当前位置:文档之家› 郑州市第十一中学数学旋转几何综合达标检测卷(Word版 含解析)

郑州市第十一中学数学旋转几何综合达标检测卷(Word版 含解析)

郑州市第十一中学数学旋转几何综合达标检测卷(Word版 含解析)
郑州市第十一中学数学旋转几何综合达标检测卷(Word版 含解析)

郑州市第十一中学数学旋转几何综合达标检测卷(Word 版 含解

析)

一、初三数学 旋转易错题压轴题(难)

1.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.

(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;

(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.

【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492

. 【解析】 【分析】

(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =

,1

2

PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;

(2)先判断出ABD ACE ???,得出BD CE =,同(1)的方法得出1

2

PM BD =

,1

2

PN BD =

,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;

(3)方法1:先判断出MN 最大时,PMN ?的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ?的面积最大,而BD 最大是14AB AD +=,即可得出结论. 【详解】 解:(1)

点P ,N 是BC ,CD 的中点,

//PN BD ∴,1

2

PN BD =

, 点P ,M 是CD ,DE 的中点,

//PM CE ∴,1

2

PM CE =

, AB AC =,AD AE =, BD CE ∴=, PM PN ∴=, //PN BD ,

DPN ADC ∴∠=∠, //PM CE ,

DPM DCA ∴∠=∠, 90BAC ∠=?,

90ADC ACD ∴∠+∠=?,

90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=?, PM PN ∴⊥,

故答案为:PM PN =,PM PN ⊥;

(2)PMN ?是等腰直角三角形. 由旋转知,BAD CAE ∠=∠,

AB AC =,AD AE =,

()ABD ACE SAS ∴???,

ABD ACE ∴∠=∠,BD CE =,

利用三角形的中位线得,12PN BD =,1

2

PM CE =,

PM PN ∴=,

PMN ∴?是等腰三角形,

同(1)的方法得,//PM CE , DPM DCE ∴∠=∠,

同(1)的方法得,//PN BD , PNC DBC ∴∠=∠,

DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,

MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠

BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠, 90BAC ∠=?,

90ACB ABC ∴∠+∠=?, 90MPN ∴∠=?,

PMN ∴?是等腰直角三角形;

(3)方法1:如图2,同(2)的方法得,PMN ?是等腰直角三角形,

MN ∴最大时,PMN ?的面积最大, //DE BC ∴且DE 在顶点A 上面, MN ∴最大AM AN =+,

连接AM ,AN ,

在ADE ?中,4AD AE ==,90DAE ∠=?,

22AM ∴=

在Rt ABC ?中,10AB AC ==,52AN = 22522MN ∴=最大,

222111149(72)22242

PMN S PM MN ?∴=

=?=?=最大. 方法2:由(2)知,PMN ?是等腰直角三角形,1

2

PM PN BD ==

, PM ∴最大时,PMN ?面积最大, ∴点D 在BA 的延长线上,

14BD AB AD ∴=+=,

7PM ∴=,

2211497222

PMN S PM ?∴=

=?=最大. 【点睛】

此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出

12PM CE =,1

2

PN BD =,解(2)的关键是判断出ABD ACE ???,解(3)的关键

是判断出MN 最大时,PMN ?的面积最大.

2.直线m ∥n ,点A 、B 分别在直线m ,n 上(点A 在点B 的右侧),点P 在直线m 上,

AP =

1

3

AB ,连接BP ,将线段BP 绕点B 顺时针旋转60°得到BC ,连接AC 交直线n 于点E ,连接PC ,且ABE 为等边三角形.

(1)如图①,当点P 在A 的右侧时,请直接写出∠ABP 与∠EBC 的数量关系是 ,AP 与EC 的数量关系是 .

(2)如图②,当点P 在A 的左侧时,(1)中的结论是否成立?若成立,请给予证明;若

不成立,请说明理由.

(3)如图②,当点P在A的左侧时,若△PBC的面积为93,求线段AC的长.

67

【答案】(1)∠ABP=∠EBC,AP=EC;(2)成立,见解析;(3

【解析】

【分析】

(1)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;

(2)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;

(3)过点C作CD⊥m于D,根据旋转的性质得到△PBC是等边三角形,求得PC=3,设AP=CE=t,则AB=AE=3t,得到AC=2t,根据平行线的性质得到∠CAD=∠AEB=60°,解直角三角形即可得到结论.

【详解】

解:(1)∵△ABE是等边三角形,

∴∠ABE=60°,AB=BE,

∵将线段BP绕点B顺时针旋转60°得到BC,

∴∠CBP=60°,BC=BP,

∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,

即∠ABP=∠EBC,

∴△ABP≌△EBC(SAS),

∴AP=EC;

故答案为:∠ABP=∠EBC,AP=EC;

(2)成立,理由如下,

∵△ABE是等边三角形,

∴∠ABE=60°,AB=BE,

∵将线段BP绕点B顺时针旋转60°得到BC,

∴∠CBP=60°,BC=BP,

∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,

即∠ABP=∠EBC,

∴△ABP≌△EBC(SAS),

∴AP =EC ;

(3)过点C 作CD ⊥m 于D ,

∵将线段BP 绕点B 顺时针旋转60°得到BC , ∴△PBC 是等边三角形, ∴

34

PC 293

∴PC =3,

设AP =CE =t ,则AB =AE =3t , ∴AC =2t , ∵m ∥n ,

∴∠CAD =∠AEB =60°, ∴AD =

1

2

AC =t ,CD 33, ∵PD 2+CD 2=PC 2, ∴(2t )2+3t 2=9, ∴t 37

(负值舍去), ∴AC =2t =7

7

. 【点睛】

本题主要考查等边三角形的判定及性质、旋转的性质应用、三角形全等的判定及性质、勾股定理等相关知识点,解题关键在于找到图形变化过程中存在的联系,类比推理即可得解.

3.如图,在平面直角坐标系中,点O 为坐标原点,抛物线2

y ax bx c =++的顶点是A(1,3),将OA 绕点O 顺时针旋转90?后得到OB ,点B 恰好在抛物线上,OB 与抛物线的对称轴交于点C .

(1)求抛物线的解析式;

(2)P 是线段AC 上一动点,且不与点A ,C 重合,过点P 作平行于x 轴的直线,与

OAB ?的边分别交于M ,N 两点,将AMN ?以直线MN 为对称轴翻折,得到A MN '?. 设点P 的纵坐标为m .

①当A MN '?在OAB ?内部时,求m 的取值范围;

②是否存在点P ,使'

5

6

A MN OA

B S S ?'?=,若存在,求出满足m 的值;若不存在,请说明理

由.

【答案】()2

1y x 22x =-++;(2)①433

m <<;②存在,满足m 的值为619-或

639

-. 【解析】 【分析】

(1)作AD ⊥y 轴于点D ,作BE ⊥x 轴于点E ,然后证明△AOD ≌△BOE ,则AD=BE ,OD=OE ,即可得到点B 的坐标,然后利用待定系数法,即可求出解析式;

(2)①由点P 为线段AC 上的动点,则讨论动点的位置是解题的突破口,有点P 与点A 重合时;点P 与点C 重合时,两种情况进行分析计算,即可得到答案;

②根据题意,可分为两种情况进行分析:当点M 在线段OA 上,点N 在AB 上时;当点M 在线段OB 上,点N 在AB 上时;先求出直线OA 和直线AB 的解析式,然后利用m 的式子表示出两个三角形的面积,根据等量关系列出方程,解方程即可求出m 的值. 【详解】

解:(1)如图:作AD ⊥y 轴于点D ,作BE ⊥x 轴于点E ,

∴∠ADO=∠BEO=90°,

∵将OA 绕点O 逆时针旋转90?后得到OB , ∴OA=OB ,∠AOB=90°,

∴∠AOD+∠AOE=∠BOE+∠AOE=90°, ∴∠AOD=∠BOE , ∴△AOD ≌△BOE , ∴AD=BE ,OD=OE , ∵顶点A 为(1,3), ∴AD=BE=1,OD=OE=3, ∴点B 的坐标为(3,1-), 设抛物线的解析式为2

(1)3=-+y a x , 把点B 代入,得

2(31)31a -+=-,

∴1a =-,

∴抛物线的解析式为2

(1)3y x =--+, 即222y x x =-++;

(2)①∵P 是线段AC 上一动点, ∴3m <,

∵当A MN '?在OAB ?内部时, 当点'A 恰好与点C 重合时,如图:

∵点B 为(3,1-), ∴直线OB 的解析式为1

3

y x =-, 令1x =,则13

y =-

, ∴点C 的坐标为(1,13

-), ∴AC=1103()33

--=

, ∵P 为AC 的中点, ∴AP=

1105233

?=, ∴54333

m =-

=, ∴m 的取值范围是

4

33

m <<; ②当点M 在线段OA 上,点N 在AB 上时,如图:

∵点P 在线段AC 上,则点P 为(1,m ),

∵点'A 与点A 关于MN 对称,则点'A 的坐标为(1,2m -3), ∴'3A P m =-,18'(23)233

A C m m =-+

=-, 设直接OA 为y ax =,直线AB 为y kx b =+, 分别把点A ,点B 代入计算,得

直接OA 为3y x =;直线AB 为25y x =-+, 令y m =, 则点M 的横坐标为3m

,点N 的横坐标为52

m --, ∴555

2326

m m MN m -=

-=--; ∵2'11555515'()(3)22261224

A MN S MN A P m m m m ?=

?=?-?-=-+;

'138

'3(2)34223

OA B S A C m m ?=

??=?-=-; 又∵'5

6A MN OA B

S S ?'?=, ∴

255155

(34)12246

m m m -+=?-, 解得:619m =-或619m =+(舍去); 当点M 在边OB 上,点N 在边AB 上时,如图:

把y m =代入1

3

y x =-,则3x m ,

∴5553222m MN m m -=

+=+-,18

'(23)233A C m m =---=-, ∴2'11555515'()(3)2222424

A MN S MN A P m m m m ?=

?=?+?-=-++, '138

'3(2)43223OA B S A C m m ?=

??=?-=-, ∵'5

6A MN OA B

S S ?'?=, ∴255155

(43)4246

m m m -

++=?-, 解得:639m -=

或639

m +=(舍去); 综合上述,m 的值为:619m =-639

3

m -=. 【点睛】

本题考查的是二次函数综合运用,涉及到一次函数、图形的旋转、解一元二次方程、全等三角形的判定和性质、三角形的面积公式等,解题的关键是熟练掌握所学的性质,正确得到点P的位置.注意运用数形结合的思想和分类讨论的思想进行解题.

4.在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.

(1) 如图1,若点E,F分别落在边AB,AC上,求证:PC=PE;

(2) 如图2,把图1中的△AEF绕着点A顺时针旋转,当点E落在边CA的延长线上时,探索PC与PE的数量关系,并说明理由.

(3) 如图3,把图2中的△AEF绕着点A顺时针旋转,点F落在边AB上.其他条件不变,问题(2)中的结论是否发生变化?如果不变,请加以证明;如果变化,请说明理由.

【答案】(1)见解析;(2)PC=PE,理由见解析;(3)成立,理由见解析

【解析】

【分析】

(1)利用直角三角形斜边的中线等于斜边的一半,即可;

(2)先判断△CBP≌△HPF,再利用直角三角形斜边的中线等于斜边的一半;

(3)先判断△DAF≌△EAF,再判断△DAP≌△EAP,然后用比例式即可;

【详解】

解:(1)证明:如图:

∵∠ACB=∠AEF=90°,

∴△FCB和△BEF都为直角三角形.

∵点P是BF的中点,

∴CP=1

2BF,EP=

1

2

BF,

∴PC=PE.

(2)PC=PE理由如下:

如图2,延长CP,EF交于点H,

∵∠ACB=∠AEF=90°,

∴EH//CB,

∴∠CBP=∠PFH,∠H=∠BCP,

∵点P是BF的中点,

∴PF=PB,

∴△CBP≌△HFP(AAS),

∴PC=PH,

∵∠AEF=90°,

∴在Rt△CEH中,EP=1

2

CH,

∴PC=PE.

(3)(2)中的结论,仍然成立,即PC=PE,理由如下:

如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,

∵∠DAF=∠EAF,∠FDA=∠FEA=90°,

在△DAF和△EAF中,

DAF,

,

,

EAF

FDA FEA

AF AF

∠=∠

?

?

∠=∠

?

?=

?

∴△DAF≌△EAF(AAS),

∴AD=AE,

在△DAP≌△EAP中,

,

,

,

AD AE

DAP EAP

AP AP

=

?

?

∠=∠

?

?=

?

∴△DAP≌△EAP (SAS),

∴PD=PF,

∵FD⊥AC,BC⊥AC,PM⊥AC,

∴FD//BC//PM,

∴DM FP

MC PB

=,

∵点P是

BF的中点,

∴DM=MC,

又∵PM⊥AC,

∴PC=PD,

又∵PD=PE,

∴PC=PE.

【点睛】

此题是几何变换综合题,主要考查了直角三角形斜边的中线等于斜边一半,全等三角形的性质和判定,相似三角形的性质和判定,作出辅助线是解本题的关键也是难点.

5.如图一,矩形ABCD中,AB=m,BC=n,将此矩形绕点B顺时针方向旋转θ(0°<θ<90°)得到矩形A1BC1D1,点A1在边CD上.

(1)若m=2,n=1,求在旋转过程中,点D到点D1所经过路径的长度;

(2)将矩形A1BC1D1继续绕点B顺时针方向旋转得到矩形A2BC2D2,点D2在BC的延长线上,设边A2B与CD交于点E,若161

A E

EC

=-,求

n

m

的值.

(3)如图二,在(2)的条件下,直线AB上有一点P,BP=2,点E是直线DC上一动点,在BE左侧作矩形BEFG且始终保持

BE n

BG m

=,设AB=33,试探究点E移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.

【答案】(1

5

;(2

3

;(3)存在,63

【解析】

【分析】

(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出

∠ABA1,得到旋转角即可解决问题;

(2)由△BCE∽△BA2D2,推出22

2

A D

CE n

CB A B m

==,可得CE=2n

m

,由161

A E

EC

=推出16

A C

EC

=A1

2

6

n

m

,推出BH=A1

2

6

n

m

,然后由勾股定理建立方程,解方程即可解决问题;

(3)当A、P、F,D,四点共圆,作PF⊥DF,PF与CD相交于点M,作MN⊥AB,此时PF

的长度为最小值;先证明△FDG ∽△

FME ,得到

3

3

FG F FM FE D ==

,再结合已知条件和解直角三角形求出PM 和FM 的长度,即可得到PF 的最小值. 【详解】

解:(1)作A 1H ⊥AB 于H ,连接BD ,BD 1,则四边形ADA 1H 是矩形.

∴AD=HA 1=n=1,

在Rt △A 1HB 中,∵BA 1=BA=m=2, ∴BA 1=2HA 1, ∴∠ABA 1=30°, ∴旋转角为30°, ∵22125+= ∴D 到点D 1所经过路径的长度3055π??=; (2)∵△BCE ∽△BA 2D 2,

∴222A D CE n

CB A B m

==, ∴2n CE m =,

∵161EA

EC =, ∴16A C

EC = ∴A 12

6n m

∴BH=A 12

2

2

6n m n m

-=,

∴4

2

2

26n m n m

-=?,

∴m 4﹣m 2n 2=6n 4,

∴24

2416n n m m

-=?,

3

n m =

(负根已舍去). (3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;

由(2)可知,

3

BE n BG m ==

, ∵四边形BEFG 是矩形, ∴

3FG FE =

∵∠DFG+∠GFM=∠GFM+∠MFE=90°, ∴∠DFG=∠MFE , ∵DF ⊥PF ,即∠DFM=90°,

∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°, ∴∠FDG=∠FME , ∴△FDG ∽△FME , ∴

3

FG F FM FE D ==

, ∵∠DFM=90°,tan 3

FD FMD FM ∠=

=

, ∴∠FDM=60°,∠FMD=30°, ∴3

FM DM =

; 在矩形ABCD 中,有

3

AD AB =

3

333

=,则3AD =, ∵MN ⊥AB ,

∴四边形ANMD 是矩形,

∴MN=AD=3,

∵∠NPM=∠DMF=30°, ∴PM=2MN=6, ∴NP=33AB =, ∴DM=AN=BP=2, ∴3323FM DM =

=?=, ∴63PF PM MF =+=+; 【点睛】

本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.

6.阅读下面材料:

小炎遇到这样一个问题:如图1,点E 、F 分别在正方形ABCD 的边BC ,CD 上,∠EAF=45°,连结EF ,则EF=BE+DF ,试说明理由.

小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB ,AD 是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A 逆时针旋转90°得到△ADG ,再利用全等的知识解决了这个问题(如图2).

参考小炎同学思考问题的方法,解决下列问题:

(1)如图3,四边形ABCD 中,AB=AD ,∠BAD=90°点E ,F 分别在边BC ,CD 上,∠EAF=45°.若∠B ,∠D 都不是直角,则当∠B 与∠D 满足_ 关系时,仍有EF=BE+DF ; (2)如图4,在△ABC 中,∠BAC=90°,AB=AC ,点D 、E 均在边BC 上,且∠DAE=45°,若BD=1, EC=2,求DE 的长.

【答案】(1)∠B+∠D=180°(或互补);(2)∴

【解析】

试题分析:(1)如图,△ABE绕着点A逆时针旋转90°得到△ADG,利用全等的知识可知,要使EF=BE+DF,即EF=DG+DF,即要F、D、G三点共线,即∠ADG+∠ADF=180°,即

∠B+∠D=180°.

(2) 把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合,通过证明△AEG≌△AED 得到DE=EG,由勾股定理即可求得DE的长.

(1)∠B+∠D=180°(或互补).

(2)∵ AB=AC,

∴把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合.

则∠B=∠ACG,BD=CG,AD=AG.

∵在△ABC中,∠BAC=90°,

∴∠ACB+∠ACG=∠ACB+∠B=90°于,即∠ECG=90°.

∴ EC2+CG2=EG2.

在△AEG与△AED中,

∠EAG=∠EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD.

又∵AD=AG,AE=AE,

∴△AEG≌△AED .

∴DE=EG.

又∵CG=BD,

∴ BD2+EC2=DE2.

∴.

考点:1.面动旋转问题;2.全等三角形的判定和性质;3.勾股定理.

7.如图,在直角坐标系中,已知点A(-1,0)、B(0,2),将线段AB绕点A按逆时针方向旋转90°至AC.

(1)点C的坐标为(,);

(2)若二次函数的图象经过点C.

①求二次函数的关系式;

②当-1≤x≤4时,直接写出函数值y对应的取值范围;Z_X_X_K]

③在此二次函数的图象上是否存在点P(点C除外),使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理

由.

【答案】(1) ∴点C的坐标为(-3,1) .

(2)①∵二次函数的图象经过点C(-3,1),

∴.解得

∴二次函数的关系式为

②当-1≤x≤4时,≤y≤8;

③过点C作CD⊥x轴,垂足为D,

i) 当A为直角顶点时,延长CA至点,使,则△是以AB为直角边的等腰直

角三角形,过点作⊥轴,

∵=,∠=∠,∠=∠=90°,

∴△≌△,∴AE=AD=2,=CD=1,

∴可求得的坐标为(1,-1),经检验点在二次函数的图象上;

ii)当B点为直角顶点时,过点B作直线L⊥BA,在直线L上分别取,得到以AB为直角边的等腰直角△和等腰直角△,作⊥y轴,同理可证

△≌△∴BF=OA=1,可得点的坐标为(2, 1),经检验点在二次函数的图象上.同理可得点的坐标为(-2, 3),经检验点不在二次函数的图象上

综上:二次函数的图象上存在点(1,-1),(2,1)两点,使得△和△

是以AB为直角边的等腰直角三角形.

【解析】

(1)根据旋转的性质得出C点坐标;

(2)①把C点代入求得二次函数的解析式;②利用二次函数的图象得出y的取值范围;

③分二种情况进行讨论.

8.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.

(1)如图1,若α=90°,则AB= ,并求AA′的长;

(2)如图2,若α=120°,求点O′的坐标;

(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.

【答案】(1)10,102;(2)(33,9);(3)12354

5

(,)

【解析】

试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则

∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则

O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求

出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作

P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.

试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,

∴AB==5,

∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,

∴△ABA′为等腰直角三角形,∴AA′=BA=5;

(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,

∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣

∠HBO′=30°,

∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为

();

(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,

∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,

则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),

设直线O′C的解析式为y=kx+b,

把O′(),C(0,﹣3)代入得,解得,

∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P

(,0),

∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,

∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,

∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,

∴P′点的坐标为(,).

考点:几何变换综合题

9.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB2F(m,0)是x轴的正半轴上一点,将抛物线C绕点F 旋转180°,得到新的抛物线C′.

(1)求抛物线C的函数表达式;

(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.

相关主题
文本预览
相关文档 最新文档