当前位置:文档之家› 模拟量控制系统试验

模拟量控制系统试验

模拟量控制系统试验
模拟量控制系统试验

模拟量控制系统试验

*******公司

模拟量控制系统试验大纲

批准:

审核:

编写:

2019年12月1日

一模拟量控制系统简介

河北建投灵海发电有限责任公司两台机组的模拟量控制系统(即热工自动调节系统)包含数字电液控制系统(DEH )、汽包水位控制系统、主汽温控制系统、炉膛压力控制系统、除氧器压力控制系统、除氧器水位控制系统、汽封压力控制系统、凝汽器水位控制系统以及化学制水、渗滤液处理和烟气净化的辅助控制系统等。

二试验目的及时间安排

1、试验目的:测试被调量及调节阀门的特性,确定其性能指标;整定控制参数、优化控制策略,提高控制品质,确定各被调参数的稳态、动态品质指标。

2、时间安排:2019年12月1日至12月31日。三试验组织措施

1、成立公司模拟量控制系统试验小组,组成如下:组长:林敏立

副组长:刘瑞谦马福刚沈剑飞成员:付建平王丰郑伟王博

2、生技部热控专业及运行部、检修部相关人员在试验小组的指挥下参加试验。

3、在试验前检修部安排人员完成与试验相关设备的校验工作,消除设备缺陷。

4、在试验过程中试验人员应与运行操作人员充分沟通,在危及机组或设备安全运行时,应及时终止试验,并将阀门开度迅速恢复至试验前位置,直至参数稳定。

5、试验人员应做好试验数据的收集、整理工作,试验结束后由生技部热控专业完成试验报告的整理工作。

四试验内容及技术措施 1、调节阀特性试验(1) 试验方法:

1)在机组运行工况稳定情况下,调节方式置为手动控制方式,单方向间断地开大调节阀,每次以10%幅度为宜,直至调节阀全开。 2)然后再以同样方式关小阀门,直至全关;

3)每次增大或减小阀门开度操作都必须待流量稳定后进行。 4)做出调节阀流量与

阀门开度之间的关系曲线,即流量特性曲线。(2) 阀门特性质量要求:

1)调节阀的最大流量应满足机组最大负荷要求,并约有10%的裕量; 2)调节阀的漏流量应小于其最大流量的10%;

3)调节阀特性曲线应呈线性,工作段应大于70%,其回程误差应小于最大流量的3%;4)调节阀的死行程应小于全行程的5%。 2、模拟量控制系统扰动试验,(1)试验前应

具备的条件

1)机组启动后,已经正常运行,达到额定运行参数; 2)与调节系统相关检测参数

运行正常、指示准确、记录清晰; 3)机组保护全部投入;

4)调节机构有足够的调节裕量。(2)调节品质指标如下:

3、控制策略及PID 调节参数整定:调节品质指标不符合要求的控制系统,进行其

PID 调节参数整定或修改控制策略,以满足调节品质指标要求。

4、安全注意事项

(1)严格执行工作票及试验措施,整定PID 参数或修改控制策略时必须设置监护人。(2)运行人员密切监盘,注意各主要参数的变化,如发现异常情况,要及时中断试验,

按运行规程进行操作,防止事故发生。

(3)在无异常情况时运行人员尽量减少操作,以免影响试验效果。(4)试验前运

行人员应对试验措施进行学习,做好事故预想。

附录一模拟量控制试验计划进程表

附录二模拟量控制扰动试验步骤

一、给水自动扰动试验

1、检查给水执行机构工作正常;

2、运行人员调整好工况,保持各主要参数稳定(负荷、主汽压力、水位、给水流量) ;

3、试验人员应在确认自动控制回路无异常后方可进行试验;

4、调整好汽包水位,将给

水执行机构投入自动;

5、根据定值阶跃扰动需要,运行人员将汽包水位设定值调整在适当数值;在当前设

定值基础上,将设定值改变40mm (可以分为先向下减40mm 做一次试验;然后等待系统稳

定后,向上增40mm 做第二次试验) ,并在CRT 画面上观察汽包水位、主汽流量、给水流

量及给水调节执行机构开度;

7、在试验过程中,如果汽包水位的最大偏差不超过±50mm 禁止对给水调节执行机构

进行手动调整;

8、同样步骤做三次试验,取两条基本相同的曲线作为试验结果; 9、对试验曲线进

行综合分析,确定并记录调节系统各调节参数。二、炉膛负压调节系统扰动试验

1、检查引风机串级调速装置工作正常。

2、运行人员调整好工况,保持各主要参数稳定(负荷、主汽压力、水位、炉膛负压) ;

3、试验人员应在确认自动控制回路无异常后方可进行试验;

4、调整好炉膛负压,将引

风机转速控制投入自动;

5、根据定值阶跃扰动需要,运行人员将炉膛负压设定值调整在适当数值;在当前设

定值基础上,将设定值改变100Pa (可以分为先向下减100Pa 做一次试验;然后等待系统

稳定后,向上增100Pa 做第二次试验) ,并在CRT 画面上观察炉膛负压、总风量及引风

机转速; 6、在试验过程中,如果炉膛负压的最大偏差不超过±100Pa 禁止对引风机转速

进行手动调整;

7、同样步骤做三次试验,取两条基本相同的曲线作为试验结果; 8、对试验曲线进

行综合分析,确定并记录调节系统各调节参数。三、过热器一级减温自动扰动试验 1、

检查一级减温水调整门工作正常;

2、运行人员调整好工况,保证各主要参数稳定(负荷、主汽压力、主汽温度) ;

3、

试验人员应在确认自动控制回路无异常后方可进行试验; 4、调好主汽温度,将一级减温

水调整门投入自动;

5、根据定值阶跃扰动需要,运行人员将中温过热器出口温度自动设定值调整在适当

数值;在当前设定值基础上,将设定值改变5℃(可以分为先向下减5℃做一次试验;然后

等待系统稳定后,向上增5℃做第二次试验) ,并在CRT 画面上观察中温过热器出口温度

及一级减温水调整门执行机构开度;

6、在试验过程中,如果中温过热器出口温度的最大偏差不超过±10℃禁止对过热器

减温水调节执行机构进行手动调整。四、主汽温度自动扰动试验方案

1、检查过热器二级减温水调整门工作正常;

2、运行人员调整好工况,保证各主要参数稳定(负荷、主汽压力、主汽温度) ;

3、

试验人员应在确认自动控制回路无异常后方可进行试验; 4、调好主汽温度,将过热器二

级减温水调整门投入自动;

5、根据定值阶跃扰动需要,运行人员将主汽温自动设定值调整在适当数值;在当前

设定

值基础上,将设定值改变5℃(可以分为先向下减5℃做一次试验;然后等待系统稳定后,向上增5℃做第二次试验) ,并在CRT 画面上观察汽主汽温度及过热器二级减温水调

整门执行机构开度;

6、在试验过程中,如果主汽温度的最大偏差不超过±5℃禁止对过热器减温水执行机

构进行手动调整;

7、同样步骤做三次试验,取两条基本相同的曲线作为试验结果。五、除氧器水位自

动扰动试验

1、检查除氧器水位调整门工作正常;

2、稳定工况,保证负荷稳定不变;

3、调好除氧器水位,将除氧器水位调整门投入自动;

4、除氧器水位稳定后,改变

定值,扰动量为100mm 。

5、待第4步完成,水位稳定后切除自动,由运行人员自行决定除氧器水位调节的运

行方式。

六、除氧器压力自动扰动试验

1、检查除氧器压力调整门工作正常;

2、稳定工况,保证负荷稳定不变;

3、调好除氧器压力,将除氧器压力调整门投入自动;

4、除氧器压力稳定后改变定值,向正的方向增加40kPa ;

5、待第4步完成除氧器压力稳定后,改变定值,向负的方向减小40kPa ;

6、待第5步完成除氧器压力稳定后切除除氧器压力调整门自动,由运行人员自行决

定除氧器压力调节的运行方式。

七、凝汽器热井水位自动扰动试验 1、稳定工况,保证负荷稳定不变;

2、调整好凝汽器热井水位,将凝结水泵变频调节投入自动;

3、凝汽器水位稳定后,改变定值(向正的方向增加50mm );

4、待第3步完成,凝汽器水位稳定后,改变定值(向负的方向减小50mm );

5、待第4步完成凝汽器水位稳定后切除调整门自动,由运行人员自行决定凝汽器水

位调节的运行方式。

八、汽封压力自动扰动试验

1、检查均压箱压力调节门工作正常;

2、稳定工况,保证负荷稳定不变;

3、调整好均压箱压力,将主汽至汽封母管压力调节门投入自动;

4、待汽封母管压

力稳定后,改变定值,扰动量为0.004MPa ;

5、待第4步完成,稳定后切除主汽至汽封母管压力调节门自动,由运行人员自行决定主汽至汽封母管压力调节门的运行方式。

附录三调节阀特性试验报告

附录四 MCS扰动试验报告

控制系统仿真与CAD试实验-实验三和实验四

实验三 采样控制系统的数字仿真 一、实验目的 1. 熟悉采样控制系统的仿真方式; 2. 掌握采样控制系统数字仿真的程序实现。 二、实验内容 某工业系统的开环传递函数为 10()(5)G s s s = +,要求用数字控制器D(z)来改善系统的性能,使得相角裕度大于45o ,调节时间小于1s(2%准则)。 1. 绘制碾磨控制系统开环根轨迹图、Bode 图和奈奎斯特图,并判断稳定性; sisotool(G) //点击“Analysis ”下的“Closed-Loop Bode ”,出现LTI Viewer for SISO Design tool margin(G) //点击图标“Data Cursor ”,点击交叉点,出现相关参数。 2. 当控制器为()()() c K s a G s s b +=+,试设计一个能满足要求的控制器(要求用根轨迹法和频率响应法进行设计); 调节前: Gs=tf(10,[1 5 0]); Close_S=feedback(Gs,1); Step(Close_S,'b'); hold on 设计前截止频率为1.88rad/s,相角裕度为69.5°(第一问中) (1)进行根轨迹校正:

1,2=70=0.84.42.55/.25/5 3.75 s n n n n arctg t w rad s w rad s w p w jw j γγξξξ====-±=-±取度 由,求得=5,取=6要求的主导极点为 要使得根轨迹向左转,要加入零点。考虑到校正装置的物理可实现性,加入超前校正装 置。 111111111a ()b (a) ()(2)(b) ,a 2b 1804050c g o o o o o o c s G s s K s G s s s s p p p p p p p p p ?+= ++=++∠∠∠∠=-∠∠∠∠==K () () 开环传递函数为为了使得根轨迹通过根据相角条件 (-)-(-0)-(-)-(-)求得 (-0)=140,(-2)=90(-a )-(-b )超前装置提供的超前相角为 a=6.512,b=11.499(a 表示零点,b 表示极点) 111111115 3.7516.51210+511.499 0+511.499 1006.512=10 g g p j p K p p p p p p K p K =-++=++++=≈+根据根轨迹的幅值条件 系统的开环增益为 333 6.512()11.499 6.5126.499 c c c s G s s z p p z p += +==-10() 所以() 加校正装置后,除要求的主导极点,还有一个闭环零点和一个非主导极点。 根据(-5+j3.75)+(-5-j3.75)+=0+(-5)+(-11.499)-第八法则 、对系统的影响,例如超调量可能会变大等,但闭环系统的性 能主要由复数极点确定。

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

第4章开关量信号的输入输出

智能仪器原理与设计------第4章开关量信号的输入输出 第四章开关信号的输入/输出 1.开关和开关量信号的区别? 开关是一种有二个可选择的、有固定位置的装置,主要用于向单片机输入电平信号。开关量信号就是通过拨动开关的位置,使单片机得到的一个固定不变的电平信号。在智能仪器中用于向单片机输入控制命令或数据,开关信号可以通过机械式开关、电子式开关、温度开关等方式产生。 2.开关量信号的特点是什么? 只有开和关、通和断、高电平和低电平两种状态的信号叫开关量信号,在智能仪器的电子电路中,通常用二进制数0和1来表示。 1

智能仪器原理与设计------第4章开关量信号的输入输出 3.开关量信号的作用? 开关量输入、输出部分是智能仪器与外部设备的联系部 件,智能仪器通过接受来自外部设备的开关量输入号和向外部 设备发送开关量信号,实现对外部设备状态的检测、识别和对 外部执行元器件的驱动和控制。 4.常见电子开关都有哪些? 常见电子开关有:扳键开关、BCD码拔盘开关、磁性开关、光敏器件开关(光电开关、光纤开关等)、温度超限开关。 5.电子开关的缺点是什么?如何解决该缺点? 由于外部装置输入的开关量信号的形式一般是电压、电流 和开关的触点,这些信号经常会产生瞬时高压、过电流或接触 抖动等现象。因此为使信号安全可靠,在输入到单片机之前必 须接入信号输人电气接口电路,对外部的输入信号进行滤波、 电平转换和隔离保护等。 2

智能仪器原理与设计------第4章开关量信号的输入输出 外界的开关量信号在一般情况下可直接连入以单片机为核心的智能仪器中。但当外界的开关量信号的电平幅度与单片机I/O端口的信号电平不 相符时(由于这些电平信号功率有限,加上外界还存在各种干扰和影响),应在电平转换后(采用各 种缓冲、放大、隔离和驱动电路等措施),再输入到单片机的I/O端口上。 3

控制系统仿真与CAD 实验报告

《控制系统仿真与CAD》 实验课程报告

一、实验教学目标与基本要求 上机实验是本课程重要的实践教学环节。实验的目的不仅仅是验证理论知识,更重要的是通过上机加强学生的实验手段与实践技能,掌握应用 MATLAB/Simulink 求解控制问题的方法,培养学生分析问题、解决问题、应用知识的能力和创新精神,全面提高学生的综合素质。 通过对MATLAB/Simulink进行求解,基本掌握常见控制问题的求解方法与命令调用,更深入地认识和了解MATLAB语言的强大的计算功能与其在控制领域的应用优势。 上机实验最终以书面报告的形式提交,作为期末成绩的考核内容。 二、题目及解答 第一部分:MATLAB 必备基础知识、控制系统模型与转换、线性控制系统的计算机辅助分析 1. >>f=inline('[-x(2)-x(3);x(1)+a*x(2);b+(x(1)-c)*x(3)]','t','x','flag','a','b','c');[t,x]=ode45( f,[0,100],[0;0;0],[],0.2,0.2,5.7);plot3(x(:,1),x(:,2),x(:,3)),grid,figure,plot(x(:,1),x(:,2)), grid

2. >>y=@(x)x(1)^2-2*x(1)+x(2);ff=optimset;https://www.doczj.com/doc/b812266902.html,rgeScale='off';ff.TolFun=1e-30;ff.Tol X=1e-15;ff.TolCon=1e-20;x0=[1;1;1];xm=[0;0;0];xM=[];A=[];B=[];Aeq=[];Beq=[];[ x,f,c,d]=fmincon(y,x0,A,B,Aeq,Beq,xm,xM,@wzhfc1,ff) Warning: Options LargeScale = 'off' and Algorithm = 'trust-region-reflective' conflict. Ignoring Algorithm and running active-set algorithm. To run trust-region-reflective, set LargeScale = 'on'. To run active-set without this warning, use Algorithm = 'active-set'. > In fmincon at 456 Local minimum possible. Constraints satisfied. fmincon stopped because the size of the current search direction is less than twice the selected value of the step size tolerance and constraints are satisfied to within the selected value of the constraint tolerance. Active inequalities (to within options.TolCon = 1e-20): lower upper ineqlin ineqnonlin 2 x = 1.0000 1.0000 f =

控制系统仿真实验四(新)

实验四:控制系统的时域分析 一,实验目的 1、使用MATLAB 分析系统的稳定性及稳态性能。 2、分析系统的暂态性能并会计算暂态性能指标。 二、实验内容 1、已知系统的闭环传递函数为:384 40014020200)(234++++=S S G S S S ,分析系统的稳定性,并求该系统的单位阶跃响应曲线。 >> num=[200]; >> den=[1 20 140 400 384]; >> [z,p]=tf2zp(num ,den); >> ii=find(real(p)>0);n1=length(ii); >> if(n1>0) disp('The Unstable Poles are:'); disp(p(ii)); else disp('System is Stable');end System is Stable >>step(num,den) 2、已知离散系统5.08.06.1)(22+--=Z Z Z Z Z φ,求该系统的单位阶跃响应曲线。 >> num=[1.6 -1 0]; >> den=[1 -0.8 0.5]; >> dstep(num,den);

3、控制系统的状态空间模型为: ?????? ????????.3.2.1x x x =??????????--17120100010??????????x x x 321+u ??????????100 []???? ??????=x x x y 321132,求该系统在[0,3]区间上的单位脉冲响应曲线。 >> A=[0 1 0;0 0 1;0 -12 -17];B=[0;0;1];C=[2 3 1];D=0; >> impulse(A,B,C,D) 4、已知控制系统模型为:u x x x x ??????+????????????--=????????? ?10961021.2. 1,[]??????=x x y 2111,求系统在y=sint 时的响应。 >> [u,t]=gensig('sin(t)',2*pi); >> A=[0 1;-6 -9];B=[0;1];C=[1 1];D=0;

实验二 最少拍控制系统仿真

实验二 最少拍控制系统仿真 一、 实验目的 1. 学习最少拍系统的设计方法和使用Matlab 进行仿真的方法 二、 实验器材 x86系列兼容型计算机,Matlab 软件 三、 实验原理 建立所示的数字系统控制模型并进行系统仿真,已知)1(10)(+= s s s G P ,采样周期T=1s 。 广义被控对象脉冲传递函数: [])3679.01)(1()718.01(679.3)1(1)()(1111-------+=??????+?-==z z z z s s K s e Z s G Z z G Ts ,则G(z)的零点为-0.718(单位圆内)、极点为1(单位圆上)、0.368(单位圆内),故u=0,v=1,m=1。 a. 有纹波系统 单位阶跃信号:根据稳定性要求,G(z)中z=1的极点应包含在Φe (z)的零点中,系统针对阶跃输入进行设计,q=1,显然准确性条件中已满足了稳定性要求,于是可设01)(?-=Φz z ,根据1)1(=Φ求得10=?,则1)(-=Φz z , 11718.01)3679.01(2717.0)(1)()(1)(--+-=Φ-Φ=z z z z z G z D 。 单位斜披信号:根据稳定性要求,G(z)中z=1的极点应包含在Φe (z)的零点中,系统针对阶跃输入进行设计,q=2,显然准确性条件中已满足了稳定性要求,于是可设)()(1101--+=Φz z z ??,根据1)1(=Φ,0)1('=Φ求得20=?,11-=?,则 2 12)(---=Φz z z ,)718.01)(1()5.01)(3679.01(5434.0)(1)()(1)(1111----+---=Φ-Φ=z z z z z z z G z D 。 单位加速度信号:根据稳定性要求,G(z)中z=1的极点应包含在Φe (z)的零点中,系统

实验三 四种常用开关量传感器的使用

棕黑兰 实验三 四种常用开关量传感器的使用 1、目的 ● 学习常用的几种三线制开关量传感器(光电开关、接近开关、霍尔开关、限位开关)使用方法。 2、器材 ● 传感器实训台的操作板1的直流电压源、操作板2:霍尔开关、接近开关、光电式传感器电路。操作板3中的限位开关电路。 ● 跳线、万用表等实验器材。 3、实验方法 本平台中的这三种开关量传感器均采用三线式如图1,导线颜色为棕、黑、红,一般的棕色为电源正极,兰色为电源负极,黑色为输出端。 光电开关是通过把光强度的变化转换成电信号的变化来实现控制的。光电传感器在一般情况下,有三部分构成,它们分为:发送器,接收器和检测电路。 图1 具体接线方法如图 1所示,对于光电式传感器电路(光电开关),将V+ 、V-端口分别接+12V 直流电压源的正负端,将VO 输出接万用表正极表笔,万用表负极表笔接GND12(V-), 当有物体正对光电开关输入端且距离小于300mm 时,输出端VO 的电平将有所变化。 接近开关属于一种有开关量输出的位置传感器,根据工作原理的不同分为电感式和电容式,电感式接近开关它由LC 高频振荡器和放大处理电路组成,利用金属物体在接近这个能产生电磁场的振荡感应头时,使物体内部产生涡

流。这个涡流反作用于接近开关,使接近开关振荡能力衰减,内部电路的参数发生变化,由此识别出有无金属物体接近,进而控制开关的通或断。这种接近开关所能检测的物体必须是金属物体,检测距离由0.8mm至150mm。 平台中的接近开关动作条件是:当有金属(铁制品)正向面对接近开关输入端,且距离小于传感器的动作距离(如8mm)时,接近开关的输出端电平将发生翻转。 霍尔开关的输入端是以磁感应强度B来表征的,当B值达到一定的程度时,霍尔开关内部的触发器翻转,霍尔开关的输出电平状态也随之翻转。 限位开关作为工控系统中常用的器件几乎随处可见,例如电梯、机床、大型机械中都可见到它的身影,它同行程开关适用于各类机械设备、自动化流水线等轻型及中型负载的场合,可检测物体动作状态,例如存在与不存在、运动位置、行程终点等等。 本系统中限位开关的公共端、常开端、常闭端已分别接到台面COM、NO、NC处,将其中一对触点串联到被控制电路中,当外力作用于限位开关时,常开触点NO闭合至公共端COM,同时COM与常闭触点NC断开。

《控制系统计算机仿真》实验指导书

实验一 Matlab使用方法和程序设计 一、实验目的 1、掌握Matlab软件使用的基本方法; 2、熟悉Matlab的数据表示、基本运算和程序控制语句 3、熟悉Matlab绘图命令及基本绘图控制 4、熟悉Matlab程序设计的基本方法 二、实验内容 1、帮助命令 使用help命令,查找sqrt(开方)函数的使用方法; 2、矩阵运算 (1)矩阵的乘法 已知A=[1 2;3 4]; B=[5 5;7 8]; 求A^2*B (2)矩阵除法 已知A=[1 2 3;4 5 6;7 8 9]; B=[1 0 0;0 2 0;0 0 3]; A\B,A/B (3)矩阵的转置及共轭转置 已知A=[5+i,2-i,1;6*i,4,9-i]; 求A.', A' (4)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9]; 求A中第3列前2个元素;A中所有列第2,3行的元素; (5)方括号[] 用magic函数生成一个4阶魔术矩阵,删除该矩阵的第四列 3、多项式 (1)求多项式p(x) = x3 - 2x - 4的根 (2)已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] , 求矩阵A的特征多项式; 求特征多项式中未知数为20时的值; 4、基本绘图命令 (1)绘制余弦曲线y=cos(t),t∈[0,2π] (2)在同一坐标系中绘制余弦曲线y=cos(t-0.25)和正弦曲线y=sin(t-0.5),t∈[0,2π] 5、基本绘图控制 绘制[0,4π]区间上的x1=10sint曲线,并要求: (1)线形为点划线、颜色为红色、数据点标记为加号; (2)坐标轴控制:显示范围、刻度线、比例、网络线 (3)标注控制:坐标轴名称、标题、相应文本; 6、基本程序设计 (1)编写命令文件:计算1+2+?+n<2000时的最大n值; (2)编写函数文件:分别用for和while循环结构编写程序,求2的0到n次幂的和。 三、预习要求 利用所学知识,编写实验内容中2到6的相应程序,并写在预习报告上。

控制系统仿真实验报告

哈尔滨理工大学实验报告 控制系统仿真 专业:自动化12-1 学号:1230130101 姓名:

一.分析系统性能 课程名称控制系统仿真实验名称分析系统性能时间8.29 地点3# 姓名蔡庆刚学号1230130101 班级自动化12-1 一.实验目的及内容: 1. 熟悉MATLAB软件的操作过程; 2. 熟悉闭环系统稳定性的判断方法; 3. 熟悉闭环系统阶跃响应性能指标的求取。 二.实验用设备仪器及材料: PC, Matlab 软件平台 三、实验步骤 1. 编写MATLAB程序代码; 2. 在MATLAT中输入程序代码,运行程序; 3.分析结果。 四.实验结果分析: 1.程序截图

得到阶跃响应曲线 得到响应指标截图如下

2.求取零极点程序截图 得到零极点分布图 3.分析系统稳定性 根据稳定的充分必要条件判别线性系统的稳定性最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有系统不稳定。有零极点分布图可知系统稳定。

二.单容过程的阶跃响应 一、实验目的 1. 熟悉MATLAB软件的操作过程 2. 了解自衡单容过程的阶跃响应过程 3. 得出自衡单容过程的单位阶跃响应曲线 二、实验内容 已知两个单容过程的模型分别为 1 () 0.5 G s s =和5 1 () 51 s G s e s - = + ,试在 Simulink中建立模型,并求单位阶跃响应曲线。 三、实验步骤 1. 在Simulink中建立模型,得出实验原理图。 2. 运行模型后,双击Scope,得到的单位阶跃响应曲线。 四、实验结果 1.建立系统Simulink仿真模型图,其仿真模型为

《MATLAB与控制系统。。仿真》实验报告

《MATLAB与控制系统仿真》 实验报告 班级: 学号: 姓名: 时间:2013 年 6 月

目录实验一MATLAB环境的熟悉与基本运算(一)实验二MATLAB环境的熟悉与基本运算(二)实验三MATLAB语言的程序设计 实验四MATLAB的图形绘制 实验五基于SIMULINK的系统仿真 实验六控制系统的频域与时域分析 实验七控制系统PID校正器设计法 实验八线性方程组求解及函数求极值

实验一MATLAB环境的熟悉与基本运算(一) 一、实验目的 1.熟悉MATLAB开发环境 2.掌握矩阵、变量、表达式的各种基本运算 二、实验基本原理 1.熟悉MATLAB环境: MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。 2.掌握MATLAB常用命令 表1 MATLAB常用命令 变量与运算符 3.1变量命名规则 3.2 MATLAB的各种常用运算符 表3 MATLAB关系运算符 表4 MATLAB逻辑运算符

| Or 逻辑或 ~ Not 逻辑非 Xor逻辑异或 符号功能说明示例符号功能说明示例 :1:1:4;1:2:11 . ;分隔行.. ,分隔列… ()% 注释 [] 构成向量、矩阵!调用操作系统命令 {} 构成单元数组= 用于赋值 的一维、二维数组的寻访 表6 子数组访问与赋值常用的相关指令格式 三、主要仪器设备及耗材 计算机 四.实验程序及结果 1、新建一个文件夹(自己的名字命名,在机器的最后一个盘符) 2、启动MATLAB,将该文件夹添加到MATLAB路径管理器中。 3、学习使用help命令。

计算机仿真实验四-基于Simulink控制系统仿真与综合设计

实验四 基于Simulink 控制系统仿真与综合设计 4.1实验目的 1)熟悉Simulink 的工作环境及其功能模块库; 2)掌握Simulink 的系统建模和仿真方法; 3)掌握Simulink 仿真数据的输出方法与数据处理; 4)掌握利用Simulink 进行控制系统的时域仿真分析与综合设计方法; 5)掌握利用 Simulink 对控制系统的时域与频域性能指标分析方法。 4.2实验内容与要求 4.2.1 实验内容 图4.1为单位负反馈系统。分别求出当输入信号为阶跃函数信号)(1)(t t r =、斜坡函数信号t t r =)(和抛物线函数信号2/)(2t t r =时,系统输出响应)(t y 及误差信号)(t e 曲线。若要求系统动态性能指标满足如下条件:a) 动态过程响应时间s t s 5.2≤;b) 动态过程响应上升时间s t p 1≤;c) 系统最大超调量%10≤p σ。按图4.2所示系统设计PID 调节器参数。 图4.1 单位反馈控制系统框图

s 119.010+s 1 007.01+s + - )(t r ) (t y ) (t e PID 图4.2 综合设计控制系统框图 4.2.2 实验要求 1) 采用Simulink 系统建模与系统仿真方法,完成仿真实验; 2) 利用Simulink 中的Scope 模块观察仿真结果,并从中分析系统 时域性能指标(系统阶跃响应过渡过程时间,系统响应上升时间,系统响应振荡次数,系统最大超调量和系统稳态误差); 3) 利用Simulink 中Signal Constraint 模块对图4.2系统的PID 参 数进行综合设计,以确定其参数; 4) 对系统综合设计前后的主要性能指标进行对比分析,并给出PID 参数的改变对闭环系统性能指标的影响。 4.3确定仿真模型 在Simulink 仿真环境中,打开simulink 库,找出相应的单元部件模型,并拖至打开的模型窗口中,构造自己需要的仿真模型。如图所示:

C51单片机实验指导书

单片机原理与接口技术实验讲义 目录 第一章开发环境安装使用说明 (3) 第二章基于51单片机系统资源实验 (12)

实验1 IO开关量输入实验 (12) 实验2 IO输出驱动继电器(或光电隔离器)实验 (13) 实验3 IO输入/输出---半导体温度传感器DS18B20实验 (14) 实验4 外部中断----脉冲计数实验 (15) 实验5 计数器实验 (16) 实验6 秒时钟发生器实验 (17) 实验7 PC机串口通讯实验 (18) 实验8 RS485通讯实验 (19) 实验9 PWM发生器(模拟)实验 (20) 实验10 蜂鸣器实验 (21) 第一章开发环境安装使用说明 一、KeilC51集成开发环境的安装 1.Keil u Vision2的安装步骤如下

将安装文件拷贝到电脑根目录下,然后双击图标,如图1-1所示:注意:去掉属性里的只读选项。 图1-1 启动安装环境对话框 2.选择Eval Version。然后一直next直至安装完成,如图1-2所示: 二.在Keil uVision2中新建一个工程以及工程配置 1.打开Keil C环境,如图1-3所示。

图1-3打开工程对话框 2.新建工程或打开工程文件:在主菜单上选“Project”项,在下拉列表中选择“New Project”新建工程,浏览保存工程文件为扩展名为“.Uv2”的文件。或在下拉列表中选择“Open project”打开已有的工程文件。如 图1-4所示: 图1-4 新建工程 3.环境设置:新建工程文件后,在工具栏中选择如下图选项设置调试参数及运行环境,或从主菜单“Project”项中 选择“Options for Target ‘Target1’”,打开如下图1-5设置窗口。

控制系统仿真实验报告1

昆明理工大学电力工程学院学生实验报告 实验课程名称:控制系统仿真实验 开课实验室:年月日

实验一 电路的建模与仿真 一、实验目的 1、了解KCL 、KVL 原理; 2、掌握建立矩阵并编写M 文件; 3、调试M 文件,验证KCL 、KVL ; 4、掌握用simulink 模块搭建电路并且进行仿真。 二、实验内容 电路如图1所示,该电路是一个分压电路,已知13R =Ω,27R =Ω,20S V V =。试求恒压源的电流I 和电压1V 、2V 。 I V S V 1 V 2 图1 三、列写电路方程 (1)用欧姆定律求出电流和电压 (2)通过KCL 和KVL 求解电流和电压

四、编写M文件进行电路求解(1)M文件源程序 (2)M文件求解结果 五、用simulink进行仿真建模(1)给出simulink下的电路建模图(2)给出simulink仿真的波形和数值

六、结果比较与分析

实验二数值算法编程实现 一、实验目的 掌握各种计算方法的基本原理,在计算机上利用MATLAB完成算法程序的编写拉格朗日插值算法程序,利用编写的算法程序进行实例的运算。 二、实验说明 1.给出拉格朗日插值法计算数据表; 2.利用拉格朗日插值公式,编写编程算法流程,画出程序框图,作为下述编程的依据; 3.根据MATLAB软件特点和算法流程框图,利用MATLAB软件进行上机编程; 4.调试和完善MATLAB程序; 5.由编写的程序根据实验要求得到实验计算的结果。 三、实验原始数据 上机编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,在整个插值区间上采用拉格朗日插值法计算(0.6) f,写出程序源代码,输出计算结果: 四、拉格朗日插值算法公式及流程框图

简单控制系统PYTHON仿真实验

计算机基础理论实验四 简单控制系统python仿真实验 学号:13 姓名: 陈严 实验日期:2012/5/24 实验目的:学习计算机仿真的方法。 实验内容:1.建立test.py文件,运行test.py,分析实验结果; 2.为每一行代码写一个注释 系统如上图,鼓风机吹出风需要经过阀门才能到达风轮;而风轮的转速会影响到杠杆位置间接影响到阀门开度。鼓风机的输入为正作用;风轮以至阀门的影响为负作用(或负反馈)。 代码: #coding=utf-8 #系统参数 a=0.1 b=1.0 #系统结构,F:鼓风机的风力; F1:实际输入风力;W:风轮转速 def WW(): return a*F1 //*每次输入的风力 def FF1(): return F-b*W //*杠杆所得到的力 #初始条件 F1=2 //*实际输入风力为2

W=0.2 //*风轮转速为0.2转每秒 print F1,W //*输入实际风力和转速 #鼓风机风力正常 F=2.2 //*鼓风机的风力为2.2 print "鼓风机风力",F //*输出鼓风机的风力 #随着时间增加 for t in xrange(20): //*返回一个迭代序列 F1,W=FF1(),WW() //*将风力和转速进行更新 print F1,W //*输出更新后的风力和转速#鼓风机风力偏大 F=2.3 //*当鼓风机的风力为2.3时print "鼓风机风力",F #随着时间增加 for t in xrange(20): //*返回迭代列20次 F1,W=FF1(),WW() //*再次更新 print F1,W //*输出实际风力和转速 #鼓风机风力偏小 F=2.2 //*当风力为2.2时 print "鼓风机风力",F #随着时间增加 for t in xrange(20): //*在f=2.2时,再次迭代 F1,W=FF1(),WW() print F1,W 实验结果:

DCS实验报告.

华北电力大学 实验报告 实验名称基于DCS实验平台实现的 水箱液位控制系统综合设计课程名称计算机控制技术与系统 专业班级:自动实 1101学生姓名:潘浩 学号:201102030117成绩: 指导教师:刘延泉实验日期:2014/6/29

基于DCS实验平台实现的 水箱液位控制系统综合设计 一.实验目的 通过使用LN2000分散控制系统对水箱水位进行控制,熟悉掌握DCS控制系统基本设计过程。 二.实验设备 PCS过程控制实验装置; LN2000 DCS系统; 上位机(操作员站) 三.系统控制原理 采用DCS控制,将上水箱液位控制在设定高度。将液位信号输出给DCS,根据PID参数进行运算,输出信号给电动调节阀,由DDF电动阀来控制水泵的进水流量,从而达到控制设定液位基本恒定的目的。系统控制框图如下:

四.控制方案改进 可考虑在现有控制方案基础上,将给水增压泵流量信号引入作为导前微分或控制器输出前馈补偿信号。 五.操作员站监控画面组态 本设计要求设计关于上水箱水位的简单流程图画面(包含参数显示)、操作画面,并把有关的动态点同控制算法连接起来。 1.工艺流程画面组态 在LN2000上设计简单形象的流程图,并在图中能够显示需要监视的数据。 要求:界面上显示所有的测点数值(共4个),例如水位、开度、流量等;执行机构运行时为红色,停止时为绿色;阀门手动时为绿色,自动时为红色。

2.操作器画面组态 与SAMA图对应,需要设计的操作器包括增压泵及水箱水位控制DDF阀手操器: A.设备驱动器的组态过程: 添加启动、停止、确认按钮(启动时为红色,停止和确认时为绿色) 添加启停状态开关量显示(已启时为红色,已停时为绿色) B.M/A手操器的组态过程: PV(测量值)、SP(设定值)、OUT(输出值)的动态数据显示,标明单位,以上三个量的棒状图动态显示,设好最大填充值和最大值;手、自动按钮(手动时为1,显示绿色;自动时为0,显示红色),以及SP、OUT的增减按钮;SP(设定值)、OUT(输出值)的直接给值(用数字键盘)

控制系统数字仿真实验报告

控制系统数字仿真实验报告 班级:机械1304 姓名:俞文龙 学号: 0801130801

实验一数字仿真方法验证1 一、实验目的 1.掌握基于数值积分法的系统仿真、了解各仿真参数的影响; 2.掌握基于离散相似法的系统仿真、了解各仿真参数的影响; 3.熟悉MATLAB语言及应用环境。 二、实验环境 网络计算机系统(新校区机电大楼D520),MATLAB语言环境 三实验内容 (一)试将示例1的问题改为调用ode45函数求解,并比较结果。 实验程序如下; function dy = vdp(t,y) dy=[y-2*t/y]; end [t,y]=ode45('vdp',[0 1],1); plot(t,y); xlabel('t'); ylabel('y');

(二)试用四阶RK 法编程求解下列微分方程初值问题。仿真时间2s ,取步长h=0.1。 ?????=-=1 )0(2y t y dt dy 实验程序如下: clear t0=0; y0=1; h=0.1; n=2/h; y(1)=1; t(1)=0; for i=0:n-1 k1=y0-t0^2; k2=(y0+h*k1/2)-(t0+h/2)^2; k3=(y0+h*k2/2)-(t0+h/2)^2;

k4=(y0+h*k3)-(t0+h)^2; y1=y0+h*(k1+2*k2+2*k3+k4)/6; t1=t0+h; y0=y1; t0=t1; y(i+2)=y1; t(i+2)=t1; end y1 t1 figure(1) plot(t,y,'r'); xlabel('t'); ylabel('y'); (三)试求示例3分别在周期为5s的方波信号和脉冲信号下的响应,仿真时间20s,采样周期Ts=0.1。

实验四 PID控制系统的Simulink

自动控制理论 上 机 实 验 报 告 学院:机电工程学院 班级:13级电信一班 姓名: 学号:

实验四 PID 控制系统的Simulink 仿真分析 一、实验目的和任务 1.掌握PID 控制规律及控制器实现。 2.掌握用Simulink 建立PID 控制器及构建系统模型与仿真方法。 二、实验原理和方法 在模拟控制系统中,控制器中最常用的控制规律是PID 控制。PID 控制器是一种线性控制器,它根据给定值与实际输出值构成控制偏差。PID 控制规律写成传递函数的形式为a s K s Ki K s T s T K s U s E s G d p d i p ++=++==)11()()()( 式中,P K 为比例系数;i K 为积分系数;d K 为微分系数;i p i K K T = 为积分时间常数;p d d K K T =为微分时间常数; 简单来说,PID 控制各校正环节的作用如下: (1)比例环节:成比例地反映控制系统的偏差信号,偏差一旦产生,控制器立 即产生控制作用,以减少偏差。 (2)积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决 于积分时间常数i T ,i T 越大,积分作用越弱,反之则越强。 (3)微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。 三、实验使用仪器设备 计算机、MATLAB 软件 四、实验内容(步骤) 1、在MATLAB 命令窗口中输入“simulink ”进入仿真界面。 2、构建PID 控制器:(1)新建Simulink 模型窗口(选择“File/New/Model ”),在Simulink Library Browser 中将需要的模块拖动到新建的窗口中,根据PID 控制器的传递函数构建出如下模型:

MATLAB与控制系统仿真及实验 2016 (二)

MATLAB与控制系统仿真及实验 实验报告 (二) 2015- 2016 学年第 2 学期 专业: 班级: 学号: 姓名: 20 年月日

实验二 MATLAB的图形绘制 一、实验目的 1.学习MATLAB图形绘制的基本方法 2.熟悉和了解MATLAB图形绘制程序编辑的基本指令 3.熟悉掌握利用MATLAB图形编辑窗口编辑和修改图形界面,添加图形的标注 4.掌握plot、subplot的指令格式和语法 二、实验设备及条件 计算机一台(包含MATLAB 软件环境)。 三、实验内容 1.生成1×10 维的随机数向量a,分别用红、黄、蓝、绿色绘出其连线图、杆图、阶梯图和条形图,并分别标出标题“连线图”、“杆图”、“阶梯图”、“条形图”。 (1. Generate random vector of dimension 1×10, and use different functions plot, stem, stairs and bars to draw figures with different colors, such as red, yellow, blue and green. Then title the figures with "Plot", "Stem", "Stem", "Bars" respectively.) a=rand(1,10); subplot(2,2,1); plot(a,'r'); title('连线图'); subplot(2,2,2); stem(a,'y'); title('杆图'); subplot(2,2,3); stairs(a,'b'); title('阶梯图'); subplot(2,2,4); bar(a,'g'); title('条形图'); 2. 绘制函数曲线,要求写出程序代码。 (2. Plot the curves and write down the code.) (1) 在区间[0:2π]均匀的取50个点,构成向量t t=linspace(0,2*pi,50)

哈工大 计算机仿真技术实验报告 仿真实验四基于Simulink控制系统仿真与综合设计

基于Simulink 控制系统仿真与综合设计 一、实验目的 (1) 熟悉Simulink 的工作环境及其功能模块库; (2) 掌握Simulink 的系统建模和仿真方法; (3) 掌握Simulink 仿真数据的输出方法与数据处理; (4) 掌握利用Simulink 进行控制系统的时域仿真分析与综合设计方法; (5) 掌握利用 Simulink 对控制系统的时域与频域性能指标分析方法。 二、实验内容 图2.1为单位负反馈系统。分别求出当输入信号为阶跃函数信号)(1)(t t r =、斜坡函数信号t t r =)(和抛物线函数信号2/)(2t t r =时,系统输出响应)(t y 及误差信号)(t e 曲线。若要求系统动态性能指标满足如下条件:a) 动态过程响应时间s t s 5.2≤;b) 动态过程响应上升时间s t p 1≤;c) 系统最大超调量%10≤p σ。按图1.2所示系统设计PID 调节器参数。 图2.1 单位反馈控制系统框图

图2.2 综合设计控制系统框图 三、实验要求 (1) 采用Simulink系统建模与系统仿真方法,完成仿真实验; (2) 利用Simulink中的Scope模块观察仿真结果,并从中分析系统时域性能指标(系统阶跃响应过渡过程时间,系统响应上升时间,系统响应振荡次数,系统最大超调量和系统稳态误差); (3) 利用Simulink中Signal Constraint模块对图2.2系统的PID参数进行综合设计,以确定其参数; (4) 对系统综合设计前后的主要性能指标进行对比分析,并给出PID参数的改变对闭环系统性能指标的影响。 四、实验步骤与方法 4.1时域仿真分析实验步骤与方法 在Simulink仿真环境中,打开simulink库,找出相应的单元部件模型,并拖至打开的模型窗口中,构造自己需要的仿真模型。根据图2.1 所示的单位反馈控制系统框图建立其仿真模型,并对各个单元部件模型的参数进行设定。所做出的仿真电路图如图4.1.1所示。

运动控制系统仿真实验讲义

《运动控制系统仿真》实验讲义 谢仕宏

实验一、闭环控制系统及直流双闭环调速系统仿真 一、实验学时:6学时 二、实验内容: 1. 已知控制系统框图如图所示: 图1-1 单闭环系统框图 图中,被控对象s e s s G 150130010)(-+= ,Gc(s)为PID 控制器,试整定PID 控制器参数,并建立控制系统Simulink 仿真模型。再对PID 控制子系统进行封装,要求可通过封装后子系统的参数设置页面对Kp 、Ti 、Td 进行设置。 2. 已知直流电机双闭环调速系统框图如图1-2所示。试设计电流调节器ACR 和转速调节器ASR 并进行Simulink 建模仿真。 图1-2 直流双闭环调速系统框图

三、实验过程: 1、建模过程如下: (1)PID控制器参数整顿 T2.1=,Ti=τ2=300,根据PID参数的工程整定方法(Z-N法),如下表所示, Kp= τK Td=τ5.0=75。 表1-1 Z-N法整定PID参数 (2)simulink仿真模型建立 建立simulink仿真模型如下图1-3所示,并进行参数设置:

图1-3 PID控制系统Simulink仿真模型 图1-3中,step模块“阶跃时间”改为0,Transport Delay模块的“时间延迟”设置为150,仿真时间改为1000s,如下图1-4所示: 图1-3 PID控制参数设置 运行仿真,得如下结果:

图1-5 PID控制运行结果 (3)PID子系统的创建 首先将参数Gain、Gain1、Gain三个模块的参数进行设置,如下图所示: 图1-6 PID参数设置 然后建立PID控制器子系统,如下图1-7所示:

实验一 IO开关量输入输出实验

单片机原理实验报告 实验一:IO开关量输入输出实验 学院: 物理与机电工程学院 专业: 电子科学与技术 班级: 2013 级 2 班 学号: 201310530208 姓名: 何丽丽 指导老师: 柳妮

实验一IO开关量输入输出实验 目的: 学习单片机读取IO引脚状态的的方法。 内容: 编程读取IO引脚状态。 设备: EL-EMCU-I试验箱、EXP-89S51/52/53 CPU板。 编程: 首先要把相关的引脚设置在IO的输入状态,然后写一个循环,不停地检测引脚的状态。 步骤: 1、将CPU板正确安放在CPU接口插座上,跳线帽JP2短接在上侧。 2、连线:用导线将试验箱上的的IO1--- IO8分别连接到SWITCH 的8个拨码开关的K1---K8的输出端子K1---K8上,连接好仿真器。 3、实验箱上电,在PC机上打开Keil C环境,打开实验程序文件夹IO_INPUT下的工程文件IO_INPUT.Uv2编译程序,上电,在程序注释处设置断点,进入调试状态,打开窗口Peripherals-->IO-Port-->P0,改变开关状态,运行程序到断点处,观察窗口的数值与开关的对应关系。

程序: ORG 0000H LJMP MAIN ORG 0030H MAIN: MOV P0,#0FFH MOV A,P0 SWAP A MOV P0,A SJMP MAIN END 程序分析: 从上面的程序可以看出我们需要用导线将试验箱上的的IO1--- IO8分别连接到SWITCH的8个拨码开关的K1---K8的输出端子K1---K8上,连接好仿真器。在通过SWAP A MOV P0,A这组指令来对P0口所接的对应的发光二极管对应的状态通过拨码开关的开关来控制发光二极管。 结论: 通过上面这段程序,我们实现了用拨码开关来控制P0口所接的发光二极管的亮灭。通过I\O口P0.0—P0.3接拨码开关,P0.4—P0.7一一对应的接发光二极管。

相关主题
文本预览
相关文档 最新文档