当前位置:文档之家› 燃气轮机动力系统.

燃气轮机动力系统.

燃气轮机动力系统.
燃气轮机动力系统.

燃气轮机动力系统微型实验台指示书(初稿)

清华大学热能工程系

2011年10月24日

目录

一、实验台简介

二、实验台主要组成部分

三、实验台安全操作指南

四、实验报告要求

一、实验台简介

由美国Turbine Technologies, LTD 公司研制生产的MiniLab TM(以下简

写为MiniLab)燃气轮机动力系统微型实验台是清华大学热能工程系动力机械与工程研究所最新购置的实验设备。2005年11月14日购置,2006年3月3日到货并进行安装调试。该实验台合同编号:BE25-06445BS2,设备号:06014272,型号:MINILAB#0423,规格:870000RPM0.5Kg/s,单价:¥343333.29元。

MiniLab 动力系统实验台包括SR-30 燃气轮机机组和相应的辅助系统。

除个别的外部接口以外,所有的系统均封装在一个整体的机壳中他的全貌如图1-.1。使得机组小巧、紧凑、便于搬运。

图1-1实验台全貌

二、实验台主要组成部分

SR-30 燃气轮机是MiniLab 的核心部件,包括进气道、一级离心式压气机、环形回流燃烧室、一级轴流式透平以及尾喷管等。图2-1 是SR-30 的一个剖面图,从中我们可以清晰地看到引擎的各个部分。下面将对这些部分进行简要介绍

图2-1 SR-30 燃气轮机剖面图

进气道:进气道是引擎与大气相通的部分,空气通过进气道进入压缩机。

SR-30 的进气道为喇叭型,可看作一个渐缩喷管。

离心式压气机:SR-30 的压气机为单级离心式压气机。空气从轴向进入压气机动叶,由径向流出进入静叶,当系统达到最大转速90000 转/分时,动叶末端的空气速度可达473 米/秒。在静叶中,空气减速增压,且流动方向又由径向变回轴向。空气经过一级动叶和一级静叶可产生的最大压比为3,远高于相同情况下轴流式压气机单级所能产生的压比。

环形回流燃烧室:SR-30 的燃烧室为环形回流燃烧室,燃烧室内气体流动方向为从引擎尾部向头部流动,与整体流动方向相反。在引擎尾部均

匀分布着6 个雾化喷油嘴,喷嘴喷出的燃料与附近的空气混合(这些空气即为一次空气),启动时由点火器引燃,然后便开始自维持燃烧。燃烧后的气体向引擎头部方向流动,流动过程中再次与周围未经燃烧的空气(即二次空气)混合,使燃烧和火焰位置都趋于稳定。燃烧室出口有一过渡段,燃气经过渡段再次改变流动方向,恢复由头向尾的流动。燃烧室设计成回流构造,使燃烧室与其后的透平、尾喷管可处于同一轴向位置,使得整个引擎的体积大大缩小,结构更为紧凑。

轴流式透平:SR-30 的透平为单级轴流式,从燃烧室过渡段排出的燃气经过透平的导叶环减压增速,形成气流冲击动叶,带动动叶旋转。由于透平动叶与压气机动叶是同轴的,从而也带动了压气机旋转。SR-30 透平的唯一任务就是带动压气机,使引擎能够持续运转。燃气经过单级透平后仍具有很大能量。

尾喷管:燃气经过透平之后到达尾喷管,尾喷管是一个典型的渐缩喷管,燃气在喷管内加速膨胀,对引擎产生推力。可以看到,SR-30 的基本部件与工业燃气轮机相同,而它的离心式压气机和回流式燃烧室的设计,使整个引擎的结构十分紧凑,对于教学用机和航空发动机来讲十分有利。

消音部件

为了降低引擎运行过程中的噪声,以创造一个相对安静的实验教学环境,MiniLab 还为系统配备了消音部件。主要为入口消声器和出口消声器(图2-2)。两个消声器可以分别减少84%(约16 分贝)的入口噪声和75%(约12 分贝)的出口噪声。消声器的安装也十分方便:入口消声器的出口端(即连接进气道的一端)有一个充气橡胶圈,安装时只需先将出口端套在进气道上,再用手捏压气球对其充气即可。出口消声器则由通过螺栓将4 个卡爪,卡在实验台的出口处。

8

图2-2安装了消声器的实验台

其他主要部件

除以上部件外,MiniLab 机组还包括燃料油箱、润滑油箱、测量传感器、数据采集卡、控制电路、数据输出计算机。MiniLab 也配有相应的辅助系统。主要有燃料油系统、润滑油系统、启动系统、控制系统、报警停机系统、数据采集系统等等。

燃料油系统

SR-30 的燃料油系统包括燃料油箱,燃料油泵,燃料油过滤器,雾化喷油嘴,燃料流量控制器和燃料进、回油管。燃料油箱位于机体后方,容积约7 加仑(26.5 升);运行时,油泵将燃料油从油箱中泵出,通过进油管经过滤器到达流量控制器。燃料油泵的泵油压力是不变的,因此每次泵出的油量都近似相等,进入燃烧室的油量则由流量控制器通过控制回油流量来调节,使之随运行工况变化而变化。通往燃烧室的燃料油经雾化喷油嘴雾化成小液滴,均匀喷入燃烧室,与气体混合燃烧。余下的燃料油则通过回油管回到油箱中。

润滑油系统

SR-30 的润滑油系统包括润滑油箱,润滑油泵、润滑油过滤器和润滑油进、回油管。润滑油箱位于机体后方,与燃料油箱相邻,容积约1 加仑(3.8升)。润滑油泵的泵油压力随着运行工况的改变而改变,润滑油经过过滤器进入引擎,通过润滑油道流过压气机-透平的轴承,对轴承起润滑和冷却的作用,之后再经过回油管回到润滑油箱中。与燃料油不同,润滑油是重复多次使用的。

启动系统

SR-30 的启动系统由启动用压气机、输气管和相应的控制阀组成。MiniLab 没有配备启动用压气机,需由实验室自备。由于启动过程中系统需要启动压力保持在80 psi (550 kPa),MiniLab 系统的启动压力不可低于100psi(690 kPa)。启动过程中,高压空气沿输气管切向进入压气机,吹动压气机动叶使之旋转,从而带动整个机组。当机组启动完毕后,控制阀将启动气压切断,此后压气机由透平带动旋转,维持机

组运行。

控制系统与报警停机系统

便捷的“一键”控制系统是MiniLab 的一大特色,控制系统安装在操作面板液晶屏幕下的自动启动控制盒中,控制盒由一个专用的可编程电子计算器和一个专门设计的控制版及自带电源组成,所有采集到的信号最终都进入这个控制盒。系统经过对不同信号的处理,发出不同的指令:维持当前运行、改变运行状态或紧急停机。几乎所有对引擎的操作都可以仅通过一次按键或一次调节来完成:启动:在接好电源、启动用压缩空气,打开开关,确认其他一切措施无误的情况下,按下绿色按钮,系统即能够按照程序自动启动。

停机:无论系统处于何种状态,只需按下红色按钮,系统便会立即停止工作。当机组的温度值和转速参数等回到允许范围内时,若无其他警报等因素,系统又能够再次启动。转速调节:通过对操作面板上油门杆的操作,即可以实现对引擎转速在50000 转/分到90000 转/分之间无限制的调节。空气轻吹:这是一个用于诊断和吹扫的系统,平常一般不使用。即使这样,启动它也仅需按两次按键。除此之外,保障机组安全运行的报警并自动停机系统,也是控制系统的组成部分:在机组启动和运行过程中,如果某些参数超出系统能承受的界限或者出现一些本不该出现的问题,系统就会发出报警并立即紧急停机,以保护机组,紧急停机是由系统自动控制的,无需人为的操作。报警总体上可以分为两类:

“注意”(CAUTION)类警报和“警告”(WARNING)类警报。“注意”类警报对应一些小故障,这些故障可以立即被修复。“警告”类警报则说明出现了一个较为严重的问题,在机组再次运行之前,必须对此问题进行调查。系统自带的各个警报及与其相关的原因和解决方法详见“实验台安全操作指南”。

数据采集系统

MiniLab 配备了DigiDAQ 数据采集系统,该系统几乎涵盖了所有系统参数的采集。系统通过各种传感器、励磁源、信号转换器等将各个参数汇集到数据采集卡中,再通过一条与装有igiDAQ 系统的计算机相连的USB 线,将数据传输到计算机中。DigiDAQ 系统的操作界面简单明了,各个参数都能够在屏幕上实时显示,使操作者不用花费时间和精力去研究如何测量和记录数据,而将重点放在研究系统运行和分析上。我们可以看到SR-30 的各个测点的位置及它们的测量对象,包括:压气机进

口压力P1、温度t1、出口压力P2、温度t2;透平进口压力P3、温度t3,出口压力P4,温度t4;排气压力P5、温度t5;以及转速RPM、燃料流量Fuel Flow 和推力Thrust。数据采集的具体步骤可参考“实验台安全操作指南”

润滑油系统

SR-30 的润滑油系统包括润滑油箱,润滑油泵、润滑油过滤器和润滑油进、回油管。润滑油箱位于机体后方,与燃料油箱相邻,容积约1 加仑(3.8升)。润滑油泵的泵油压力随着运行工况的改变而改变,润滑油经过过滤器进入引擎,通过润滑油道流过压气机-透平的轴承,对轴承起润滑和冷却的作用,之后再经过回油管回到润滑油箱中。与燃料油不同,润滑油是重复多次使用的。

启动系统

SR-30 的启动系统由启动用压气机、输气管和相应的控制阀组成。

MiniLab 没有配备启动用压气机,需由实验室自备。由于启动过程中系统需要启动压力保持在80 psi(550 kPa),MiniLab 系统的启动压力不可低于100psi(690 kPa)。启动过程中,高压空气沿输气管切向进入压气机,吹动压气机动叶使之旋转,从而带动整个机组。当机组启动完毕后,控制阀将启动气压切断,此后压气机由透平带动旋转,维持机组运行。

控制系统与报警停机系统

便捷的“一键”控制系统是MiniLab 的一大特色,控制系统安装在操作面板液晶屏幕下的自动启动控制盒中,控制盒由一个专用的可编程电子计算器和一个专门设计的控制版及自带电源组成,所有采集到的信号最终都进入这个控制盒。系统经过对不同信号的处理,发出不同的指令:维持当前运行、改变运行状态或紧急停机。几乎所有对引擎的操作都可以仅通过一次按键或一次调节来完成:

启动:在接好电源、启动用压缩空气,打开开关,确认其他一切措施无误的情况下,按下绿色按钮,系统即能够按照程序自动启动。

停机:无论系统处于何种状态,只需按下红色按钮,系统便会立即停止工作。当机组的温度值和转速参数等回到允许范围内时,若无其他警报等因素,系统又能够再次启动。转速调节:通过对操作面板上油门杆的操作,即可以实现对引擎转速在50000 转/分到90000 转/分之间无限制的调节。

三、实验台安全操作指南

(一)、准备

1.场地检查:确保实验场所有足够空间,能够使操作者和观测者自由活动,且进气

通常;所有人必须遵守实验室相关安全守则,牢记安全通道、火警和急救电话;

操作人员必须熟悉操作步骤,建议多人一组进行操作,一人检查,一人确认安全清单,以提高安全系数。

2.实验时须备有灭火器,出现一场情况时,要立即关机并灭火。

3.确保实验台的4个脚轮已经锁紧。

4.插钥匙的总开关(Keyed Master Switch)处于关闭状态。

5.油门杆处于最小功率档,即最靠近操作者处。

6.用小辊或手轻轻波动压气机叶片使之旋转,确认旋转时流畅,无明显阻滞或间断

现象。

7.安装进气消音装置。

8.整体观察确认:

(1)玻璃罩无划伤,无裂痕;

(2)进、出口通道无阻塞,完整干净,无杂物;

(3)再次进行整体环境检查,确保一切均已妥当。

9.启动计算机,打开DigiDAQ数据采集系统。

10.确认压缩机已经启动,DigiDAQ操作面板上启动空气压力表的数值超过120psi

11.确认实验台进、排气口无人。

12.最终检查:查看该指南,检查上述检查项目是否逐一完成。

(二)、启动

1.钥匙插入总开关锁孔,打开总开关。

2.检查TIT、EGT、RPM表是否已亮,且显示出实时数据。(RPM显示0,TIT、EGT

显示环境温度)。

3.推动油门杆至最大功率档,同时检查油门杆推动时是否灵活,离开最小功率档时

液晶显示屏上是否显示“THROT POSITION”标记。

4.将油门杆拉回最小功率档,同时检查拉回时油门杆是否灵活。

5.拉回油门杆至最小功率档后,检查液晶显示屏是否显示“RDY”标记,若有显示,

则表示实验台已准备好启动。

6.此时可开始数据采集,在计算机DigiDAQ界面上点击“Arm Trigger for Disk

Recording”键(工具栏左数第四个),即启动数据采集程序,再点击各个面板上的黑色三角形“Play”键,即开始采集并显示实时数据。

7.按绿色按钮,启动。

8.机器自动启动,正常启动过程约为25秒,其间引擎尾部会出现的喷射状火焰,

稳定运行后即会消失。若出现非正常情况例如TIT长时间超过上限、喷射状火焰持续很长时间而系统又不自动停机时,应立即按红色按钮手动停机。

9.启动后,引擎以怠速旋转,此时液晶屏显示“RUN”标记,表示机器已经启动成

功。

(三)、运行

1.状态确认:此时机器已经启动成功,液晶屏显示“RUN”标记。

2.调节油门杆,使之离开怠速工况,此时操作者可通过油门杆调节引擎到由50000

转/分到87000转/分之间的任意转速。

3.调节至某一转速之后,系统立即达到对应工况,保持在该工况下运行足够长的时

间(>1分钟),直到工况完全稳定,才可继续调节至另一转速。

4.可逐步调节至最大转速,亦可调节回怠速。

5.调节时,需注意TIT、EGT和RPM变化,注意不要让这些值超过上限。

(四)、停机

1.状态确认:此时系统处于正常运行状态,液晶屏显示“RUN”标记。

2.按下红色按钮,系统开始自动停机,“RUN”标记变为“AIR”标记。

3.当温度和转速回到启动限以下后,“AIR”标记重新变回“RDY”标记,此时可再

次进行启动。

4.确认数据采集完毕后,点击“Arm Trigger for Disk Recording”键,保存数据,

须注意每次保存数据均会覆盖原来的数据,因此保存数据之后要立即对文件进行重命名。

5.若发现系统的任何异常,可立即按下红色按钮,系统会立即停机。

附件一采集软件介绍

MiniLab实验台配备了DigiDAQ数据采集系统,其通过各种传感器、励磁源、信号转换器等将各参数传送到采集卡中,采集卡通过USB线与计算机相连,将数据传送给计算机。下文简单介绍一下一般的采集操作。

下图为DigiDAQ系统的操作界面,各个参数都能在屏幕上实时显示。

图5.1 DigiDAQ系统界面

其中主菜单为图5.2所示的小窗口。

图5.2 DigiDAQ主窗口

一般情况下进入采集系统后即为如图5.1所示的界面。如果不是则需要先打开设置文件。具体操作如图 5.3,点击主菜单最左边的打开按钮,在弹出的窗口中选中my config文件打开,即可重新载入设置文件进入相应的系统界面。如果载入失败,估计是文件有问题,可以参照说明书重新建立设置文件。

图5.3 打开设置文件

进入正常的系统界面后,可以先命名采集文件名。点击主窗口中的configure data destination图标(从左向右数第七个),进入相应界面,如图5.4。修改文件名,选择目标文件夹即可。

图5.4 命名文件

随后当确认一切准备妥当后即可进行数据采集。点击主窗口的Arm Trigger for disk Recording图标(左数第四个),随后此图标处于按下状态,即进行数据采集。如图5.5所示。

图5.5 采集数据

采集过程中可进行实时观测。可选择主菜单中Indicators菜单下的start all Indicator选项,使所有的仪表开始显示。或者可以逐个点击各个仪表菜单中的三角形的开始按钮。

实验结束后再次点击Arm Trigger for disk Recording图标即可停止数据采集,然后退出程序。相应的数据可以在之前选择好的存储目录中找到。默认的数据的格式为txt文件,建议使用Excel打开。

上述步骤仅仅介绍了最简单的实验采集过程,方便初次接触本实验的人员参考。另外本软件还可以选择电子仪表的格式(条形、波形、数字等),调整采样频率,取平均值显示,将采集数据转变为二进制,查看实验数据……在此不一一罗列。

附件二、实验主要参数

—实验台体积:

—SR-30体积:

—压气机最大压比: 3

—最大设计推力: 40lbf (178N)

—燃料消耗率(SFC): 1.2 (中等推力下)

—SR-30最大转速: 87000 rod/min

—SR-30最低转速: 50000 rod/min

—最高透平前温(TIT): 870℃

—最高排气温度(EGT): 720℃

—润滑油压范围: 10~30 psi (70~207kPa)

—启动空气压力范围: 100~160 psi (690~1103kPa)

—大气温度范围: 0~41℃

清吹;当出现某些警报时,可能会用到空气吹扫程序,该程序可以将引擎中残

留的燃料吹出,可以对引擎进行冷却,是实验中经常用到的一种非正常运行

操作。

运行空气吹扫程序时,先确认启动空气管已与机组连接上。

1..转速为0。

2.将油门杆拉离最下方

3.在液晶屏上显示“CAUTION - THROTPOSITION”标记后,

4.按下红色停止按钮,此时显示屏会显示“AIR &IGNIGION are OFF”字样。

5.按下绿色按钮,空气启动程序即开始运行.

压缩空气像正常启动过程一样冲转压气机。此过程会持续运行5 秒钟,然后恢

复到“AIR & IGNIGION are OFF”状态。空气吹扫程序可以多次反复运行,达到吹扫或降温的目的。

四、实验报告要求

实验目的:通过此实验,使学生了解真正的燃气轮机的启动过程、以及燃气轮机的运行特点和有关参数的变化规律。

试验内容:

1、燃气轮机装置与试验台介绍;

2、燃气轮机性能监测的关键参数与测量;

3、燃气轮机的启动与停机操作与过程分析;

4、燃气轮机的加速与减速过程操作与运行分析;

5、燃气轮机的稳定运行与稳定状态的确定与性能参数的采集;

6、燃气轮机热力性能计算与运行过程参数变化整理与分析。

要求:

根据上述实验内容,撰写相应的实验报告。

燃气轮机在船舶动力方面的应用

燃气轮机在船用动力方面的应用与发展 邵高鹏 (清华大学汽车系,北京 100084) 摘要:介绍船用燃气轮机的工作原理和特点,对比燃气轮机和内燃机性能的优缺点,总结燃气轮机应用于船用动力的现状和未来的发展方向。 关键词:船用燃气轮机;原理;应用;发展方向; 1.引言 燃气轮机动力装置在50年代开始用于船舶,在此之前,水面舰艇都已蒸汽轮机和内燃机作为其动力装置,大型舰船以蒸汽轮机为其主要的动力装置,蒸汽轮机的优势在于技术相对简单,制造相对容易,但是其同样存在油耗大,占用空间大等等劣势,而柴油机的单机功率有限,必须采用多机并用。并且由于燃气轮机汽固有的一些优点,使得它逐渐向柴油机动力在船舶动力上的统治地位发起了挑战。最初的燃气轮机还只能应用与军用舰艇,但是随着燃气轮机技术的发展,燃气轮机在商船上也逐步得到了推广。 2.船用燃气轮机的工作原理 船用内燃机的循环模式可以分为简单开式循环,其工作过程同内燃机类似,也可以分为吸气、压缩、做功及排气四个工作行程,但是与内燃机又有很大的不同,下图中是一种燃气轮机的结构示意图。 轴流压气机的转子高速回转,在压气机的进口处产生吸力,将新鲜空气吸入压气机,对应着吸气的过程。空气在轴流压气机中增压,压力和温度都有升高,空气继续流动经过扩压器,减速增压进入燃烧室中,此时的空气温度和压力都较高,比容很小,这就实现了空气的压缩过程。在空气进入燃烧室的同时,燃油同时喷入与空气混合形成可燃混合气,点燃后迅速燃烧,温度继续升高,而压力变化不大(由于流动损失的存在);高温高压的燃气,经过涡轮的静叶的导向之后冲击涡轮的动叶叶片,推动叶片使涡轮转子高速转动而产生转矩。涡轮常分为两级,第一级涡轮(高压涡轮)上产生的转矩用于驱动与之联动的压气机,第二级涡轮(动力涡轮)上产生的转矩经过传动轴和减速箱输出,这就是燃气轮机的燃烧和做工过

燃气轮机控制系统概况

燃气轮机控制系统—SPEEDTRONIC Mark V 摘要:本文介绍了燃气轮机及其控制系统的发展历程,以及燃气轮机控制系统—SPEEDTRONIC Mark V的工作原理及主要功能,并列举了几个燃气轮机控制系统的例子。 关键词:燃气轮机;控制系统 SPEEDTRONIC Mark V Gas Turbine Control System Abstract: This paper introduce the development history of gas turbines and their control system, and the functional principle and main features of gas turbine control systems, accompanied by some exemplifying system. Keywords: Gas Turbine; control system 1.燃气轮机控制系统的发展 燃气轮机开始成为工矿企业和公用事业的原动机组始于40年代后期,其最初被用作管道天然气输送及电网调峰。早期的控制系统采纳了液压机械式气轮机调速器,并辅以气动温控,启机燃料限制稳定及手动程控等功能。其余诸如超速、超温、着火、熄火、无润滑油及振动超标等保护均由独立的装置来实现。 随着控制技术的飞快发展,燃气轮机控制系统出现了以燃料调节器为代表的液压机械操动机构,以及用于启、停机自动控制的继电器自动程序控制。继电器自动程序控制,结合简单的报警监视亦可和SCADA(监控与数据采集)系统接口,用于连续遥控运行。这便是于1966年美国GE公司推出的第一台燃机电子控制系统的雏形。该套系

燃气轮机控制系统概况模板

燃气轮机控制系统 概况 燃气轮机控制系统—SPEEDTRONIC Mark V 摘要:本文介绍了燃气轮机及其控制系统的发展历程,以及燃气轮 机控制系统—SPEEDTRONIC Mark V 的工作原理及主要功能,并列举了几个燃气轮机控制系统的例子。 关键词:燃气轮机;控制系统 SPEEDTRONIC Mark V Gas Turbine Control System Abstract: This paper introduce the development history of gas turbines and their control system, and the functional principle and main features of gas turbine control systems, accompanied by some exemplifying

system. Keywords: Gas Turbine; control system 1. 燃气轮机控制系统的发展燃气轮机开始成为工矿企业和公用事业的原 动机组始于40 年代后期,其最初被用作管道天然气输送及电网调峰。早期的控制系统采纳了液压机械式气轮机调速器,并辅以气动温控,启机燃料限制稳定及手动程控等功能。其余诸如超速、超温、着火、熄火、无润滑油及振动超标等保护均由独立的装置来实现。 随着控制技术的飞快发展, 燃气轮机控制系统出现了以燃料调节器为代表的液压机械操动机构,以及用于启、停机自动控制的继电器自动程序控制。继电器自动程序控制,结合简单的报警监视亦 可和SCADA(监控与数据采集)系统接口,用于连续遥控运行。这便是于1966 年美国GE 公司推出的第一台燃机电子控制系统的雏形。该套系统, 也就是后来被定名为SPEEDTRONIC MARK I 的控制系统,以电子装置取代了早期的燃料调节器。 MARK I 系统采用固态系列元件模拟式控制系统, 大约50 块印刷电路板, 继电器型顺序控制和输出逻辑。 MARK II 在1973 年开始使用。其改进主要是采用了固态逻辑系统, 改进了启动热过渡过程, 对应用的环境温度要求放宽了。 在MARK II 的基础上, 对温度测量系统的补偿、剔除、计算等进行改型, 在70 年代后期生产出MARK II +ITS, 即增加了一套集成温度系统。对排气温度的控制能力得以加强, 主要是对损坏的排气热电偶

国内外燃气轮机发电技术的进展与前景

国内外燃气轮机发电技术的进展与前景 1前言 随着社会生产力水平的不断提高和经济的迅速增长,对于能源的需求也在快速增长。目前,世界火电站汽轮机长期占统治地位的局面已开始动摇,“大型电站以联合机组为主,中、小型机组以热电并供居多”已是许多工业发达国家电站发展的主要格局。燃气轮机具有极强的适配性,能够作为多种发电模式,以成为当今世界发电的主要形式之一,由于该装置,特别是联合循环发电装置具有效率高、机动性好,不仅可以作为电网的调峰机组,且更多地用于电网的基本负荷发电,又能满足日益严格的环保要求,其地位将得到巩固和加强。 我国自改革开放以来,随着电力工业的迅猛发展和电网峰谷差的日趋增大,燃气轮机发电得到重视和发展。近几年已相继兴建了一批具有80年代国际先进水平的机组,在缓解电力紧缺的同时,有效地发挥了其增强电网调峰能力的作用。跨入21世纪,随着科技发展、能源政策的调整,如何高效、洁净利用化石能源已成为电力领 域的突出问题。燃气—蒸汽联合循环发电越来越受到国家有关方面的重视,必将得到进一步的快速发展。 2 国际燃气轮机发电技术

燃气轮机是从20世纪50年代开始逐渐登上发电工业舞台的,由于当时机组的单机容量小、热效率低而在电力系统中只能作为紧急备用电源和调峰机组。60年代加深了对电网中必须配备一定数量的燃气轮发电机组的认识,从安全和调峰的目的出发,燃气轮发电机组在电网中的比例达到8%~12%。从80年代以后由于燃气轮机的功率和热效率均得到很大程度的提高,特别是燃气—蒸汽联合循环机型成熟,再加上世界范围内天然气资源进一步开发,燃气轮机及其联合循环在世界电力系统中的地位发生了明显变化,它们不仅仅可以用作紧急备用电源和调峰负荷机组,还能带基本负荷和中间负荷。美国在1990~2000年期间新增长的发电容量为1.13亿kW,其中燃气轮机电站和蒸汽轮机电站的容量分别为44%,第一次出现了朗肯循环和布莱顿循环平分秋色的局面,在德国前者则占2/3左右,由此可见在世界范围内燃气轮机及其联合循环已成为火电发展的主要方向。 近几年来,世界燃气轮机工业取得相当的成就和飞速的发展,几家著名的公司GE、ABB、Siemens、西屋等均与航空发动机设计、研究、制造厂彼此联营,保证及时地把航空发动机领域内的先进技术用来武装重型燃气轮机,以确保技术的先进性。如压气机已采用“可控扩压”的概念进行设计,把单轴压气机的压缩比提高到了24~30的水平,透平叶片采用了航空机组的先进冷却结构和定向结晶制造工艺,使透平前的燃气温度提高到了1300℃的水平,由此明显地提高了机组的输出功率和热效率。如GE公司的9FA、Siemens的V94.3A等典型机组的燃机单循环功率为266MW,燃气初温为1270~1300℃,压缩比为16,

燃气轮机系统建模与性能分析

燃气轮机系统建模与性能分析 摘要:燃气轮机机组具有超强的北线性,人们掌握它的具体实施工作过程运行 规律是很难得。在我过电力工业中对它的应用又不断加强。为了更加透彻的解决 这个问题,本文将通过建立燃气轮机机组系统建模及模拟比较研究机组设计和运 行中存在的问题,从而分析它的性能。 关键词:燃气轮机;系统建模;性能 1模拟对象燃气轮机的物理模型 在标准IS0工况条件(15℃101.3kpa及相对湿度60%)下,压气机不断从大气中 吸入空气,进行压缩。高压空气离开压气机之后,直接被送入燃烧室,供入燃料 在基本定压条件下完成燃烧。燃烧不会完全均匀,造成在一次燃烧后局部会达到 极高的温度,但因燃烧室内留有足够的后续空间发生混合、燃烧、稀释及冷却等 复杂的物理化学过程,使得燃烧混合物在离开燃烧室进入透平时,高温燃气的温 度己经基本趋于平均。在透平内,燃气的高品位焙值(高温、高压势能)被转化为功。 1.1燃气轮机数值计算模型与方法 本文借助于 GateCycle软件平台,搭建好的燃气轮机部件模块实现燃气轮机以上物理模型的功能转化,进行燃气轮机的热力学性能分析计算的。在开始模拟燃 气轮机之前,首先对燃气轮杋部件模块数学模型及计算原理方法进行简单介绍。1.2压气机数值计算模型 式中,q1 、q2 、ql 分别为压气机进、出口处空气、压气机抽气冷却透平的 空气的质量流量; T1*、 p1* 分别为压气机进出口处空气的温度、压力; T2*、 p2* 分别为压气机出口处空气的温度、压力 ηc、πc分别为压气机绝热压缩效率,压气机压比 γa为空气的绝热指数;ρa为大气温度;?1为压气机进气压力损失系数 ιcs、ιc分别为等只压缩比功和实际压缩比功 i*2s、i*2、i*1分别为等只压缩过程中压气机出口处空气的比焓,实际压缩过程中压气机出日处空气的比烩和压气机进日处空气的比焓; 当压气机在非设计工况下工作时,一般计算方法是将压气机性能简单处理编制成 数表,通过插值公式求得计算压气机的参数,即在压气机性能曲线上引入多条与 喘振边界平行的趋势线,这样可以把压比,流量,效率均视为平行于喘振边界的 等趋势线和转速的函数。本文采用了同样的计算方法,在计算燃气轮机变工况性 能过程中引入无实际物理涵义的无量纲参变量CMV(compressor map variable),仅相当于引入的平行于压气机喘振边界的趋势线,压气机的质量流量、压力和效 率计算是通过上下游回馈的热力计算结果,插值寻找能够使得上下游热力参数 (压力,温度,输出功率,转速,流量)计算收敛的工作点,即压气机的变工况 工作点。 1.3燃烧室数值计算模型 其中 式中: α为过量空气系数: L0为燃料的理论空气量:

军舰动力装置概况——燃气轮机

军舰动力装置概况——燃气轮机美国FT-8舰用燃气轮机 (一)研制背景和研制打算 FT-8燃气轮机由普拉特?惠特尼(P&W)公司的JT8D-219航空涡扇发动机派生。JT8D-219是JT8D系列中的最新型号,1985年开始投入使用。研制时充分利用了FT-4燃气轮机的成功体会,并移植了普拉特?惠特尼公司的PW2037和PW4000航空发动机的先进技术。在设计上突出了机组的高效率、高寿命和高可靠性。JT8D系列是一型成熟的航空发动机,20余年来已生产14000余台,并装在3000多架民航飞机上,如波音727、737、DC-9、MD-82等。累计运行了两亿八千五百万飞行小时,平均单台寿命超过1 8000h。 FT-8是1986年开始设计的。派生时将低压压气机改为8级,前两级用JTSD的风扇改成,第3级至第8级除对第3级压气机叶型作修改外,其他5级不变。进口导流叶片与前2级静子叶片可调。高压压气机共7级,7级高压压气机不变,重新设计了燃烧室和燃料系统。高、低压涡轮叶片加大了冷却,并设计了涡轮间隙操纵结构。动力涡轮4级,涡轮效率93.6%,燃气轮机总效率38.7%,是当代同等功率燃气轮机中最高的。 (二)系统组成和要紧性能 FT-8燃气轮机由进气道、低压压气机、高压压气机、燃烧室、高压涡轮、动力涡轮、排气装置和操纵系统等部套组成。 高压涡轮。单级轴流式。涡轮叶片和导向叶片为气冷,涡轮叶片材料为MAR-M-247,导向叶片为MAR-M-509,轮盘为In718。叶片涂层为N iCoCrAly。 低压涡轮。2级轴流式,第1级气冷。所有叶片材料皆为MAR-M-247,轮盘皆为Was-paloy。除第2级导向叶片涂层为PtAl外,其余叶片涂层皆为NiCoCrAly。 动力涡轮。4级轴流式,叶片材料除第3和第4级导向叶片为In7 18外,皆为In738。轮盘为Ing01。第1和第2级涡轮叶片及导向叶片涂层为PW A73铝硅,轴采纳PW All0铝涂层。

燃气轮机发电技术综述

Internal Combustion Engine &Parts 0引言 随着我国天然气资源的大规模开发及越来越严格的环保标准,我国陆续建成投产了多台燃气轮机发电机组,在满足电力需求的同时,创造了良好的社会效益和经济 效益。目前就世界范围而言, 燃气轮机发电已是电力结构中的重要组成部分,对推动经济和社会发展发挥着重要作用。 1燃气轮机装置的工作过程 燃气轮机是以连续流动的燃气为工质、 将燃料的化学能转变为转子机械能的内燃式动力机械, 是一种旋转式热力发动机。燃气轮机装置主要由压气机、 燃烧室、透平三大部件及控制系统、 辅助设备组成。压气机从外界大气环境吸入空气,并逐级压缩;压缩空气被送到燃烧室与喷入的 燃料混合燃烧,产生高温燃气;然后燃气进入透平膨胀做 功;透平排气可直接排到大气,对外界环境放热,也可通过换热设备放热以回收利用部分余热。工质顺序经过吸气压缩、燃烧加热、膨胀做功以及排气放热四个工作过程完成一个热力循环,进行能量转换。通常在燃气轮机中,压气机 是由燃气透平来带动的,它是透平的负载, 在简单循环中,透平的机械能有1/2到2/3左右用来带动压气机,其余的1/3左右的机械能用来驱动发电机。 2燃气轮机发电机组 用燃气轮机驱动发电机构成了燃气轮机发电机组。目前,应用最广泛、获得最高实用热效率的是燃气与蒸汽的联合循环。燃气轮机循环中,工质的平均吸热温度很高,燃气初温达到了1300℃-1500℃(表1),平均放热温度也较高,通常燃气轮机排气温度在500℃-600℃左右,因此单独 的燃气轮机发电机组的热效率难以达到较高值(表1)。蒸 汽轮机循环中,工质的平均放热温度达到了较低值,但工质的平均吸热温度不高,因此单独的蒸汽轮机发电机组的热效率也难以达到较高值。这两种单独的循环的热效率最 高40%多。若将燃气循环和蒸汽循环联合起来, 就成为了平均吸热温度很高而平均放热温度很低的热机, 其循环效率必定较高,最高热效率已达到60%以上(表2)。 如GE 公司基于空气冷却透平技术的9H 级燃气轮机联合循环效率约61%,西门子公司全内空冷H 级燃机联合循环效率也在60%以上。 燃气-蒸汽联合循环的方案有多种,本文介绍典型的联合循环发电型式。 2.1纯余热锅炉型联合循环发电机组这种联合循环中,燃气侧和蒸汽侧两循环的结合点是余热锅炉。燃气轮机的排气送入余热锅炉中去加热给水、 产生蒸汽,驱动汽轮机做功,这是以燃气轮机为主的联合循环方案。 余热锅炉内不加入燃料燃烧,因此,蒸汽参数及蒸汽轮机的容量取决于燃气透平的排气参数和流量,在通常燃气轮机排气参数下,得到的是中温中压的蒸汽, 通常汽轮机的容量约为燃气轮机容量的30%-50%。 这种联合循环效率高、技术成熟、 系统简单、造价低、启停速度快,应用最广。若在燃气透平的排气段设置旁通 烟囱, 汽轮机停机时燃气轮机可以单独运行;但燃气轮机停机时汽轮机不能单独工作。 2.2排汽补燃型联合循环发电机组排汽补燃型联合循环有两种方案:在余热锅炉前增加 烟道补燃器以及往余热锅炉中加入一定的燃料, 利用燃气中剩余的氧进行燃烧。由于补燃,锅炉蒸发量增加, 蒸汽参数提高,蒸汽轮机循环的出力和效率得到提高; 负荷变化时,可在较大的输出功率变化范围内, 燃气轮机工况不变,只改变补燃燃料,以改变汽轮机功率来改变联合循环的出力,机组的变工况性能得到改善,部分负荷下的效率较高; —————————————————————— —作者简介:杨巧云(1966-),女,湖南湘潭人, 武汉电力职业技术学院教授,硕士。 燃气轮机发电技术综述 杨巧云 (武汉电力职业技术学院, 武汉430079)摘要:介绍燃气轮机发电装置的的工作过程及典型型式,对几种主要的燃气-蒸汽联合循环发电装置进行分析比较,并将燃气轮 机发电机组与常规燃煤发电机组进行比较。 关键词:燃气轮机;燃气-蒸汽联合循环;发电 机组型号ISO 基本功率 (MW )燃气初温℃ 供电效率(%) PG9351FA MS9001G LM6000-PD M701G GT13E2V94.3A 255.628241.1334165.1265.9 132714301160142711001310 36.0 39.540.739.535.738.6 表1某些燃气轮机发电机组的主要技术参数(教材,清华) 表2某些联合循环发电机组的主要技术参数(教材,清华) 机组型号ISO 基本功率(MW ) 供电效率(%) S209FA KA13E2-2KA26-1S109H GUDIS.94.3MPCP2(M701F ) 786.9 480392.5480392.2799.6 57.1 52.956.360.057.457.3

燃气轮机运行规程

V94.2型燃气轮机运行规程 第一章概述 1 第二章设备规范及性能 2 第一节主机技术规范及特性 2 第二节润滑油系统 3 第三节燃油系统及点火系统 5 第四节防喘放气及水洗系统 8 第五节液压油系统 9 第六节燃油前置系统 10 第七节冷却水系统 12 第八节进气系统 13 第九节启动变频器 13 第三章启动 14 第一节总则 14 第二节启动前的准备工作 14 第三节启动操作 24 第四章运行中的监视与检查 26 第五章正常停机 28 第六章水洗操作 29 第一节压气机离线水洗 29 第二节在线水洗 30 第三节透平水洗 31 第七章事故柴油机 33 第一节概述 33 第二节柴油发电机规范 33 第三节柴油机的启、停操作 34 第三节柴油机的维护 36

第八章空压机 38 第一节概述 38 第二节性能参数 39 第三节空压机的启动和运行 39 第四节空压机的正常维护和保养 41 第五节空压机常见故障及其排除方法 42 第六节空压机屏幕上符号说明 45 第九章事故处理 45 第一节通用准则 45 第二节燃烧和燃油系统失常 46 第三节润滑油系统 50 第四节通流部分损坏和机组振动 51 第五节机组超速和甩负荷 53 第七节电气故障处理 54 第十章设备整定值 57 第一章概述 1、机组概况 V94.2型燃气轮机由原西德电站设备联合制造有限公司(Krartwerke Unit AG-KWU)研究制造。采用单缸单轴、轴向排气的结构,具有设计合理、运行可靠、寿命长、适合多种燃料、检修方便等优点。既适于作为电网的基本负荷机组,也适合于作为调峰机组。转子由端面齿结构传扭,拉杆是空心轴,可调节的进口导叶,低负荷时,提高了机组的经济性。透平有四级,燃烧室为两个侧立的大面积燃烧结构,每个燃烧室装有八个便于拆装的喷嘴,喷嘴为组合式,回流控制。发电机是冷端驱动,有刷励磁方式,可用于变频启动,设有闭式循环水冷却系统。 2、燃机性能数据表:(不考虑燃机喷水) 名称单位 1 2 3 4 5 6 7 燃料 180#重油 180#重油 180#重油 180#重油 LNG LNG LNG 大气压 kpa 1.013 1.013 1.013 1.013 1.013 1.013 1.013

联合循环燃气轮机发电厂简介.doc

联合循环燃气轮机发电厂简介 联合循环发电:燃气轮机及发电机与余热锅炉、蒸汽轮机共同组 成的循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回 收转换为蒸汽,再将蒸汽注入蒸汽轮机发电。形式有燃气轮机、蒸汽 轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机 各自推动各自发电机的多轴联合循环。胜利油田埕岛电厂采用的是美 国 GE公司的 MS9001E燃气轮机 , 其热效率为 33.79%,余热锅炉为杭 州锅炉厂的立式强制循环余热锅炉。 1.燃气轮机 1.1 简介 燃气轮机是一种以空气及燃气为工质的旋转式热力发动机,它的 结构与飞机喷气式发动机一致,也类似蒸汽轮机。主要结构有三部 分: 1、燃气轮机(透平或动力涡轮); 2、压气机(空气压缩机); 3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送 入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空 气混合,在定压下进行燃烧。生成的高温高压烟气进入燃气轮机膨胀 作工,推动动力叶片高速旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和 寿命周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分 为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转 型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用 于电力调峰、船舶动力。重型燃气轮机为工业型燃机,其优势为运行 可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、 热电联产。埕岛电厂采用的MS9001E燃气轮发电机组是50Hz,3000 转/ 分,直接传动的发电机。该型燃气轮发电机组最早于1987 年投入商

燃气轮机用于发电的主要形式

燃气轮机用于发电的主要形式 燃气轮机用于发电的主要形式 燃气轮机装置是一种以空气及燃气为工质的旋转式热力发动机,它的结构与飞机喷气式发动机一致,也类似蒸汽轮机。主要结构有三部分:1、燃气轮机(透平或动力涡轮);2、压气机(空气压缩机);3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空气混合,在定压下进行燃烧。生成的高温高压烟气进入燃气轮机膨胀作工,推动动力叶片高速旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转型,如LM6000PC和FT8燃气轮机,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。重型燃气轮机为工业型燃机,如GT26和PG6561B等燃气轮机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。 燃气轮机用于发电的主要形式: 简单循环发电:由燃气轮机和发电机独立组成的循环系统,也称为开式循环。其优点是装机快、起停灵活,多用于电网调峰和交通、工业动力系统。目前的最高效率的开式循环系统是GE公司LM6000PC 轻型燃气轮机,效率为43%。 前置循环热电联产或发电:由燃气轮机及发电机与余热锅炉共同组成的循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回收,转换为蒸汽或热水加以利用。主要用于热电联产,也有将余热锅炉的蒸汽回注入燃气轮机提高燃气轮机出力和效率。最高效率的前置回注循环系统是GE公司LM5000-STIG120 轻型燃气轮机,效率为43.3%。前置循环热电联产时的总效率一般均超过80%。为提高供热的灵活性,大多前置循环热电联产机组采用余热锅炉补燃技术,补燃时的总效率超过90%。 联合循环发电或热电联产:燃气轮机及发电机与余热锅炉、蒸汽轮机或供热式蒸汽轮

简析燃气轮机发电机组的现状及未来发展详细版

文件编号:GD/FS-5604 (安全管理范本系列) 简析燃气轮机发电机组的现状及未来发展详细版 In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编辑:_________________ 单位:_________________ 日期:_________________

简析燃气轮机发电机组的现状及未 来发展详细版 提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 火力发电的历史久远,为世界经济发展提供着充足的能源。但是,随着环境保护观念深入人心,世界资源日益紧缺,火力发电已经成为我国经济转型、产业结构调整的重点对象。作为新型发电模式,燃气轮机发电具备快速启停、高效率以及较小占地规模的有点,污染小。在我国工业实践中,受到制造技术的商业秘密制约,自主创造能力十分薄弱,进口是主要来源,并没有在全国推广开来。本文主要浅析燃气轮发电机组的当前发展情况,并展望未来趋势,希望引起工业领域人员的重视。 1.燃气轮机及其发电机组现状浅析

1.1.燃气轮机浅析 作为旋转式动力机械,气体以连续流动的方式在燃气轮机中通过热能向机械能的转化,进而推动发电机组旋转。从世界范围来看,第一台燃气轮机由瑞士一家企业制造,时间为1939年。经数十年发展,机车与坦克动力、舰船动力、管线动力与发电等都有燃气轮机的身影。从结构上划分,轻型与重型燃气轮机为工业燃气轮机类型。当前,俄、英、美等发达国家已经将燃气轮机完全应用到了水面舰艇上。此外,海上采油、输油输气的管线加压装置也由轻型燃气轮机构成,实现了41.6%的热效率(简单循环)。高度垄断是重型燃气轮机制造领域的特点,重要的核心企业为ABB、西门子/西屋、GE、三菱等。轻型燃气轮机制造领域中主导企业为P&W、R.R与GE,其他国家也不甘落后,正在紧锣密鼓的航机改型。

燃气轮机润滑油系统外接净化设备案例分析

燃气轮机发电技术第14卷 第3/4期2012年10月 燃气轮机润滑油系统外接净化设备案例分析 袁柏山 (爱索普流体科技有限公司上海代表处,上海 201206) 摘要:美国坦帕电厂7台GE 7FA燃机润滑系统于2005年12月安装外接净化设备,经过4年多的持续运行,获得了超预期的净化效果。本文通过对运行过程的跟踪和检测数据的分析,重点阐述了净化设备的运行过程和机理,对国内燃机润滑系统的维护和清洁具有非常实用的借鉴价值。关键词:燃气轮机;润滑系统;污染;胶质物;平衡电荷净化 0 前言 坐落于美国佛罗里达州的坦帕电厂有7台GE 7FA 燃气轮机,投入运行4年后发现燃机润滑系统内出现大量的胶质污染物,油质开始变黑,伺服阀等控制部件出现卡涩故障,虽采用了传统的机械过滤但仍无效果。厂方一度考虑换油,后经GE 工程师的推荐,于2005年12月尝试使用油箱旁路在线BCA TM -平衡电荷净化设备,希望以此去除系统内的胶质物、延长润滑油使用寿命。实践证明:此举不但省去了换油的成本,而且由于安装的外接净化设备,燃机润滑系统又持续运行4年至2010年大修时,发现整个润滑系统内部洁净如新,胶质污垢被彻底清除,检测后的油质状况指标多好于新油,仍可继续使用下去。7台机组的油样外观和指标如图1所示,油质各项指标如表1所示。 1 检测数据分析 表1中:1A 、1B 、2D ….分别代表7 台机组。 图1[1] 取自七台机组油样 表1中:Varnish Potential —表示系统内“胶质物前兆”指标,胶质物的等级是按照目前一致公认的QSA —即超离心和定量分光光度分析法将系统内的胶质物前兆按严重程度划分成1~100个数量等级。指标在20以下可以认为润滑系统是比较洁净的,20~40表示轻度的胶质物污染,超过40说明胶质物污染比较严重,需要考虑采取措施对系统内的胶质物进行清除。表1中使用了8年的润滑油系统内的潜在胶质物在5~13之间,说明系统内基本上没 有胶质污垢存在了。 表1中的Gravimetric patch —表示“切片重量分析”,其试验方法与ASTM D893类似,和QSA 一样,也是检测系统内胶质物前兆的一种方法,具体试验方法是使油样经过0.4或0.8m 孔径的滤膜,然后 表1[1] 七台机组油样检测指标

索拉燃气轮机

燃气轮机发电案例介绍-天然气应用 1 案例背景 燃气轮机热电(冷)联产系统可同时提供电能和热(冷)能,相比传统能源解决方式,系统效率高,简单可靠,应用灵活,节能环保,且受国家政策鼓励,可广泛应用于各种场合,为用户降低能耗并改善当地环境,以下是以天然气为燃料,应用于工业用户的典型案例介绍。 1.1 现场条件(以上海为例) 海拔高度5m 设计大气温度14℃ 设计大气压力101.3Kpa 设计大气相对湿度60% 1.2 燃料 以天然气为燃料 燃气热值:8400 KCal/Nm3 燃气压力:0.3Mpa(假设) 1.3 热电负荷及运行时数 最大蒸汽流量:29t/hr 蒸汽压力: 1.0 Mpa 蒸汽温度:185℃ 年供热时间:7000小时 年运行小时数:7000小时 2 方案 燃气轮机热电联产系统一般根据以热定电的原则进行设计和设备选择,该项目选用1台索拉公司大力神130(TITAN 130)燃气轮机,配1台余热锅炉,两台燃气压缩机(1用1备),整个系统可布置在简易厂房内,总占地面积约3200平方米。 2.1 燃气轮机 每台大力神130机组在项目现场主要参数如下: 铭牌功率:15000KW 发电机出力:14556 KW 燃烧空气进口温度:14℃ 燃机工况点:满负荷运行 燃料流量:4339Nm3/hr 涡轮排气温度:500 ℃ 尾气流量:177882 Kg/hr

2.2 余热锅炉 每台余热锅炉在项目现场主要参数如下: 蒸汽温度:185.5℃ 蒸汽压力: 1.03 Mpa 蒸汽流量:29245 kg/hr 2.4 系统总容量及实际出力 总装机铭牌功率:15000 KW 现场实际净输出功率:14556 KW 总蒸汽流量:29245 Kg/hr 总燃气消耗量: 4339 Nm3/hr 3 索拉中国业绩 索拉公司进入中国已经超过30年,在国内已经有超过260台机组,其中金牛60机组超过70台,大力神130超过70台。在项目执行过程中和国内的许多设计院建立了良好的合作关系,他们也对索拉机组有充分的了解,可以非常快速地和可靠地完成设计任务。 此外,上海力顺燃机科技有限公司作为索拉在中国工业发电行业的代理,已在国内完成了多个燃气轮机热电联产项目,可以为项目的规划、建设提供技术服务。 在国内已经建设成功、投入使用的索拉燃气轮机天然气热电联产项目有:浦东国际机场能源中心热电联产项目和成都国际会展中心热电联产项目,其中浦东机场项目运行已经超过十年,目前运行情况良好。 ●浦东国际机场能源中心(1×4000KW)1999年建成并投入使用。 ●成都国际会展中心(1×10690KW,1×5670KW)分别于2005年11月 和2009年4月建成并投入使用。 此外,针对中低热值燃气应用,索拉燃气轮机热电联产项目清单: 1)山东金能煤气化有限公司一期项目(1×5670KW 热电联产),2006 年4 月 投产,目前运行情况良好。 2)内蒙古太西煤集团乌斯太项目(2×5670KW 热电联产),2008 年10 月投产, 目前运行情况良好。 3)山东金能煤气化有限公司二期项目(3×5670KW 联合循环),2008 年4 月 投产,目前运行情况良好。 4)河南顺成集团煤焦有限公司一、二项目(2×15000KW 热电联产),分别于

燃气轮机原理(精华版)

QD20燃机轮机机组 第 1章概述 1.1 燃气轮机简介 燃气轮机(Gas Turbine)是以连续流动的气体为工质、把热能转换为机械功的旋转式动力机械,包括压气机、加热工质的设备(如燃烧室)、透平、控制系统和辅助设备等。 走马灯是燃气轮机的雏形我国在11 世纪就有走马灯的记载,它靠蜡烛在空气燃烧后产生的上升热气推动顶部风车及其转轴上的纸人马一起旋转。15世纪末,意大利人列奥纳多〃达芬奇设计的烟气转动装臵,其原理与走马灯相同。 现代燃气轮机发动机主要由压气机、燃烧室和透平三大部件组成。当它正常工作时,工质顺序经过吸气压缩、燃烧加热、膨胀做功以及排气放热等四个工作过程而完成一个由热变功的转化的热力循环。图1-2为开式简单循环燃气轮机工作原理图。压气机从外界大气环境吸入空气、并逐级压缩(空气的温度与压力也将逐级升高);压缩空气被送到燃烧室与喷入的燃料混合燃烧产生高温高压的燃气;然后再进入透平膨胀做功;最后是工质放热过程,透平排气可直接排到大气、自然放热给外界环境,也可通过各种换热设备放热以回收利用部分余热。在连续重复完成上述的循环过程的同时,发动机也就把燃料的化学能连续地部分转化为有用功。 燃气轮机动力装臵是指包括燃气轮机发动机及为产生有用的动力(例如:电能、机械能或热能)所必需的基本设备。为了保证整个装臵的正常运行,除了主机三大部件外,还应根据不同情况配臵控制调节系统、启动系统、润滑油系统、燃料系统等。 燃气轮机区别于活塞式内燃机有两大特征:一是发动机部件运动方式,它为高速旋转、且工质气流朝一个方向流动(不必来回吞吐),使它摆脱了往复式动力机械功率受活塞体积与运动速度限制的制约,在同样大小的机器内每单位时间内通过的工质量要大得多,产生的功率也大得多,且结构简单、运动平稳、润滑油耗少;二是主要部件的功能,其工质经历的各热力过程是在不同的部件中进行的,故可方便地把它们加以不同组合处理,来满足各种用途的要求。 燃气轮机区别于汽轮机有三大特征:一是工质,它采用空气而不是水,可不用或少用水;另是多为内燃方式,使它免除庞大的传热与冷凝设备,因而设备简单,启动和加载时间短,电站金属消耗量、厂房占地面积与安装周期都成倍地减少;再是高温加热高温放热,使它有更大的提高系统效率的潜力,但也使它在简单循环时热效率较低,且高温部件需更多的镍、铬、钴等高级合金材料,影响了使用经济性与可靠性。 自 20 世纪60 年代首次引进6000kW 燃气轮机发电机组以来,我国已建成不少烧油气的燃气轮机及其联合循环发电机组。但由于我国一次能源以煤为主的消费结构,并受到规定的“发电设备只准烧煤”的前燃料政策的制约,目前我国燃气轮机在现有发电设备装机容量中,占有量很小,只有700 万kW 左右,且绝大部分为进口的。但发展速度很快,正在建设和计划的就超过800 万kW,正在建设的一批大型35 万kW 级燃用天然气的联合循环电站。随 着天然气和液体燃料在一次能源中比例的上升和燃气轮机燃煤的技术成熟之后,燃气轮机在我国发电设备中的比例将会愈来愈大。研究表明,由于燃气轮机在效率,环保和成本方面的优势,我国在电站基本负荷发电、老电站技术更新改造、洁净煤发电技术、石油与天然气的输运和高效利用以及舰船、机车交通动力等领域对燃气轮机都将有较大的需求。许多专家还强调燃气轮机在西部大开发中的重要性,国家构想实施的新世纪四大工程:西气东输,西电东送,青藏铁路,南水北调,前三个都与燃气轮机有关。总之,以燃气轮机为核心的总能系统也将成为我国跨世纪火电动力的主要发展方向,我国将是世界最大的燃气轮机潜在市场。 第2章燃气轮机热力循环 2.1热力循环的概念 热力循环是指热力系统经过一系列状态变化,重新回复到原来状态的全部过程。热力循环分为正向循环及逆向循环。将热能转换为机械功的循环称为正向循

国内外燃气轮机发电技术的进展与前景

国内外燃气轮机发电技术 的进展与前景 Ting Bao was revised on January 6, 20021

国内外燃气轮机发电技术的进展与前景 阎保康 浙江省电力试验研究所杭州310014 1前言 随着社会生产力水平的不断提高和经济的迅速增长,对于能源的需求也在快速增长。目前,世界火电站汽轮机长期占统治地位的局面已开始动摇,“大型电站以联合机组为主,中、小型机组以热电并供居多”已是许多工业发达国家电站发展的主要格局。燃气轮机具有极强的适配性,能够作为多种发电模式,以成为当今世界发电的主要形式之一,由于该装置,特别是联合循环发电装置具有效率高、机动性好,不仅可以作为电网的调峰机组,且更多地用于电网的基本负荷发电,又能满足日益严格的环保要求,其地位将得到巩固和加强。 我国自改革开放以来,随着电力工业的迅猛发展和电网峰谷差的日趋增大,燃气轮机发电得到重视和发展。近几年已相继兴建了一批具有80年代国际先进水平的机组,在缓解电力紧缺的同时,有效地发挥了其增强电网调峰能力的作用。跨入21世纪,随着科技发展、能源政策的调整,如何高效、洁净利用化石能源已成为电力领 域的突出问题。燃气—蒸汽联合循环发电越来越受到国家有关方面的重视,必将得到进一步的快速发展。 2 国际燃气轮机发电技术 燃气轮机是从20世纪50年代开始逐渐登上发电工业舞台的,由于当时机组的单机容量小、热效率低而在电力系统中只能作为紧急备用电源和调峰机组。60年代加深了对电网中必须配备一定数量的燃气轮发电机组的认识,从安全和调峰的目的出发,燃气轮发电机组在电网中的比例达到8%~12%。从80年代以后由于燃气轮机的功率和热效率均得到很大程度的提高,特别是燃气—蒸汽联合循环机型成熟,再加上世界范围内天然气资源进一步开发,燃气轮机及其联合循环在世界电力系统中的地位发生了明显变化,它们不仅仅可以用作紧急备用电源和调峰负荷机组,还能带基本负荷和中间负荷。美国在1990~2000年期间新增长的发电容量为1.13亿kW,其中燃气轮机电站和蒸汽轮机电站的容量分别为44%,第一次出现了朗肯循环和布莱顿循环平分秋色的局面,在德国前者则占2/3左右,由此可见在世界范围内燃气轮机及其联合循环已成为火电发展的主要方向。近几年来,世界燃气轮机工业取得相当的成就和飞速的发展,几家

燃气轮机

燃气轮机 定义: 由压气机、加热工质的设备(如燃烧室)、透平、控制系统和辅助设备组成,将气体压缩、加热后送入透平中膨胀做功,把一部分热能转变为机械能的旋转原动机。 燃气轮机 燃气轮机是以连续流动的气体为工质带动叶轮高速旋转,将燃料的能量转变为有用功的内燃式动力机械,是一种旋转叶轮式热力发动机。燃气轮机可以是一个广泛的称呼,基本原理大同小异,一般所指的燃气涡轮发动机,通常是指用于船舶(以军用作战舰艇为主)、车辆(通常是体积庞大可以容纳得下燃气涡轮机的车种,例如坦克、工程车辆等)。与推进用的涡轮发动机不同之处,在于其涡轮机除了要带动传动轴,传动轴再连上车辆的传动系统、船舶的螺旋桨等外,还会另外带动压缩机。至17世纪中叶,透平原理在欧洲得到了较多应用。 编辑本段发展 燃气轮机是一种先进而复杂的成套动力机械装备,是典型的高新技术密集型产品。作为高科技的载体,燃气轮机代表了多理论学科和多工程领域发展的综合水平,是21世纪的先导技术。发展集新技术、新材料、新工艺于一身的燃气轮机产业,是国家高技术水平和科技实力的重要标志之一,具有十分突出的战略地位。 由于多方面的原因,我国燃气轮机同国际先进水平相比仍存在很大差距,尚未形成真正的产业。诸多领域动力落后的状态,已成为制约国民经济发展的“瓶颈”,其技术仅被世界上少数几个发达国家所控制,目前,先进的燃气轮机在西方国家仍然限制对华出口。 《2013-2017年中国燃气轮机行业发展前景与投资预测分析报告》[1]显示,燃气轮机属于重大核心装备,如果长期依赖进口,在关键技术上受制于人,不利于我国燃气轮机动力产业及相关产业的健康、快速发展。从市场容量看,我国新世纪四大工程中“西气东输”、“西电东送”、“南水北调”等三大工程均需要大量30兆瓦级工业型燃气轮机,同时我国舰船制造业的健康快速发展需要大量30兆瓦级舰船燃气轮机,我国已成为世界最大的燃气轮机潜在市场。 面对经济全球化、国际燃气轮机市场激烈竞争和国外高度垄断的新形势,国家对我国民族燃机产业的发展非常重视,国家发改委和科技部已经将我国燃气轮机市场发展的思路和对策纳入“十二五”及长期发展规划中,重型燃气轮机是国家优先发展的10项重大技术装备之一。是国家

(完整版)燃气轮机

燃气轮机简介 1、燃气轮机发展史 1939年世界上第一台燃气轮机投入使用以来,至今已有65年的历史。在这65年中燃气轮机的发展非常快,其性能、结构不断地提高和完善。燃气轮机的用途已从过去的军事领域扩展到铁路运输、移动电站、海上平台、机械驱动和各种循环方式的大中型电站等。例如:简单循环、回热循环、间冷循环、再热循环、燃气—蒸汽联合循环(单压、双压、三压再热)、增压硫化床燃烧—联合循环(PFBC—CC)、整体式煤气化联合循环(IGCC)等。由于燃气轮机具有用途广泛、启动快、运行方式灵活、用水量少、热效率高、建设周期短以及对燃料的适应性非常广(各种气体燃料、液体燃料和煤)等特点,因此可以这样说,燃气轮机已经成为热机中的一支劲旅,汽轮机长期独霸发电行业的格局已经开始动摇。 近二十年来,燃气轮机在电站中的应用得到了迅猛发展。这是因为燃气轮机启动速度快、运行方式灵活,且能在无电源的情况下启动(黑启动Black),机动性能好且有极强的调峰能力,可保障电网安全运行。进入八十年代以后,燃气轮机技术得到了迅猛发展,技术性能大幅度提高。到目前为止单机容量已达334MW,简单循环的燃气轮机热效率达43.86%,已超过大功率、高参数的汽轮机电站的热效率。而燃气—蒸汽联合循环电站的热效率更高达60%。先进的燃气轮机已普遍应用模块化结构,使其运输、安装、维修和更换都比较方便,而且广泛应用了孔探仪定期检查、温度控制、振动保护、超温保护、熄火保护、超速保护等措施,使其可靠性和可用率大为提高。此外,由于燃气轮机的燃烧效率很高,未燃烧的碳氢化合物、一氧化碳、二氧化硫等排放物一般都能达到严格的环保要求。注水/蒸汽燃烧室和DLN燃烧室的应用使NO X的排放降至9-25ppm。 2、我国燃气轮机工业概况 我国解放前没有燃气轮机工业,解放后全国各地试制过十几种型号的陆海空用途的燃气轮机。1956年我国制造的第一批喷气式飞机试飞,1958年起又有不少工厂设计试制过各种燃气轮机。 1962年上海汽轮机厂试制船用燃气轮机,1964年与上海船厂合作制成 550KW燃气轮机,1965年制成6000KW列车电站燃气轮机,1971年制成3000KW卡车电站。在这期间还与703研究所合作制造了3295KW、4410KW、18380KW等几种船用燃气轮机。 1969年哈尔滨汽轮机厂制成2200KW机车燃气轮机和1000KW自由活塞式燃气轮机,1973年与703研究所合作制成4410KW船用燃气轮机,与长春机车车辆厂合作制成3295KW机车燃气轮机。 1964年南京汽轮电机厂制成1500KW电站燃气轮机;1970年制成37KW 泵用燃气轮机;1972年制成1000KW电站燃气轮机;1977年制成21700KW快装式电站燃气轮机;1984年与GE公司合作生产了PG6541B型36000KW燃气轮机;从1984年至2004年已生产了PG6541B型、PG6551B型、PG6561B型、PG6581B型四种型号燃气轮机,功率由36000KW上升到现在的43660KW。2003年国家发改委决定南京汽轮电机集团有限责任公司与GE公司进一步扩大

相关主题
文本预览
相关文档 最新文档