或外内比。若用G来表示它,G 被称为黄金比或黄金分割数。

初中数学思想方法大全

一、宏观型思想方法 数学思想是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识、技能的灵魂。 (一)、转化(化归)思想 解决数学问题就是一个不断转化的过程,把问题进行变换,使之化繁为简、化难为易、化生疏为熟悉,变未知为已知,从而使问题得以解决。 不是对原来的问题直接解答,而是想方设法对它进行变形,直到把它转化成某个(某几个)已经解决了的问题为止。通过转化可使原条件中隐含的因素显露出来,从而缩短已知条件和结论之间的距离,找出它们之间内在的联系,以便应用有关方法将问题解决。 “转化”的思想是一种最基本的数学思想。数学解题过程的实质就是转化过程,具体的说,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“抽象”转化为“具体”,把“复杂问题”转化为“简单问题”,把“高次”转化为“低次”,在不断的相互转化中使问题得到解决。 可运用联想类比实现转化、利用“换元”、“添线”、消元法,配方法,进行构造变形实现转化、数形结合,实现转化。一般转化为特殊,有些代数问题,通过构造图形,化抽象为具体,借助直观启发思维,转化为易解的几何问题。有些不易解决的几何题通过辅助线转化为代数三角的知识来证明,有些结构比较复杂的问题,可以简化题中某一条件,甚至暂时撇开不顾,先考虑一个简化的问题,这种简化题对于证明原题常常能起到引路的作用。把实际问题转化为数学问题。结合解题进行化归思想方法的训练的做法:a、化繁为简;b、化高维为低维;c、化抽象为具体;d、化非规范性问题为规范性问题;e、化数为形;f、化实际问题为数学问题; g、化综合为单一;h、化一般为特殊。 有加减法的转化,乘除法的转化,乘方与开方的转化,添辅助线,设辅助元等等都是实现转化的具体手段。因此,首先要认识到常用的很多数学方法实质就是转化的方法 应用:A将未知向已知转化;B将陌生向熟知转化;C方程之间的转化;D平面图形间的转化;E空间图形与平面图形的转化;F统计图之间的相互转化。 例子:减法转化成加法(减去一个数等于加上这个数的相反数);除法转化成乘法(除以一个不等于零的数等于乘以这个数的倒数);多项式的先化简再代入求值;单项式乘单项式可化归为有理数乘法和同底数幂的乘法运算;单项式乘多项式和多项式乘多项式都可以化归为单项式乘单项式的运算;将求负数的立方根转化为求正数的立方根的相反数;实数近似运算中据问题需要取近似值,从而转化为有理数计算;将异分母分式的加减转化为同分母分式的加减;将分式的除法转化成分式的乘法;将分式方程转化为整式方程求解;将分子的次数不低于分母次数的分式用带余除法转化为整式部分和分式部分的和;将方程的复杂形式化为最简形式;通过立方程把实际问题转化为数学问题;通过解方程把未知转化为已知;把一元二次方程转化为一元一次方程求解;把二元二次方程组转化为二元一次方程组,再转化为一元一次方程从而求解;通过转化为解方程实现实数范围内二次三项式的分解、方程中字母系数的确定;角度关系的证明和计算;平行线的性质和判定;把几何问题向平行线等简单的熟悉的基本图形转化;特殊化(特殊值法、特殊位置、设项、几何中添辅助线等);图形的变换(轴对称、平移、旋转、相似变换);解斜三角形(多边形)时将其转化为解直角三角形; (二)、数形结合思想 数学的研究对象是现实世界中的数量关系(“数”)和空间形式(“形”),而“数”和“形”是相互联系、相互渗透的,一定条件下也是可以互相转化的,因此,在解决问题时,常需把同一问题的数量关系与空间形式结合起来考查,利用数的抽象严谨和形的直观表意,把抽象思维和形象思维结合起来,把数量关系问题通过图形性质进行研究,或者把图形性质问题通过数量关

小学数学教学中渗透数学思想方法的策略研究

小学数学教学中渗透数学思想方法的策略研究

小学数学教学中渗透数学思想方法的策略研究 上海市三新学校徐顺龙重视数学“双基”教学,是我国中小学数学教学的传统优势;但毋庸置疑,其本身也存在着诸多局限性。如何继承和发展“双基”教学,是当前数学教育研究的一个重要课题。《上海市中小学数学课程标准》对此明确指出,“应与时俱进地重新审视数学基础”,并提出了新的数学基础观,其中把数学思想方法作为数学基础知识的一项重要内容。中国科学院院士、著名数学家张景中曾指出:“小学生学的数学很初等,很简单。但尽管简单,里面却蕴含了一些深刻的数学思想。”与以往教材相比,上海市小学数学新教材更加重视数学思想方法的教学,把基本的数学思想方法作为选择和安排教学内容的重要线索。让学生通过基础知识和基本技能的学习,懂得有条理地思考和简明清晰地表达思考过程,运用数学的思想方法分析和解决问题,以更好地理解和掌握数学内容,形成良好的思维品质,为学生后续学习奠定扎实的基础。面对新课程背景下渗透数学思想方法教学的新要求,作为新教材的实施者,下面就小学数学课堂教学中渗透数学思想方法的策略,谈谈自己的一些认识与实践。 一、小学数学教学中渗透数学思想方法的着眼点 1、渗透数学思想方法应加强过程性 渗透数学思想方法,并不是将其从外部注入到数学知识的教学之中。因为数学思想方法是与数学知识的发生发展和解决问题的过程联系在一起的内部之物。教学中不直接点明所应用的数学思想方法,而应该引导学生在数学活动过程中潜移默化地体验蕴含其中的数学思想方法,切忌生搬硬套、和盘托出。例如学生写出几个商是2的除法算式,通过观察可以归纳出被除数、除数和商之间的关系,大胆猜想出商不变的规律:可能是被除数和除数同时乘以或除以同一个数(零除外),商不变;也可能是同时加上或减去同一个数,商不变。到底何种猜想为真?学生带着问题运用不完全归纳举例验证自己的猜想,最终得到了“商不变性质”。所以学生获得“商不变性质”的过程,又是归纳、猜想、验证的体验过程,绝不是从外部加上一个归纳猜想验证。学生一旦感悟到这种思想,就会联想到加减法和乘法是否也存在类似的规律,从而把探究过程延续到

运用数学知识解决生活中的问题

运用数学知识解决生活中的问题学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。 有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分

钟就全部搞定。我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处,可以解决生活中的许多问题.

初中数学思想方法汇总

初中数学思想方法的概念、种类 及渗透策略分析 分类讨论思想 一、分类讨论思想的意义 当我们在解决数学问题时,有时由于被研究对象的属性不同,影响了研究问题的结果,因而需对不同属性的对象进行分类研究;或者由于在研究问题过程中出现了不同情况,因而需对不同情况进行分类研究.通过分类讨论,常能化繁为简,更清楚地暴露事物的本质,并增加条件,“分类讨论”,简言就是先分类,后讨论。阅读大纲和教材会发现,初中数学对分类讨论本着先易后难、循渐进的原则,把“分类讨论思想”分两个层次,即“分类思想”和“讨论思想”。分类思想在初中数学占有相当要的地位,通过教学应使学生确立类思想,学会分类方法,而“讨论思则要求通过有关知识的传授起到潜默化的作用。 分类讨论是一种逻辑方法,也是一种数学思想。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在试题中占有重要的位置。 二、分类讨论的一般步骤是:明确讨论对象,确定对象的全体→确定分类标准,正确进行分类→逐步进行讨论,获取阶段性结果→归纳小结,综合得出结论。 三、分类讨论思想的分类原则 : 分类讨论必须遵循原则进行,在初中阶段,我们经常用到的有以下4大原则: (1)同一性原则 (2)互斥性原则 (3)相称性原则 (4)多层次性原则 四、七年级数学中体现分类讨论思想的知识点 上册:1、含字母式子的绝对值的化简2、过平面的点画直线的条数3、线段、角的计算4、立体图形异面点之间的最短距离5、数轴上两点间的距离6、分段计费问题。下册:1、两边分别平行的两角的关系2、正数的平方根3、实数的分类4、坐标平面点的坐标5、P 112第10题6、解字母系数的不等式7、借助不等式(组)的正整数解讨论方案设计问题。 五、典型例题 例1.(2011中考 )解关于x 的不等式组: a(2-x )>3-x )9x a +( >9a+8 例2已知直线AB 上一点C ,且有CA=3AB ,则线段CA 与线段CB 之比为__ 或____ 。 练习:已知A 、B 、C 三点在同一条直线上,且线段AB=7cm ,点M 为线段AB 的中点,线段BC=3cm ,点N 为线段BC 的中点,求线段MN 的长.

生活中的数学应用案例

数学研究学习 ——生活中的数学应用案例及做一个尽可能大的长方体 生活中无处不存在数学,数学是应用到我们的每个细节。学数学不是当死知识,而是要灵活运用。我们只有真正的学好数学,才能用到实际生活当中。 这天,我正在玩物理学具,因为电学下学期还要学,所以我就玩起了电学里的连接电路。看着那一闪一亮的灯泡,我突然心中起了一个问号,灯泡的容积怎么求呢?那不方不正,又不是球形的灯泡,又怎么能计算求出它的容积呢?最简单的办法就是碗里面灌满水,然后倒出来量。可是灯泡又扭不开,也不可能打碎,这怎么求。我低头思考了一会,就想出办法。 我首先找出一个玻璃钢(鱼缸),然后将灯泡放进去,测量说升高了多少。然后套用公示:升高的高度*长*宽,就计算出来了。 还有一个实例:过年的时候,小姑要和姑父回家乡过年,说是要给我带纪念品。不知道他们什么时候走的,等的我就急了,问爸爸,他这就考我了:“你小姑回去一周,平年2月有28天.,你算算吧。” 我不假思索的回答,“她7号回来,对不对?” 知道我是怎么算的吗?是这样的。设这七天最中间的一天为x,得到一个方程: (x-3+x-2+x-1)+x+(x+1+x+2+x+3)=28 解得x=4 4+3=7 数学在生活中十分有用,只有不断探索,才会获得更多收获 做一个尽可能大的长方体 步骤 1.准备:一张边长为20 cm的正方形纸板,一个无盖的长方体,以及剪刀、直尺、透明胶、细沙。 2.操作:展开一个无盖长方体 3.设疑:一张正方形的纸怎样才能制成一个无盖的长方体? (1)几何思想 (2)把小正方形的边长在2.5cm到4cm之间进行细分,按0.5cm的间隔取值,即分别取2.5cm,3cm,3.5cm,4cm时,折成的无盖长方体形纸盒 的容积将如何变化?请学生按照昨天所分的小组填写下面的表格:

小学数学课堂上如何运用数学思想方法

小学数学课堂上如何运用数学思想方法 《课程标准》修订之后,在它的理念中也悄然发生了变化。由原来强调的“两基”(即基本知 识和基本技能)也显然改成了“四基”,即增加了基本思想方法和基本活动经验。看来,在教 学中重视基本知识和基本技能还远远不够,还要重视让学生参与活动,在活动中体验知识的 形成及其发展过程,还要在教学中重视数学思想方法的渗透及其应用。虽然增加的只是简单 的几个字,却能够带来教学的革新。在此理念引领下,教师的教学设计、教学方法的选择、 教学活动的组织与安排等等,都会发生变化。 一、结合教材内容,运用对应思想 对应是人们对两个集合元素之间的联系的一种思想方法。在小学数学教材中,蕴涵着大量的 对应思想。教学时,结合教材的有关内容,创设情景,有意识地渗透对应思想,有助于培养 学生思维的灵活性和创造性,理解数学概念,掌握数学技巧,防止学生思维定势,提高学生 的辩证思维能力。 如:我在教一年级“比多少”一课时,为了帮助学生建立“同样多、谁比谁多、谁比谁少”的概念,我是这样安排的:先通过讲故事《小兔盖房子》创设情景,同时出示主题图。再问从图 中你看到有几只小兔?一只小兔搬了多少块砖?根据学生的回答,把小兔的头像和砖头的图 案贴在黑板上,一只小兔搬一块砖头,小兔的只数和砖头的块数比谁多谁少?学生回答后, 我用虚线把一只小兔和一块砖头一一对起来,一只小兔对一块砖头,没有多余的,我们就说 小兔的只数和砖头的块数同样多。用同样的方法,把小猪和木头用虚线连起来,让学生在一 一对应比较中形象地理解了“比多少”的方法。 二、结合教材内容,运用符号思想 符号化思想的运用在小学数学教材中是根据不同的教学阶段的具体情况进行的。例,引进用 字母表示数,是用符号表示数量关系和变化规律的基础。用符号表示具体情境中的数量关系, 也像普通语言一样,首先要引进基本字母。在数学语言中,像数字以及表示数字的字母,表示点 的字母,运算符号,关系符号等,都是用数学语言刻画各种现实问题的基础。 教材在低年级开始,就注重了用符号来表示数、代替数,用图形符号来表示算式、运算方法、运算结果等等。从第二学段开始接触用字母表示数,是学习数学符号的重要一步。从研究一个 具体特定的数到用字母表示一般的数,是实现认识上的一个飞跃。用字母表示数,可以简明地 表达数量关系的一般规律。用具体的数和运算符号所组成的式子只能表示个别具体的数量之 间的关系,而用字母表示,既简单明了,又能概括出数量关系的一般规律,在较大范围内肯定了数 学规律的正确性。如:在教小学四年级下册《加法交换律》时,先例题出示:李叔叔今天上 午骑了40千米,下午骑了56千米,李叔叔今天一天骑了多少千米?在学生列出算式 40+56=96(千米)56+40=96(千米)后,让学生观察这两个算式有什么联系?根据学生的回答,两个算式的结果相同,所以我们可以写成40+56=56+40,接着让学生举例子: 37+45=45+37 50+8=8+50 70+25=25+7……再让学生观察每组的算式,问你发现了什么?通过观 察发现,每组算式等号左边和等号右边两个数相同,位置不同,结果也相同。谁能用一句话 来说一说。最后小结:两个加数相加,交换两个加数的位置,它们的和不变,这叫做“加法交换律”接着让学生用一个自己喜欢的算式表示两个加数交换位置和不变(鼓励学生用不同的方式表示),甲数+乙数=乙数+甲数、△+☆=☆+△、◇+□=□+◇、а+ь=ь+а……面的活动中,学生经历了用字母表示算式的抽象过程,他们得到的不再是一个简单的等式,而是经历了一个比 较深刻的由不知道到知道,由不清晰到清晰,由普遍到抽象的符号化过程。同时也蕴含着日 常语言和符号语言的转化。另外在乘法交换律和结合律时也运用了字母表达式。显然,它们比 用具体的数表示更加概括、明确,比用日常语言表示更加简明、易记。通过各阶段的学习,学 生将逐步领会符号化的优越性,符号化思想也逐渐地初步形成。 三、结合教材内容,运用化归的思想

中考数学思想整体转化分类三

中考数学复习资料 数学思想方法(一) (整体思想、转化思想、分类讨论思想) 一、中考专题诠释 数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。 抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲 数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。 三、中考考点精讲 考点一:整体思想 整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。 整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。 例1 (2013?吉林)若a-2b=3,则2a-4b-5= . 思路分析:把所求代数式转化为含有(a-2b)形式的代数式,然后将a-2b=3整体代入并求值即可. 解:2a-4b-5=2(a-2b)-5=2×3-5=1. 对应训练 1.(2013?福州)已知实数a,b满足a+b=2,a-b=5,则(a+b)3?(a-b)3的值是. 考点二:转化思想 转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。 例2 (2013?东营)如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊

关于初中数学思想方法的思考

关于初中数学思想方法的思考 数学思想方法的渗透应根据教学计划有步骤地进行。一般在知识的概念形成阶段导入概念型数学思想,如方程思想、相似思想、已知与未知互相转化的思想、特殊与一般互相转化的思想等等。在知识的结论、公式、法则等规律的推导阶段,要强调和注重思维方法,如解方程的如何消元降次、函数的数与形的转化、判定两个三角形相似有哪些常用思路等。在知识的总结阶段或新旧知识结合部分,要选配结构型的数学思想,如函数与方程思想体现了函数、方程、不等式间的

相互转化,分数讨论思想体现了局部与整体的相互转化。在所有数学建构及问题的处理方面,注意体现其根本思想,如运用同解原理解一元一次方程,应注意为简便而采取的移项法则。 3、重视课堂教学实践,在知识的引进、消化和应用过程中促使学生领悟和提炼数学思想方法。 数学知识发生的过程也是其思想方法产生的过程。在此过程中,要向学生提供丰富的、典型的以及正确的直观背景材料,创设使认知主体与客体之间激发作用的环境和条件,通过对知识发生过程

的展示,使学生的思维和经验全部投人到接受问题、分析问题和感悟思想方法的挑战之中,从而主动构建科学的认知结构,将数学思想方法与数学知识融汇成一体,最终形成独立探索分析、解决问题的能力。 概念既是思维的基础,又是思维的结果。恰当地展示其形成的过程,拉长被压缩了的“知识链”,是对数学抽象与数学模型方法进行点悟的极好素材和契机。在概念的引进过程中,应注意:①解释概念产生的背景,让学生了解定义的合理性和必要性;②揭示概念的形成

过程,让学生综合概念定义的本质属性;③巩固和加深概念理解,让学生在变式和比较中活化思维。 在规律(定理、公式、法则等)的揭示过程中,教师应注重数学思想方法,培养学生的探索性思维能力,并引导学生通过感性的直观背景材料或已有的知识发现规律,不过早地给结论,讲清抽象、概括或证明的过程,充分地向学生展现自己是如何思考的,使学生领悟蕴含其中的思想方法。 数学问题的化解是数学教学的核心,其最终目的要学会运用数学知识和思想方法分析和解决实

相关主题
文本预览
相关文档 最新文档