当前位置:文档之家› NACE TMO177-96硫化物应力腐蚀试验(中部份)

NACE TMO177-96硫化物应力腐蚀试验(中部份)

NACE TMO177-96硫化物应力腐蚀试验(中部份)
NACE TMO177-96硫化物应力腐蚀试验(中部份)

评价硫化氢水溶液环境下材料的抗应力开裂和应力腐蚀开裂性能的实验室试验方法本标准描述了试验试剂,试验试样以及环境,并讨论了母材和试验试样的性能对比,随后说明了试验的详细步骤。本标准有四种方法:

方法A 拉伸试验方法

此方法提供了待测材料在加载单轴拉力时的抗环境腐蚀情况。它可以显示一个简单的无凹痕试样的明确的应力状态。方法A的环境腐蚀系数一般是通过断裂时间决定的。拉伸试样应力增加到一个特殊值的时候就可以得出断裂/不断裂的测试结果。当进行了若干个试样在不同的应力值的测试后,就可以很明显的得出环境腐蚀的极限应力了。

8.2 测试试样

8.2.1 待测材料的尺寸和形状经常限制了测试试样的选择。一定的试样尺寸可以影响到测试的结果,这个应该注意一下。

8.2.2 标准的拉伸试样如图3所示,加工之后的试样在未开始测试之前应该储存于干燥器或油中。

8.2.3 为了减少应力集中和带状断裂试样末端截面的弯曲半径最小应该为15mm(0.60英寸)。

8.2.3.1 还有额外的方法可以帮助减小带状断裂:

(1)祛除机加工试样半径周围的凹槽;

(2)把测试试样的横截面加工出一个微小的锥度保证在标准试样的中心可以出现一个最小的横截面。

8.2.4 试样的尾端应足够长以保证和测试容器的密封并保证与工装夹具有很好的连接。

8.2.5 测试试样必须加工或细心打磨以避免在测试环境中的过热和过冷。在操作过程中,最后两道的时候应该注意移动距离总共不能超过0.05mm。如果打磨过程不会增加材料的硬度的话是可以接受的。

8.2.6 所有材料的横截面都必须达到0.81μm或者更高。如果有粗糙度要求应该通过机械抛光或者用电解法抛光末端截面。若使用了除打磨抛光之外的其他修整方法的应在试验数据报告中加以说明。

8.2.7 如果材料的尺寸和形状不能满足标准的拉伸φ试样,那么可以采用适当小尺寸试样。但是,小尺寸的试样断裂的时间肯定要低于标准的试样。在试验数据报告中一定要明确指出小尺寸试样的详细情况。

8.2.9 测试试样的清洗

8.2.9.1 在试验前应该用溶剂祛除油污并用丙酮清洗。

8.2.9.2 清洗后的试样不能用手持或任何形式的污染。

8.3 试验溶液

8.3.1 溶液A采用的是用蒸馏水或去离子水溶解的5.0wt%NaCl和0.5wt%的冰醋酸溶液。例如,945g蒸馏水或去离子水中可以溶解50.0gNaCl和5.0g冰醋酸。如果对性能没有什么要求的话,溶液A也可以适用于溶液B。

8.3.2 溶液B适用于PH值要求在3.4—3.6之间的试验,测试溶液为用蒸馏水或去离子水溶解的5.0wt%NaCl,0.4wt%醋酸钠(CH3COONa),0.23wt%冰醋酸。采用溶液A的步骤可以将此溶液与H2S形成饱和溶液。

8.5 应力计算

拉伸试验负载计算如下:

P=S×A

P:负载;

S:实际的应力;

A:测量区域的实际横截面面面积。

方法B NACE Bent-Beam Test

方法B,NACE Bent-Beam Test,提供了一种检测碳钢和低合金钢在酸性的硫化氢水溶液中的抗拉强度以及抗裂性能。它可以测定这些材料在应力集中处的EC敏感系数。

9.2测试试样

9.2.1 弯曲梁测试试样的尺寸应该为(长×宽×高:67.3±1.3mm×4.75±0.13mm ×1.52±0.13mm)。加工之后的试样在未开始测试之前应该储存于干燥器或油中。

9.2.2 一般情况下,从样本中抽取12到16个测试试样来确定材料的敏感度。

9.2.2.1 试样从原始材料取走的方向和位置应该在测试结果报告中加以说明。

9.2.3 试样应该预先被铣到接近尺寸然后再打磨至最终所需尺寸。

9.2.4 如图7所示,在距两边1.59mm的地方需钻两个直径为0.71mm的圆孔。圆孔必须在加工端面之前进行。

9.2.5 测试试样必须在受压面进行13mm范围内的标记。

9.2.6 试样的清洗

9.2.6.1 试样的表面和边缘应该用240的粗砂纸进行手工磨制,磨制过程中应该同轴向。

9.2.6.2 试样应该用溶剂祛除油污并用丙酮清洗。

9.2.6.3 试样清洗完之后的受压部分不得用手持或被污染。

9.3 试验溶液

9.3.1 试验溶液为用蒸馏水或去离子水溶解的0.5wt%的冰醋酸水溶液。例如,995g蒸馏水或去离子水中可以溶解5.0g的冰醋酸。溶液中不用加入NaCl。

方法C NACE Standard C-Ring Test

10.1 方法C主要测试了金属在环向加载(环向应力)作用下的抗环境腐蚀能力。特别适用于管材和棒材。EC敏感系数在C-Ring测试中主要通过开裂时间确定。当测试试样偏转到一个特殊的纤维强度应力的时候就得到了破坏载荷。进行了若干个试样在不同的应力值的测试后,就可以很明显的得出环境腐蚀的极限应力了。

10.1.1这部分只是在常温常压下的试验步骤。

10.2 测试试样

10.2.1 无凹痕的试样应该与ASTM G 38相一致。试样的尺寸多样而且范围比较广泛,但是如果外径小于15.9mm的不推荐使用,因为会增加机器的操作难度而且会影响应力的精确度。

10.2.2 环向应力会使C-Ring的宽度范围发生变化;变化范围由C-Ring的宽度与厚度比和直径与厚度比决定。一般的w/t为2-10,d/t为10-100。

10.2.6 试样的清洗

在试验前应该用溶剂祛除油污并用丙酮清洗。

清洗后的试样不能用手持或任何形式的污染。

10.4.2 测试试样必须保证受压区域只与腐蚀介质接触。

10.4.2.1 支撑设备的必须与试验介质的材料是一致的。

10.4.2.2 测试试样与支撑设备、试验容器之间产生的电流的影响是可以避免的。例如,可以使用绝缘的衬套或者垫圈来隔离C-Ring和支撑设备。

10.4.3 测试容器

10.4.3.1 测试容器必须保证试样表面区域的溶液体积为30±10ml/c㎡。

10.4.3.2 在试样的下放应该设置玻璃的喷水口以用来引入惰性气体和H2S。这个喷水口不得接触测试试样。

方法D DCB Test

此方法提供了一种测量金属材料的抗环境腐蚀能力的深化,用断裂力学方法测试中的滞止裂纹类型来表述了临界应力强度因素,应力腐蚀开裂的K ISSC和EC的K IEC。方法D不能依据不确定的蚀损斑或裂纹开始,因为裂纹必须通过有效的试验来确定。对碳钢和低合金钢的SSC测试这种方法只需要很短的时间。方法D 给出了正确的抗裂数据并且不是根据开裂或不开裂的结果。

11.2 测试试样

试样标准中指定了DCB试样的尺寸,如图10(a)所示。

11.2.2 标准中试验试样的尺寸应该是9.53mm;完整的尺寸如图10(a)。当材料厚度不能达到要求时可以考虑图中其它厚度。尺寸小的碳钢和低合金钢试样应该给予较小的K ISSC值;37%左右已经做过研究,还需要做更多的工作来使这种结果量化。

11.2.3 如果管件的外径与壁厚之比超过10的时候应该制备全厚度试样。两边坡口深度都为壁厚的20%,那么就剩下壁厚的60%厚度。

11.2.4 为了在试验过程中避免材料过热和过冷,坡口表面应该细心加工。最后加工的两道移动距离总共为0.05mm。如果打磨抛光过程不会增加材料的硬度即可以选择。

11.3.1 测试溶液A采用的是用蒸馏水或去离子水溶解的5.0wt%NaCl和0.5wt%的冰醋酸溶液。例如,945g蒸馏水或去离子水中可以溶解50.0gNaCl和5.0g冰醋酸。虽然没有明确说明PH值,但是期望的PH值应该是2.6—2.8。如果对性能没有什么要求的话,溶液A也可以适用于溶液B。

11.3.2 测试溶液B采用的是用蒸馏水或去离子水溶解了的5.0wt%NaCl、0.4 wt%醋酸钠以及0.23wt%的冰醋酸。此溶液PH值应该为3.4—3.6之间。

金属疲劳应力腐蚀试验及宏观断口分析

金属疲劳、应力腐蚀试验及宏观断口分析 在足够大的交变应力作用下,由于金属构件外形突变或表面刻痕或内部缺陷等部位,都可能因较大的应力集中引发微观裂纹。分散的微观裂纹经过集结沟通将形成宏观裂纹。已形成的宏观裂纹逐渐缓慢地扩展,构件横截面逐步削弱,当达到一定限度时,构件会突然断裂。金属因交变应力引起的上述失效现象,称为金属的疲劳。静载下塑性性能很好的材料,当承受交变应力时,往往在应力低于屈服极限没有明显塑性变形的情况下,突然断裂。疲劳断口(见图1-1)明显地分为三个区域:裂纹源区、较为光滑的裂纹扩展区和较为粗糙的断裂区。裂纹形成后,交变应力使裂纹的两侧时而张开时而闭合,相互挤压反复研磨,光滑区就是这样形成的。载荷的间断和大小的变化,在光滑区留下多条裂纹前沿线。至于粗糙的断裂区,则是最后突然断裂形成的。统计数据表明,机械零件的失效,约有70%左右是疲劳引起的,而且造成的事故大多数是灾难性的。因此,通过实验研究金属材料抗疲劳的性能是有实际意义的。 图1-1 疲劳宏观断口 一﹑实验目的 1.了解测定材料疲劳极限的方法。 2.掌握金属材料拉拉疲劳测试的方法。 3.观察疲劳失效现象和断口特征。 4.掌握慢应变速率拉伸试验的方法。 二、实验设备 1.PLD-50KN-250NM 拉扭疲劳试验机。 2.游标卡尺。 3.试验材料S135钻杆钢。 4.PLT-10慢应变速率拉伸试验。 三﹑实验原理及方法 在交变应力的应力循环中,最小应力和最大应力的比值为应力比: max min σσ= r (1-1) 称为循环特征或应力比。在既定的r 下,若试样的最大应力为max 1σ,经历N 1次循环后,发生疲劳失效, 则N 1称为最大应力r 为时的max 1σ疲劳寿命(简称寿命) 。实验表明,在同一循环特征下,最大应力越大,则寿命越短;随着最大应力的降低,寿命迅速增加。表示最大应力max σ与寿命N 的关系曲线称为应力-寿命曲线或S-N 曲线。碳钢的S-N 曲线如图1-2所示。由图可见,当应力降到某一极限值r σ时,S-N 曲线趋 近于水平线。即应力不超过r σ时,寿命N 可无限增大。称为疲劳极限或持久极限。下标r 表示循环特征。 实验表明,黑色金属试样如经历107次循环仍未失效,则再增加循环次数一般也不会失效。故可把107 次循环下仍未失效的最大应力作为持久极限r σ。而把N 0=107称为循环基数。有色金属的S-N 曲线在N>5×108时往往仍未趋于水平,通常规定一个循环基数N 0,例如取N 0=108,把它对应的最大应力作为“条件”持久极限。

应力腐蚀

1.应力腐蚀的机理:阳极溶解和氢致开裂机理 阳极溶解机理应力腐蚀断裂必须首先发生选择性腐蚀,而金属的腐蚀又受图4所示的阳极极化曲线的影响。以不锈钢为例,增加介质中Cl-含量,降低介质中O2含量及pH值,都会使图4a中阳极极化曲线从左向右移动,这四根曲线分别对应于蚀坑或裂纹区(图4b)的不同位置。应力的主要作用在于使金属发生滑移或使裂纹扩展,这两种力学效应都可破坏钝化膜,从而使阳极过程得以恢复,促进局部腐蚀。钝化膜破坏以后,可以再钝化。若再钝化速度低于钝化膜破坏速度,则应力与腐蚀协同作用,便发生应力腐蚀断裂。 氢致开裂机理或称氢脆机理,是应力腐蚀断裂的第二种机理。这种机理承认SCC必须首先有腐蚀,但是,纯粹的电化学溶解,在很多情况下,既不易说明SCC速度,也难于解释SCC的脆性断口形貌。氢脆机理认为,蚀坑或裂纹内形成闭塞电池,局部平衡使裂纹根部或蚀坑底部具备低的pH值,这是满足阴极反应放氢的必要条件。这种氢进入金属所引起的氢脆,是SCC的主要原因。这种机理取决于氢能否进入金属以及金属是否有高度的氢脆敏感性。高强度钢在水溶液中的SCC以及钛合金在海水中的SCC是氢脆引起的。

2.应力腐蚀开裂的断口形貌:穿晶断口开裂图

3.氢鼓泡产生机理,文字图 通过实验和理论分析研究了氢鼓泡形核、长大和开裂的过程. 在充氢试样中发现直径小于100 nm未开裂的孔洞, 它们是正在长大的氢鼓泡, 也发现已开裂的鼓泡以及裂纹多次扩展导致破裂的鼓泡.分析表明, 氢和空位复合能降低空位形成能, 从而使空位浓度大幅度升高, 这些带氢的过饱和空位很容易聚集成空位团.H在空位团形成的空腔中复合成H2就使空位团稳定, 成为氢鼓泡核.随着H 和过饱和空位的不断进入, 鼓泡核不断长大, 内部氢压也不断升高.当氢压产生的应力等于被氢降低了的原子键合力时, 原子键断开, 裂纹从鼓泡壁上形核. 图5 氢鼓泡形核、长大示意图 (a) 空位V和原子氢H聚集成为空位-原子氢集团; (b) 原子氢在空位 团中复合成分子氢H2, 使其稳定, 鼓泡核形成; (c) 空位和氢不断进 入鼓泡核使其长大; (d) 当鼓泡核内氢压产生的应力等于原子键合力时, 在鼓泡壁形成裂纹 首先, 氢(H)进入金属和空位(V)复合, 使空位形成能大大降低, 从而大幅度升高空位浓度, 这些过饱和空位容易聚集成空位团. 当4个或以上的空位或空位-氢复合体(V-H)聚集成空位四面体或空位团时, 内部形成空腔, 如图5(a). 空位所带的氢在空腔中就会复合成H2, 形成氢压. 由于室温时H2不能分解成H, 故含H2的空位团在室温是稳定的, 它就是鼓泡核, 如图5(b). 随着H和空位不断进入鼓泡核, 就导致鼓泡在充氢过程中不断长大, 同时氢压不断升高, 如图5(c). 当鼓泡中的氢压在内壁上产生的应力等于被氢降低了的原子键合力时, 原子键断裂, 裂纹沿鼓泡壁形核, 如图5(d). 随着氢的不断进入, 裂纹扩展, 直至鼓泡破裂4.氢进入金属材料的途径P129 5.氢致脆断类型:可逆和不可逆,第一类和第二类

应力腐蚀试验操作规程

文件名称:应力腐蚀试验作业标准 文件编号: 版号: 修改: 生效日期: 编制单位:

编制:年月日 审核:年月日 批准:年月日 发放编号: 受控印章: 目录

1.岗位职责及权限……………………………………………………………………(3 ) 2.主要设备参数及工装………………………………………………………………(3 ) 3.作业流程与操作规程………………………………………………………………(3~6)试样制备和要求………………………………………………………………( 3 ) 试验溶液………………………………………………………………………( 4 ) 推荐的试验装置………………………………………………………………( 4 ) 试验条件与步骤………………………………………………………………(4~5) RCC-M氯化镁应力腐蚀试验…………………………………………………(6 )结果处理………………………………………………………………………( 6 ) 4.相关文件……………………………………………………………………………(6 ) 5.质量记录……………………………………………………………………………(6 ) 6.修訂記錄……………………………………………………………………………(7 ) 7.附件…………………………………………………………………………………(7 )

1.岗位职责与权限 岗位职责 1.1.1按相关应力腐蚀试验技术标准进行试验。 1.1.2提前五分钟到岗,检查晶腐室水、电及药品的使用情况,做好试验前准备工作。 1.1.3坚守工作岗位不得随便离开,有事应向主管请假。 1.1.4认真填写本职责范围内的原始记录、对试验结果负责。 1.1.5负责提出药品及器材的购置计划。 1.1.6有责任接收上级主管部门的考核,复查结果。 1.1.7努力钻研技术,熟悉并认真执行标准,掌握好本岗位的操作技能。 权限 1.2.1对职权范围内的检验任务,按产品的规定有权作出检验结论。 1.2.2对既无产品性能说明,又无技术标准的产品有权拒绝接收检验。 1.2.3有权拒绝外来人员进入试验室,以防药品外流及干扰自已的分析测试工作。 2.主要设备参数及工装 试验采用温度计、回流冷凝器、锥形磨口密封烧瓶(1L)、箱式电阻炉、智能工业调节器AI-804、控温精度≦%、双目显微镜 3.作业流程与操作规程 试样制备和要求 3.1.1GB 3.1.1.1板状试样尺寸:厚1~3mm,宽10mm或15mm,长75mm。 3.1.1.2若试样厚度超过3mm,则仅切削其中一面,使厚度达到3mm,将非切削表面作为试验表面。 3.1.1.3试样的加工采用对于材质影响少的锯切等方法。在剪切的情况下,对切口断面进行切削和磨削加工,以消除剪切的影响。加工后的试样,可根据试验目的需要,进行消除残余应力影响的热处理。 3.1.1.4整个试样表面用GB/T 中规定的水砂纸依次磨到W40号。然后用适当溶剂除油、洗净。 3.1.2 ASTM

硫化氢腐蚀

硫化氢(H2S)的特性及来源 1.硫化氢的特性 硫化氢的分子量为34.08,密度为1.539mg/m3。而且是一种无色、有臭鸡蛋味的、易燃、易爆、有毒和腐蚀性的酸性气体。 H2S在水中的溶解度很大,水溶液具有弱酸性,如在1大气压下,30℃水溶液中H2S饱和浓度大约是300mg/L,溶液的pH值约是4。 H2S不仅对人体的健康和生命安全有很大的危害性,而且它对钢材也具有强烈的腐蚀性,对石油、石化工业装备的安全运转存在很大的潜在危险。 2.石油工业中的来源 油气中硫化氢的来源除了来自地层以外,滋长的硫酸盐还原菌转化地层中和化学添加剂中的硫酸盐时,也会释放出硫化氢。。 3.石化工业中的来源 石油加工过程中的硫化氢主要来源于含硫原油中的有机硫化物如硫醇和硫醚等,这些有机硫化物在原油加工过程进行中受热会转化分解出相应的硫化氢。 干燥的H2S对金属材料无腐蚀破坏作用,H2S只有溶解在水中才具有腐蚀性。 硫化氢腐蚀机理 1.湿硫化氢环境的定义 (1)国际上湿硫化氢环境的定义 美国腐蚀工程师协会(NACE)的MR0175-97“油田设备抗硫化物应力开裂金属材料”标准: ⑴ 酸性气体系统:气体总压≥0.4MPa,并且H2S分压≥ 0.0003MPa; ⑵ 酸性多相系统:当处理的原油中有两相或三相介质(油、水、气)时,条件可放宽为:气相总压≥1.8MPa且H2S分压≥0.0003MPa;当气相压力≤1.8MPa且H2S分压≥0.07MPa;或气相H2S含量超过15%。(2)国内湿硫化氢环境的定义 “在同时存在水和硫化氢的环境中,当硫化氢分压大于或等于0.00035 MPa时,或在同时存在水和硫化氢的液化石油气中,当液相的硫化氢含量大于或等于10×10-6时,则称为湿硫化氢环境”。 (3)硫化氢的电离 在湿硫化氢环境中,硫化氢会发生电离,使水具有酸性,硫化氢在水中的离解反应式为:

关注碱性应力腐蚀开裂

关注碱性应力腐蚀开裂 碱溶液中的腐蚀 在室温下,对于各种金属和合金,包括碳钢在内,在任意浓度的碱溶液(如氢氧化钠或者氢氧化钾)中的腐蚀,是较为容易控制的。随着温度和浓度的增加,腐蚀也将随之增强。考虑腐蚀的影响,碳钢的有效安全使用限制温度大约是150℉/65℃。读者从图1的曲线中可以看到碳钢的安全温度限制。相比于碳钢,不锈钢抵抗一般性腐蚀的能力更强;在大约接近250℉/121℃的温度下才发生碱性应力腐蚀开裂。 一般而言,随着含镍量的增加,金属抵抗碱溶液腐蚀的能力增强。碱性应力腐蚀开裂的敏感性主要取决于合金成分、碱浓度、温度和应力水平。对于一般开裂机理,都存在一个裂纹发生的临界应力值。不幸的是,现在还没有精确的获得在高温碱性环境下的高含镍量合金的临界应力值。由于600合金在压水反应堆蒸汽发生器传热管中的大量使用,已经获得了许多600合金在碱性环境下的数据。200合金(纯镍)除了在极其恶劣的碱性环境,包括熔盐的情况下,一般是不会发生腐蚀的。 合金抗碱溶液腐蚀的能力 碳钢和低合金钢 任意浓度的氢氧化钠和氢氧化钾(作为以下的碱)可用碳钢容器在室温下进行保存。当温度高于周围环境时,碳钢的腐蚀速率增大并且伴随着发生碱性应力腐蚀开裂的风险。碳钢容器可以在温度达到180℉/82℃的情况下安全的贮存低浓度的碱溶液;而对于浓度为50%的溶液,在温度接近120℉/48℃的情况下就会有发生碱性应力腐蚀开裂的风险。氢氧化钠环境下的使用图(图1)被广泛用于确定碳钢在不同碱浓度下的安全使用温度。图2所示的是碳钢在碱性环境下的裂纹显微照片。 铁素体不锈钢 高纯度的铁素体不锈钢,例如E-Brite 26-1(UNS S44627),显示出了很好的对高浓度碱性溶液的腐蚀抵抗力,其抗碱腐蚀性能远好于奥氏体不锈钢。根据报道,它抗碱性腐蚀的性能不低于镍。由于这种很好的对碱性环境的抗腐蚀性,使其能使用在会对镍合金造成腐蚀的次氯酸盐和氯酸盐杂质的环境中。据一则报道表明,26-1铁素体不锈钢可以在300℉/148℃到350℉/177℃的高温环境下使用。据另一则报道显示,其在350℉/177℃到400℉/204℃温度下,氢氧化钠的浓度为45%时,仍有很好的抗腐蚀能力。基于其对碱性环境,特别在含有氧化的污染物情况下,的良好抗腐蚀性,因此,在碱的蒸发器管中得到广泛应用。然而,铁素体不锈钢的致命缺陷是其固有的低的焊 接韧性和在高温下的低强度。因此,它们不能正常的应用 于压力容器。 奥氏体不锈钢 研究者根据商用纯碱溶液开发了用于描述影响碱脆的浓度 和温度参数图,也即为300系列奥氏体不锈钢的应力腐蚀 开裂。图3显示了所开发的图。1mpy的等蚀线在大约100° C使,对具有20%-60%浓度的碱为常数,应力腐蚀开裂的轮 廓线在40%-50%浓度范围内则稍高。 300系列不锈钢在热的浓度为40%-50%范围内的碱中很可能 会发生快速的一般性腐蚀,事实上,这种现象已经被观察 到了。因此,可能的安全限值将低于图上所示数值,例如: 50%浓度所对应的70°C和40%浓度所对应的80°C。 对于304/316类型的不锈钢,一般服役最大温度限值是100°C。在更高的温度下将会产生碱性开裂。300系列不 锈钢的应力腐蚀开裂是一种典型的穿晶裂纹。 双相不锈钢 双相不锈钢具有类似于316不锈钢那样的抗一般性腐蚀的 能力,并且对氯化物应力腐蚀开裂的敏感性性也较低。具 有较高合金含量的显著添加了钼和氮成分的双相钢合金, 抗碱性环境腐蚀的能力要优于316不锈钢。据报道,2205 不锈钢和2906不锈钢能很好的抵抗碱性应力腐蚀开裂。 高含镍量的奥氏体不锈钢 高含镍量的不锈钢中约含25-35 wt%的镍,包含有非专利 和有专利的合金,如:904L、Sanicro28、20Cb-3合金、800合金、AL6- XN等。与300系列不锈钢相比较,这些合 金对侵蚀性(高温)溶液的抵抗力有了极大的提高。 镍合金 在抗碱性环境下的腐蚀和应力腐蚀开裂方面,商业纯镍,200合金(N02200)和201合金(N02201)是最好的材料。400合金(N04400)和600合金(N06600)也具有优异的抗应力腐蚀能力。当碱浓度在70%以上,温度高于290°C(550°F)时,这些合金也会出现腐蚀应力开裂。镍铬钼合金,如C- 276(N10276),具有很好的抗碱性开裂的能力,但,在高浓度和高

关于抗氢致开裂开裂及抗硫化物应力腐蚀开裂试验R-HIC钢板的问答

通常抗氢致开裂HIC(Hydrogen Induced Crack)主要是针对低碳高强度结构钢制压力管线讲的( 现代管线钢属于低碳或超低碳的微合金化钢)。目前国内生产的此类专用钢(抗HIC专用钢)主要材料牌号有:16MnR(HIC),20R(HIC),SA516(HIC)。该类钢的碳当量可用 Ce=C+Mn6+(Cr+Mo+V)5+(Ni+Cu)15计算。 质保书中C:0.022,Mn:1.05,Cr:18.20,Ni:8.32材料成分大致符合不锈钢00Cr19Ni10(GBT1220—1992)主要元素成分要求。提供的是00Cr19Ni10或类似材质,应该没有太大问题。 参考资料: 关于提高提高管线钢抗HIC能力的措施 提高管线钢抗HIC能力的措施有成份设计、冶炼控制、连铸工艺、控轧控冷等四个方面。展开来说,主要有三点: 提高钢的线纯净度。采用精料及高效铁水预处理(三脱)及复合炉外精炼,达到S≤0.001%,P≤0.010%,[O]≤20ppm,[H]≤1.3ppm。同时采用Ca处理。②晶粒细化。主要通过微合金化和控轧工艺使晶粒充分细化,提高成分和组织的均匀性。为此,钢水和连铸过程要电磁搅拌;连铸过程采用轻压下技术;多阶段控制轧制及强制加速冷却工艺;Tio处理,使得钢获得优良的显微组织和超细晶粒,最终组织状态是没有带状珠光体的针状铁素体或贝氏体。③昼降低含C量(C ≤0.06%),控制Mn含量,并添加Cu和Ni。从炼钢来看,宝钢、

武钢、鞍钢、攀钢、太钢等企业能生产不同等级的管线钢种,目前国内能生产X42、X52、X60、X65、X70等,X70目前在试用。管线钢国产化程度大幅度提高,产品质量有了显著的改进,产品的成份控制、强度、韧性、晶粒度、焊接性能等均已接近或达到国外同类产品的水平。 高S原油加工过程中硫腐蚀及防护选材准 则 https://www.doczj.com/doc/b811848961.html,thread-4029-1-1.html (作者前言):2001年1月,中国石化科技开发部邀请英国壳牌石油公司材料专家霍普金申(音译)在南京就“高S原油加工过程中硫腐蚀及防护选材准则”做了讲座。由于国情不同和国外专家有所保留,这篇资料的有些内容不太全面。我将在写完全文以后把我自己的看法拿出来,请大家指点。 注:问----中石化各公司代表提问答----霍普金申 问1:精馏塔顶腐蚀的解决方法? 答:1.塔顶选用耐腐蚀材料。2.为了防止原油中的氯离子腐蚀,在原油中加NaOH中和;3.塔顶注入缓蚀剂。 问2:关于茂名石化精馏塔塔盘选用Monel(蒙耐尔)材料,你有什么看法? 答:日本解决的方法是用钛材,价格太高。蒙耐尔[便宜一些。另外可采用脱S的办法。原油中S含量要达到20磅千桶需要脱S。在原

材料的应力腐蚀

材料应力腐蚀 材料在应力和腐蚀环境的共同作用下引起的破坏叫应力腐蚀。这里需强调的是应力和腐蚀的共同作用。材料应力腐蚀具有很鲜明的特点,应力腐蚀破坏特征,可以帮助我们识别破坏事故是否属于应力腐蚀,但一定要综合考虑,不能只根据某一点特征,便简单地下结论。影响应力腐蚀的因素主要包括环境因素、力学因素和冶金因素。 原理 应力腐蚀是指在拉应力作用下,金属在腐蚀介质中引起的破坏。这种腐蚀一般均穿过晶粒,即所谓穿晶腐蚀。应力腐蚀由残余或外加应力导致的应变和腐蚀联合作用产生的材料破坏过程。应力腐蚀导致材料的断裂称为应力腐蚀断裂。 应力腐蚀一般认为有阳极溶解和氢致开裂两种。常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极 处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。

影响 应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。一般存在拉应力,但实验发现压应力有时也会产生应力腐蚀。对于裂纹扩展速率,应力腐蚀存在临界KISCC,即临界应力强度因子要大于KISCC,裂纹才会扩展。一般应力腐蚀都属于脆性断裂。应力腐蚀的裂纹扩展速率一般为10- 6~10-3 mm/min,而且存在孕育期,扩展区和瞬断区三部分。 容易发生应力腐蚀的设备发生这种腐蚀的主要设备有热交换器、冷却器、蒸汽发生器、送风机、干燥机和锅炉 特点 (1)造成应力腐蚀破坏的是静应力,远低于材料的屈服强度,而且一般是拉伸应力(近年来,也发现在不锈钢中可以有压应力引起)。这个应力可以是外加应力,也可以是焊接、冷加工或热处理产生的残留拉应力。最早发现的冷加工黄铜子弹壳在含有潮湿的氨气介质中的腐蚀破坏,就是由于冷加工造成的残留拉应力的结果。假如经过去应力退火,这种事故就可以避免。 (2)应力腐蚀造成的破坏,是脆性断裂,没有明显的塑性变形。

黄铜制成品应力腐蚀试验方法

《黄铜制成品应力腐蚀试验方法》 编制说明 1.任务来源 鉴于环保要求,当今世界上无铅黄铜新材料研发方兴未艾,黄铜的特点之一是会产生应力腐蚀开裂,因此新材料研发及产品应用必须经过应力腐蚀试验验证。黄铜制成品除残余应力外,还可能受到安装应力的作用,而且不能通过热处理方法消除,故必须进行模拟安装使用状态下的应力腐蚀试验,但这正是现行的国家标准所欠缺的。国家标准GB/T 10567.2-2007《铜及铜合金加工材残余应力检验氨熏试验法》仅适用于黄铜加工材,不适用黄铜制成品。因此,很有必要制定《黄铜制成品应力腐蚀试验方法》的全国性通用标准。 根据工业和信息化部工信厅科[2010]74号文《关于印发2010年第一批行业标准制修订计划的通知》精神,全国有色金属标准化技术委员会以有色标委[2010] 21号文下达了制定《黄铜制成品应力腐蚀试验方法》行业标准的项目计划(计划号2010-0426T-YS),由路达(厦门)工业有限公司、中铝洛阳铜业有限公司负责起草标准,并要求在2011年完成标准制定工作。 2.起草过程 标准起草单位首先查阅了国内外有关黄铜应力腐蚀试验方法的标准和资料。国内标准有GB/T 10567.2-2007《铜及铜合金加工材残余应力检验氨熏试验法》。国外同类标准主要有:国际标准ISO 6957-1988《铜合金抗应力腐蚀的氨熏试验》、欧盟标准EN 14977-2006《铜及铜合金拉应力检测 5%氨水试验》(在英、法、德等国普遍使用)、美国标准ASTM B 858-06《检测铜合金应力腐蚀破裂敏感性的氨熏试验方法》和日本标准JIS H 3250-2006《铜及铜合金棒》。 本着起草通用试验新标准应积极采用国际标准和国外先进标准,且技术水平应不低于相应国际标准的原则,标准起草单位对ISO 6957-1988等国外同类标准进行正确翻译和认真解读。然后,根据正交实验原理,对多元因子分别选择多种水平,对典型产品在各种不同使用工况条件下进行了试验研究,掌握了大量的试验数据。通过对试验结果进行深入分析和比较,对国内外相关标准的技术水平有

硫化氢腐蚀的影响因素

硫化氢腐蚀的影响因素 1.材料因素 在油气田开发过程中钻柱可能发生的腐蚀类型中,以硫化氢腐蚀时材料因素的影响作用最为显着,材料因素中影响钢材抗硫化氢应力腐蚀性能的主要有材料的显微组织、强度、硬度以及合金元素等等。 ⑴ 显微组织 对应力腐蚀开裂敏感性按下述顺序升高: 铁素体中球状碳化物组织→完全淬火和回火组织→正火和回火组织→正火后组织→淬火后未回火的马氏体组织。 注:马氏体对硫化氢应力腐蚀开裂和氢致开裂非常敏感,但在其含量较少时,敏感性相对较小,随着含量的增多,敏感性增大。 (2) 强度和硬度 随屈服强度的升高,临界应力和屈服强度的比值下降,即应力腐蚀敏感性增加。 材料硬度的提高,对硫化物应力腐蚀的敏感性提高。材料的断裂大多出现在硬度大于HRC22(相当于HB200)的情况下,因此,通常HRC22可作为判断钻柱材料是否适合于含硫油气井钻探的标准。 油气开采及加工工业对不昂贵的、可焊性好的钢材的需要,基本上决定了研究的工作方向就是优先研制抗硫化物腐蚀开裂的低合金高强度钢。 ⑶ 合金元素及热处理 有害元素:Ni、Mn、S、P; 有利元素:Cr、Ti 碳(C):增加钢中碳的含量,会提高钢在硫化物中的应力腐蚀破裂的敏感性。 镍(Ni):提高低合金钢的镍含量,会降低它在含硫化氢溶液中对应力腐蚀开裂的抵抗力。原因是镍含量的增加,可能形成马氏体相。所以镍在钢中的含量,即使其硬度HRC<22时, 也不应该超过1%。含镍钢之所以有较大的应力腐蚀开裂倾向,是因为镍对阴极过程的进行有较大的影响。在含镍钢中可以观察到最低的阴极过电位,其结果是钢对氢的吸留作用加强,导致金属应力腐蚀开裂的倾向性提高。 铬(Cr):一般认为在含硫化氢溶液中使用的钢,含铬%~13%是完全可行的,因为它们在热处理后可得到稳定的组织。不论铬含量如何,被试验钢的稳定性未发现有差异。也有的文献作者认为,含铬量高时是有利的,认为铬的存在使钢容易钝化。但应当指出的是,这种效果只有在铬的含量大于11%时才能出现。 钼(Mo):钼含量≤3%时,对钢在硫化氢介质中的承载能力的影响不大。

ASTM G139-05用断裂负荷法测定热处理铝合金制品抗应力腐蚀开裂性的标准试验方法(中文翻译版)

ASTM G139-05(R2011) ASTM G139-05(R2015)最新 用断裂负荷法测定热处理铝合金制品抗应力腐蚀开裂性的标准试验方法(中文翻译版) 1本试验方法由ASTM金属腐蚀委员会G01管辖,并由环境辅助开裂小组委员会G01.06直接负责。 当前版本于2011年9月1日批准。2011年9月出版。最初于2005年批准。上一版于2005年批准为G139-05。DOI: 10.1520/G0139-05R11。 本标准以固定名称G139发布;紧跟在名称后面的数字表示最初采用的年份,如果是修订,则表示最后修订的年份。括号中的数字表示上次重新批准的年份。上标(ε)表示自上次修订或重新批准以来的编辑性更改。 1、范围 1.1本试验方法涵盖了通过断裂荷载试验方法评估抗应力腐蚀开裂(SCC)性的程序,该方法使用剩余强度作为损伤演化(在这种情况下为环境辅助开裂)的测量方法。 1.2本试验方法包括试样类型和复制、试验环境、应力水平、暴露时间、最终强度测定和原始残余强度数据的统计分析。 1.3本试验方法适用于热处理铝合金,即2XXX合金和7XXX,含1.2%至3.0%铜,且试样的取向与晶粒结构(1,2)2相关,横向较短。然而,用于分析数据的残余强度测量和统计数据并非针对可热处理铝合金,可用于其他试样取向和不同类型的材料。 2括号中的黑体数字是指本标准末尾的参考文献列表。 1.4本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前建立适当的安全和健康实践,并确定法规限制的适用性。 2、参考文件 2.1 ASTM标准:3 3有关参考的ASTM标准,请访问ASTM网站https://www.doczj.com/doc/b811848961.html,,或通过Service@https://www.doczj.com/doc/b811848961.html,联系ASTM客户服务。有关ASTM标准年鉴卷信息,请参阅ASTM网站上的标准文件摘要页。E8金属材料拉伸试验的试验方法 E691进行实验室间研究以确定试验方法精度的实施规程 G44在中性3.5%氯化钠溶液中交替浸入金属和合金的暴露规程 G47测定2XXX和7XXX铝合金产品应力腐蚀开裂敏感性的试验方法 G49直接拉伸应力腐蚀试样的制备和使用规程 G64热处理铝合金抗应力腐蚀开裂分类

应力腐蚀断裂

应力腐蚀断裂 一.概述 应力腐蚀是材料、机械零件或构件在静应力(主要是拉应力)和腐蚀的共同作用下产生的失效现象。它常出现于锅炉用钢、黄铜、高强度铝合金和不锈钢中,凝汽器管、矿山用钢索、飞机紧急刹车用高压气瓶内壁等所产生的应力腐蚀也很显著。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合理选材,避免使用对应力腐蚀敏感的材料,可以采用抗应力腐蚀开裂的不锈钢系列,如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构件,减少应力集中。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。采用金属或非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见电化学保护也可减小或停止应力腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究,并分析比较应力腐蚀断裂其他环境作用条件下发生失效的特征。,由于应力腐蚀的测试方法与本文中重点分析之处结合联系不大,故不再本文中加以介绍。 二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1.工作状态下构件所承受的外加载荷形成的抗应力。 2.加工,制造,热处理引起的内应力。 3.装配,安装形成的内应力。 4.温差引起的热应力。 5.裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开裂,合金比纯金属更易发生应力腐蚀开裂。下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即

硫化物应力腐蚀破裂的特点

硫化物应力腐蚀破裂的特点 在H2S腐蚀引起的破坏中,应力腐蚀破裂占很大比例,造成的破坏也最大。在天然气、石油钻采中出现油气管、套管、阀门等硫化物应力腐蚀破裂(以下称SSCC)事故调查中,发现SSCC具有许多特点: (1)在比预想低得多的载荷下断裂; (2)一般材料经短暂暴露后就出现破坏,以一星期到三个月的情况为多。但也有例外,例如合金钢制的气体钢瓶发生SSCC所经历的时间从开始充气后的24小时至5年; (3) SSCC的发生一般很难预测,事故往往是突发性的; (4)材料呈脆性断状态,断口平整; (5)碳钢和低合金钢断口上明显地覆盖着硫化物腐蚀产物,而不锈钢表面及断口往往无明显腐蚀迹象,腐蚀产物极少; (6)破裂源通常位于薄弱部位,这些部位包括应力集中点、机械伤痕(如刻痕、铲痕、打硬度痕迹等)、蚀孔、蚀坑、焊接热影响区、焊缝缺陷、冷加工、淬硬组织等; (7)裂纹粗,无分枝或少分支,多为穿晶型,也有晶间型或混和型; (8)对材料的强度与硬度依赖性很强,高强度、高硬度的材料对SSCC十分敏感;(9)未回火马氏体组织对SSCC特别敏感。 硫化氢腐蚀的影响因素 1.材料因素 在油气田开发过程中钻柱可能发生的腐蚀类型中,以硫化氢腐蚀时材料因素的影响作用最为显著,材料因素中影响钢材抗硫化氢应力腐蚀性能的主要有材料的显微组织、强度、硬度以及合金元素等等。 ⑴显微组织 对应力腐蚀开裂敏感性按下述顺序升高: 铁素体中球状碳化物组织→完全淬火和回火组织→正火和回火组织→正火后组织→淬火后未回火的马氏体组织。 注:马氏体对硫化氢应力腐蚀开裂和氢致开裂非常敏感,但在其含量较少时,敏感性相对较小,随着含量的增多,敏感性增大。 (2) 强度和硬度

【精品】应力腐蚀试验机

【关键字】精品 《YF-C1型(铝合金C环)应力周浸腐蚀试验机》一、概述 YF-C1型(铝合金C环)试样周期浸润应力腐蚀试验机适用于测量铝合金厚板、挤压件和锻件在高向(短横向)上的应力腐蚀试验。主要应用于铝合金C环试样在一定应力情况下置于周期浸润腐蚀试验箱内进行的应力腐蚀试验等。本产品能模拟户外自然大气腐蚀条件,通过对铝合金C环试样及其焊接材料的耐大气腐蚀的人工气候应力腐蚀加速试验,来评价其耐户外大气腐蚀的质量性能,可供各种科研机构、厂矿中心试验室及航空、航天、机械、电子领域等对产品试样进行浸润腐蚀试验用。 二、满足规范 HB 5259-83 《铝合金C环试样应力腐蚀试验方法》 GB/T 15970.5-1998 《金属和合金的腐蚀应力腐蚀试验》 TB/T2375-93 《铁路用耐侯钢周期浸润腐蚀试验方法》 HB5194-1981 《周期浸润腐蚀试验方法》 GB/T 19746-2005 《金属和合金的腐蚀盐溶液周浸试验》 三、技术指标 1、试验机工作室内尺寸:1200 X 650 X 900( L×D×H); 2、试验机外尺寸:1600 X 800 X 1500 ( L×W×H); 3、腐蚀溶液槽内尺寸:550×250×120 ( L×W×H); 4、试验温度控制范围:室温~ ; 5、湿度控制范围:40%~70%RH; 6、试验温度控制基本点:+和35+; 7、湿度控制基本点:≯45%+5%RH ; 8、温度波动度:≯+; 9、湿度波动度:≯+5%RH; 10、浸润周期时间设定范围:1—9999分钟/小时(任意设定); 11、枯燥周期时间设定范围:1—9999分钟/小时(任意设定); 12、试验时间定时控制:1—9999小时/分钟(任意设定); 13、周浸轮速度调节:无极调速,转速误差≯0.5%;

硫化物应力腐蚀开裂(SSC)

H.7硫化物应力腐蚀开裂(SSC) H.7.1概述 对SCC的敏感性与渗透到钢材内的氢的量有关,这主要与pH值和水中的H2S含量这两个环境因素有关。典型地,人们发现钢中的氢溶解量在pH值接近中性的溶液中最低,而在pH值较低和较高的溶液中较高。在较低pH值中的腐蚀原因是因为H2S,反之在高pH值中腐蚀是因为高浓度的二价硫离子。若高pH值溶液中存在氰化物能够加剧氢渗透到钢材中。目前已知钢材对SCC的敏感性随H2S含量(例如H2S在气相中的分压,或液相中的H2S含量)的增加而增大。H2S含量为1ppm这样小浓度的水中也发现对SCC有敏感性。 对SCC的敏感性主要与材料两种物理参数有关硬度和应力水平。随着硬度的增加钢对SCC的敏感性也增加。通常对用于湿硫化氢环境的碳钢压力容器和管道不考虑SCC,因为它们具有较低的硬度(强度)。然而,焊接后的焊缝熔合区和热影响区具有高的残余应力。高的残余拉应力与焊缝结合增加了钢对SCC的敏感性。焊后热处理能够有效地减少残余应力,焊缝熔合区和热影响区的回火(软化)处理也有同样的效果。对每英寸厚度在大约1150℉(621℃)下保温一小时(最少一小时)的热处理方法被证明是一种对碳钢有效的防止腐蚀性开裂的消除应力热处理方法。对低合金钢有时需要更高的温度。控制硬度和减少残余应力被认为是防止SCC的方法,在NACE RP 0472中有详细描叙。 H.7.2基础数据 表H-8中列出了确定碳钢和低合金铁素体钢设备和管线对硫化物应力腐蚀开裂敏感性所需的基础数据。如果无法确定准确的工艺参数,则需咨询知识丰富的工艺工程师来进行预测。 H.7.3确定环境苛刻度 如果没有水存在,则认为设备和管线对SCC没有敏感性。如果有水存在,则用从表H-8中得出的有关水中的H2S含量和它的pH值的基础数据再从表H-9中估计环境苛刻度(潜在的氢溶解量)。 H.7.4确定对SCC的敏感性 用在表H-9中确定的环境苛刻度以及在表H-8中得到的有关最大布氏硬度和焊件焊后热处理的基础数据,从表H-10中确定对SCC的敏感性。按图H-5中流程来确定硫化物应力腐蚀的敏感性。

应力腐蚀试验操作规程完整

. . 文件名称:应力腐蚀试验作业标准 文件编号: 版号: 修改: 生效日期: 编制单位: 编制:年月日 审核:年月日 批准:年月日 发放编号: 受控印章:

目录 1.岗位职责及权限……………………………………………………………………( 3 ) 2.主要设备参数及工装………………………………………………………………( 3 ) 3.作业流程与操作规程………………………………………………………………(3~6) 3.1试样制备和要求………………………………………………………………( 3 ) 3.2试验溶液………………………………………………………………………( 4 ) 3.3推荐的试验装置………………………………………………………………( 4 ) 3.4试验条件与步骤………………………………………………………………(4~5) 3.5RCC-M氯化镁应力腐蚀试验…………………………………………………( 6 ) 3.6结果处理………………………………………………………………………( 6 ) 4.相关文件……………………………………………………………………………( 6 ) 5.质量记录……………………………………………………………………………( 6 ) 6.修訂記錄……………………………………………………………………………( 7 ) 7.附件…………………………………………………………………………………( 7 )

1.岗位职责与权限 1.1岗位职责 1.1.1按相关应力腐蚀试验技术标准进行试验。 1.1.2提前五分钟到岗,检查晶腐室水、电及药品的使用情况,做好试验前准备工作。 1.1.3坚守工作岗位不得随便离开,有事应向主管请假。 1.1.4认真填写本职责围的原始记录、对试验结果负责。 1.1.5负责提出药品及器材的购置计划。 1.1.6有责任接收上级主管部门的考核,复查结果。 1.1.7努力钻研技术,熟悉并认真执行标准,掌握好本岗位的操作技能。 1.2权限 1.2.1对职权围的检验任务,按产品的规定有权作出检验结论。 1.2.2对既无产品性能说明,又无技术标准的产品有权拒绝接收检验。 1.2.3有权拒绝外来人员进入试验室,以防药品外流及干扰自已的分析测试工作。 2.主要设备参数及工装 试验采用温度计、回流冷凝器、锥形磨口密封烧瓶(1L)、箱式电阻炉、智能工业调节器AI-804、控温精度≦0.2%、双目显微镜 3.作业流程与操作规程 3.1试样制备和要求 3.1.1GB 3.1.1.1板状试样尺寸:厚1~3mm,宽10mm或15mm,长75mm。 3.1.1.2若试样厚度超过3mm,则仅切削其中一面,使厚度达到3mm,将非切削表 面作为试验表面。 3.1.1.3试样的加工采用对于材质影响少的锯切等方法。在剪切的情况下,对切口 断面进行切削和磨削加工,以消除剪切的影响。加工后的试样,可根据试验 目的需要,进行消除残余应力影响的热处理。 3.1.1.4整个试样表面用GB/T 2481.1中规定的水砂纸依次磨到W40号。然后用适 当溶剂除油、洗净。 3.1.2 ASTM 3.1.2.1试样应从平行或垂直轧制方向截取。 3.1.2.2图1为代表性试样,试样的施加应力方式决定试样上是否开小洞。试样的 长和宽取决于材料的大小和形状,施加应力的方式以及试验容器大小。试样 厚度取决于材料的形状,强度和延展性,以及弯曲方式。表1列出了几种尺 寸供参考。 3.1.2.3若要对试样进行比较,则试样的尺寸应相同,特别是厚度与弯曲半径的比 值。这样使得在比较的材料中产生的最大应力近似相等。若进行比较的材料 之间机械性能相差很大,保持试样尺寸的严格相等是不必要的。 3.1.2.4最终表面处理之前可进行必要的热处理。分阶段进行研磨或加工,表面粗 糙度至少为0.76μm。加工过程应避免过热,防止产生残余应力或表面发生 冶金、化学改变。对试样边缘进行与表面一样的处理。 3.1.2.5若要求检验表面(如,冷轧或冷轧,退火,和酸洗)不去除表面金属,试 样边缘应进行磨削,任何情况下都应避免锋利的边缘。 3.1.2.6最后一步为对试样进行去油。视应力施加方法不同,可在施加应力前或后 进行。 3.2试验溶液 3.2.1 GB

一起硫化氢应力腐蚀导致的爆炸事故

吉林省松原石油化工股份有限公司(简称“松原石化”)始建于1970年。40多年来几经扩能和技术改造,将原来2万t/a简单再生产的燃料型企业建成原油加工能力50万t/a的化工燃料型企业。 2011年11月6日23时55分许,松原石化位于气体分馏装置冷换框架一层平台最北侧的脱乙烷塔顶回流罐,突然发生爆炸,罐体西侧封头母材在焊缝附近不规则断裂,导致封头85%的部分从安装地点沿西北方向飞出190 m,落至成品油泵房砖砌围墙处,围墙被砸倒约4 m2,碰撞产生的冲击波将泵房所有玻璃击碎。其余罐体连同鞍座支架在巨大的反作用力作用下,挣断与平台的焊接,向东飞行80 m,从二套催化裂化装置操作室及循环水泵房房顶掠过,将操作室顶棚和部分墙体刮塌,将循环水泵房东侧管带处房顶砸塌5 m2左右。罐体爆炸后,罐内介质(乙烷与丙烷的液态混合物)四处喷溅、气化,并在空气中扩散、弥漫,与空气中的氧气充分混合达到爆炸极限,间隔12s后,遇明火发生闪爆。 经过事故损失情况统计,此次爆炸事故造成4人死亡,1人重伤,6人轻伤,直接经济损失869万元。 事故直接原因 事故发生后,调查组在原始记录、现场勘查资料、调查问询情况的基础上,进行了一系列理论计算、分析论证。通过分布式控制系统数据,排除了此次事故是由操作因素导致爆炸的可能性;通过现场监控录像等,排除了因介质大量泄漏发生火灾引发爆炸的可能性;该罐未从焊缝处开裂,排除了焊接质量问题导致爆炸的可能性;通过强度核算,排除了罐体封头厚度不够原因造成爆炸的可能性;通过钢材质量报告单,排除了母材原始成份超标导致爆炸的可能性;从色谱分析台账看出,介质中硫化氢含量时有超标,从断口上观察,裂纹扩展区断口平齐,是典型的应力开裂裂纹,另外,裂口与主应力方向垂直。 综合上述分析得出结论,事故的直接原因是因硫化氢应力腐蚀导致回流罐破裂引起。具体讲,是由于硫化氢应力腐蚀造成回流罐筒体封头产生微裂纹,微裂纹不断扩展,致使罐体封头在焊缝附近热影响区发生微小破裂,导致介质小量泄漏,10 min内罐内压力下降了0.037 mpa,随着微小裂口的发展增大,使罐体封头强度急剧减弱,在23时55分,罐体封头突然整体断裂,首先发生物理爆炸,罐内3t介质全部外泄,迅速挥发,变成气体与空气混合达到爆炸极限,12s后遇明火发生闪爆(物理爆炸)。 硫化氢应力腐蚀理论分析 该公司气体分馏装置在2004年11月建成投产后,没有有效的脱硫手段,一套催化裂化装置与二套催化裂化装置所产生的液态烃只配套有碱洗系统,脱硫效果一直不佳,直至2009年末,20万t/a脱硫醇装置才建成投入使用。从化验分析报告单看出,2009年末之前,硫化氢含量时有超标现象(经常超过10ppm[ppm为1×10-6]以上,甚至达到1 500ppm)。 从理论上分析,液态烃在含有微量水的情况下,可溶解于水,形成湿环境,发生电离反应,使水呈弱酸性。硫化氢在水中电离出氢离子,在0℃~65℃温度范围内,生成氢气。原子半径极小的氢原子在压力作用下渗入钢的晶格内部,并融入晶界间,融入晶格中的氢有很强的游离性,在一定条件下将导致材料的脆化(氢脆)和氢致开裂(管材在含硫化氢等酸性环境中,因腐蚀产生的氢侵入钢内而产生的裂纹称为为氢致开裂),在晶格等处形成很大的应力集中,超过晶界处强度后生成微裂纹,并随运行时间的延长,逐步扩展。 2011年11月9日,吉林油田公司特种设备检测中心对事故罐封头进行了超声波测厚检测,检测发现大量分层现象;松原市质量技术监督局对该罐封头及筒体进行了超声波测厚检测,也证实了这一点,并且测出分层倾角最大为10.2°,初步判定封头测点处存在分层;同时,事故调查组从封头上取样0.04 m2进行微观金相试验,进一步证实存有大量分层现象,从金相分析看,不排除母材有原始分层现象,金属分层现象是硫化氢应力腐蚀的重要影响因素。

应力腐蚀试验标准和应力腐蚀试验机

应力腐蚀试验标准和应力腐蚀试验机 在日常生活中,腐蚀现象随处可见,因为腐蚀而造成的材料失效比比皆是。现在,研究材料在腐蚀介质环境(或称作氛围)中材料对介质的敏感性以及在腐蚀介质中裂纹扩展速率显得尤为重要,作为材料研究者或者材料应用者,应对材料的这种耐腐蚀特性需要仔细研究,以确保材料的合理使用,最优使用。掌握材料的应力腐蚀试验方法、试验标准也非常重要。 通常,材料的耐腐蚀特性主要通过以下几种试验确定: 1. 慢应变速率应力腐蚀试验,通常也叫做慢拉伸试验; 2. 材料应力腐蚀疲劳试验; 3. 材料腐蚀试验; 这三种试验通常采用慢应变速率应力腐蚀试验机,腐蚀疲劳试验机,腐蚀环境试验箱三种设备完成。需要提醒用户的是:慢应变速率应力腐蚀试验机可以和应力腐蚀疲劳试验机集成在一套设备上完成,而不必搞成两套设备完成。作为材料研究单位,因为一种材料往往面临在很多介质条件下工作的可能性,所以,介质环境的准备、不同的介质、不同的温度对试验容器将会提出不同的要求,包括安装位置,所以用户在采购这类设备的时候一定要对这些条件明晰,以采购到合适的设备。 百若仪器为用户提供的采用集中加载单元的FCC-50型多功能裂纹扩展速率试验机,即可完成慢拉伸试验、应力腐蚀疲劳试验。 希望以下的标准对用户的应力腐蚀试验起到一定的帮助作用。 GB/T 13671-1992 不锈钢缝隙腐蚀电化学试验方法 GB/T 15748-1995 船用金属材料电偶腐蚀试验方法 GB/T 10119-1988 黄铜耐脱锌腐蚀性能的测定 GB/T 10123-2001 金属和合金的腐蚀 基本术语和定义 GB/T 10126-2002 铁-铬-镍合金在高温水中应力腐蚀试验方法 GB/T 10127-2002 不锈钢三氯化铁缝隙腐蚀试验方法 GB/T 15970.2-2000 金属和合金的腐蚀 应力腐蚀试验 第2部分:弯梁试样的制备和应用 GB/T 15970.4-2000 金属和合金的腐蚀 应力腐蚀试验 第4部分:单轴加载拉伸试样的制备和应用 GB/T 15970.5-1998 金属和合金的腐蚀 应力腐蚀试验 第5部分:C型环试样的制备和应用 GB/T 15970.6-1998 金属和合金的腐蚀 应力腐蚀试验 第6部分:预裂纹试样的制备和应用 GB/T 15970.7-2000 金属和合金的腐蚀 应力腐蚀试验 第7部分:慢应变速率试验 GB/T 16482-1996 荧光级氧化钇铕 GB/T 16545-1996 金属和合金的腐蚀 腐蚀试样上腐蚀产物的清除

相关主题
文本预览
相关文档 最新文档