当前位置:文档之家› CO2驱油法提高油气采收率(CO2—EOR)技术综述

CO2驱油法提高油气采收率(CO2—EOR)技术综述

CO2驱油法提高油气采收率(CO2—EOR)技术综述
CO2驱油法提高油气采收率(CO2—EOR)技术综述

龙源期刊网 https://www.doczj.com/doc/b813526365.html,

CO2驱油法提高油气采收率(CO2—EOR)技术综述

作者:唐颖周寻

来源:《科学与财富》2016年第22期

一、概述

石油和天然气是不可再生资源,而随着世界油气能源日益枯竭,国家能源安全形势日益严峻,提高油气采收率(Enhance Oil Recovery, EOR)已成为解决能源问题的重中之重。注气驱油是提高原油采收率的重要技术。其中,CO2是一种十分有效的气体驱油剂,已在全球范围内得到广泛关注。同时,从环保的角度来看,CO2是国际公认的主要温室气体之一,约占温室气体总量的65%。CO2的排放引起的全球变暖问题,始终困扰着各国政府和环保人士的神

经。

而从我国国情来看,首先,我国石油资源有限,石油资源主要依靠进口,国家能源安全形势十分严峻。其次,我国是继美国之后的世界第二大CO2排放国,CO2减排责任重大。2009年,中国政府在联合国气候大会上承诺,到2020年中国单位国内生产总值CO2排放比2005

年下降40%~45%,该指标已经被纳入国民经济和社会发展的中长期规划。CO2驱油技术能够处理CO2排放量,并提高原油采收率,为我国经济、政治、军事以及社会等各方面带来效益。

二、国内外研究现状

1952年,美国人Wharton取得了第一个利用CO2采油的专利,其中CO2 是用作原油的溶剂,或形成碳酸水驱。早期的研究结果表明,在一般的油藏压力下,CO2不能直接与大多数原油混相,但是CO2能够抽提原油中的轻质组分。五六十年代CO2 作为混相驱替液应用,但同时研究者也看到了CO2混相驱的局限性:原油中要求含有大量中间组分;达到混相要求高压;储层深度要求大于1000m。这些局限性促使研究者开始注意CO2 非混相驱。70年代CO2驱技术有了很大的发展,美国和前苏联等国家都进行了大量的CO2 驱工业性试验,并取得了明显的经济效益,采收率可以提高15%~25%。90年代的CO2驱技术日趋成熟,根据1994年《油气杂志》的统计结果,全世界有137个商业性的气体混相驱项目,其中55%采用的是烃类气体,42%采用的是CO2,其他气体混相驱仅占3%。目前,国外采用CO2驱油的主要国家有:美国、前苏联、匈亚利、加拿大、法国、西德等。

美国因其油气资源丰富,CO2混相驱已成为一项成熟的提高采收率的方法,在美国油田广泛应用。2005年,美国实施注气方法的原油产量首次超过热采产量,成为最主要的EOR方法。另据《油气杂志》2006年统计,全球实施CO2-EOR项目共94个,其中美国占了82个,其年产量占世界CO2-EOR总产量的94.2%。

CO2驱油数值模拟研究现状与发展趋势

注气驱油数值模拟方法研究现状与发展趋 势 姬泽敏,秦积舜,李实,廉黎明 (提高石油采收率国家重点实验室—中国石油勘探开发研究院,北京市 100083) 摘要:注气驱油技术是提高石油采收率的重要方法之一,应用和发展前景广阔。气驱油过程伴随着油气体系间的组分传质和系统压力变化,进而引起油气体系的相态转化,使得注气驱油过程的物理化学现象的表征和数学描述变得十分复杂,至今尚未形成统一和精确的油气体系相态表征和描述方法。通过考察国内外已有的相关数学模型和计算模拟方法,本文较为系统的梳理了注气驱油数值模拟方法的发展历程,评价了现有方法的优缺点,并结合我国油藏储层及流体特征,提出了适合中国油藏特点的注气驱油数值模拟方法的发展方向。 关键词:注气驱油技术;油气体系;数值模拟;组分传质;相态 Research Status of Gas Flooding Numerical Simulation and Its Development Trend Ji Zemin1,Qin Jishun,Li Shi,Lian Liming (The State Key Laboratory of Enhanced Oil Recovery—RIPED, Beijing 100083,China) Abstract: Gas flooding technology is one of the pivotal EOR methods, which has a broad prospect of application and development. However, mass transfer and change of system pressure during the process of gas flooding lead to the change of phase behavior, which draws great difficulties to the mathematical description and characterization of physical and chemical phenomenon during the process, so far there has not been a set of uniform and accurate methods to describe and characterize the phase behavior of oil and gas system. According to the mentioned above, based on the investigation of several gas flooding numerical simulation methods at home and abroad, this paper hackled the development process of the gas flooding numerical simulation methods, evaluated the advantages and disadvantages of these methods. Finally, combined with the characters of reservoirs and fluid, development direction of gas flooding numerical simulation with Chinese characteristics was proposed. Key words:gas flooding,oil-gas system,numerical simulation,compositional transfer,phase 1收稿日期: 第一作者简介:姬泽敏(1985—),男,博士研究生,主要从事注气提高采收率技术及数值模拟研究。 基金项目:国家973项目04课题“孔隙介质中相态实验与理论研究”(No. 2011CB707304),国家科技重大专项(No. 2011ZX05016-001)。

微生物驱油技术综述

摘要相对于常规提高采收率技术, 微生物采油有 2 个优点, 即微生物不会消耗大量能源且其使用与油价无关。微生物能以油藏里的物质为营养代谢, 在发酵过程中排出生物气, 占据部分储层空间, 或形成人工气顶。微生物还可以堵塞油层的高渗透通道。微生物在油藏整个水相里都发挥作用, 包括水与岩石界面和油水界面, 并可以受控地在分子和孔隙微观水平上连续产出气体、溶剂、表面活性剂以及其他生物化学剂,驱替石油。日本和中国用优选的微生物菌种注入油藏进行矿场试验, 结果提高采收率15 %~23 % 。但是微生物采油也有一些局限性, 所以应该加强目前进行的微生物驱油模拟研究, 确定最好的菌种、营养物、代谢和生理特征, 使微生物驱油开采技术获得较高成功率。 一、微生物采油原理 为了让微生物快速繁殖和生长, 研究人员用各种方法往油藏里注入营养物, 激活这些微生物。有些微生物能以油藏里的物质为营养代谢, 在发酵过程中排出生物气, 占据部分储层空间, 或形成人工气顶。 微生物还可用于堵塞油层的高渗透通道。在多年注水开发后, 注入水会绕过渗流阻力高的含油部位, 沿渗流阻力最小通道流动。微生物数量在这个通道中也很多, 可以在注入水中添加营养物激活微生物。微生物的繁殖造成其数量猛增, 封堵无效循环的水路, 扩大波及体积, 提高注水效率。 大多数微生物具有天然依附于岩石表面的倾向, 不在液体中自由浮动。油藏里, 微生物吸附在岩石表面并繁殖, 产生胞外多糖, 促进了菌体在岩石表面的吸附作用, 形成生物膜, 起到对菌体保护的作用, 并加快细菌更好地利用营养物等资源。随注入水进入油藏的细菌将在原来的生物膜上流过, 有时微生物也会从生物膜中分离出去并与注入水一起渗流, 或者到油藏深部。 从物理化学原理方面看, 促使微生物增长并释放原油的机理与常规EOR 技术基本是一样的。尽管泄油机理相似, 但其他方面却有很大差异。常规的非微生物提高采收率技术是通过井口大量注水, 而微生物在油藏整个水相里都发挥作用, 包括水与岩石界面和油水界面, 并可以在受到控制的情况下在分子和孔隙微现水平上连续产出气体、溶剂、表面活性剂以及其他生物化学剂。这些生物生成物都有已知的泄油机制, 对石油具有化学和物理作用。 二、微生物驱技术分类 微生物可以在油藏中也可以在地面增长。地面培养时, 可以分离和收集微生物的代谢产物, 经过加工和处理再注入到油藏里驱油。 从专业角度来看, 微生物驱油有些类似于地下生物改造作用。注入的营养物与本源或外源微生物一起促进地下微生物的增长和代谢产物, 使更多原油流动, 通过油藏降压作用、界面张力/ 油相降粘以及选择性堵塞高渗区来提高剩余油流动性。另外, 经发酵后的活微生物再注入油藏也能达到增采的效果。 微生物在地下不但要生成原油流动所必需的化学物, 而且要在油藏环境下繁殖增长。在微生物驱油过程中, 要经常注入营养物保持微生物代谢作用, 有时还往油藏注入可发酵的碳水化合物作为碳源。有的油藏还需要无机营养物作为细胞生长的基液或者作为有氧呼吸的另一种电子受体。 三、油藏特征与效果 在注微生物前, 必须确定油藏的特征, 如矿化度、p H 值、温度、压力和营养物情况。岩石性质也很重要。天然裂缝可能改变微生物有效进入油藏的方式。泥质的存在可能会吸收生物聚合物和生物表面活性剂, 影响作用的发挥。碳酸盐会迅速与酸反应, 产生更大量的有利气体, 例如二氧化碳。 只有细菌是微生物驱油的希望之星。由于菌类的原因, 霉菌、酵母、藻类和原生动物等无法在油藏条件下增长。许多油藏的NaCl浓度高, 这就要求使用能够适应这种环境的细菌。在

二氧化碳驱油技术研究现状与发展趋势

二氧化碳驱油技术研究现状与发展趋势 随着世界经济的飞速发展,能源的生产与供求矛盾越发突出,石油作为工业发展的命脉,由于其储量的有限性,使得人们对它的研究和关注程度远胜于其它能源。寻找有效而廉价的采油新技术一直是专家们不断探索的问题。 针对目前世界上大部分油田采用注水开发面临着需要进一步提高采收率和水资源缺乏的问题国外近年来大力开展了二氧化碳驱油提高采收率(EOR)技术的研发和应用。这项技术不仅能满足油田开发的需求,还可以解决二氧化碳的封存问题,保护大气环境。该技术不仅适用于常规油藏,尤其对低渗、特低渗透油藏,可以明显提高原油采收率 (一)二氧化碳驱油技术机理 1、降粘作用 二氧化碳与原油有很好的互溶性,能显著降低原油粘度,可降低到原粘度的1/10左右。原油初始粘度越高,降低后的粘度差越大,粘度降低后原油流动能力增大,提高原油产量。 2、改善原油与水的流度比 二氧化碳溶于原油和水,使其碳酸化。原油碳酸化后,其粘度随之降低,同时也降低了水的流度,改善了油与水流度比,扩大了波及体积。 3、膨胀作用 二氧化碳注入油藏后,使原油体积大幅度膨胀,便可以增加地层的弹性能量,还有利于膨胀后的剩余油脱离地层水以及岩石表面的束缚,变成可动油,是驱油效率升高,提高原油采收率。 4、萃取和汽化原油中的轻烃 在一定压力下,二氧化碳混合物能萃取和汽化原油中不同组分的轻质烃,降低原油相对密度,从而提高采收率。二氧化碳首先萃取和汽化原油中的轻质烃,随后较重质烃被汽化产出,最后达到稳定。 5、混相效应 混相效应是指两种流体能相互溶解而不存在界面,消除了界面张力。二氧化碳与原油混合后,不仅能萃取和汽化原油中轻质烃,而且还能形成二氧化碳和轻质烃混合的油带。油带移动是最有效的驱油过程,可使采收率达到90%以上。 6、分子扩散作用 多数情况下,二氧化碳是通过分子的缓慢扩散作用溶于原油。分子的扩散过程很

聚合物溶液的粘弹性行为在提高聚合物 驱油效率中的机理分析与运用讲解

聚合物溶液的粘弹性行为在提高聚合物 驱油效率中的机理分析与运用 Mojdeh Delshad, Do Hoon Kim, Oluwaseun A. Magbagbeola, Chun Huh, Gary A. Pope, Farhad Tarahhom编(石油工程师协会,美国德克萨斯大学奥斯汀分校) 摘要 越来越多的室内实验和矿场试验都证实了聚合物溶液的粘弹特性有助于提高聚合物驱油效率。对高分子量部分水解的聚丙烯酰胺聚合物进行大量的流变测量和岩心驱替实验后,表明了聚合物溶液的粘弹性行为在聚合物驱提高原油采收率中起着作用。在使用UTCHEM模拟器对提高油层波及系数进行定量评价后,将不同聚合物溶液的弹性作用模拟成在多孔介质中聚合物溶液的表观粘度。 随着高浓度和高分子量聚合物的使用,使聚合物驱的应用范围延伸至对更高粘度原油的开采。对聚合物在多孔介质中流变性机理的了解及其精确的数值模拟是聚合物驱矿场试验成功的关键。 对不同的剪切速率(与在岩心中流动速度和渗透率)、聚合物浓度和分子量进行振荡和剪切粘度的测定和聚合物岩心流动实验。聚合物的剪切增稠特性与通过它的分子松弛时间的Deborah数有关,它反过来又决定于流变数据。表观粘度模型是根据聚合物在多孔介质中的剪切稀释和剪切增稠来符合实验数据而发展起来的。这种模拟器被应用于组分化学驱模拟器中和成功历史拟合所开发的岩心驱替原油开采试验中。 系统的流变性测定和岩心驱替,以及使用表观粘度模拟器都证实了不同的聚合物弹性作用有助于提高聚合物的驱油效率。尤其对聚合物溶液的剪切增稠性进行描述时,是根据大量的流变测定而得到的分子松弛时间来决定的。

提高采收率原理习题2010

《提高采收率原理》习题 第一章:原油采收率及其影响因素 一、概念 1.EOR 2.原油采收率 3.面积波及效率 4.洗油效率 5.流度比 6.剩余油 7.残余油 8.毛管数 9.界面张力10.指进11.舌进 二、简答 1. 写出流度比与毛管数的定义式,说明流度比、毛管数与原油采收率的关系;从流度比与毛管数的定义出发,分析提高原油采收率的途径和方法。 2. 推导原油采收率E R与波及系数E V和洗油效率E D的关系,说明提高采收率的途径有那些? 3. 影响体积波及系数的因素是什么? 4. 影响洗油效率的因素是什么? 5、用什么参数表征地层的宏观非均质性,它们是如何定义的? 第二章:聚合物驱油 一、概念 1.聚合物 2.水解 3.水解度 4.不可入孔隙体积 5.机械捕集 6.阻力系数 7.残余阻力系数 8.特性黏度 9.机械降解10.化学降解11.筛网系数12.聚合物溶液的黏弹性13.堵水14.调剖15.单体16.聚合度17.构型18.构象19.流变性20.假塑性流体22.视黏度23.过滤因子 二、简答 1.聚合物溶液产生降解、溶液粘度下降的原因及预防措施。 2.影响聚合物溶液溶解性能的因素。 3.影响聚合物溶液黏度的因素。 4.影响聚合物溶液静吸附的因素。 5.选择聚合物时应考虑那些因素。

6、调剖堵水提高原油采收率的机理是什么? 7、什么叫过滤因子和筛网系数?如何测定? 8、比较残余阻力系数与阻力系数的大小,并解释原因。 9、影响聚合物稳定性的因素有哪些?可以采取哪些措施解决稳定性问题? 10、当含盐量增加时,HPAM的吸附量如何变化?为什么? 11、写出特性黏度的表达式,其物理意义是什么?实验室如何测量,并绘图说明。 三、计算 室内在绝对渗透率为0.8μm2的饱和水的天然岩心中用聚合物溶液进行驱替实验。实验步骤如下:首先在一定注入速度下注盐水,压力稳定后测得岩心两端的压差为0.5 MPa,然后以相同的速度注聚合物溶液,压力稳定后测得岩心两端的压差为5.5 MPa;最后又以相同的速度注盐水,压力稳定后测得岩心两端的压差为0.7 MPa。据实验结果确定聚合物溶液的阻力系数和残余阻力系数。并说明阻力系数和残余阻力系数的物理意义。

二氧化碳驱油技术的现状和发展

二氧化碳驱油技术的现状和发展 目前,世界上大部分油田仍采用注水开发,这就面临着需要进一步提高采收率和水资源缺乏的问题。对此,国外近年来大力开展二氧化碳驱油提高采收率技术的研发和应用。这项技术不仅能满足油田开发的需求,还可以解决二氧化碳的封存问题,保护大气环境。该技术不仅适用于常规油藏,尤其对低渗、特低渗透油藏,可以明显提高原油采收率。 一、二氧化碳驱油技术: 二氧化碳驱油是一种把二氧化碳注入油层中以提高油田采收率的技术。标准状况下,二氧化碳是一种无色、无味、比空气重的气体,密度是1.977克/升。当温度压力高于临界点时,二氧化碳的性质发生变化:形态近于液体,黏度近于气体,扩散系数为液体的100倍。这时的二氧化碳是一种很好的溶剂,其溶解性、穿透性均超过水、乙醇、乙醚等有机溶剂。如果将二氧化碳流体与待分离的物质接触,它就能够有选择性地把该物质中所含的极性、沸点和分子量不同的成分依次萃取出来。萃取出来的混合物在压力下降或温度升高时,其中的超临界流体变成普通的二氧化碳气体,而被萃取的物质则完全或基本析出,二氧化碳与萃取物就迅速分离为两相,这样,可以从许多种物质中提取其有效成分。 二氧化碳驱油一般可提高原油采收率7%~15%,延长油井生产寿命15~20年。在二氧化碳与地层原油初次接触时并不能形成混相,但在合适的压力、温度和原油组分的条件下,二氧化碳可以形成混相前缘。超临界流体将从原油中萃取出较重的碳氢化合物,并不断使驱替前缘的气体浓缩。于是,二氧化碳和原油就变成混相的液体,形成单一液相,从而可以有效地将地层原油驱替到生产井。 应用混相驱油提高石油采收率的一个关键性参数是气体与原油的最小混相压力(MMP),MMP 是确定气驱最佳工作压力的基础。一般情况下,因为混相驱油比非混相驱油能采出更多的原

二氧化碳驱油大有可为解读

二氧化碳驱油大有可为 目前,世界上大部分油田仍采用注水开发,这就面临着需要进一步提高采收率和水资源缺乏的问题。对此,国外近年来大力开展二氧化碳驱油提高采收率技术的研发和应用。这项技术不仅能满足油田开发的需求,还可以解决二氧化碳的封存问题,保护大气环境。 把二氧化碳注入油层中可以提高原油采收率。由于二氧化碳是一种在油和水中溶解度都很高的气体,当它大量溶解于原油中时,可以使原油体积膨胀,黏度下降,还可以降低油水间的界面张力。与其他驱油技术相比,二氧化碳驱油具有适用范围大、驱油成本低、采收率提高显著等优点。据国际能源机构评估认为,全世界适合二氧化碳驱油开发的资源约为3000亿~6000亿桶。 二氧化碳驱油广受关注 注入二氧化碳用于提高石油采收率已有30多年的历史。二氧化碳驱油作为一项日趋成熟的采油技术已受到世界各国的广泛关注,据不完全统计,目前全世界正在实施的二氧化碳驱油项目有近80个。 用于提高石油采收率的注入速率可大致由供封存的能力来决定。 二氧化碳驱油提高采收率技术不仅能满足油田开发的需求,还可以解决二氧化碳的封存问题,保护大气环境。该技术不仅适用于常规油藏,尤其对低渗、特低渗透油藏,可以明显提高原油采收率。2006年世界二氧化碳提高采油率产量占总提高产量的14.4%。 二氧化碳纯度在90%以上即可用于提高采油率。二氧化碳在地层内溶于水后,可使水的黏度增加20%~30%。二氧化碳溶于油后,使原油体积膨胀,黏度

降低30%~80%,油水界面张力降低,有利于增加采油速度,提高洗油效率和收集残余油。二氧化碳驱油一般可提高原油采收率7%~15%,延长油井生产寿命15~20年。二氧化碳可从工业设施如发电厂、化肥厂、水泥厂、化工厂、炼油厂、天然气加工厂等排放物中回收,既可实现温室气体的减排,又可达到增产油气的目的。 北美 美国是二氧化碳驱油项目开展最多的国家。目前,美国每年注入油藏的二氧化碳量约为2000万吨至3000万吨,其中有300万吨二氧化碳来源于煤气化厂和化肥厂的尾气。 从事油田开发的Oxy公司在美国得克萨斯州和新墨西哥州的Permian盆地,注入二氧化碳约12亿立方英尺/天,现回收约18万桶石油/天。 美国Encana公司的Weyburn 二氧化碳提高采油率项目,注入的二氧化碳来自Dakota汽化公司Buelah地区将煤转化为甲烷的合成燃料装置,通过204英里的管道供应。Encana公司现注入9500万立方英尺/天二氧化碳。Dakota汽化公司还向阿帕奇加拿大公司在Saskatchewan的Midale油田二氧化碳提高采油率项目出售2500万立方英尺/天二氧化碳。 Hunton能源公司与陶氏化学公司在美国建设燃用合成气的联产装置。该装置产生的二氧化碳全部被捕集,然后用于提高石油采收率。 Rancher能源公司与埃克森美孚旗下的埃克森美孚天然气和电力销售公司于2008年2月中旬签署二氧化碳购销协议。埃克森美孚公司将在10年内向Rancher能源公司提供7000万立方英尺/天二氧化碳。埃克森美孚公司向Rancher能源公司提供的二氧化碳将用于Rancher能源公司在怀俄明州Powder River盆地3个生产性油田提高石油采收率。埃克森美孚公司供应的二氧化碳

综述(1)-聚苯乙烯

聚苯乙烯的功能聚合物的制备方法及应用 综述 摘要 作为聚合物之一的聚苯乙烯的应用范围很广,其衍生物种类繁多,聚苯乙烯可用于合成不同的功能聚合物,不同的功能聚合物具有不同的合成方法和不同的功能应用,本综述就聚苯乙烯的不同功能聚合物的普遍制备方法和应用前景和意义作简要概述。 关键词 聚苯乙烯衍生物制备方法应用概述 (一)侧链带8-羟基喹啉的聚苯乙烯 1.侧链带8-羟基喹啉的聚苯乙烯的制备方法 以邻苯二甲酰亚胺钾盐为亲核取代试剂,通过盖布瑞尔反应(Gabrielaction),将氯甲基聚苯乙烯(CMPS)转变为氨甲基聚苯乙烯。 首先研究了采用相转移化体系并通过亲核取代反应,制备氨甲基聚苯乙烯的前驱体—苯二甲酰亚胺基甲基聚苯乙烯的过程。相转移催化剂将邻苯二甲酰亚胺负离子从水相中转移至油相,与氯甲基聚苯乙烯亲核取代,顺利地将氯甲基聚苯乙烯大分子链上的氯甲基转变成了甲基化的邻苯二甲酰亚胺基,生成了邻苯二甲酰亚胺基甲基聚苯乙烯(PIPS)。 在通过相转移催化制备PIPS的基础上,采用胶束催化体系,在酸性条件下,进行了PIPS的水解反应,将苯二甲酰亚胺基甲基聚苯乙烯转变为氨甲基聚苯乙烯(AMPS)。

最后以N,N-二甲基甲酰胺为溶剂,使氨甲基聚苯乙烯与5-氯甲基-8-羟基喹啉进行均相反应,成功地制备了侧链带8-羟基喹啉的聚苯乙烯(PS8q),AMPS转化率达78%,即实现了8-羟基喹啉的高分子化。 2 侧链带8-羟基喹啉的聚苯乙烯的研究背景及意义 在所有7种羟基喹啉中,8-羟基喹啉是唯一可与金属离子生成螯合物的物质[1],长期以来,它在医药工业、农业以及分析测试等方面获得了广泛的应用[2],如在分析化学领域,作为一种性能优异的螯合剂、萃取剂和金属离子指示剂,可用于溶剂萃取、吸光度分析[3]、荧光分析等[4]。基于8-羟基喹啉出色的螯合性能、尤其是其对过渡金属离子和重金属离子所具有的特殊优越的螯合性能,促使人们付出巨大的努力去研究它的高分子化方法以便更好的利用其螯合性能。8-羟基喹啉高分子化产物在有机电致发光,螯合树脂等众多科技领域都具有广阔的应用前景。 (二)遇水崩解型聚苯乙烯 1 遇水崩解型聚苯乙烯的制备方法 采用反相乳液聚合法合成了一系列不同吸水倍率的聚丙烯酸钠吸水树脂和以丙烯酸钠为主的多元共聚吸水树脂。将制备的吸水树脂与苯乙烯、表面活性剂(Span-80)组成聚合体系,用过氧化苯甲酞引发进行原位共混聚合,制得遇水崩解型聚苯乙烯。同时,采用“两步法”发泡工艺,制取崩解型聚苯乙烯的泡沫制品。 对于聚苯乙烯/聚丙烯酸钠共混物而言,随着分散剂Span-80含

微生物驱油技术研究现状与发展趋势

油藏工程新进展论文 班级:油工08-5 学号:080201140513 姓名:梁立宝

微生物驱油技术研究现状与发展趋势 随着世界经济的飞速发展,能源的生产与供求矛盾越发突出,石油作为工业发展的命脉,由于其储量的有限性,使得人们对它的研究和关注程度远胜于其它能源。寻找有效而廉价的采油新技术一直是专家们不断探索的问题。 有资料表明我国原油开采采出率仅有30%左右,远低于发达国家50%-70%的采出率,高粘、高凝和高含腊的胶质沥青油藏为原油的开采带来诸多困难,而新型微生物采油系列产品对“三高”油藏的开发具有较强的针对性,能使采出率大幅度提高。 (一)微生物驱油技术定义 利用特定的微生物或菌种作用于地下油藏,通过其生长、繁殖以及产生的各种具有驱油作用的带下产物,改变储油层的渗流特征或使油水间的物化性质发生改变,从而提高原油采收率的方法称之为微生物驱油技术。 微生物采油是技术含量较高的一种提高采收率技术 ,不但包括微生物在油层中的生长、繁殖和代谢等生物化学过程 ,而且包括微生物菌体、微生物营养液、微生物代谢产物在油层中的运移 ,以及与岩石、油、气、水的相互作用引起的岩石、油、气、水物性的改变。 (二)微生物驱油技术机理 采油微生物种类较多,各种微生物特性和作用机理不尽相同,但从效果上概括起来主要是对原油起到清蜡降粘的作用,在微生物代谢的同时伴有产热、产气和产生表面活性物质等。 微生物通过在岩石表面上的生长繁殖,粘附在岩石表面,占据孔隙空间,在油膜下生长,最后把油膜推开,使油释放出来。微生物所产生的表面活性剂会降低油水界面张力,减少水驱毛管张力,提高驱替毛管数。同时生物表面活性剂会改变油藏岩石的润湿性,从亲油变成亲水,使吸附在岩石表面上的油膜脱落,油藏剩余油饱和的降低,从而提高采收率。微生物在油藏高渗区生长繁殖及产生聚合物,能够有选择的堵塞大孔道,增大扫油系数和降低水油比。在水驱中增加水的粘度,降低水相的流动性,减少指进和过早的水淹,提高波及系数,增大扫油效率。在地层中产生生物聚合物,能在高渗透地带控制流度比,调整注水油层的吸水剖面,增大扫油面积,提高采收率。 (三)微生物驱油技术细菌功能分类 1、产气(包括CH4、H 2、CO2、N2等气体) 2、降解烃类 3、堵塞岩石孔道 4、产生有机酸和溶剂

杨成玉综述低渗透油藏化学驱研究现状

低渗透油藏化学驱研究现状 —文献调研 摘要:针对低渗透油藏可探明储量增加,开发难度大,压裂酸化、注水和注气等手段已经不能满足现阶段的低渗透油藏开发,化学驱在低渗油藏中的应用不断受到重视。本文综述了低渗透油藏的特点、开发现状以及化学驱在其中的应用和渗流机理。综合分析表明:由于缔合聚合物经过强烈剪切后恢复能力强,合理的聚合物分子质量在渗透率为(40×10-3μm2-50×10-3μm2)时能够有效的提高低渗透层的原油产出程度。而表面活性剂能降低渗透油层的渗流启动压力梯度,很好地降低低渗透层界面张力和毛管自吸势能。ASP驱结合了三者的优点,能够一定程度上增加低渗透层的产量。化学驱在低渗透油藏开发中仍有很大的潜力。 关键词低渗透油藏化学驱渗流机理研究现状 1引言 随着我国国民经济的迅速发展,油气资源的消耗不断在增大,2007年我国进口原油1.59亿吨,预计2020年我国对原油的需求至少达到4-4.3亿吨,而我国的石油产量只能增至2亿吨左右[1],因此对于不可再生的石油资源的开采程度要求不断提高。我国也加大了国内外的勘探力度,正在不断挤入世界油气勘探开发领域。然而挖掘现有油田潜力,保持稳产,提高采收率也势在必行,尤其是低渗透油藏开发。因为低渗透油藏已成为我国近几年油藏开发的主战场。从国土资源部获悉,截止2010年底我国石油累计探明地质储量为312.8亿吨,其中低渗透油藏总量200多亿吨,可探明储量为140多亿吨,占总地质储量的50%多,新增油藏储量中低渗透油藏储量占70%以上。由于低渗透油藏具有天然裂缝发育,基块渗透性差,非均质严重,孔喉细小、毛细管现象突出、油气流动阻力大,黏土矿物含量高等特点。国外一般采用压裂酸化、注水和注气开采。但水驱受到注入压力高,含水上升快,水驱动用程度较低,采收率低等因素的制约。气驱受到气源和经济的限制。而微生物采油受到温度、矿化度、PH、压力等一系列因素的制约,使得开展困难。由于化学驱的不断完善和发展已经不断的成为油田开采过程中的主导力量,但在低渗透油藏下还不够成熟,对这方面的研究还比较少。还存在着一些问题。但却有着很大的发展空间。

CO2驱油法提高油气采收率(CO2―EOR)技术综述

一、概述 石油和天然气是不可再生资源,而随着世界油气能源日益枯竭,国家能源安全形势日益严峻,提高油气采收率(enhance oil recovery, eor)已成为解决能源问题的重中之重。注气驱油是提高原油采收率的重要技术。其中,co2是一种十分有效的气体驱油剂,已在全球范围内得到广泛关注。同时,从环保的角度来看,co2是国际公认的主要温室气体之一,约占温室气体总量的65%。co2的排放引起的全球变暖问题,始终困扰着各国政府和环保人士的神经。 而从我国国情来看,首先,我国石油资源有限,石油资源主要依靠进口,国家能源安全形势十分严峻。其次,我国是继美国之后的世界第二大co2排放国,co2减排责任重大。2009年,中国政府在联合国气候大会上承诺,到2020年中国单位国内生产总值co2排放比2005年下降40%~45%,该指标已经被纳入国民经济和社会发展的中长期规划。co2驱油技术能够处理co2排放量,并提高原油采收率,为我国经济、政治、军事以及社会等各方面带来效益。 二、国内外研究现状 美国因其油气资源丰富,co2混相驱已成为一项成熟的提高采收率的方法,在美国油田广泛应用。2005年,美国实施注气方法的原油产量首次超过热采产量,成为最主要的eor方法。另据《油气杂志》2006年统计,全球实施co2-eor项目共94个,其中美国占了82个,其年产量占世界co2-eor总产量的94.2%。 2.1 国外co2驱项目情况 美国是co2驱发展最快的国家。自20世纪80年代以来,美国的co2驱项目不断增加,已成为继蒸汽驱之后的第二大提高采收率技术。到2009年美国正在实施的co2混相驱项目有64个。最大的也是最早使用co2驱的是始于1972年的sacroc油田。其余半数以上的大型气驱方案是于1984~1986年间开始实施的,目前其增产油量仍呈继续上升的趋势。大部分油田驱替方案中,注入的co2 体积约占烃类空隙体积的30%,提高采收率的幅度为7%~22%。 2.1.1小油田co2混相驱的应用与研究 过去co2混相驱一般是大油田提高原油采收率的方法。大油田由于生育储量多,剩余开采期长,经济效益好,而小油田co2驱一般不具有这些优点。近年来许多小油田实施了co2 混相驱提高原油采收率方案,同样获得了良好的经济效益。如位于美国密西西比州的creek油田就是一个小油田成功实施co2驱的实例。该油田于1996年被jp石油公司收购时的原油产量只有143 m3/d,因油田实施了co2驱技术,使该油田的原油采收率大大提高,其原油产量在1998年达到了209 m3/d,比1996年增加了46% 。 2.1.2 重油co2 非混相驱的研究与应用 co2驱开采重油一般是在不适合注蒸汽开采的油田进行。这类油田的油藏地质条件是:油层薄,或埋藏太深,或渗透率太低,或含油饱和度太低等。注co2 可有效提高这类油藏的采收率。大规模使用co2非混相驱开发重油油田的国家是土尔其。土尔其有许多重油藏不适合热采方法。1986年土尔其石油公司在几个油田实施了co2非混相驱,取得了成功。其中raman 油田大规模co2非混相驱较为典型。加拿大也有许多重油油藏被认为不适合进行热力开采,加拿大对co2驱开采重油进行了大量的研究。试验得出,轻油黏度在30饱和压力下从大约从1.4降到20,降低了15倍。另外,在不同温度下重油黏度测量发现,温度达到275℃左右才能降粘,而co2 一旦溶解在原油中就可使原油黏度降低,并且可以把黏度降低到用蒸汽驱替的水平。 2.2 国内研究现状 国内对co2驱油研究起步较晚,与国外尚有一定差距,但近年来随着稠油和低渗油藏的开车,co2驱油呈快速发展趋势。

聚合物驱油技术机理及应用的综述

聚合物驱油技术机理及应用文献综述 目录 聚合物溶液种类及性质 (2) 聚合物驱油机理 (3) 聚合物驱提高采收率的影响因素 (4) 油层条件对提高采收率的影响因素1 (4) 聚合物条件对提高采收率的影响4 (5) 国内油田形成的聚合物驱主要技术 (7) 一类油层聚合物驱油技术 (7) 二类油层聚合物驱技术 (9) 聚合物驱油技术应用效果 (10) 大庆油田北一区断西聚合物驱油工业性矿场试验效果 (10) 胜坨油田高温高盐油藏有机交联聚合物驱试注试验12 (12) 大港油田港西五区一断块聚合物驱油试验效果 (13) 参考文献 (15)

聚合物溶液种类及性质 驱油用的聚合物有下面几种,黄胞胶(天然),聚丙烯酰胺(PAM),梳形抗盐聚合物,疏水缔合聚合物等等1。 黄胞胶是一种由假黄单胞菌属发酵产生的单胞多糖,具有良好的增粘性、假塑性、颗粒稳定性。由于其凝胶强度较弱,不耐长期冲刷,以及弹性差、残余阻力系数小,现场试验驱油效果不好,还容易发生生物降解作用,因此调剖和三次采油现在不怎么样用,有待于进一步改善。 聚丙烯酰胺是丙烯酰胺(AM)及其衍生物的均聚和共聚物的统称。产品有三种形式,水溶液胶体、粉状及胶乳,并可以有阴离子、阳离子和非离子等类型(油田一般用粉状阴离子型产品,再者是非离子,阳离子正在发展)。具有双键和酰胺基官能团,具有烯烃的聚合性能以及酰胺结构的性能。具有水解、霍夫曼降解、交联等反应属性。聚合物溶液应用过程中会发生氧化降解、自发水解、铁离子促进降解等化学反应,以及机械剪切降解和生物降解作用。经试验证明,粘度对聚合物相对分子质量、水解度、浓度、温度、水质矿化度、流速有很多依赖性,基本上相对分子质量越高,水解度越小,浓度越大,温度越低,水质矿化度越小,流速越小,其粘度就越大。聚合物溶液在孔隙介质中流动特性有絮凝、粘弹等特性。聚丙烯酰胺的絮凝作用具有电荷中和和吸附絮凝两大因素,能降低聚合物在水中的有效浓度和粘度。通过稳态剪切流动和稳态剪切流动实验,证明了聚合物具有粘弹性,一定条件下随流速增加而发展,粘弹效应是聚合物溶液提高微观驱油效率重要机理。另外聚合物溶液的注入性差会导致注入压力上升,严重时将引起地层破坏,致使聚合物驱油失败。 普通聚丙烯酰胺耐温、抗盐性能差,为此有关专家研制出梳形抗盐聚合物,经过试验,其粘度、黏温性、增稠性、热稳定性都得到大大的提高,此类产品现已经成为普通聚合物的替代品。另外研制出一种疏水缔合聚合物,增粘及抗温、抗盐、抗剪切性能提高,但是其溶

目前提高采收率(EOR)技术方法及其机理

目前EOR技术方法主要有哪些,分别论述其机理? 1化学驱(Chemical flooding) 定义:通过向油藏注入化学剂,以改善流体和岩石间的物化特征,从而提高采收率。 1.1聚合物驱(Polymer Flooding) (1)减小水油流度比M (2)降低水相渗透率 (3)提高波及系数 (4)增加水的粘度 聚合物加入水中,水的粘度增大,增加了水在油藏高渗透部位的流动阻力,提高了波及效率。 高渗透部位流动时,水所受流动阻力小,机械剪切作用弱,聚合物降解程度低,则聚合物分子就易于缠结在孔隙中,增大高渗透部位的流动阻力。反之,低渗透率部位,聚合物分子降解作用强,,反而容易通过低孔径孔隙,而不堵塞小孔径。 1.2表面活性剂驱(Surfactant Flooding) (1)降低油水界面张力 表面活性剂在油水界面吸附,可以降低油水界面张力。界面张力的降低意味着粘附功的减小,即油易从地层表面洗下来,提高了洗油效率; (2)改变亲油岩石表面的润湿性(润湿反转) 一般驱油用表面活性剂的亲水性均大于亲油性,在地层表面吸附,可使亲油的地层表面反转为亲水,减小了粘附功,也即提高了洗油效率; (3)乳化原油以及提高波及系数 驱油用的表面活性剂的HLB 值一般在7—18范围,在油水界面上的吸附,可稳定水包油乳状液。乳化的油在向前移动中不易重新粘附润湿回地层表面,提高了洗油效率。此外,乳化的油在高渗透层产生贾敏效应,可使水较均匀地在地层推进,提高了波及系数; (4)提高表面电荷密度 当驱油表面活性剂为阴离子型表面活性剂时,它在油珠和地层表面上吸附,可提高表面的电荷密度,增加油珠与地层表面的静电斥力,使油珠易被驱动界质带走,提高了洗油效率; (5)聚集并形成油带 若从地层表面洗下来的油越来越多,则它们在向前移动时可发生相互碰撞。当碰撞的能量能克服它们之间的静电斥力时,就可聚并并形成油带。油带向前移

最新CO2驱油机理研究综述汇总

C O2驱油机理研究综 述

CO2驱油机理研究综述 第一章概述 1.1 CO2驱国外发展概况 注入二氧化碳用于提高石油采油率已有30多年的历史。二氧化碳驱油作为一项日趋成熟的采油技术已受到世界各国的广泛关注,据不完全统计,目前全世界正在实施的二氧化碳驱油项目有近80个。 90年代的CO2驱技术日趋成熟,根据1994年油气杂志的统计结果,全世界有137个商业性的气体混相驱项目,其中55﹪采用的是烃类气体,42﹪采用的是CO2,其他气体混相驱仅占3﹪。目前,国外采用二氧化碳驱油的主要国家有:美国、俄罗斯、匈牙利、加拿大、法国、德国等。其中美国有十个产油区的292个油田适用CO2驱,一般提高采收率7﹪~15﹪,在西德克萨斯州,CO2驱最主要是EOR方法,一般可提高采收率30﹪左右。 1.1.1国外CO2驱项目情况 在国外,注二氧化碳()技术主要用于后期的高含水油藏、非均质油藏以及不适合热采的重质油藏。推广二氧化碳驱油的主要制约因素是天然的二氧化碳资源、二氧化碳的输送及二氧化碳向生产井的突进问题以及油井及设备腐蚀、安全和环境问题等。为解决以上问题,提出了就注提高原油采收率技术,这种技术是向地层中注入反应溶液,使其在油藏条件下充分反应而释放出气体,溶解于原油之中,降低原油粘度,膨胀原油体积,从而达到提高原油采收率的目的。 美国是CO2驱发展最快的国家。自20世纪80年代以来,美国CO2驱项目不断增加,已成为继蒸汽驱之后的第二大提高采收率技术。美国目前正在

实施的CO2混相驱项目有64个。最大的也是最早使用CO2驱的是始于1972 年的SACROC 油田。其余半数以上的大型气驱方案是于1984~1986年间开始实施的,目前其增产油量仍呈继续上升的趋势。大部分油田驱替方案中,注入的CO :体积约占烃类空隙体积的30 %,提高采收率的幅度为7 %~22%。 1.1.2小油田CO2混相驱的应用与研究 过去,CO2混相驱一般是大油田提高原油采收率的方法。大油田由于生育储量多,剩余开采期长,经济效益好,而小油田CO2驱一般不具有这些优点。近年来许多小油田实施了CO2混相驱提高原油采收率方案,同样获得了良好的经济效益。如位于美国密西西比州的Creek 油田就是一个小油田成功实施CO2驱的实例。该油田于1996 年被JP 石油公司收购时的原油产量只有143 m3 / d,因油田实施了CO2 驱技术,使该油田的原油采收率大大提高,其原油产量在1998 年达到了209 m3 / d,比1996年增加了46%。 1.1.3重油CO2非混相驱的研究与应用 CO2驱开采重油一般是在不适合注蒸汽开采的油田进行。这类油田的油藏地质条件是:油层薄,或埋藏太深,或渗透率太低,或含油饱和度太低等。注CO 2可有效提高这类油藏的采收率。大规模使用CO2非混相驱开发重油油田的国家是土尔其。土尔其有许多重油藏不适合热采方法。1986 年土尔其石油公司在几个油田实施了CO2非混相驱,取得了成功。其中Raman 油田大规模C02 非混相驱较为典型。 加拿大也有许多重油油藏被认为不适合进行热力开采,加拿大对CO2驱开采重油进行了大量的研究。试验得出,轻油粘度在30 饱和压力下从大约从1 . 4 降到20,降低了15倍。另外,在不同温度下重油粘度测量发现,

提高采收率的方法

【摘要】该文探讨了在采油的过程中提高采收率的方法,特别是对IOR 技术和FOR 技术进行了分析,指出了技术思路与技术实施的方法。 【关键词】IOR 技术FOR 技术蒸汽吞吐采油聚合物驱油 经济有效地提高油气采收率是油气资源开发的永恒目标,为此发展了许多提高采收率的方法及其配套技术。然而如何有效的应用这些方法和技术都是有待不断研究的课题。一些学者将提高采收率的方法可归结为两类不同范畴的技术,即:IOR 技术(改善采油Improvement Oil Recovery)和FOR 技术(强化采油Enhanced Oil Recovery),虽然它们共同的目标都是经济有效地开发剩余油以提高采收率。但从技术上讲它们却属于不同的技术范畴。因为其对象不同,技术思路不同,技术实施时机和方法也将会不同。 1.IOR 技术 IOR 技术的对象是相对富集的大尺度的未被驱替介质波及到的剩余油,主要用于改善二次采油,特别是提高多层非均质油藏的注水波及效率。虽然IOR 技术并未改变二次采油的驱替机理,但它已是二次采油技术的高度集成和综合应用的发展。其主要技术包括:调整井和加密井技术;改善水动力条件的技术(周期注水、间歇注水、水气交替注入等);调剖技术;水平井以及复杂结构井技术以及老井侧钻技术。IOR 技术相对于FOR 技术,其技术成熟度高,操作成本低。 对于多层非均质油藏尽管进入高含水期,但仍然存在着巨大的应用潜力。 自从上世纪40 年代油田注水得到工业化应用以来经历了大约60年,技术上有了很大的发展,但仍然存在很大的发展潜力。因此,IOR技术仍然是大幅度提高采收率不可忽视的技术。 2.FOR 技术 FOR 技术的主要对象是被注入水波及地区以薄膜、油滴、油片、角滞油等形式仍然残留于地下的高度分散的小尺度的剩余油以及难以采用注水开发的油藏。FOR 技术主要包括:热采技术、注气技术、化学驱技术和微生物技术等。它们的驱油机理与水驱有所不同。 针对稠油油藏的热采技术在当前FOR 技术中占主导地位,其中又以注蒸汽为主,美国目前是热采产量最高的国家,我国仅次于美国和委内瑞拉,居世界第三位。注气技术是目前应用程度仅次于热采的另一项FOR 技术,它不仅可用于新油藏的开发,也可作为三次采油的手段用于水驱后油藏提高采收率。当用于水驱之后时,其开采对象主要是水淹带内被滞留在地下的残余油,采收率可提高10%以上,注气提高采收率方法中主要是二氧化碳混相驱,为寻廉价气源而注入氮气和空气(低温氧化)已开展了研究和矿场试验,并取得了进展。

三元复合驱技术的驱油机理及改进方向

摘要:介绍了三元复合驱技术的驱油机理,综述了三元复合驱油体系存在的不足,以及在改进方面的研究现状。 关键词:三元复合驱油;采收率;表面活性剂;表面张力 常见的化学驱油剂主要有聚合物、表面活性剂和碱。asp三元( 碱、表面活性剂和聚合物)复合驱是在综合了单一化学驱优点的基础上建立起来的一种新型的化学驱油体系[1],具有驱油效率高的显著特点,近年来得到了迅速发展。大庆油田矿场试验[2]表明,聚合物驱比水驱提高原油采收率10%以上,而三元复合驱可比水驱提高原油采收率20%以上。可见对三元复合驱油体系的深入研究具有重要意义。 1、三元复合驱的驱油机理[3] asp三元复合驱油体系既具有较高的粘度又能与原油形成超低界面张力, 在扩大波及范围、提高驱替效率的同时, 也提高洗油效率, 能改善水驱的“指进”、“突进”和油的“圈捕”,从而增加原油产量和提高采收率。该体系驱油效果之所以明显优于单一化学剂驱。是因为多种化学剂具有各自的作用与优势,且相互之间能发挥协同效应。 (1)聚合物的作用是增稠和流度控制。目前最廉价,应用最成熟的产品是聚丙烯酰胺(hpam)。hpam已被普遍用来提高注人水粘度和油层波及系数。hpam的选择着重要与油藏渗透率、孔喉尺寸、注液速度等相匹配, 分子量越大增粘能力越强,浓度越大水解液粘度越大, 驱油能力越大。 (2)表面活性剂的作用是降低油水界面张力和提高洗油效率, 因温度、矿化度、原油组分等油藏条件的不同, 所使用的表面活性剂结构与性能也不相同。石油羧酸盐、石油磺酸盐是现在普遍采用的驱油表面活性剂, 但石油磺酸盐耐温、耐盐性能比石油羧酸盐好。 (3)碱的作用是与原油中的酸性组分反应就地生成表面活性剂, 与外加表面括性剂协同效应更大幅度地降低油水界面张力并作为牺牲剂改变岩石表面的电性, 以降低地层对表面活性剂的吸附量。应用的主产品为naoh和na2co3或二者混用。 2、三元复合驱目前存在的不足 室内和矿场研究表明[2], 三元复合驱采收率可在水驱基础上再提高20%以上,具有较好的增油降水效果。但在应用过程中也暴露出一些问题[4]:三元驱油体系组成中,应用最广泛的强碱(naoh)虽能与原油中活性组分反应生成天然表面活性剂,与外加表面活性剂产生协同作用,大幅降低油-水界面张力;以及降低表面活性剂的吸附量,使复合驱成本下降。但强碱使用带来现场施工工艺复杂、采油系统结垢、生产井产液能力下降、检泵周期缩短、采出液破乳脱水困难、聚合物溶液粘弹性降低、以及因地层粘土分散和运移导致地层渗透率下降等系列问题,并最终制约三元复合驱工业化推广应用。因此目前弱碱及无碱复合驱油技术研究已成为发展趋势。 2.1 弱碱三元复合驱油体系 无机弱碱(如na2co3,nahco3)参与的三元复合驱油体系,在注采能力、采油速度、乳化能力等方面均高于强碱三元复合驱,比水驱提高采收率2o%以上。此外,与普通强碱三元复合驱相比,弱碱三元复合驱可大大减少对地下岩石溶蚀及对油层伤害。袁新强等[5]研究表明,可溶性硅磷酸盐替代naoh时,该复合驱油体系具有明显缓蚀阻垢作用,同时可得到超低油水界面张力(10-3mn/m)、优于普通(强碱)三元复合体系和聚合物溶液的调剖效果。 中强度(ph值=9)中性及弱碱性缓冲碱(na2co3/nahco3)既能保证石油皂生成,充分利用石油酸,降低外加表面活性剂浓度,又可与地层sio2相互作用,防止硅垢的生成,经过现场实践证明[6],应用中强度缓冲碱代替强碱,在“三采”中是有利的。 此外,研究表明[7],应用有机碱(弱聚合物酸性钠盐)代替和改进传统三元复合驱用的无

相关主题
文本预览
相关文档 最新文档