当前位置:文档之家› 最新工程数学线性代数第五版答案

最新工程数学线性代数第五版答案

最新工程数学线性代数第五版答案
最新工程数学线性代数第五版答案

工程数学线性代数第

五版答案

仅供学习与交流,如有侵权请联系网站删除 谢谢43

线性代数重点

第一章 行列式

8. 计算下列各行列式(D k 为k 阶行列式): (1)a a D n 1 1???=

, 其中对角线上元素都是a , 未写出的元素都是

0;

解 a

a a a a D n 0 0010 000 00 0000 00

10 00?????????????????????????????????=(按第n 行展开) )

1()1(10 000 00 0000 0010 000)1(-?-+??????????????????????????????-=n n n a a a )1()1(2 )1(-?-????-+n n n a a a n n n n n a a a +???-?-=--+)

2)(2(1 )1()1(=a n -a n -2=a n -2(a 2-1). (2)x

a a a x a a a x

D n ?????????????????????= ; 解 将第一行乘(-1)分别加到其余各行, 得

仅供学习与交流,如有侵权请联系网站删除 谢谢43 a

x x a a x x a a x x a a a a x D n --??????????????????--???--???=000 0 00 0 , 再将各列都加到第一列上, 得 a x a x a x a a a a n x D n -??????????????????-???-???-+=00

00 0 000 00 )1(=[x +(n -1)a ](x -a )n -1. (3)1

11 1

)( )1()( )1(11

11???-?????????-??????-???--???-=---+n a a a n a a a n a a a D n n n n n

n n ; 解 根据第6题结果, 有 n n

n n n n n n n n a a a n a a a n a a a D )( )1()( )1( 11 11)1(11

12)1(1-???--?????????-??????-???-???-=---++ 此行列式为范德蒙德行列式. ∏≥>≥++++--+--=112)1(1)]1()1[()

1(j i n n n n j a i a D ∏≥>≥++---=112)1()]([)

1(j i n n n j i ∏≥>≥++???+-++-?

-?-=1121 )1(2)

1()()1()1(j i n n n n n j i

仅供学习与交流,如有侵权请联系网站删除 谢谢43

∏≥>≥+-=

11)(j i n j i .

(4)n

n n n n d c d c b a b a D ??????????

??= 11112; 解 n

n n n n d c d c b a b a D ??????????

??= 11112(按第1行展开) n

n n n n n

d d c d c b a b a a 000 011111111----??????????

??= 0

0)1(11

11111112c d c d c b a b a b n n n n n n

n ----+?????????

???-+. 再按最后一行展开得递推公式

仅供学习与交流,如有侵权请联系网站删除 谢谢43

D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=n

i i i i i n D c b d a D 222)(.

而 1

11111112c b d a d c b a D -==, 所以 ∏=-=n

i i i i i n c b d a D 12)(.

(5) D =det(a ij ), 其中a ij =|i -j |;

解 a ij =|i -j |, 0

4321 4 01233 10122 2101

1 3210)det(???----??????????????????-???-???-???-???==n n n n n n n n a D ij n 0 4321

1 11111 11111 11111 1111 2132???----?????????????????????----???---???--???--???-=====n n n n r r r r 1 5

242321 0 22210 02210 00210 0001 1213-???----?????????????????????----???---???--???-+???+=====n n n n n c c c c =(-1)n -1(n -1)2n -2. (6)n

n a a a D +??????????????????+???+=1 11 1 111 1

121, 其中a 1a 2 ? ? ? a n ≠0.

仅供学习与交流,如有侵权请联系网站删除 谢谢43

解 n

n a a a D +??????????????????+???+=1 11 1 111 1

121 n n n n a a a a a a a a a c c c c +-???-???????????????????????????-???-???-???-=====--10 00

01 000 100 0

100 0100 00 113322

1

2132 11113121121110 00011 00

0 00 11

000 01

100 00

1 ------+-???-???????????????????????????-???-??????=n

n n a a a a a a a a ∑=------+???????????????????????????????????????=n

i i n n a a a a a a a a 11

1113121121100 00010 000 00 100

00 010

00 001

)11)((121∑=+=n

i i

n a a a a .

第二章 矩阵及其运算

14. 设A 为3阶矩阵, 2

1||=A , 求|(2A )-1-5A *|.

仅供学习与交流,如有侵权请联系网站删除 谢谢43 解 因为*|

|11A A A =-, 所以 |||52

1||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A |-1=-8?2=-16.

15. 设???

? ??-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E )B =A , 故

???? ??-???? ??---=-=--321011330121011332)2(1

1A E A B ???? ??-=011321330. 16. 设???

? ??=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得

(A -E )B =A 2-E ,

即 (A -E )B =(A -E )(A +E ).

因为010

01010100||≠-==-E A , 所以(A -E )可逆, 从而 ???

? ??=+=201030102E A B . 17. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B .

线性代数第五章(答案)

第五章 相似矩阵及二次型 一、 是非题(正确打√,错误打×) 1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. ( √ ) 2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. ( √ ) 3.n 阶正交阵A 的n 个行(列)向量构成向量空间n R 的一个规范正交基. ( √ ) 4.若A 和B 都是正交阵,则AB 也是正交阵. ( √ ) 5.若A 是正交阵, Ax y =,则x y =. ( √ ) 6.若112???=n n n n x x A ,则2是n n A ?的一个特征值. ( × ) 7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. ( × ) 8.n 阶矩阵A 在复数范围内有n 个不同的特征值. ( × ) 9. 矩阵A 有零特征值的充要条件是0=A . ( √ ) 10.若λ是A 的特征值,则)(λf 是)(A f 的特征值(其中)(λf 是λ的多项式). ( √ ) 11.设1λ和)(212λλλ≠是A 的特征值, 1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. ( × ) 12. T A 与A 的特征值相同. ( √ ) 13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. ( × )

14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足: B PAP =-1,则A 与B 有相同的特征值. ( √ ) 15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. ( √ ) 16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. ( √ ) 17.实对称矩阵A 的非零特征值的个数等于它的秩. ( √ ) 18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. ( √ ) 19.实对称阵A 与对角阵Λ相似Λ=-AP P 1,这里P 必须是正交阵 。 ( × ) 20.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则Ax x T 不是二次型. ( √ ) 21.任一实对称矩阵合同于一对角矩阵。 ( √ ) 22.二次型 Ax x x x x f T n =),,,(21 在正交变换Py x =下一定化为 标准型. ( × ) 23.任给二次型 Ax x x x x f T n =),,,(21 ,总有正交变换Py x =,使f 化 为规范型。 ( × )

线性代数第五章 课后习题及解答

第五章课后习题及解答 1. 求下列矩阵的特征值和特征向量: (1) ;1332??? ? ??-- 解:,0731332 2=--=--=-λλλλλA I 2 373,237321-=+=λλ ,00133637123712137 1??? ? ??→→???? ??=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T - 因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T ,001336371237123712??? ? ??→→???? ??-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T +

因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T (2) ;211102113???? ? ??-- 解:2)2)(1(2 111211 3--==------=-λλλλ λλ A I 所以,特征值为:11=λ(单根),22=λ(二重根) ???? ? ??-→→????? ??------=-0001100011111121121 A I λ 所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T 因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T ???? ? ??-→→????? ??-----=-0001000110111221112 A I λ 所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T 因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T

工程数学线性代数(同济大学第六版)课后习题答案(全)

第一章行列式 1.利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4.

(2)b a c a c b c b a ; 解b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2y -x 3-y 3-x 3 =-2(x 3+y 3). 2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4;

解逆序数为0 (2)4 1 3 2; 解逆序数为4:41, 43, 42, 32. (3)3 4 2 1; 解逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ??? (2n-1) 2 4 ??? (2n); 解逆序数为 2)1 (- n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ?????? (2n-1)2, (2n-1)4, (2n-1)6,???, (2n-1)(2n-2)(n-1个) (6)1 3 ???(2n-1) (2n) (2n-2) ??? 2. 解逆序数为n(n-1) : 3 2(1个) 5 2, 5 4 (2个) ?????? (2n-1)2, (2n-1)4, (2n-1)6,???, (2n-1)(2n-2)(n-1个) 4 2(1个)

同济大学工程数学线性代数第六版答案(全)

第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3811411 02---; 解 3 811411 02--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2221 11c b a c b a ; 解 2 221 11c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).

(4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3 -(x +y )3 -x 3 =3xy (x +y )-y 3 -3x 2 y -x 3 -y 3 -x 3 =-2(x 3 +y 3 ). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2 ) 1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ? ? ? ? ? ?

线性代数练习册第五章题目及答案(本)复习进程

第五章 相似矩阵与二次型 §5-1 方阵的特征值与特征向量 一、填空题 1.已知四阶方阵A 的特征值为0,1,1,2,则||A E λ-= 2(1)(2)λλλ-- 2.设0是矩阵??? ? ? ??=a 01020101A 的特征值,则=a 1 3.已知三阶方阵A 的特征值为1,-1,2,则2 32B A A =-的特征值为 1,5,8 ;||A = -2 ;A 的对角元之和为 2 . 4.若0是方阵A 的特征值,则A 不可逆。 5. A 是n 阶方阵,||A d =,则*AA 的特征值是,,,d d d ???(共n 个) 二、选择题 1.设1λ,2λ为n 阶矩阵A 的特征值,1ξ,2ξ分别是A 的属于特征值1λ,2λ的特征向量,则( D ) (A )当1λ=2λ时,1ξ,2ξ必成比例 (B )当1λ=2λ时,1ξ,2ξ必不成比例 (C )当1λ≠2λ时,1ξ,2ξ必成比例 (D )当1λ≠2λ时,1ξ,2ξ必不成比例 2.设a=2是可逆矩阵A 的一个特征值,则1 A -有一个特征值等于 ( C ) A 、2; B 、-2; C 、 12; D 、-1 2 ; 3.零为方阵A 的特征值是A 不可逆的( B ) A 、充分条件; B 、充要条件; C 、必要条件; D 、无关条件;

三、求下列矩阵的特征值和特征向量 1.1221A ?? = ??? 解:A 的特征多项式为12(3)(1)2 1A E λλλλλ --==-+- 故A 的特征值为123,1λλ==-. 当13λ=时,解方程()30A E x -=. 由221132200r A E --???? -= ? ?-???? : 得基础解系111p ?? = ??? ,故1(0)kp k ≠是13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ???? += ? ????? : 得基础解系211p -?? = ??? ,故2(0)kP k ≠是21λ=-的全部特征向量. 2.100020012B ?? ?= ? ??? 解:B 的特征多项式为 2100020(1)(2)0 1 2B E λ λλλλλ --= -=--- 故B 的特征值为1231,2λλλ===. 当11λ=时,解方程()0B E x -=. 由000010010001011000r B E ???? ? ? -= ? ? ? ????? :

同济大学线性代数试卷题库 (7)

2009—2010学年第二学期 课名:线性代数(2学分) 一、填空与选择题(24分) 1、 已知m 阶方阵A 与n 阶方阵B 的行列式值分别为,a b ,且0ab ≠,则 1 1030T A B --??-= ??? ______a b m n ) ()3(+-_____________. 解:化简后可得11-300 m n T A B +-?? ??? () 由拉普拉斯定理 ,分母为-1T A B ,所以得到a b m n ) ()3(+- 2、 设100220333A ?? ?= ? ??? ,其伴随矩阵为* A ,则()1*A -=____A 61______. 解:先化简,由伴随矩阵的性质*-1 A A A =,() 1 *-1-1 11 6 A A A A A A -== =() 3、 若3阶方阵A 满足20A E A E A E +=+=-=,则253A A E --=___-231___________. 解:看到这种形式请立刻联想到特征值,20A E A E A E +=+=-= 由这几个等式,我们可知A 的三个特征值为-1,-2,1.而A 为3阶方阵,说明它只有3个特征值,现在,我们来看253A A E --,我们假定253=B A A E --,则根据特征多项式,我们可以分别把A 的三个特征值带进去,得到B 的三个特征值分别为 123 1533 410-3111-5-3-7λλλ=+-=??=+=??==?,在根据特征值之积等于方阵的行列式可知2 53A A E --=-231 4、 已知123,,ααα是3 R 空间的一组规范正交基,则12323ααα-+=__14__________. 解:本题要求的是12323ααα-+的范数,带入公式,由于123,,ααα是3 R 空间的一组规范 正交基(正交基:列向量位单位向量,且每个列向量之间内积为0),于是有 =5、 设二次型22212312313(,,)222T f x x x x Ax ax x x bx x ==+-+,其中0b >,已知A 的全体特征值

线性代数第五章答案

第五章 相似矩阵及二次型 1. 试用施密特法把下列向量组正交化: (1)??? ? ??=931421111) , ,(321a a a ; 解 根据施密特正交化方法, ??? ? ??==11111a b , ??? ? ?? -=-=101] ,[],[1112122b b b a b a b , ? ?? ? ??-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b . (2)??? ? ? ??---=011101110111) , ,(321a a a . 解 根据施密特正交化方法, ??? ? ? ??-==110111a b , ? ???? ??-=-=123131],[],[1112122b b b a b a b , ? ??? ? ??-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .

2. 下列矩阵是不是正交阵: (1)?????? ? ??-- -1 21312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵. (2)???? ?? ? ??---- --979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵. 3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为 H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为 H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵. 4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T , (AB )T (AB )=B T A T AB =B -1A -1AB =E ,

同济大学线性代数第五版课后习题答案

第一章 行列式 1 利用对角线法则计算下列三阶行列式 (1)3811 411 02--- 解 3 811411 02--- 2(4)30(1)(1)118 0 132(1)8 1( 4) (1) 248164 4 (2)b a c a c b c b a 解 b a c a c b c b a acb bac cba bbb aaa ccc 3abc a 3b 3c 3 (3)2 221 11c b a c b a

解 2 221 11c b a c b a bc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a ) (4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (x y )y yx (x y )(x y )yx y 3(x y )3x 3 3xy (x y )y 33x 2 y x 3y 3x 3 2(x 3 y 3) 2 按自然数从小到大为标准次序 求下列各排列的逆 序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1

解逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 2)1 ( n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6

《工程数学-线性代数》试卷(C)

安徽矿业职业技术学院 2011-2012学年第二学期期末考试 《工程数学-线性代数》试卷(C)(时间:120分钟) 课程所在系部:公共课教学部 适用专业:矿井建设与相关专业 考试形式: 闭卷(闭卷/开卷) 命 题 人:马万早 说明:在本卷中,T A 表示矩阵A 的转置矩阵,A*表示矩阵A 的伴随矩阵,E 是单位矩阵,|A|表示方阵A 的行列式. 1 A -表示方阵A 的逆矩阵,R (A )表示矩阵A 的秩。 一、填空题 ( 每小题2分,共20分) 1. 将行列式的行与列依次互换,行列式 。 2. 设D 为一个三阶行列式,第三列元素分别为-2,2,1,其余子式分别为9,6,2,则D= 。 3. 关于线性方程组的克莱姆法则成立的条件(1)是 ,(2)是 。 4. n 阶矩阵A 可逆的设A * 为A 的伴随矩阵,则A -1 = 。 5. 若n 阶矩阵满足2 40A A E +-=,则()1 A E --= 。 6. ()10234501?? ? ?= ? ??? , ()10234501?? ? ?= ? ??? 。 7. 设向量组 321,,ααα线性无关,则向量组332211,,,,,βαβαβα线性 。 8. 设A 为三阶矩阵,若 A =5,则 1 -A = , * A = 。 9. n 阶方阵A 的列向量组为 n αααΛ,,21,则r(n αααΛ,,21) 。 10. 非齐次线性方程组A n m ?X=b 无解的条件是 。 二、选择题(10分,每题2分) 1. 1303 1 k k -≠-的充要条件是( ) 。 (a ) k ≠2(b )k ≠4(c ) k ≠2且k ≠4(d )k ≠2或k ≠4 2. A,B,C 为n 阶方阵,则下列各式正确的是( ) (a) AB=BA (b) AB=0,则A=0或B=0 (c) (A+B )(A-B )=A 2 -B 2 (d) ( B+C)A=BA+CA 3. 设A 为n 阶可逆矩阵,则下述说法正确的是( ) (a) A ,0≠ (b) 1-A 0≠ (c) r(A)=n (d) A 的行向量组线性相关 4. 设矩阵A =(a ij )n m ?,AX=0有非零解的充要条件是( ) (a) A 的行向量组线性无关 (b) A 的行向量组线性相关 (c) A 的列向量组线性无关 (d) A 的列向量组线性相关 5. 向量组 s αααΛ,,21的秩为r,则下述说法正确的是( ) (a) s αααΛ,,21中至少有一个r 个向量的部分组线性无关 (b) s αααΛ,,21中任何r 个向量的线性无关部分组与s αααΛ,,21可互相线性表示 (c) s αααΛ,,21中r 个向量的部分组皆线性无关 (d) s αααΛ,,21中r+1个向量的部分组皆线性相关 三、判断题(正确的划√,错误的划х,共10分,每题2分) 1. 1112111221222122ka ka a a k ka ka a a ???? = ? ? ???? 。 ( ) 2. A 为任意的m n ?矩阵, 则A T A, AA T 不一定都是对称矩阵。 ( ) 3. s αααΛ,,21线性无关,则其中至少有一个部分组线性相关。 ( ) 4. 行列式 0002 00201602002000 = ( ) 5. 若两个向量组可不能线性表示,则它们的秩相等。 ( ) 四、计算 1.计算n 阶行列式(12分)

线性代数第五章作业参考答案(唐明)

第五章作业参考答案 5-2试证:()()()1231,1,0,2,1,3,3,1,2T T T ααα=-== 是3R 的一组基,并求向量()()125,0,7,9,8,13T T v v ==--- 在这组基之下的坐标。 证明:要证123,,ααα 线性无关,即证满足方程1122330k k k ααα++= 的123,,k k k 只能均是0.联立方程得 1231232 32300320k k k k k k k k ++=?? -++=??+=? 计算此方程系数的行列式123 1116003 2 -=-≠ 故该方程只有零解,即1230k k k ===,因此,123,,ααα 是3R 的一组基 设1v 在这组基下的坐标为()123,,x x x ,2v 在这组基下的坐标为()123,,y y y ,由已知得 ()()1111232 212323 3,,,,,x y v x v y x y αααααα???? ? ? == ? ? ? ? ???? 代入易解得112233233,312x y x y x y ???????? ? ? ? ?==- ? ? ? ? ? ? ? ?--????????即为1v ,2v 在这组基下的坐标。 5-5设()()()1,2,1,1,2,3,1,1,1,1,2,2T T T αβγ=-=-=--- ,求: (1 ),,,αβαγ 及,,αβγ 的范数;(2)与,,αβγ 都正交的所有向量。 解(1 ),1223111(1)6αβ=?+?-?+?-= ()()(),112112 121 αγ=?-+?--?-+?= α= = β== γ= = (2)设与,,αβγ 都正交的向量为()1234,,,T x x x x x =,则 123412341234,20 ,230,220x x x x x x x x x x x x x x x αβγ?=+-+=??=++-=??=---+=?? 解得1 43243334 4 5533x x x x x x x x x x =-?? =-+?? =??=? 令340,1x x ==得()()1234,,,5,3,0,1x x x x =- 令341,0x x ==得()()1234,,,5,3,1,0x x x x =-

同济大学线性代数第五版课后习题答案

1 利用对角线法则计算下列三阶行列式 (1)3811 411 02--- 解 3 811411 02--- 2(4)30(1)(1)118 0 132(1)8 1( 4) (1) 248164 4 (2)b a c a c b c b a 解 b a c a c b c b a acb bac cba bbb aaa ccc 3abc a 3b 3c 3 (3)2221 11c b a c b a 解 2 221 11c b a c b a

bc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a ) (4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (x y )y yx (x y )(x y )yx y 3(x y )3x 3 3xy (x y )y 33x 2 y x 3y 3x 3 2(x 3 y 3) 2 按自然数从小到大为标准次序 求下列各排列的逆 序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1 解 逆序数为5 3 2 3 1 4 2 4 1, 2 1

(4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 2)1 ( n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个)

工程数学-线性代数第五版答案02教学教材

工程数学-线性代数第五版答案02

仅供学习与交流,如有侵权请联系网站删除 谢谢2 第二章 矩阵及其运算 1. 已知线性变换: ?????++=++=++=3 213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知: ???? ?????? ? ?=???? ??221321323513122y y y x x x , 故 ???? ?????? ? ?=???? ??-3211221323513122x x x y y y ???? ?????? ??----=321423736947y y y , ?????-+=-+=+--=3 21332123211423736947x x x y x x x y x x x y . 2. 已知两个线性变换 ?????++=++-=+=3 2133212311542322y y y x y y y x y y x , ?????+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知 ???? ?????? ? ?-=???? ??221321514232102y y y x x x ??? ? ?????? ??--???? ??-=321310102013514232102z z z

仅供学习与交流,如有侵权请联系网站删除 谢谢3 ??? ? ?????? ??----=321161109412316z z z , 所以有?????+--=+-=++-=3 213321232111610941236z z z x z z z x z z z x . 3. 设???? ??--=111111111A , ??? ? ??--=150421321B , 求3AB -2A 及A T B . 解 ??? ? ??---???? ??--???? ??--=-1111111112150421321111111111323A AB ??? ? ??----=???? ??---???? ??-=2294201722213211111111120926508503, ???? ??-=???? ??--???? ??--=092650850150421321111111111B A T . 4. 计算下列乘积: (1)??? ? ?????? ??-127075321134; 解 ???? ?????? ??-127075321134???? ???+?+??+?-+??+?+?=102775132)2(71112374??? ? ??=49635. (2)??? ? ??123)321(;

工程数学线性代数课后答案

习题解答 1. 利用对角线法则计算下列三阶行列式: 解(1)原式= 2x( - 4) X3 + OX (-1)x(-1)+ 1X1X8 -1x(-4)x(-1)-2X (-1)X8-OX1X3 = -4; (2) 原式=acb 十 bac + cba - c‘ - a 3 - b' =3abc — a 3 — — c 3 ; (3) 原式=1?&?c 2 + l*c*a 2 + l'a*62-l*6*a 2-l*c ,62-l*a*c 2 =be 2 + ca 2 十 ab 2 — ba' — cb 2 ~ ac 2 = c 2(6-a) + aZ>(6-a)-c(A 2-a 2) = (a-6)(Z )-c)(c-a); (4) 原式=x(x + y)y + yx(x + y) + (?r + y)yx - (x + yV - d - =-2(x 3+y ). 2. 按自然数从小到大为标准次序,求下列各排列的逆序数: (1) 1 2 3 4; (2) 4 1 3 2; ⑶3 4 2 1; (4) 2 4 1 3; ⑸1 3 …(2n - -1) 2 4 …(: 加) ; (6) 1 3 …(2n - ?1) (In) (2n - 2) … 2. 解(1)此排列为自然排列,其逆序数为0; (2) 此排列的首位元素的逆序数为0;第2位元素1的逆序数为1;第3位元 素3的逆序数为1;末位元素2的逆序数为2,故它的逆序数为0+ 1 + 1 + 2 = 4; (3) 此排列的前两位元素的逆序数均为0;第3位元素2的逆序数为2;末 位元素1的逆序数为3,故它的逆序数为0 + 0 + 2 + 3 = 5; (4) 类似于上面,此排列的从首位元素到末位元素的逆序数依次为0,0,2, 1,故它的逆序数为0 + 0 + 2+1 = 3; (5) 注意到这2刃个数的排列中,前n 位元素之间没有逆序对.第n + 1位 元素2与它前面的n - 1个数构成逆序对,故它的逆序数为“?1;同理,第” +2 倍元素4的逆序数为” -2;…;末位元素2n 的逆序数为0.故此排列的逆序数 2 0 1 仃) 1 -4 -1 -1 8 3 1 1 1 ⑶ a b c a 2 b 2 c 2 ? t

工程数学线性代数第五版答案

线性代数重点 第一章 行列式 8. 计算下列各行列式(D k 为k 阶行列式): (1)a a D n 1 1???=, 其中对角线上元素都是a , 未写出的元素 都是0; 解 a a a a a D n 0 1 0 000 00 00 0 00 10 00? ????????????????????????????????=(按第n 行展开) ) 1()1(1 0 000 0 0 00 0 001 0 000)1(-?-+??????????????????????????????-=n n n a a a )1()1(2 )1(-?-????-+n n n a a a n n n n n a a a +? ??-?-=--+) 2)(2(1 )1()1(=a n -a n -2=a n -2(a 2-1). (2)x a a a x a a a x D n ????????????? ????????= ; 解 将第一行乘(-1)分别加到其余各行, 得

a x x a a x x a a x x a a a a x D n --??????????????????--???--???=000 0 00 0 , 再将各列都加到第一列上, 得 a x a x a x a a a a n x D n -??????????????????-???-???-+=0000 0 000 0 )1(=[x +(n -1)a ](x -a )n -1. (3)1 1 1 1 )( )1()( )1(1 1 11???-? ????????-? ?????-???--???-=---+n a a a n a a a n a a a D n n n n n n n ; 解 根据第6题结果, 有 n n n n n n n n n n a a a n a a a n a a a D )( )1()( )1( 11 11)1(1112)1(1-???--?????????-? ?????-???-???-=---++ 此行列式为范德蒙德行列式. ∏≥>≥++++--+--=1 12 )1(1)]1()1[()1(j i n n n n j a i a D ∏≥>≥++---=112 )1()]([)1(j i n n n j i ∏≥>≥++???+-++-? -?-=1 12 1 )1(2 )1()()1()1(j i n n n n n j i ∏≥>≥+-= 1 1)(j i n j i .

工程数学线性代数同济大学第六版课后习题答案

第一章 行列式 1、 利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解 3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4、

(2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3、 (3)2 22111c b a c b a ; 解 2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a )、 (4)y x y x x y x y y x y x +++、 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3)、 2、 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4;

解逆序数为0 (2)4 1 3 2; 解逆序数为4:41, 43, 42, 32、(3)3 4 2 1; 解逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1、(4)2 4 1 3; 解逆序数为3: 2 1, 4 1, 4 3、 (5)1 3 ??? (2n-1) 2 4 ??? (2n); 解逆序数为 2)1 (- n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ?????? (2n-1)2, (2n-1)4, (2n-1)6,???, (2n-1)(2n-2) (n-1个) (6)1 3 ???(2n-1) (2n) (2n-2) ??? 2、 解逆序数为n(n-1) : 3 2(1个) 5 2, 5 4 (2个) ?????? (2n-1)2, (2n-1)4, (2n-1)6,???, (2n-1)(2n-2) (n-1个) 4 2(1个) 6 2, 6 4(2个)

线性代数第五章习题答案

思考题5-1 1. 1123123100,000=?+?+?=?+?+?a a a a 0a a a . 2.不一定。例如,对于123101,,012?????? ===???????????? a a a ,它们中的任两个都线性无关,但 是123,,a a a 是线性相关的。 3. 不一定。也可能是2a 能由13,a a 线性表示,还可能是3a 能由12,a a 线性表示。 4. 不一定。例如,对于12121100,;,0012-???????? ====???????????????? a a b b 。12,a a 和12,b b 这两个 向量组都线性相关,但1122,++a b a b 却是线性无关的。 5. 向量组121,,,,n n +a a a a 线性无关。根据定理5-4用反证法可以证明这一结论。 习题5-1 1.提示:用行列式做。 (1)线性无关。 (2)线性相关。. 2. 0k ≠且1k ≠。 3.证:1212,,,1,,,,n n ==∴e e e E e e e 线性无关。 设[]12,,,,T n b b b =b 则1122.n n b b b =+++b e e e 4. 证法1:因为A 可逆,所以方程组=Ax b 有解。根据定理5-1,向量b 能由A 的列向量组12,,,n a a a 线性表示,所以向量组12,,,,n a a a b 线性相关. 证法2:通过秩或根据m n >时m 个n 元向量一定线性相关也可马上证明。 5. .证: (1)因为A 的列向量组线性相关,所以齐次线性方程组=Ax 0有非零解,设≠u 0是它的非零解,则.=Au 0 由=B PA ,得.=Bu 0可见=Bx 0有非零解,所以B 的列向量组线性相关。 (2)若P 可逆,则1-=A P B 。由(1)的结论可知,B 的列向量组线性相关时,A 的列向量组也线性相关,所以A 和B 的列向量组具有相同的线性相关性。 注:该题也可根据性质5-6和性质5-3来证明。 6. 证:由A 可逆知,A 的列向量组线性无关。根据定理5-6,增加两行后得到的矩阵B 的列向量组也线性无关.

工程数学线性代数课后习题答案

第一章 行列式 1 利用对角线法则计算下列三阶行列式 (1)3811 411 02--- 解 3 811411 02--- 2(4)30(1)(1)118 0 132(1)8 1( 4) (1) 248164 4 (2)b a c a c b c b a 解 b a c a c b c b a acb bac cba bbb aaa ccc 3abc a 3b 3c 3 (3)2221 11c b a c b a 解 2 221 11c b a c b a bc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a )

(4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (x y )y yx (x y )(x y )yx y 3(x y )3x 3 3xy (x y )y 33x 2 y x 3y 3x 3 2(x 3 y 3) 2 按自然数从小到大为标准次序 求下列各排列的逆 序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1 解 逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解 逆序数为3 2 1 4 1 4 3 (5)1 3 (2n 1) 2 4 (2n ) 解 逆序数为 2 ) 1(-n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个)

(2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) 4 2(1个) 6 2 6 4(2个) (2n)2 (2n)4 (2n)6 (2n)(2n2) (n1个) 3写出四阶行列式中含有因子a11a23的项 解含因子a11a23的项的一般形式为 (1)t a11a23a3r a4s 其中rs是2和4构成的排列这种排列共有两个即24和42 所以含因子a11a23的项分别是 (1)t a11a23a32a44(1)1a11a23a32a44a11a23a32a44 (1)t a11a23a34a42(1)2a11a23a34a42a11a23a34a42 4计算下列各行列式

(完整版)大学数学工程数学线性代数教材

第一章n阶行列式 在初等数学中讨论过二阶、三阶行列式,并且利用它们来解二元、三元线性方程组. 为了研究n元线性方程组,需要把行列式推广到n 阶,即讨论n阶行列式的问题. 为此,下面先介绍全排列等知识,然后引出n阶行列式的概念. §1 全排列及其逆序数 先看一个例子. 引例用1、2、3三个数字,可以组成多少个没有重复数字的三位数? 解这个问题相当于说,把三个数字分别放在百位、十位与个位上,有几种不同的放法? 显然,百位上可以从1、2、3三个数字中任选一个,所以有3种放法;十位上只能从剩下的两个数字中选一个,所以有两种放法;个位上只能放最后剩下的一个数字,所以只有1种放法. 因此,共有? ?种放法. 3= 1 6 2 这六个不同的三位数是: 123,132,213,231,312,321. 在数学中,把考察的对象,如上例中的数字1、2、3叫做元素. 上述问题就是:把3个不同的元素排成一列,共有几种不同的排法? 对于n个不同的元素,也可以提出类似的问题:把n个不同的元素排成一列,共有几种不同的排法? 把n个不同的元素排成一列,叫做这n个元素的全排列,简称排列. n个不同元素的所有排列的种数,通常用P n表示. 有引例的结果可知P3 = 3 . 2 . 1 = 6 . 1

2 为了得出计算P n 的公式,可以仿照引例进行讨论: 从n 个元素中任取一个放在第一个位置上,有n 种取法;又从剩下的n -1个元素中任取一个放在第二个位置上,有n -1种取法; 这样继续下去,直到最后只剩下一个元素放在第n 个位置上,只有1种取法. 于是 P n =n .(n -1). … . 3 . 2 . 1 = n ! . 对于n 个不同的元素,我们规定各元素之间有一个标准次序(例如n 个不同的自然数,可规定由小到大为标准次序),于是在这n 个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说有1个逆序. 一个排列中所有逆序的总数叫做这个排列的逆序数. 逆序数为奇数的排列叫做奇排列,逆序数为偶数的排列叫做偶排列. 下面我们来讨论计算排列的逆序数的方法. 不失一般性,不妨设n 个元素为1至n 这n 个自然数,并规定由小到大为标准次序. 设 n p p p Λ21 为这n 个自然数的一个排列,考虑元素 ),,2,1(n i p i Λ=,如果比i p 大的且排在i p 前面的元素有i t 个,就说i p 这个元素的逆序数是i t . 全体元素的逆序数之总和 ∑==+++=n i i n t t t t t 1 21Λ, 即是这个排列的逆序数. 例1 求排列32514的逆序数. 解 在排列32514中,

同济大学工程数学线性代数第六版答案全

第一章行列式 1?利用对角线法则计算下列三阶行列式? (1)381141102---? 解3 81141102--- ?2?(?4)?3?0?(?1)?(?1)?1?1?8 ?0?1?3?2?(?1)?8?1?(?4)?(?1) ??24?8?16?4??4? (2)b a c a c b c b a ? 解b a c a c b c b a ?acb ?bac ?cba ?bbb ?aaa ?ccc ?3abc ?a 3?b 3?c 3? (3)222111c b a c b a ? 解2 22111c b a c b a ?bc 2?ca 2?ab 2?ac 2?ba 2?cb 2 ?(a ?b )(b ?c )(c ?a )?

(4)y x y x x y x y y x y x +++? 解y x y x x y x y y x y x +++ ?x (x ?y )y ?yx (x ?y )?(x ?y )yx ?y 3?(x ?y )3?x 3 ?3xy (x ?y )?y 3?3x 2y ?x 3?y 3?x 3 ??2(x 3?y 3)? 2?按自然数从小到大为标准次序?求下列各排列的逆序数? (1)1234? 解逆序数为0 (2)4132? 解逆序数为4?41?43?42?32? (3)3421? 解逆序数为5?32?31?42?41,21? (4)2413? 解逆序数为3?21?41?43? (5)13???(2n ?1)24???(2n )? 解逆序数为2 ) 1(-n n ? 32(1个) 52?54(2个) 72?74?76(3个) ?????? (2n ?1)2?(2n ?1)4?(2n ?1)6?????(2n ?1)(2n ?2)(n ?1个) (6)13???(2n ?1)(2n )(2n ?2)???2? 解逆序数为n (n ?1)? 32(1个) 52?54(2个) ?????? (2n ?1)2?(2n ?1)4?(2n ?1)6?????(2n ?1)(2n ?2)(n ?1个) 42(1个) 62?64(2个) ??????

相关主题
文本预览
相关文档 最新文档