当前位置:文档之家› 第五章 对流传热的理论基础传热学

第五章 对流传热的理论基础传热学

陶文铨 数值传热学 第二版 第五章 5-2

精确解: p=[1,5,10]; x=0:1/19:1; for i=1:1:3 for j=1:1:20 y(i,j)=(exp(p(1,i)*19*x(1,j))-1)/(exp(p(1,i)*19)-1); end plot(x,y(i,:)); hold on ; end 由题对中心差分、一阶迎风、混合格式进行模块编程: 他们之间可以通用,只需更改ae 关于p 的函数即可: 程序如下: (1)中心差分 p=[1,5,10]; for i=1:1:3 ae=1-0.5*p(1,i); x/L (Φ-ΦL )/(Φ0-ΦL ) 精确解图像

aw=p(1,i)+ae; ap=ae+aw; for i=1:1:18 for j=1:1:20 a(i,j)=0; end end for i=1:1:18 j=i; a(i,j)=aw; a(i,j+1)=-ap; a(i,j+2)=ae; end for i=1:1:17 n=i+1; for m=i:-1:1 b(1,1)=a(m,n); a(m,n)=-a(i+1,n)/a(i+1,n)*b(1,1)+a(m,n); a(m,n+1)=-a(i+1,n+1)/a(i+1,n)*b(1,1)+a(m,n+1); a(m,n+2)=-a(i+1,n+2)/a(i+1,n)*b(1,1)+a(m,n+2); end end F(1)=0; F(20)=1; F(19)=(-a(1,20)*F(20)-a(1,1)*F(1))/a(1,19); for i=2:1:18 F(i)=(-a(i,20)*F(20)-a(i,19)*F(19))/a(i,i); end x=0:1/19:1; y(1,:)=F; plot(x,y); hold on end

传热学第四版课后题答案第五章

第五章 复习题 1、试用简明的语言说明热边界层的概念。 答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。 2、与完全的能量方程相比,边界层能量方程最重要的特点是什么 答:与完全的能量方程相比,它忽略了主流方向温度的次变化率,因此仅适用于边界层内,不适用整个流体。 3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别 答:(5—4)(2—11) 式(5—4)中的h是未知量,而式(2—17)中的h是作为已知的边界条件给出,此外(2—17)中的为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。 4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用 答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小 5、对流换热问题完整的数字描述应包括什么内容既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义 答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件(2)边界条件(速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。 基本概念与定性分析 5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式: 解:对于流体外标平板的流动,其动量方程为: 根据数量级的关系,主流方的数量级为1,y方线的数量级为 则有 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级,为使等式是数量级为1,则必须是量级。

传热学数值计算大作业2014011673

数值计算大作业 一、用数值方法求解尺度为100mm×100mm 的二维矩形物体的稳态导热问题。物体的导热系数λ为1.0w/m·K。边界条件分别为: 1、上壁恒热流q=1000w/m2; 2、下壁温度t1=100℃; 3、右侧壁温度t2=0℃; 4、左侧壁与流体对流换热,流体温度tf=0℃,表面传热系数 h 分别为1w/m2·K、10 w/m2·K、100w/m2·K 和1000 w/m2·K; 要求: 1、写出问题的数学描述; 2、写出内部节点和边界节点的差分方程; 3、给出求解方法; 4、编写计算程序(自选程序语言); 5、画出4个工况下的温度分布图及左、右、下三个边界的热流密度分布图; 6、就一个工况下(自选)对不同网格数下的计算结果进行讨论; 7、就一个工况下(自选)分别采用高斯迭代、高斯——赛德尔迭代及松弛法(亚松弛和超松弛)求解的收敛性(cpu 时间,迭代次数)进行讨论; 8、对4个不同表面传热系数的计算结果进行分析和讨论。 9、自选一种商业软件(fluent 、ansys 等)对问题进行分析,并与自己编程计算结果进行比较验证(一个工况)。(自选项) 1、写出问题的数学描述 设H=0.1m 微分方程 22220t t x y ??+=?? x=0,0

y=H ,0

计算传热学中国石油大学(华东)第四章大作业

取步长δx=0.02。已知x=0,Φ=0;x=1,Φ=1.令k=ρu/Γ计算结果图表: 程序及数据结果: 追赶法: #include #include #include #define N 49 void tdma(float a[],float b[],float c[],float f[],float x[]); void main(void) { int i; float x[49]; float k; printf("请输入k值:\n",k); scanf("%f",&k); static float a[N],b[N],c[N],f[N]; a[0]=0; a[48]=2+0.02*k; b[0]=4; b[48]=4; c[0]=2-0.02*k; c[48]=0; f[0]=0; f[48]=2-0.02*k; for(i=1;i

a[i]=2+0.02*k; b[i]=4; c[i]=2-0.02*k; f[i]=0; } tdma(a,b,c,f,x); for(i=0;i=0;i--) x[i]=P[i]*x[i+1]+Q[i]; return; } 结果: (1)k=-5 请输入k值: -5 x[0]=0.095880 x[1]=0.182628 x[2]=0.261114 x[3]=0.332126 x[4]=0.396375 x[5]=0.454504 x[6]=0.507098 x[7]=0.554683 x[8]=0.597736 x[9]=0.636688 x[10]=0.671931 x[11]=0.703818 x[12]=0.732667 x[13]=0.758770

第五章传热学

第五章 复习题 1、试用简明的语言说明热边界层的概念。 答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。 2、与完全的能量方程相比,边界层能量方程最重要的特点是什么? 答:与完全的能量方程相比,它忽略了主流方向温度的次变化率 σ α2 2 x A ,因此仅适用于边界层内,不适用整个流体。 3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别? 答: =???- =y y t t h λ(5—4) ) ()( f w t t h h t -=??-λ (2—11) 式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。 4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用? 答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小 5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?

答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。 基本概念与定性分析 5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动 量方程引出边界层厚度的如下变化关系式: x x Re 1~ δ 解:对于流体外标平板的流动,其动量方程为: 2 2 1xy u v dx d y u v x y u ?+- =??+??ρ ρ 根据数量级的关系,主流方的数量级为1,y 方线的数量 级为δ 则有 2 21 1 11 1 111δ ρ δ δv +? - =? +? 从上式可以看出等式左侧的数量级为1级,那么,等式右侧 也是数量级为1级, 为使等式是数量级为1,则v 必须是2 δ量级。 x δ 从量级看为1δ 级 1 ~ 1 1~ 1 11~ 1Re 12 δ δ δ ?= ∞v x u x 量级 两量的数量级相同,所以x δ 与 x Re 1成比例 5-2、对于油、空气及液态金属,分别有1>>r P ,1?r P ,1<

传热学第五章答案

复习题 1、试用简明的语言说明热边界层的概念。 答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此 薄层之外,流体的温度梯度几乎为零, 固体表面附近流体温度发生剧烈变化的这一薄层称为 温度边界层或热边界层。 2、与完全的能量方程相比,边界层能量方程最重要的特点是什么? 答:与完全的能量方程相比,它忽略了主流方向温度的次变化率 适用于边界层内,不适用整个流体。 3、式(5—4)与导热问题的第三类边界条件式( 2 —17)有什么区另 一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把 牛顿冷却公式应用到整个表面而得出。 4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流 体的流动起什么作用? 答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关, 流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小 5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法 求得其精确解,那么建立对流换热问题的数字描述有什么意义? 答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件 包括,(1)初始条件 (2 )边界条件 (速度、压力及温度)建立对流换热问题的数字描述 目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量, 能量和质量守恒关系,避免在研究遗漏某种物理因素。 基本概念与定性分析 5-1、对于流体外标平板的流动, 试用数量级分析的方法, 从动量方程引出边界层厚度 解:对于流体外标平板的流动,其动量方程为: 第五章 2 / 2 A / X ,因此仅 h 答: (5— 4) (丄)h(t w t f ) h (2—11) 式(5—4)中的 h 是未知量,而式(2 —17)中的h 是作为已知的边界条件给出, 此外(2 —17)中的 为固体导热系数而此式为流体导热系数,式( 5— 4)将用来导出 的如下变化关系式: x

数值传热学第五章作业

5-2 解:根据课本p158式(5—1a )得一维稳态无源项的对流-扩散方程如下所示: 2 2x x u ??Γ =??φ φρ (取常物性) 边界条件如下: L L x x φφφφ====,; ,00 由(5—2)得方程的精确解为: 1 1)/(00--=--?Pe L x Pe L e e φφφφ Γ=/uL Pe ρ 将L 分成15等份,有:?=P Pe 15 对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下: 1) (CD)中心差分 节点离散方程: 2 )5.01()5.01(1 1-?+?++-=i i i P P φφφ 10,2 =i 2) 一阶迎风 节点离散方程: ? -?++++=P P i i i 2)1(1 1φφφ 10,2 =i 3) 混合格式 当1=?P 时,节点离散方程:2 )5.01()5.01(1 1-?+?++-= i i i P P φφφ ,10,2 =i 当10,5=?P 时,节点离散方程: 1-=i i φφ , 10,2 =i 4) QUICK 格式,节点离散方程: ??? ???--++++++= +-?? -??+?)336(8122121 1111i i i i i i P P P P P φφφφφφ, 2=i ?? ????---++++++= +--? ? -??+?)35(8122121 12111i i i i i i i P P P P P φφφφφφφ, 2≠i

用matlab 编程如下:(本程序在x/L=0-1范围内取16个节点进行离散计算,假设y(1)= 0φ=0,y(16)=L φ=1,程序中Pa 为?P ,x 为题中所提的x/L 。由于本程序假设 y(1)=0φ=0,y(16)=L φ=1,所以 y y y y y y L =--=--=--0 10 )1()16()1(00φφφφ) Pa=input('请输入Pa=') x=0:1/15:1 Pe=15*Pa; y=(exp(Pe*x)-1)/(exp(Pe)-1) plot(x,y,'-*k') %精确解 hold on y(1)=0,y(16)=1; for i=2:15 y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2; end plot(x,y(1:16),'-or') %中心差分 hold on for i=2:15 y(i)=((1+Pa)*y(i-1)+y(i+1))/(2+Pa); end plot(x,y(1:16),'-.>g') %一阶迎风 hold on for i=2:15 if Pa==1 y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2; else y(i)=y(i-1) end end plot(x,y(1:16),'-+y') %混合格式 hold on for i=2:15 if i==2 y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(6*y(i)-3*y(i-1)-3*y(i+1))/8 else y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(5*y(i)-y(i-1)-y(i-2)-3*y(i+1))/8 end end plot(x, y(1:16),'-

传热学第5.7章答案

第七章 凝结与沸腾换热 1.凝液量:m=(kg/s) 2.水平放置时,凝水量m=(kg/s) 3.壁温t w =1000 , h=12029 w/(m 2·k) 4. 5.此时管下端液膜内已出现紊流。 H=6730 w/(m 2·k) 6.竖壁高 h= mm 7.单管与管束平均表面传热系数之比:管束 单h h = 8.凝结水量 m=? (kg/s) 9.考虑过冷度时,m=?(kg/s) 相差: %39.0%10014 .512 .514.5=?- 10.管长 m L 1= ,管长减少量31 5 .115.1= - 11.凝结表面传热系数 h= w/(m 2·k) 凝液量:m=?(kg/s) 12. 管长能缩短 13.用于水时, h= w/(m 2·k)

与11题相比换热系数倍率 63.72 .7001 .5341= 15.氟利昂 12: φ=42143(W ) 氟利昂 22: φ=50810(W ) 差异:% 16.用电加热时,加热方式是控制表面的热流密度。而采用蒸汽加热则是壁面温度可控的情形。由大容器饱和沸腾曲线可知,当加热功率q 稍超过max q 值时,工况将沿max q 虚线跳至稳定膜态沸腾线,使壁面温度飞升,导致设备烧坏。总之,电加热等依靠控制热流来改变工况的设备,一旦热流密度超过峰值,工况超过热流密度峰值后,沸腾温差将剧烈上升到1000℃左右,壁温也急剧升高,发生器壁烧毁现象。 采用蒸气加热时,工况点沿沸腾曲线依次变化。不会发生壁面温度急剧上升情况。 18.由式(7)t T R s ?= υγρσ2min ,在一定的s T t ,,,,υργσ?五个量中,只有υ ρ随压强变化最大,P 增加时,υρ的增加值将超过T s 的增值和γ的减少,最终使R min 随P 的增加而减小。 19.h=? w/(m 2·k) 20. h=67140 w/(m 2·k) 21.温度降为183℃ h=1585 w/(m 2·k) 与自然对流相比较, 485.01585 769 == 沸腾 自然对然h h 22.Q= w/(m 2·k) ,t w =℃

第一章—导热理论基础

第一章 导热理论基础 本章重点:准确理解温度场、温度梯度、导热系数等基本概念,准确掌握导热基本定律及导 热问题的基本分析方法。 物质内部导热机理的物理模型:(1)分子热运动;(2)晶格(分子在无限大空间里排列 成周期性点阵)振动形成的声子运动;(3)自由电子运动。 物质内部的导热过程依赖于上述三种机理中的部分项,这几种机理在不同形态的物质中 所起的作用是不同的。 导热理论从宏观研究问题,采用连续介质模型。 第一节 基本概念及傅里叶定律 1-1 导热基本概念 一、温度场(temperature field) (一)定义:在某一时刻,物体内各点温度分布的总称,称为即为温度场(标量场)。 它是空间坐标和时间坐标的函数。在直角坐标系下,温度场可表示为: ),,,(τz y x f t = (1-1) (二)分类: 1.从时间坐标分: ① 稳态温度场:不随时间变化的温度场,温度分布与时间无关, 0=??τ t ,此时,),,(z y x f t =。(如设备正常运行工况) 稳态导热:发生于稳态温度场中的导热。 ② 非稳态温度场:随时间而变化的温度场,温度分 布与时间有关,),,,(τz y x f t =。(设备启动和停车过程) 非稳态导热:在非稳态温度场中发生的导热。 2.从空间坐标分: ① 三维温度场:温度与三个坐标有关的温度场,? ??==稳态非稳态),,(),,,(z y x f t z y x f t τ ② 二维温度场:温度与二个坐标有关的温度场,???==稳态非稳态) ,(),,(y x f t y x f t τ

?t grad t ③ 一维温度场:温度只与一个坐标有关的温度场,? ??==稳态非稳态,)()(x f t x f t τ 二、等温面与等温线 1.等温面(isothermal surface):在同一时刻,物体内温度相同的点连成的面即为等温面。 2.等温线(isotherms):用一个平面与等温面相截,所得的交线称为等温线。 为了直观地表示出物体内部的温度分布,可采用图示法,标绘出物体中的等温面(线)。 3.等温面(线)的特点: ① 不同的等温面(线)之间是不可能相交的。图1-1所示的即为一维大平壁和一维圆筒 壁内的等温面(线)的示意图。 ② 在连续介质的假设条件下,等温面(线)可以是物体中闭合的曲面或曲线,或者终止 在物体的边界,不可能在物体中中断。。 ③ 等温线的疏密可直观反映出不同区域温度梯度的相对大小,若每条等温线间的温度间 隔相等时,即t ?相等,则等温线越疏,表明该区域热流密度越小;反之,越大。 ④ 沿等温面(等温线)无热量传递 三、温度梯度(temperature gradient) 从一个等温面上的某点出发,到达另一个等温面,可以有不同的路径,不同路径上的温 度变化率是不同的,温度变化率最大的路径位于该点的法线方向上。为了表示沿等温面法线 方向的温度变化率,引入温度梯度的概念。 梯度(最大的方向导数):指向变化最剧烈的方向。(向量) 温度变化率是标量,温度梯度是矢量。 温度梯度:定义沿法线方向的温度变化率(沿等温面法线方向上的温度增量与法向距离 比值的极限)为温度梯度,以gradt 表示。 n t n t grad n t ??=??=→?→0lim (1-2) 式中,——等温面法线方向的单位矢量; n t ??——温度在等温面法线方向的导数。 温度梯度的方向(正向):是沿等温面法线由低温指向高温。 温度梯度的数值大小:等于温度梯度方向上的导数。 在直角坐标系:

数值传热学报告

数 值 传 热 学 近代发展及数值方法 建环:屈锐 2011年10月5日

数值传热学的发展史及数值方法 一、计算传热学的发展史 首先,计算传热学(Numerical Heat Transfer)与计算流体动力学(Computational Fluid Dynamics)之间的关系密切,可以认为,他们的主要研究内容是一致的,因此,计算传热学的发展史很大程度上也就是计算流体动力学的发展史,但他们之间还有不少区别,流体动力学的一个主要研究内容是讨论无粘流动及跨、超音速流动数值计算中的一些特殊问题。应用计算机和数值方法求解流动及传热问题在全世界范围内逐渐形成规模而且得出有益的结果,大致始于60年代,故从60年代起,可以把数值传热学的发展过程分为3个阶段: 1、萌芽初创阶段 主要有以下重大事件: (1)交错网格的提出。初期的数值传热学出现的两大困难之一是,网格设置不当时会得出具有不合理的压力场的解。1965年美国科学家首先提出了交错网格的思想,有效解决了这一难题,促使了求解NS 方程的原始变量法的发展。 (2)对流项差分迎风格式的再次确认。初期发展遇到的另一难题是

对流项采用中心差分时,对流速较高的情况的计算会得出振荡的解,1966年,科学家撰稿介绍了迎风格式在求解可压缩流体及非稳态层流流动中的作用,使流动与对流换热问题的求解建立在一个健壮的数值方法上发展。 (3)世界上第一本介绍流体及计算传热学的杂志于1966年创刊。(4)求解抛物型流动的P-S方法出现。由于受到计算机资源的限制,边界层类型问题的数值计算得到更多的关注,如何把有限个节点数目都充分利用起来成为了一个重要的问题。 (5)1969年Spalding在英国帝国理工学院创建了CHAM,旨在把他们研究组的成果推广应用到工业界。 (6)1972年SIMPLE算法问世。所谓分离式的求解方法应运而生,这个算法的基本思路是,在流场迭代求解的任何一个层次上,速度场都必须满足质量守恒方程,这一思想被以后的大量数值计算实例证明,是保证流场迭代计算收敛的一个十分重要的原则。 1974年美国学者提出了采用微分方程来生成适体坐标的方法。由于有限元法对不规则区域有很强的适应性,有限差分法与有限容积法则对复杂区域的适应能力很差,但对于流动问题的数值处理则要比有限元法容易得多。TTM方法的提出,为有限差分法与有限容积法处理不规则边界问题提出了一条崭新的道路。 2、开始走向工业应用阶段

传热学第四版课后题答案第五章.

?h (2—11) 第五章 复习题 1、试用简明的语言说明热边界层的概念。 答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此 薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为 温度边界层或热边界层。 2、与完全的能量方程相比,边界层能量方程最重要的特点是什么? 答:与完全的能量方程相比,它忽略了主流方向温度的次变化率α 2 A 适用于边界层内,不适用整个流体。 3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别? x 2σ ,因此仅 答: h =- λ ?t ?t ?y y = 0 (5—4) - λ ( ?t ) = h (t - t ) w f 式(5—4)中的 h 是未知量,而式(2—17)中的 h 是作为已知的边界条件给出, 此外(2—17)中的 λ 为固体导热系数而此式为流体导热系数,式(5—4)将用来导出 一个包括 h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把 牛顿冷却公式应用到整个表面而得出。 4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流 体的流动起什么作用? 答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关, 流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小 5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法 求得其精确解,那么建立对流换热问题的数字描述有什么意义? 答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件 包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述 目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量, 能量和质量守恒关系,避免在研究遗漏某种物理因素。 基本概念与定性分析 5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度 的如下变化关系式: δ x ~ 1 Re x 解:对于流体外标平板的流动,其动量方程为:

数值传热学习题集

简答题集锦 1.流动与传热数值模拟的基本任务是什么? (把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值CFD可以看做是在流动基本方程(质量守恒方程飞动量守恒方程、能量守恒方程)控制下对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。) 2.数值模拟过程如何实现,主要步骤是那些? (建模、网格划分、坐标系、数学方程、求解、后处理) a.建立反映工程问题或物理过程本质的数学模型; b.选择与计算区域的边界相适应的坐标系; c.建立网格; d.建立离散方程; e.求解代数方程组; f.后处理,显示计算结果

3.建立离散方程有哪些主要方法?比较说明各种方法的优缺点?(有限差分、有限体积、有限元、有限分析等)

4什么叫控制方程?常见的控制方程有哪几个?各用在什么场合? 5试写出控制方程的通用形式,并说明通用形式中各项的意义?(写明通式,以及各个方程中通式的表达形式)

6推导x 方向的动量控制方程中的源项u S 的表达式。由此证明当密度和黏度为常数时,u S 变为0。 X 方向N-S 方程: Mx S x w z u z x v y u y divu x u x x p Dt Du +??+ ????+ ??+ ????+ +????+??- =)][()]( [)2(μ μλμ ρ )()())()())())()()()()()][()]( [)2(gradu div divu x z w y v x u x gradu div S divu x z w y v x u x S S divu x z w y v x u x gradu div S x w z x v y x u x z u z y u y x u x S x w z u z x v y u y divu x u x Mx u Mx Mx Mx μλμ μλμλμμμμμμμμμ μλμ +??+??+??+????=++?? +??+??+????=+?? +??+??+????+=+????+????+????+????+????+????= +??+ ????+ ??+ ????++????((()()( 因为0 =??+ ??+ ??z w y v x u ρρρ 推 得: =??+??+??z w y v x u 所以:Su= 0)()=?? +??+??+????divu x z w y v x u x λμ ( 7区域离散为分几种,说明各自的特点。 (内节点法、外节点法) 先节点后界面

【免费下载】数值传热学第五章作业

5-2解:根据课本p158式(5—1a )得一维稳态无源项的对流-扩散方程如下所示: (取常物性)22x x u ??Γ=??φφρ边界条件如下:L L x x φφφφ====,;,00由(5—2)得方程的精确解为: 11)/(00--=--?Pe L x Pe L e e φφφφΓ=/uL Pe ρ将分成15等份,有:L ?=P Pe 15对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下:1)(CD)中心差分节点离散方程: 2)5.01()5.01(11-?+?++-=i i i P P φφφ10,2 =i 2) 一阶迎风节点离散方程: ?-?++++=P P i i i 2)1(11φφφ10,2 =i 3)混合格式当时,节点离散方程:,1=?P 2)5.01()5.01(11-?+?++-=i i i P P φφφ10,2 =i 当时,节点离散方程: , 10,5=?P 1-=i i φφ10,2 =i 4)QUICK 格式,节点离散方程: , ??????--++++++=+-??-??+?)336(81221211111i i i i i i P P P P P φφφφφφ2=i , ?? ????---++++++=+--?? -??+?)35(812212112111i i i i i i i P P P P P φφφφφφφ2≠i 、管路敷设过程中,要加强交底。管线敷设技术中敷设原则:在分线盒处,、电气课件其在正常工况下与过度写重要设备高中资料试试卷技术指导。对于调试、电气设备调试高中资组高中资料试卷安全,并试卷保护装置动作,并且做到准确灵活。对于差

数值传热学第一章

主讲 西安交通大学能源与动力工程学院热流中心CFD-NHT-EHT CENTER 2010年9月13日,西安 数值传热学 第一章绪论

课程简介 1. 教材-《数值传热学》第二版,2001 2. 学时-45学时理论教学;10学时程序教学 3. 考核-平时作业/计算机大作业: 考试-40/60;考查-60/40 4. 方法-开放,参与,应用 5. 助手-喻志强,张虎,谷伟,凌空, 封永亮

有关的主要国外期刊 1.Numerical Heat Transfer, Part A-Applications; Part B- Fundamentals 2.International Journal of Numerical Methods in Fluids. https://www.doczj.com/doc/b99685664.html,puter & Fluids 4.Journal of Computational Physics 5.International Journal of Numerical Methods in Engineering 6.International Journal of Numerical Methods in Heat and Fluid Flow https://www.doczj.com/doc/b99685664.html,puter Methods of Applied Mechanics and Engineering 8.Engineering Computations 9.Progress in Computational Fluid Dynamics 10. Computer Modeling in Engineering & Sciences (CMES) 11.ASME Journal of Heat Transfer 12.International Journal of Heat and Mass Transfer 13.ASME Journal of Fluids Engineering 14.International Journal of Heat and Fluid Flow 15.AIAA Journal

两相流大作业

水—水蒸汽两相相变界面的数值模拟 ——两相流动与热物理大作业 姓名张蛟龙_______ 学号201328013524021__ 班级物理308_____ 指导教师刘捷__ 完成时间_2014.5.8_

水—水蒸汽两相相变界面的数值模拟报告 一.文献综述 作为化石资源的替代产品,核能的高效,清洁一直备受青睐,然而光环之下,核废料的处理不禁让人黯然神伤。强致命性辐射,动辄千年的半衰期,惯用的办法只能是深埋,等待下一代的聪明才智。与此同时,核废料的利用和加速衰减一直是核能大国们的研究重点。欧洲的ADS系统第六代散裂靶模型计划的目标就是要验证高水平的核废料转换的可行性。散裂靶作为连接加速器和核废料的装置需要工作在高辐射和高热流密度的条件下,因此散裂靶的设计是ADS系统研制最有挑战的部分。由加速器产生的高能质子流轰击靶核产生中子作为外源中子驱动和维持次临界堆的运行。散裂靶在极小的空间内需承受极大的热负荷,质子束通道与靶核的自由面相邻更加剧了设计难度。受材料限制,流体的温度不能超过550度,因此必须保证流体维持在一定的流量。但同时又要考虑高流速带来的飞溅和回流造成的局部温度过高。这一装置在水作为散裂靶的实验中获得了成功。二.问题描述 2.1.模型及尺寸 图1、欧洲液态金属散裂靶V0.10示意图[1]

如图1所示的欧洲加速器驱动次临界堆(ADS )之无窗散裂靶示意图,液态铅铋合金从上方管间流下并汇合,形成两相界面,质子束由中间的真空管进入打在自由面上。此次模拟用的是水,详细物理背景见文献[1]。 2.2. 控制方程 连续性方程 动量方程 能量方程 三. Openfoam 求解 有关Openfoam 的下载和安装在老师给的安装指导的推荐网站上有详细的操作,在此就不赘述。网址为:https://www.doczj.com/doc/b99685664.html,/download/ubuntu.php 。 3.1. OpenFoam 求解简述 Openfoam 是一款基于linex 的开源可编程软件,其求解过程的关键是三个文件夹的设置,即0,constant 和system 。0文件夹里存放的是初始条件和边界条件设置文件;constant 文件夹里存放的是网格文件,物性参数和求解器模型;system 文件夹里存放的是求解过程控制,差分格式和代数方程求解器设置文件。以下就三个文件的设置展开简述初始条件、边界条件、物性参数,网格个数、疏密设置差分格式、界面捕获算法、气蚀模型等的选择和设置。 3.2. 0文件夹 包含有5个文件,分别为alph-water ,p_rgh ,U ,epsilon ,k ,详细设置见附录1,这里只着重强调在大作业完成过程中几个曾经连续考虑的点。 首先是参数的量纲设置。在Openfoam 文件中常会见到这样一行代码:dimensions [0 0 0 0 0],这便是量纲,单位顺序依次是 [质量,长度,时间,温度,物质的量,电流,光强]。 其次是边界条件和初始条件的设置。在alph-water 中,alpha 代表水所占比例,参照userguide ,1时表示全部为液相,0时表示全部为气相。初始内部场的设置均为1,即起始时刻,散裂靶内部充满水。水入口是边界类型为“定值”,即 0)(=?? +??i i u x t ρρi b j ij i j i j i F x x p x u u t u +??+??-=??+??τρρετδρρ+=+-++??++??j j b j c ij k i i ij i i j j i i u F Q u p u u u e u x u u e t ] )2 1 ([)]21([

传热学大作业

传热学大作业——二维物体热传导 问题的数值解法

1.二维热传导问题的物理描述: 本次需要解决的问题是结合给定的边界条件,通过二维导热物体的数值解法,求解出某建筑物墙角稳态下的温度分布t以及单位长度壁面上的热流量φ。 1.1关于边界条件和研究对象选取的物理描述:如图所示为本次作业需要求解的 建筑物墙壁的截面。尺寸如图中所标注。 1.2由于墙角的对称性,A-A,B-B截面都是绝热面,并且由于对称性,我们只需 要研究墙角的1/4即可(图中阴影部分)。假设在垂直纸面方向上不存在热量 的传递,我们只需要对墙角进行二维问题的研究即可。 1.3 关于导热量计算截面的物理描述:本次大作业需要解决对流边界条件和等温 边界条件下两类边界条件的问题。由于对称性,我们只需研究1/4墙角外表面和内表面的导热量再乘4,即是墙壁的总导热量。 2.二维热传导问题的数学描写: 本次实验的墙角满足二维,稳态无内热源的条件,因此: 壁面内满足导热微分方程: ?2t ?x2+?2t ?y2 =0。

在绝热面处,满足边界条件: ?λ(?t ?n )=0。在对流边界处满足边界条件: ?λ?t ?n w =?(t w?t f) 3.二维热传导问题离散方程的建立: 本次作业中墙角的温度场是一个稳态的连续的场。本次作业中将1/4墙角的温度场离散化,划分成若干小的网格,每个网格的节点看成以它为中心的一个小区域的代表。 通过这些节点,采用“热平衡法”,建立起相应的离散方程,通过高斯-赛德尔迭代法,得到最终收敛的温度场,从而完成对墙角温度场的数值解。 对1/4墙角的网格划分如下: 选取步长Δx=Δy=0.1m,为了方便研究,对导热物体的网格节点进行编码,编码规则如下: x,y坐标轴的方向如图所示,x,y轴的单位长度为步长Δx,取左下角点为(1,1)点,其他点的标号为其在x,y轴上的坐标。以此进行编码,进行离散方程的建立。 建立离散方程,要对导热物体中的节点根据其边界条件进行分类(特殊节点用阴影标出):首先以对流边界条件下的墙角为例

计算流体力学与传热学大作业

########学院 计算流体力学与传热学 学号: 专业: 学生姓名: 任课教师:教授 2013年12月

目录 第一章验证显式格式的稳定性 (4) 1.1 概述 (4) 1.2 数学推导 (4) 1.3 问题描述 (4) 1.4 数值模拟 (4) 1.5 结果及分析 (5) 第二章判断肋片可以按一维问题处理的主要依据 (6) 2.1 概述 (6) 2.2 问题描述及算法 (6) 2.3 数值模拟 (7) 2.4 结果及分析 (8) 第三章三层墙导热 (9) 3.1 概述 (9) 3.2 问题描述 (9) 3.3 TDMA算法 (9) 3.4 结果 (10) 第四章一维无源稳态对流扩散问题 (11) 4.1 公式及初值 (11) 4.2 情况一 (11) 4.3 情况二 (12) 4.4 情况三 (13)

第五章用ADI算法计算长方肋内的温度分布 (14) 5.1 问题描述 (14) 5.2 初始参数 (14) 5.3 情况一,一列列扫 (14) 5.4 情况二,一行行扫 (14) 5.5 情况三,采用ADI算法 (15) 5.6 结果分析 (15) 参考文献 (16)

第一章 验证显式格式的稳定性 1.1 概述 将一维非稳态热传导方程用显式格式差分化为代数方程,在求解的迭代过程中必须满足一定的条件,才能使方程收敛且结果正确。此处即验证β≤?。 1.2 数学推导 方程: 22T t T x α??=?? (1) 显式离散格式: 此处时间向前差分,空间中心差分 111 22n n n n n i i i i i T T T T T t x α+-+--+=?? 1112(2)n n n n n i i i i i t T T T T T x α +-+?-=-+? 令β=2 t x α ??则: 111(2)n n n n n i i i i i T T T T T β+-+-=-+ (2) 误差也应该满足上式,故: ()()1()()()2()()i i i i i Ikx Ikx Ik x x Ikx Ik x x n n n n n T e T e T e T e T e ψψβψψψ----?--+?+??-=-+?? ()()()1()12()()()i i i i Ikx Ikx Ik x x Ik x x n n n n T e T e T e T e ψβψβψψ----?-+?+??=-++?? ()()1()12()()i i i Ikx Ikx Ikx n n Ik x Ik x n T e T e e e T e ψβψβψ---+-??=-++ ()()1() 121() n Ik x Ik x n T e e T ψββψ+-??=-++≤ 因此 β≤?。即当β≤? 时方程(2)才会有收敛的解。 1.3 问题描述 在验证过程中同时可模拟一个实际问题,即冬季里墙壁中的温度分布。此时室内壁温设为Tl=30.0℃,室外壁温Tr=-25.0℃,墙壁以11号楼为例,L=1m ,热扩散系数ɑ=alfa=1.33e-6m 2/s 然后分别取β=0.4,n=10和β=0.6,n=10两种情况,看最后的结果是否收敛和正确。 1.4 数值模拟

相关主题
文本预览
相关文档 最新文档