当前位置:文档之家› 有限元原理在桥梁结构分析中的应用

有限元原理在桥梁结构分析中的应用

有限元原理在桥梁结构分析中的应用
有限元原理在桥梁结构分析中的应用

有限元原理在桥梁结构分析中的应用

在过去的30年里,有限元法作为一种通用工具在物理系统的建模和模拟仿真领域已经得到了广泛的接受。在许多学科它已经成为至关重要的分析技术,例如结构力学、流体力学、电磁学等等。

一、有限元原理

将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。

二、结构有限元求解问题

依据有限元法的基本思想,结构有限元求解问题可以分解为两个问题,即单元分析和单元集合问题。

(1)单元分析

所谓单元分析就是对某一复杂求解的结构取微小单元进行分析,依据其力学物理特性寻找描述该单元特性的数学函数。即通常说的描述该单元变形的形函数。

(2)单元集合

按照单元之间的联结方式,对整个求解问题系统进行整合。在弹性力学中利用单元的内部势能力与外部作用势能一起守恒,建立内部单元与外界作用之间的联系。

(3)问题的求解

获得内部单元与外界作用之间的联系,即系统的总刚度矩阵。要对问题的求解,则需要依据系统的外部条件求解出各个内部单元的变形状态,依据内部单元的变形,确定内部单元的应力。

因此,有限元法是最终导致联立方程组。联立方程组的求解可用直接法、选代法和随机法。求解结果是单元结点处状态变量的近似值。

三、梁结构的有限元分析

1. 有限元程序分析的过程

有限元程序分析的过程大致分为三个阶段:

(1)建模阶段

建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型——有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。

但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。

(2)计算阶段

计算阶段的任务是完成有限元方法有关的数值计算。由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。

(3)后处理阶段

它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是结构有限元分析的目的所在。

2、建立有限元模型的一般过程

有限元分析中建模过程有下面7个步骤:

(1)分析问题定义

在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何模型。

总的来说,要定义一个有限元分析问题时,应明确以下几点:

a)结构类型;

b)分析类型;

c)分析内容;

d)计算精度要求;

e)模型规模;

f)计算数据的大致规律

(2)几何模型建立

(3)单元类型选择

划分网格前首先要确定采用哪种类型的单元,包括单元的形状和阶次。单元类型选择应根据结构的类型、形状特征、应力和变形特点、精度要求和硬件条件等因素综合进行考虑。(4)单元特性定义

有限元单元中的每一个单元除了表现出一定的外部形状外,还应具备一组计算所需的内部特征参数,这些参数用来定义结构材料的性能、描述单元本身的物理特征和其他辅助几何特征等。

(5)网格划分

网格划分是建立有限元模型的中心工作,模型的合理性很大程度上可以通过所划分的网格形式反映出来。目前广泛采用自动或半自动网格划分方法,如在Ansys中采用的SmartSize 网格划分方法就是自动划分方法。

(6)模型检查和处理

一般来说,用自动或半自动网格划分方法划分出来的网格模型还不能立即应用于分析。由于结构和网格生成过程的复杂性,划分出来的网格或多或少存在一些问题,如网格形状较差,单元和节点编号顺序不合理等,这些都将影响有限元计算的计算精度和计算时间. (7)边界条件定义

在对结构进行网格划分后称为离散模型,它还不是有限元模型,只有在网格模型上定义了所需要的各类边界条件后,网格模型才能成为完整的有限元模型.

3、有限元分析计算模型的数据

原始数据的计算模型,模型中一般包括以下三类数据:

1)节点数据;

2)单元数据;

3)边界条件数据;

4、单元类型;

1)平面应力单元,平面应变单元;

2)轴对称实体单元,空间实体单元;

3)板单元,壳单元,轴对称壳单元;

4)杆单元;

5)梁单元;

6)弹簧单元;

7)间隙单元;

8)界面单元;

9)刚体单元;

10)约束单元;

四、梁结构的仿真分析

1. 桥梁结构设计过程

桥梁结构设计过程通常分为3个层次:

第1个层次----结构总体设计

在该层次计算中,考虑的重点是结构总体的力学行为,包括桥梁结构设计过程中及成桥后主梁纵桥向应力的变化过程及主梁标高的变化过程以及结构的稳定性。这个层次的分析一般采用杆单元建立有限元模型。

第2个层次----局部应力分析

在该层次计算中,考虑的重点是结构中构件之间的连接节点应力,荷载作用的集中效应,如预应力束(体外索、体内索、斜拉索、吊杆索、主缆索)锚固节点和支撑节点的局部应力分析,桥梁墩台在支座作用下局部应力分析以及塔梁、拱梁、柱梁、弦杆的刚性节点局部应力分析等。

这个层次的分析一般采用块体单元建立有限元模型。

第3个层次----结构仿真分析

在该层次计算中,有限元计算模型逼近真实结构(即减少计算模型中的简化处理),考虑的重点是模拟各种作用下(如荷载作用、温度作用等)结构的实际工作状态。这个层次的分析一般采用空间梁单元、板壳单元、块体单元和索单元建立有限元混合单元模型。

2. 结构仿真分析

对于一座桥梁的全桥结构仿真分析所要完成的工作主要划分为三大部分:

1)统一结构分析体系下整座桥梁所有承载构件的详细模型。该模型由实体、板壳、梁、杆、索等多种单元组合而成,能够准确模拟构件的空间位置、几何尺寸、连接形式、本构关系、荷载作用、初始内力和初始变形等;

2)靠的数值分析方法,有限元法等,对上述模型进行大规模的全桥结构效应计算,由此得到相对详尽、精确和可靠的分析结果;

3)丰富有效的图形显示软件对计算所输出的大量数字信息进行可视化处理,使计算者能直接看到全桥各部位的位移、应力、应变等计算结果的分布图像,从图像上直接进行分析、判断,来获得有用的结论。

五、常用有限元软件

目前流行的CAE分析软件主要有NASTRAN、ADINA 、ANSYS、ABAQUS、MARC、MAGSOFT、COSMOS等。

ADINA

ADINA是近年来发展最快的有限元软件,它独创有许多特殊解法, 如劲度稳定法,自动步进法,外力-变位同步控制法以及BFGS梯度矩阵更新法,使得复杂的非线性问题(如接触,塑性及破坏等), 具有快速且几乎绝对收敛的特性, 且程式具有稳定的自动参数计算,用户无需头痛于调整各项参数。并且它有源代码,我们可以对程序进行改造,满足特殊的需求。

NASTRAN

NASTRAN是大型通用结构有限元分析软件,也是全球CAE工业标准的原代码程序。NASTRAN系统长于线性有限元分析和动力计算,因为和NASA(美国国家宇航局)的特殊关系,它在航空航天领域有着崇高的地位。NASTRAN的求解器效率比ANSYS高一些。

ANSYS

ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,发展了很多版本,但是它们核心的计算部分变化不大,只是模块越来越多,这些模块并不是ANSYS公司自己搞的,而是把别人的东西买来集成到自己的环境里。ANSYS系统擅长于多物理场和非线性问题的有限元分析,在铁道,建筑和压力容器方面应用较多。

ALGOR

ALGOR属于中高档CAE分析软件,在汽车,电子, 航空航天,医学,日用品生产,军事,电力系统,石油,大型建筑以及微电子机械系统等诸多领域中均有广泛应用。它最大的特点是易学易用,界面友好,操作简单,这可以极大提高软件应用者在工程实际中的效率。

COSMOS

Cosmos相对影响比较小,但Cosmos的最大特点是运算速度快,这是其他软件所不能比拟的。Cosmos的研发者将保证收敛的迭代法--又称做快速有限元法导入COSMOS的产品之中,使新的有限元分析软件对磁盘空间上的要求大幅降低,占用计算机系统的内存也大大减少,因此分析速度大幅加快,超越传统甚多。

以下着重介绍ANSYS软件。

ANSYS是一种广泛的商业套装工程分析软件。所谓工程分析软件,主要是在机械结构系统受到外力负载所出现的反应,例如应力、位移、温度等,根据该反应可知道机械结构系统受到外力负载后的状态,进而判断是否符合设计要求。

ANSYS程序主要包括三个部分:PREP7(通用前处理模块)、SOLUTION(求解模块)和POST1及POST26(后处理模块)。

ANSYS软件中包括7种结构分析类型:静力分析、模态分析、谐波分析、瞬态动力分析、屈曲分析和显式动力分析,其中结构静力分析是诸多分析中最为基础的部分。

ANSYS的分析过程:

1)确定分析目标及模型的基本形式

2)选择合适的单元类型

3)确定实常数、定义材料属性

4)建立实体模型

5)划分网格

6)施加荷载及边界条件

7)选取分析类型分析计算

8)后处理器显示查看结果

ANSYS的特点

作为功能强大,应用广泛的有限元分析软件,它有以下的特点:

(1)数据统一:ANSYS使用统一的数据库来存储几何模型、有限元模型、材料参数、外载及结果数据,从而保证了前后处理、分析求解及多场耦合分析的数据统一。

(2)强大的求解功能:ANSYS提供了多种求解器,用户可以根据具体的分析问题选择合适的求解器。

(3)强大的非线性分析功能:ANSYS具有强大的非线性分析功能,可进行几何非线性、材料非线性及接触非线性分析等。

(4)多种网格划分方式:ANSYS提供了Free网格划分、Map网格划分、Sweep网格划分等多种网格划分方式,可根据模型的特点选择合适的网格划分方式。

(5)独特的优化功能:ANSYS利用ANSYS的优化设计模块,对结构的拓扑、外貌、材料进行优化,确定最优的设计方案。

(6)多场耦合功能:ANSYS可以实现多场的耦合分析,研究各物理场间的相互影响。

(7)友好的程序接口:ANSYS提供了与主流CAD软件及其他有限元分析软件的接口程序,可实现数据的导入和导出,如Pro/Engineer、NASTRAN、UniGraphics、I-DEAS、AutoCAD、SolidWorks等。

(8)良好的用户开发环境:ANSYS提供了便利的二次开发平台,用户可以利用APDL、UIDL和UPFS等对其进行二次开发。

六、结语

有限元法是一种高效能、常用的计算方法。有限元的概念早在几个世纪前就已产生并得到了应用,但是应用范围很小。而经过最近数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。应用有限元可以大大提高桥梁结构的安全程度与美学要求。

桥梁概念设计与分析理论

桥梁概念设计与分析理论 一:桥梁属性与结构形式 1.1桥梁的属性 科学:分析实验 桥梁工程{ 技术:研发应用 艺术:创造美学 1.2 桥梁结构的分类 用途:人行桥,公路桥,铁路桥,公铁两用桥,城市桥,管道桥,明渠桥 材料:石桥,木桥,钢桥,混凝土桥,预应力混凝土桥(主跨90米,在中小跨度范围内已占绝对有优势,在大跨度范围内它正在同钢桥展开激烈竞争。它主要承重结构用预应力钢筋混凝土结构的桥梁。附加预应力混凝土:预应力混凝土,为了弥补混凝土过早出现裂缝的现象,在构件使用(加载)以前,预先给混凝土一个预压力,即在混凝土的受拉区内,用人工加力的方法,将钢筋进行张拉,利用钢筋的回缩力,使混凝土受拉区预先受压力。这种储存下来的预加压力,当构件承受由外荷载产生拉力时,首先抵消受拉区混凝土中的预压力,然后随荷载增加,才使混凝土受拉,这就限制了混凝土的伸长,延缓或不使裂缝出现,这就叫做预应力混凝土。)钢——混凝土组合结构桥 结构形式:梁桥拱桥斜拉桥悬索桥组合桥斜拉—悬

索协作体系 规模跨径:小桥(8~30米) 中桥(30~100) 大桥(100~1000) 特大桥(大于1000) 1.3桥梁结构形式与合理跨度范围 (1)梁桥 简支梁桥的跨度一般不超过70M,最有竞争力的跨度范围50M以下 等截面连续桥梁的合理跨度范围在30~110M,优势跨度范围50~80 变截面连续桥梁或连续钢结构桥的合理跨度50~350M,最有竞争力的跨度范围100~300M (2)~ (3)拱桥合理跨度范围600M以下,最有竞争力40~450M (4)系杆拱桥合理40~800M 最有竞争力150~1200M (5)斜拉桥合理80~1500M 最有竞争力150~1200M (6)悬索桥合理200以上,500以上最有竞争力 二:桥梁设计准则 2.1 桥梁设计的基本目标 安全实用经济美观 2.2安全性和试用性 (1)承载能力极限状态 1 结构或构件达到材料极限强度

钢箱梁桥的有限元分析

钢箱梁桥的有限元分析 1.钢箱梁桥的概述 在大跨度桥梁的设计中,恒载所占的比重远大于活载,随着跨度的增大,这种比例关系也越来越大,极大地影响了跨越能力。因此,从设计的经济角度来说,考虑减轻桥梁结构的自重是很重要的。钢材是一种抗拉、抗压和抗剪强度均很高的匀质材料,并且材料的可焊性好,通过结构的空间立体化,钢桥能够具有很大的跨越能力。 随着高强度材料和焊接技术的发展,以及桥梁设计、计算理论的发展和计算机技术发展,从50年代以来,钢梁桥地建设取得了长足的发展,欧洲相继建造了多座大跨钢桥。从前被认为不可能计算的复杂结构,现在能够通过计算机完成,并且计算结果与实测结果吻合较好。同过去相比,在相同的跨度与宽度的条件下,用钢量可减少15一20 %,工期与工程的造价也都减少很多,因此钢桥在大跨桥梁领域内具有相当强的优势和竞争力。 在构成钢桥的主要构件中,其翼缘和腹板均使用薄板,其厚度与构件的高度和宽度比都比较小,是典型的薄壁构件。它与以平面结构组合为主的桥梁结构分析有一定的区别,它涉及到很多平面结构中不常考虑的扭转问题,所以必须依据薄壁结构理论才能明了其应力和应变状态,其应力及变形应按照薄壁结构的理论进行计算。 由于钢箱梁桥是空间结构,结构在恒载或活载的作用下会发生弯一扭藕合。如果采用传统的计算手段和方法,计算模型要进行必要地简化,为了简化计算,一般的设计规范都要通过构造布置,使实际结构满足简化后的计算理论。实践表明在满足构造要求后,计算的精度能够满足实际地需要。但是这样的计算无法得到结构的一些特定部位的精确解,例如变截面和空间构件交汇的部位等。随着计算机技术和有限元理论的发展和进步,计算机的有限元法己成为现代桥梁的重要计算手段,不但有很高的效率而且可以根据实际的需要进行仿真分析,计算结果经验证与结构的实际结果吻合较好。当前结构的计算机仿真分析已成为一种广为应用的计算手段。 同一座桥梁可以采用不同的施工方法,但是成桥后的最终应力状态会有差异,结构的最终应力状态与安装过程密不可分。例如连续梁可采用满堂支架法和悬臂拼装法,两者成桥后的应力状态却有较大的区别。因此必须针对特定的施工方法,对施工过程中每一个施工阶段的结构应力进行计算,确保各个阶段的应力满足相关规范。 由于在制造和安装等原因,结构的最终状态会与设计状态有一定的差异,各国都通过制订有相关的规范来指导施工和竣工验收的标准。这些标准规是通过长期的实践与试验以及计算分析的基础上得出的,满足这些相关规范的要求一般就可以保证结构的安全性。但是由于实际结构是受力复杂的空间结构,特别是结构的一些局部范围可能在某一工况下处于较高的应力状态,而其他部为却处于相对较低的应力状态,这样不利于充分发挥材料的力学性能。现在可以通过大型通用有限元软件对大桥在使用过程中可能存在的各个工况的受力状态进行仿真分析,确定出结构不利的部位以及富余较大的部位,便于调整设计。 1.1本论文的研究目的 常用的计算机方法是将主梁转换成具有等效截面的梁单元计算,这种方法能够较好的从整体上考虑结构的空间特点,虽然也反映了空间结构的特点,但是它也存在以下明显的不足: 1. 不能准确模拟边界条件。例如支点的约束,梁单元通常只能简化为一点的约束,但是不管什么样的约束实际结构总是以面接触来实现的;

《结构分析中的有限元法》2015-有限元习题-参考答案

本科有限元习题参考答案

2015年3月10日作业 1、简述力学课程中介绍的各种力学模型的简化条件、基本假设和适用范围(包括有拉压杆模型、弯曲梁模型、平面应力和平面应变模型、轴对称模型、板模型、壳模型等) 2、给出弹性力学问题中平衡方程、几何方程、物理方程的表达式及其意义。 (1)平衡方程:

zy yz xz zx yx xy z yz xz z y xy zy y x zx yx x f y x z f x z y f z y x ττττττττσττσττσ====+??+??+??=+??+??+??=+??+??+??,000, 物理意义:应力分量与体力分量之间的关系。 (2)几何方程: z u x w y w z v x v y u z w y v x u zx yz xy z y x ??+??=??+??=??+??=??=??=??=γγγεεε,,,, 物理意义:应变分量与位移分量之间的关系。 (3)物理方程: [] [] [] zx zx yz yz xy xy y x z z z x y y z y x x G G G E E E τγτγτγσσμσεσσμσεσσμσε1,1,1) (1 ) (1 )(1 ===+-=+-=+-= 物理意义:应变分量与应力分量之间的关系。 3、简述最小势能原理的主要内容和主要公式。 根据虚功原理得到:??=-Γ T Ω T T 0Td Γδu d Ω)F δu -σδε(,由 )(21εδσεδδεU T T =?? ? ??=则0)21((=Γ-Ω-=∏??ΩΓ)Td u d F u T T T p σεδδ 其中,??ΩΓ Γ-Ω-=∏Td u d F u T T T p )21 (σε即为系统的总势能,它是弹性体变 形势能和外力势能之和。上面变分为零式表明:在所有区域内满足几何关系,在边界上满足给定位移条件的可能位移中,真实位移使系统的总势能取驻值(可证

有限单元法基本思想,原理,数值计算过程

有限单元法学习报告 在对力学问题分析求解过程中,方法可以概括为两种方法,一种为解析法,对具体问题具体分析,通过一定的推导用具体的表达式获得解答,由于实际工程中结构物的复杂性,此方法在处理工程问题是十分困难的;另一种是数值法,有限元法是其中一种方法,其数学逻辑严谨,物理概念清晰,又采用矩阵形式表达基本公式,便于计算机编程,因此在工程问题中获得广泛的应用。 有限元法基本原理是,将复杂的连续体划分为简单的单元体;将无限自由度问题化为有限自由度问题,因为单元体个数是有限的;将偏微分方程求解问题化为有限个代数方程组的求解问题。通常以位移为基本未知量,通过虚功原理和最小势能原理来求解。 基本思想是先化整为零,即离散化整体结构,把整体结构看作是由若干个通过结点相连的单元体组成的整体;再积零为整,通过结点的平衡来建立代数方程组,最后计算出结果。我将采用最简单的三结点三角形为基本单元体,解决弹性力学中的平面问题为例,解释有限单元法的基本原理、演示数值计算过程和一般性应用结论。 一、离散化 解决平面问题时,主要单元类型包括三角形单元(三结点、六结点)和四边形单元(四结点矩形、四结点四边形、八结点四边形)等。选用不同的单元会有不同的精度,划分的单元数越多,精度越高,但计算量也会越大。因此在边界曲折,应力集中处单元的尺寸要小些,但最大与最小单元的尺寸倍数不宜过大。在集中力作用点及分布力突变的点宜选为结点,不同厚度,不同材料不能划分在同一单元中。三角形单元以内角接近60°为最好。充分利用对称性与反对称性。 二、单元分析 将一个单元上的所有未知量用结点位移表示,并将分布在单元上的外力等效到结点上。 1、位移函数选取: 根据有限元法的基本思路,将连续体离散为有限的单元集合后,此时单元体满足连续性、均匀性、各向同性、完全线弹性假设。单元与单元之间通过结点连接并传递力,位移法(应用最广)以结点位移δi=(u i v i)T为基本未知量,以离散位移场代替连续位移场。单元体内的位移变化可以用位移函数(位移模式)来表示,因为有限元分析所得结果是近似结果,为了保证计算精度和收敛性,x位移函数应尽可能反应物体中的真实位移,即满足完备性和连续性的要求:

结构力学 桥梁结构分析

桥梁结构分析 桥梁结构分析 摘要:设计桥梁可有多种结构形式选择:石料和混凝土梁式桥只能跨越小河;若以受压的拱圈代替受弯的梁,拱桥就能跨越大河和峡谷;若采用钢桁架可建造重载铁路大桥;若采用主承载结构受拉的斜拉桥和悬索桥,不仅轻巧美观,而且是飞越大江和海峡特大跨度桥梁的优选形式。 关键词:梁式桥,拱式桥,悬索桥,桁架桥,斜拉桥 著名桥梁专家潘际炎说:“海洋,是孕育地球生命的产床;河流,是孕育人类文明的摇篮;而桥,则是联系人类文明的纽带。”这纽带越来越宏伟,越来越精致,越来越艺术!建国以

来中国的桥梁工程事业飞速发展。随着时代前进的步伐,人们对桥梁工程提出了更高的要求,对“适用、安全、经济、美观”的桥梁设计原则赋以更新的内容。桥梁工程无论是现在还是以后都不会停步的,它的发展前景会更广阔。通过半个学期的结构力学的学习,我对桥梁结构及他们的受力特点有了一定的认识。理论联系实际,我通过对各种结构的对比分析,进一步加深了印象,对以后的学习奠定了基础。 1.梁式桥 工程实例——洛阳桥,又称万安桥,在福建泉州市区东北郊洛阳江入海处,该桥是举世闻名的梁式海港巨型石桥,为国家重点文物保护单位,为国家重点文物保护单位。 梁式桥的主梁为主要承重构件,受力特点为主梁受弯。梁式桥的上部结构在铅垂荷载作用下,支点只产生竖向反力,支座反力较大,桥的跨中处截面弯矩很大。所以由于这种特性,梁式桥的跨度有限。简支梁桥合理最大跨径约20 米,悬臂梁桥与连续梁桥合宜的最大跨径约60-70 米。采用钢筋砼建造的梁桥能就地取材、工业化施工、耐久性好、适应性强、整体性好且美观;这种桥型在设计理论及施工技术上都发展得比较成熟。但是由于制造梁式桥的材料多为石料与混凝土,随跨度的增加其自重的增加也比较显著。因此梁式桥广泛用于中、小跨径桥梁中。 结构本身的自重大,约占全部设计荷载的30%至60%,且跨度越大其自重所占的比值更显著增大,大大限制了其跨越能力。随着跨度的增大,桥的内力也会急剧增大,混凝土的抗弯能力很低,较难满足强度要求。弯矩产生的正应力沿横截面高度呈三角分布,中性轴附近应力很小,没有充分利用材料的强度。 2.拱式桥 工程实例——赵州桥,坐落在河北省赵县洨河上。建于隋代,由著名匠师李春设计和建造,距今已有约1400年的历史,是当今世界上现存最早、保存最完善的古代敞肩石拱桥。1961年被国务院列为第一批全国重点文物保护单位。因赵州桥是重点文物,通车易造成损坏,所以不允许车辆通行。 拱式桥拱肋为主要承重构件,受力特点为拱肋承压、支承处有水平推力。从几何构造上讲,拱式结构可以分为三铰拱、两铰拱和无铰拱。分析三角拱的受力特点,在竖向荷载下,三角拱存在水平推力,因此,三角拱横截面的弯矩小于简支梁的弯矩。弯矩的降低,拱能更充分的发挥材料的作用,当跨度较大、荷载较重时,采用拱比采用梁更为经济合理。

多体动力学软件和有限元软件的区别(优.选)

有限元软件与多体动力学软件 数值分析技术与传统力学的结合在结构力学领域取得了辉煌的成就,出现了以ANSYS 、NASTRAN 等为代表的应用极为广泛的结构有限元分析软件。计算机技术在机构的静力学分析、运动学分析、动力学分析以及控制系统分析上的应用,则在二十世纪八十年代形成了计算多体系统动力学,并产生了以ADAMS 和DADS 为代表的动力学分析软件。两者共同构成计算机辅助工程(CAE )技术的重要内容。 商业通用软件的广泛应用给我们工程师带来了极大的便利,很多时候我们不需要精通工程问题中的力学原理,依然可以通过商业软件来解决问题,不过理论基础的缺失还是会给我们带来不少的困扰。随着动力有限元与柔性多体系统分析方法的成熟,有时候正确区分两者并不是很容易。 机械领域应用比较广泛的有两类软件,一类是有限元软件,代表的有:ANSYS, NASTRAN, ABAQUS, LS-DYNA, Dytran 等;另一类是多体动力学软件,代表的有ADAMS, Recurdyn , Simpack 等。在使用时,如何选用这两类软件并不难,但是如果深究这两类软件根本区别并不容易。例如,有限元软件可以分析静力学问题,也可以分析“动力学”问题,这里的“动力学”与多体动力学软件里面的动力学一样吗?有限元软件在分析动力学问题时,可以模拟物体的运动,它与多体动力学软件中模拟物体运动相同吗?多体动力学软件也可以分析柔性体的应力、应变等,这与有限元软件分析等价吗? 1 有限元软件 有限单元法是一种数学方法,不仅可以计算力学问题,还可以计算声学,热,磁等多种问题,我们这里只探讨有限元法在机械领域的应用。 计算结构应力、应变等的力学基础是弹性力学,弹性力学亦称为弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而为工程结构或构件的强度、刚度设计提供理论依据和计算方法。也就是说用有限元软件分析力学问题时,是用有限元法计算依据弹性力学列出的方程。 考虑下面这个问题,在()0t , 时间内给一个结构施加一个随时间变化的载荷()P t ,我们希望得到结构的应力分布,在刚刚施加载荷的时候,结构中的应力会有波动,应力场是变化的,但很久以后,应力场趋于稳定。 如果我们想得到载荷施加很久以后,稳定的应力场分布,那么应该用静力学分析方法分析

有限元原理在桥梁结构分析中的应用

有限元原理在桥梁结构分析中的应用 在过去的30年里,有限元法作为一种通用工具在物理系统的建模和模拟仿真领域已经得到了广泛的接受。在许多学科它已经成为至关重要的分析技术,例如结构力学、流体力学、电磁学等等。 一、有限元原理 将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。 二、结构有限元求解问题 依据有限元法的基本思想,结构有限元求解问题可以分解为两个问题,即单元分析和单元集合问题。 (1)单元分析 所谓单元分析就是对某一复杂求解的结构取微小单元进行分析,依据其力学物理特性寻找描述该单元特性的数学函数。即通常说的描述该单元变形的形函数。 (2)单元集合 按照单元之间的联结方式,对整个求解问题系统进行整合。在弹性力学中利用单元的内部势能力与外部作用势能一起守恒,建立内部单元与外界作用之间的联系。 (3)问题的求解 获得内部单元与外界作用之间的联系,即系统的总刚度矩阵。要对问题的求解,则需要依据系统的外部条件求解出各个内部单元的变形状态,依据内部单元的变形,确定内部单元的应力。 因此,有限元法是最终导致联立方程组。联立方程组的求解可用直接法、选代法和随机法。求解结果是单元结点处状态变量的近似值。

三、梁结构的有限元分析 1. 有限元程序分析的过程 有限元程序分析的过程大致分为三个阶段: (1)建模阶段 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型——有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。 但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。 (2)计算阶段 计算阶段的任务是完成有限元方法有关的数值计算。由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。 (3)后处理阶段 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是结构有限元分析的目的所在。 2、建立有限元模型的一般过程 有限元分析中建模过程有下面7个步骤: (1)分析问题定义 在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何模型。 总的来说,要定义一个有限元分析问题时,应明确以下几点: a)结构类型; b)分析类型; c)分析内容; d)计算精度要求; e)模型规模;

对桥梁结构一些经典概念的探讨(阅)

对桥梁结构一些“经典概念”的探讨 对桥梁结构一些“经典概念”的探讨 文/徐栋 6 R. P& A& [% A% r0 ] 作者的话: 非常感谢《桥梁》杂志的约稿,我所理解“重点实验室”栏目中的“实验”是广义的,并不仅仅指真材实料的实验,也可以包括新理论,甚至新 设想的实验性研究成果,或是研究过程中的探讨。 笔者近年来对混凝土桥梁结构的分析和配筋理论等方面做了一些较为深入的研究,借此机会分享一些研究成果,也将一些思考、困惑及感兴趣的问题拿出与业界同仁探讨。由于笔者水平有限,如有条理不清、错误甚至是谬误的地方请大家不吝指正。 综合现状 经过近三十年的大规模建设,我国的桥梁工程师已经具备丰富的设计经验和较高的知识水平。复杂桥梁或复杂截面的桥梁在我国得到了非常普遍的运用,在课堂上学的分析方法和针对简单桥梁的现行规范体系由于不能完全解决问题,往往出现“安全度不足造成的早期破坏和蜕化所带来的损失,或者因过于保守造成的浪费”[1]的现象。在工程实践中发生的许多令桥梁工程师困惑却客观存在的问题使他们不断寻求解答,甚至可以说,由于混凝土桥梁的大规模实践,世界上或许没有哪个国家的工程师像中国工程师那样渴望彻底了解复杂桥梁的受力状况。/ m4 C( q% c5 q7 V2 d/ T+ c2 ^ 桥梁结构理论发展的动力来自工程实践中出现的问题,同时我国对过去新建桥梁的维修加固也在日益增多,但指导维修加固的思想仍然停留在现行桥梁常用计算方法和规程上,现在已经到了应该对过去常用的分析理论和设计思想进行反思和重新梳理的时候。 对于桥梁结构的分析方法,发达国家由于受到来自国家强力发展方向的推动,如航空航天、新材料、机械等,所以发展迅猛,出现了一批水平很高的通用大型有限元分析软件,这些大型通用软件有些甚至已经有几十年的历史。这些软件对于桥梁结构的影响是深远的,使桥梁工程师对于桥梁结构的局部和微观受力情况的认知达到了前所未有的高度和水平。但是,桥梁结构,特别是混凝土桥梁结构具有的几大特征,如桥梁施工、收缩徐变效应、预应力、活载计算等,这些大型软件并不能完全满足要求。8 x5 H$ V# v, Q+ F# i8 y 对于混凝土构件的配筋配束方法,是涵盖受弯、受剪、受扭、受拉(压)的不同方向和不同组合的设计原理,内容非常丰富,也是很早(甚至将近100年)以来发展起来的经典学科。国内外相关规范虽然经过几轮发展,其基本思想仍然停留在“窄梁”范畴。同时,由于各时期的发展和内容补充,里面也留存有大量各时期的,有些甚至已经早已过时的痕迹。所以虽然规范有时显得越来越厚,但实际上并不代表越来越好。1 a; f0 h }; Y* @9 q" [ 作者近年来通过参与我国桥梁规范的最新修订,深刻体会到目前飞速发展的结构分析方法与“蜗行”的桥梁构件设计规范之间的矛盾,就像一个人拥有一条长和一条短的两条腿,其前行速度仍受制约。具体的表现便是结构分析的方法越来越精细,而配筋配束设计理论却仍停留在简单结构范畴,造成了虽然能对复杂桥梁结构进行非常精细的分析,却无法建立与配筋设计方法紧密联系的尴尬情况。 对桥梁结构分析方面一些“经典概念”的探讨 横向分布 桥梁空间结构的近似计算方法,实质上是在一定的误差范围内,寻求一个近似的方法把一个复杂的空间问题转化成平面问题进行求解。早期工程师们采用将空间问题转化为平面问题的横向分布理论,来对多梁式桥梁进行分析验算。横向分布理论的研究,加深了工程师们对桥梁各种上部结构形式的力学性能(纵、横向分配荷载的性能)的理解。如图1为一座常见的多梁式简支梁桥。 图1 多梁式简支梁桥 在横向分布的计算方法中,刚性横梁法和比拟正交各向异性板法(又称G-M法)为最为常用的方法。众所周知,其基本前提是纵横向影响面具有相似的图形[2]。为了简化计算,剪力采用了杠杆法近似考虑。% X9 }) A& u; O, S" ^ 对于箱梁结构,特别是如图2的宽箱梁结构,同样存在各道腹板的荷载横向分配问题。在单梁模型计算中,往往借用“横向分布”的概念,将各道腹板看成一根梁,采用与多道梁式结构同样的横向分布计算方法来计算。) f2 l- ?0 R2 r x* w9 h8 F 图2 多室宽箱梁截面 对图2截面而言,一般一排仅采用2个支座,不会每道腹板下面均设支座,而桥梁结构一般也为连续梁结构。可见,其力学图式与图1的计算原 型结构相差甚远,特别是简支支撑条件已完全改变。 图3是一个4跨连续梁采用的单箱多室箱梁截面及其梁格分割线,中间向两边的腹板编号为0#、1#和2#。该桥的支座布置见图4。图5~7分别为采用梁格计算和传统G-M法计算的3车道活载的0#、1#和2#腹板的剪力横向分布系数。

结构分析及有限元分析基础知识

第一章结构分析及有限元分析基础知识 注:摘自《NX知识工程应用技术——CAD/CAE篇》 洪如瑾编译 清华大学出版社 [目标] 本章将简述结构分析及有限元分析的基础知识,为学习与应用结构分析做好准备,包括: ※ 结构与结构分析定义 ※ 结构的线性静态分析 ※ 材料行为与故障 ※ 有限元分析的基本概念 ※ 有限元模型 1.1结构分析基础知识 1.1.1结构基本概念 1.结构定义 结构可以定义为一个正承受作用的载荷处于平衡中的系统。平衡条件意味着结构是不移动的。一个自由的支架不是一个结构,它未被连接到任一物体上并无载荷作用与它。仅当它附着到外部世界,并且有作用力、压力或力矩时,支架成为一个结构。 例如横跨江面的大桥就是一个普通的结构,一个支架通过它的支撑连接到地面上,桥的重量是在结构上的一种载荷(力)。当汽车通过桥时,附加的力作用于桥的不同位置。 一个好的结构必须满足以下标准: (1) 当预期的载荷作用时,结构必须不出现故障。这个似乎是显而易见的,并意味着结构必须是“强度足够的”。故障意味着结构破裂、分离、弯曲,以及支撑作用载荷失败。 注意:考虑到意外的载荷,通常在设计中提供安全余量。余量常常利用安全因素来描述。例如,如果在结构上期待载荷是10 000磅,规定安全因素是2.0,则结构将设计成能经受住20 000磅载荷。 (2) 当载荷作用时,结构必须不产生过分变形。这意味着结构必须“刚度足够”。 变形可接受的极限(弯曲度、挠度、拉伸等)取决于特定情况。例如,在通常住宅中的地板由足够的吊带支撑,以防止当人在地板岸上行走时有“柔软”的感觉。 (3) 在它的服务生命周期,结构的行为应不会恶化。这意味着结构必须“足够耐用”,必须考虑环境影响和“磨损与破裂”。如果一座桥假定维持50年,则桥的设计必须提供整个50年寿命的结构完整性与充分的安全余量。2.结构分析 结构分析是用于决定一个结构是否将正确完成任务的工程分析过程。结构将在某些方式中进行模拟和求解描述它的行为的数学方程。分析可以人工方法或用计算机方法来完成。 结构分析的结果(答案)用于评估性能,摘要如下: (1)“强度足够吗?”:应力必须是在一可接受的范围内。 (2)“刚度足够吗?”:位移必须是在一可接受的范围内。 (3)“耐用度足够?”:对一个长的疲劳周期应力必须足够低。

(完整版)桥梁工程简答题

五、问答题 1)桥梁有哪些基本类型?按照结构体系分类,各种类型的受力特点是什么? 答:梁桥、拱桥、斜拉桥、悬索桥。按结构体系划分,有梁式桥、拱桥、钢架桥、缆索承重桥(即悬索桥、斜拉桥)等四种基本体系。梁式桥:梁作为承重结构是以它的抗弯能力来承受荷载的。拱桥:主要承重结构是拱肋或拱圈,以承压为主。刚架桥:由于梁与柱的刚性连接,梁因柱的抗弯刚度而得到卸载作用,整个体系是压弯构件,也是有推力的结构。缆索桥:它是以承压的塔、受拉的索与承弯的梁体组合起来的一种结构体系。 2)桥梁按哪两种指标划分桥梁的大小?具体有哪些规定? 答:按多孔跨径总L和单孔跨径划分。 3)各种体系桥梁的常用跨径范围是多少?各种桥梁目前最大跨径是多少,代表性的桥梁名称? 答:梁桥常用跨径在20米以下,采用预应力混凝土结构时跨度一般不超过40米。代表性的桥梁有丫髻沙。拱桥一般跨径在500米以内。目前最大跨径552米的重庆朝天门大桥。钢构桥一般跨径为40-50米之间。目前最大跨径为 4)桥梁的基本组成部分有哪些?各组成部分的作用如何? 答:有五大件和五小件组成。具体有桥跨结构、支座系统、桥墩、桥台、基础、桥面铺装、排水防水系统、栏杆、伸缩缝和灯光照明。桥跨结构是线路遇到障碍时,跨越这类障碍的主要承载结构。支座系统式支承上部结构并传递荷载于桥梁墩台上,应满足上部结构在荷载、温度或其他因素所预计的位移功能。桥墩是支承两侧桥跨上部结构的建筑物。桥台位于河道两岸,一端与路堤相接防止路堤滑塌,另一端支承桥跨上部结构。基础保证墩台安全并将荷载传至地基的结构部分。桥面铺装、排水防水系统、栏杆、伸缩缝、灯光照明与桥梁的服务功能有关。 5)桥梁规划设计的基本原则是什么? 答:桥梁工程建设必须遵照“安全、经济、适用、美观”的基本原则,设计时要充分考虑建造技术的先进性以及环境保护和可持续发展的要求。 6)桥梁设计必须考虑的基本要求有哪些?设计资料需勘测、调查哪些内容? 答:要考虑桥梁的具体任务,桥位,桥位附近的地形,桥位的地质情况,河流的水文情况。设计资料需勘测、调查河道性质,桥位处的河床断面,了解洪水位的多年历史资料,通过分析推算设计洪水位,测量河床比降,向航运部门了解和协商确定设计通航水位和通航净空,对于大型桥梁工程应调查桥址附近风向、风速,以及桥址附近有关的地震资料,调查了解当地的建筑材料来源情况。 7)大型桥梁的设计程序包括哪些内容? 答:分为前期工作及设计阶段。前期工作包括编制预可行性研究报告和可行性研究报告。设计阶段按“三阶段设计”,即初步设计、技术设计、与施工图设计。 8)桥梁的分孔考虑哪些因素?桥梁标高的确定要考虑哪些因素? 答:要考虑通航条件要求、地形和地质条件、水文情况以及经济技术和美观的要求。要考虑设计洪水位、桥下通航净空要求,结合桥型、跨径综合考虑,以确定合理的标高。 9)桥梁纵断面设计包括哪些内容? 答:包括桥梁总跨径的确定,桥梁额分孔、桥面标高与桥下净空、桥上及桥头的纵坡布置等。 10)桥梁横断面设计包括哪些内容? 答:桥梁的宽度,中间带宽度及路肩宽度,板上人行道和自行车道的设置桥梁的线性及桥头引道设置设计等。 11)为什么大、中跨桥梁的两端要设置桥头引道? 答:桥头引道起到连接道路与桥梁的结构,是道路与桥梁的显性协调。 12)什么是桥梁美学? 答:它是通过桥梁建筑实体与空间的形态美及相关因素的美学处理,形成一种实用与审美相结合的造型艺术。 13)桥梁墩台冲刷是一种什么现象?

桥梁结构健康监测

桥梁结构健康监测

目录 1. 桥梁结构健康监测的概念 0 2. 桥梁结构健康监测系统 0 2.1. 监测内容 0 2.2. 数据传输 (1) 2.3. 数据分析处理和控制 (2) 2.4. 大型桥梁结构健康监测系统 (2) 2.5. 桥梁结构健康监测的现状与发展方向 (3) 3. 桥梁结构健康监测系统的意义 (4) 3.1. 桥梁结构健康监测系统的主要作用包括: (4) 3.2. 桥梁健康监测意义 (4) 4. 现有桥梁结构监测系统存在的问题 (5) 5. 结语 (6)

桥梁结构健康监测 1.桥梁结构健康监测的概念 交通是社会的经济命脉,桥梁是交通的咽喉,交通不畅会制约社会的经济发展,所以保障桥梁的功能性、耐久性,尤其是安全性至关重要。为保证桥梁安全运行、避免严重事故发生,对桥梁结构进行健康监测应运而生,桥梁结构健康监测是以科学的监测理论与方法为基础,采用各种适宜的检验、检测手段获取数据,为桥梁结构设计方法、计算假定、结构模型分析提供验证;对结构的主要性能指标和特性进行分析,及早预见、发现和处理桥梁结构安全隐患和耐久性缺陷,诊断结构突发和累计损伤发生位置与程度,并对发生后果的可能性进行判断与预测。通过对桥梁结构健康状态的监测与评估,为桥梁在各种气候、交通条件下和桥梁运营状况异常时发出预警信号,为桥梁维护、维修与管理措施提供依据,并通过及时采取措施达到防止桥梁坍塌、局部破坏,保障和延长桥梁的使用寿命的目的。 2.桥梁结构健康监测系统 2.1.监测内容 数据采集与测量的内容主要为:变形(沉降、位移、倾斜)、应力、动力特性、温度、外观检测等。 1)变形监测 采取适宜的测量手段,对桥梁主体结构关键部位的沉降、位移、倾斜量进行监测。常用监测变形的方法有:导线测量法、几何水准测量法、GPS测定三维位移量法、自动极坐标实时差分测量法和自动全站仪三维坐标非接触量测等。 2)应力监测 桥梁运营状态中主体结构的应力变化是由于主体结构的外部条件和内部状态变化引起

浅谈桥梁结构计算分析

浅谈桥梁结构计算分析 黎志忠 (四川省交通厅公路规划勘察设计研究院桥梁分院成都610041)摘要:结合当代桥梁计算技术的发展,从桥梁结构工程师的角度分析指出桥梁计算从属于和促进了精细化设计。分析计算工作的层次性和动态性特点,强调结构分析的人员对结构概念的掌握尤其重要。指出计算工作需要策划,不同的桥型有其侧重点,计算应有针对性的提出解决方案,并建议了计算工作的一般流程。就具体实施而言,工程计算应该立足于现有的软件硬件资源。探讨如何对待软件工具和判断调试计算结果,总结了一些分析判断经验。通过列举特定案例计算内容和解决思路,给桥梁计算工作同行起到抛砖引玉的作用。 关键词:桥梁结构分析解决方案思路 A discussion about structural analysis of bridge LI Zhi-Zhong (Sichuan Province Communications Department Highway Planning, Survey, Design And Research Institute, Chengdu, 610041, China) Abstract: Combined with the development of modern computing technology of bridges, this paper points out that calculations subordinate and promote the finer bridge designs from the perspective of bridge engineers. The calculation work is different in various design stages and dynamic in nature. That the concepts of structure are especially important to the analysts is emphasized. Pointe out that the calculations need to plan and solution methods should be focus on the distinguishing features of each bridge, then a general process of the calculation is recommended. It is suggested that the engineering calculations should be based on the existing software and hardware resources. How to debug FEA models and judge the results are discussed on. Some of the experiences to judge are summarized. The contents of certain cases and solutions are presented for reference.

高等桥梁结构理论作业汇总

高等桥梁结构理论课程作业参考答案(2014版) 【作业1】 如图1所示薄壁单箱断面,试分别计算:(1)该截面在竖向弯矩m kN M x ?=100作用下的正应力(注:平截面假定成立。);(2)该截面在竖向剪力kN Q y 100=通过截面中心作用下的剪应力分布。 图1 薄壁单箱断面几何尺寸(单位:cm ) 【参考答案】 由于该截面关于y 轴对称,故需要确定主轴ox 轴的位置,假定ox 轴距离上翼缘中心线为a ,由0=x S ,得 0)2(2 1 2)2(0.3212)5.20.35.2(22=-?--?-?+?++δδδδa a a a 即 04.01.04.03.06.01.08.022=+--+-+a a a a a 0.15.1=a ,即m a 667.0= 由ANSYS 计算截面几何特性参数,计算结果如图2所示。具体几何特性计算结果为: 竖向抗弯惯性矩为)(064.1)(10064.1448m cm I x =?=, 横向抗弯惯性矩为)(370.5)(10370.5448m cm I y =?=, 扭转常数为:)(470.1)(1047.1448m cm I y =?=, 截面几何中心至顶板中心线距离为)(667.0m a =。 (1)截面在竖向弯矩m kN M x ?=100作用下,由初等梁理论可知,截面正应力分布由下式 计算,即

y y y I M x x z 96.93984064 .1000 ,100=== σ(Pa ) (m y m 667.0333.1≤≤-),具体截面正应力分布如图3所示。 X Y O Sig1=62688Pa Sig2=125282Pa 图2截面在竖向弯矩m kN M x ?=100作用下正应力分布图 (2)截面在竖向剪力kN Q y 100=作用下,闭口截面弯曲剪应力计算公式可知,截面剪应力为 ????? ? ?? +-= ??δδds ds S S I Q q x x x y 划分薄壁断面各关键节点如图3(a )所示。将截面在1点处切口,变为开口截面,求x S 、 ?δ ds 和 ?ds S x δ 。作y 图如图3(b )所示。 (a )薄壁断面节点划分图(单位:cm )

有限元动力学分析方程及解法

动力分析中平衡方程组的解法 1前言 描述结构动力学特征的基本力学变量和方程与静力问题类似,但所有的变量都是时间的函数。 基本变量 三大类变量(,)i u t ξ、(,)ij t εξ和(,)ij t σξ是坐标位置(,,)x y z ξ和时间t 的函数,一般将其记为()()()i ij ij u t t t εσ。 基本方程 (1) 平衡方程 利用达朗贝尔原理将惯性力和阻尼力等效到静力平衡方程中,有 ,()()()()0ij j i i i t b t u t u t σρν+--=&&& (1) 其中ρ为密度,ν为阻尼系数。 (2) 几何方程 ,,1 ()(()())2ij i j j i t u t u t ε=+ (2) (3) 物理方程 ()()ij ijkl kl t D t σε= (3) 其中ijkl D 为弹性系数矩阵。 (4) 边界条件 位移边界条件()BC u 为, ()()i i u t u t = 在u S 上 (4) 力的边界条件()BC p 为, ()()ij j i t n p t σ= 在p S 上 (5) 初始条件 0(,0)()i i u t u ξξ== (6) 0(,0)()i i u t u ξξ==&& (7)

虚功原理 基于上述基本方程,可以写出平衡方程及力边界条件下的等效积分形式, ,() ()0p ij j i i i ij j i S u u b u d n p dA δσρνδσΩ∏=---+Ω+-=??&&& (8) 对该方程右端第一项进行分部积分,并应用高斯-格林公式,整理得, ()()0p ijkl ij kl i i i i i i i i S D u u u u d b u d p u dA εδερδνδδδΩΩ-++Ω-Ω+=???&&& (9) 有限元分析列式 单元的节点位移列阵为, 111222()[(),(),(),(),(),()(),(),()]e t k k k U t u t v t w t u t v t w t u t v t w t =L (10) 单元内的插值函数为, (,)()()e t u t N U t ξξ= (11) 其中()N ξ为单元的形状函数矩阵,与相应的静力问题单元的形状函数矩阵完全相同,ξ为单元中的几何位置坐标。 基于上面的几何方程和物理方程及(11)式,将相关的物理量表达为节点位移的关系,有, (,)[](,)[]()()()()e e t t t u t N U t B U t εξξξξ=?=?= (12) (,)()()()()e e t t t D DB U t S U t σξεξξ=== (13) (,)()()e t u t N U t ξξ=&& (14) (,)()()e t u t N U t ξξ=&&&& (15) 将(12)-(15)供稿到虚功方程(9)中,有, [()()()()]()0e e e e e e e T e t t t t t M U t C U t K U t R t U t δδ∏=++-=&&&g (16) 由于()e t U t δ具有任意性,消去该项并简写有, e e e e e t t t t U C U KU R ++=&&& (17) 其中, e e T M N Nd ρΩ= Ω? (18) e e T C N Nd νΩ=Ω? (19)

用ANSYS进行桥梁结构分析

用ANSYS进行桥梁结构分析 谢宝来华龙海 引言:我院现在进行桥梁结构分析主要用桥梁博士和BSACS,这两种软件均以平面杆系为计算内核,多用来解决平面问题。近来偶然接触到ANSYS,发现其结构分析功能强大,现将一些研究心得写出来,并用一个很好的学习例子(空间钢管拱斜拉桥)作为引玉之砖,和同事们共同研究讨论,共同提高我院的桥梁结构分析水平而努力。 【摘要】本文从有限元的一些基本概念出发,重点介绍了有限元软件ANSYS平台的特点、使用方法和利用APDL语言快速进行桥梁的结构分析,最后通过工程实例来更近一步的介绍ANSYS进行结构分析的一般方法,同时进行归纳总结了各种单元类型的适用范围和桥梁结构分析最合适的单元类型。 【关键词】ANSYS有限元APDL结构桥梁工程单元类型 一、基本概念 有限元分析(FEA)是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元模型是真实系统理想化的数学抽象。 真实系统有限元模型 自由度(DOFs)用于描述一个物理场的响应特性。

节点和单元 1、每个单元的特性是通过一些线性方程式来描述的。 2、作为一个整体,单元形成了整体结构的数学模型。 3、信息是通过单元之间的公共节点传递的。 4、节点自由度是随连接该节点单元类型变化的。 单元形函数 1、FEA 仅仅求解节点处的DOF 值。 2、单元形函数是一种数学函数,规定了从节点DOF 值到单元内所有点处DOF 值的计算方法。 3、因此,单元形函数提供出一种描述单元内部结果的“形状”。 4、单元形函数描述的是给定单元的一种假定的特性。 5、单元形函数与真实工作特性吻合好坏程度直接影响求解精度。 6、DOF 值可以精确或不太精确地等于在节点处的真实解,但单元内的平均值与实际情况吻合得很好。 7、这些平均意义上的典型解是从单元DOFs 推导出来的(如,结构应力,热梯度)。 8、如果单元形函数不能精确描述单元内部的DOFs ,就不能很好地得到导出数据,因为这些导出数 节点: 空间中的坐标位置,具有一定自由度和 存在相互物理作用。 单元: 一组节点自由度间相互作用的数值、矩阵描述(称为刚度或系数矩阵)。单元有线、面或实体以及二维或三维的单元等种类。 荷载 荷载 有限元模型由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。

桥梁工程的结构组成及作用分析

桥梁的结构组成及作用分析 2013年10月20日王平洪 一、桥梁结构组成 1.1 桥梁结构由下部结构和上部结构组成。 1.2 桥梁下部结构包括基础、桥墩和桥台. 1.3 桥梁上部结构是跨越桥孔的结构,包括桥梁的桥面系、桥道结构、承重结构(主梁、桁架和拱圈)、连接系、支座等。 二、桥梁基础的形式及适用条件 2.1 桥梁基础形式 桥梁基础的形式主要包括:扩大基础、桩基础、管柱、沉井、地下连续墙。 2.2 受力作用特点及适用条件 2.2.1 扩大基础 由地基反力承担全部上部荷载,将上部荷载通过基础分散至基础底面,使之满足地基承载力和变形的要求。 适用于地基承载力较好的各类土层,根据土质情况分别采用铁镐、十字镐、挖掘机、爆破等设备与方法开挖 2.2.2 桩基础 将作用于桩顶以上的结构物传来的荷载传到较深的地基持力层中去。当荷载较大或桩数量较多时需在桩顶设承台将所有基桩联接成一个整体共同承担上部结构的荷载。 桩基础包括:沉桩、钻孔灌注桩、挖孔灌注桩。 2.2.2.1沉桩 1)锤击沉桩法一般适用于松散、中密砂土、黏性土。 2)振动沉桩法一般适用于砂土,硬塑及软塑的黏性土和中密及较松的碎石土。 3)射水沉桩法适用在密实砂土,碎石土的土层中。 4)适用于在黏性土、砂土、碎石土中埋置大量的大直径圆桩。 2.2.2.2钻孔灌注桩 适用于黏性土、砂土、砾卵石、碎石、岩石等各类土层。 2.2.2.3挖孔灌注桩 适用于无地下水或少量地下水,且较密实的土层或风化岩层。如空气污染物超标,必须采取通风措施 2.2.3 管柱

它是一种深基础,埋入土层一定深度,柱底尽可能落在坚实土层或锚固于岩层中,作用在承台的全部荷载,通过管柱传递到深层的密实土或岩层上。 适用于岩层、紧密黏土等各类紧密土质的基底,并能穿过溶洞、孤石支承在紧密的土层或新鲜岩层上,不适用于有严重地质缺陷的地区,如断层挤压破碎带或严重的松散区域 2.2.4 沉井 沉井是桥梁墩台常用的一种深基础型式,有较大的承载面积,可以穿过不同深度覆盖层,将基底放置在承载力较大的土层或岩面上,能承受较大的上部荷载。 适用于竖向和横向承载力大的深基础 2.2.5 地下连续墙 地下挡土墙墙体刚度大,主要承受竖向和侧向荷载,通常既要作为永久性结构的一部分,又要作为地下工程施工过程中的防护结构。 适用于各种用途,通常可作为基坑开挖时防渗、挡土,或挡水围堰,或邻近建筑物基础的支护,或直接作为承受上部荷载的基础结构。及适用于除岩溶和地下承压水很高处的其他各类土层中施工 三、桥梁墩、台结构的受力特点分析 桥梁墩台承担着桥梁上部结构所产生的荷载,并将荷载有效地传递给地基基础,起着“承上启下”的作用。 桥墩为多跨桥梁中的中间支承结构物,除承受上部结构产生竖向力、水平力和弯矩外,还承受风力、流水压力及可能发生的地震力、冰压力、船只和漂流物的撞击力。 桥台设置在桥梁两端,除了支承桥跨结构外,又是衔接两岸接线路堤的构筑物;它既要能挡土护岸,又能承受台背填土及填土上车辆荷载所产生的附加土侧压力。 桥梁墩台不仅自身应有足够的强度、刚度和稳定性,而且对地基的承载能力、沉降量、地基与基础之间的摩阻力等也都提出一定的要求,避免在上述荷载作用下产生危害桥梁整体结构的水平、竖向位移和转角位移。桥梁墩台受力计算时的荷载及其组合应根据可能出现的各种荷载情况进行最不利的荷载组合。 四、桥梁上部结构分类和受力特点分析 4.1 斜交板桥 4.1.1在均布荷载作用下,当桥轴向的跨长相同时,斜板桥的最大跨内弯矩比正桥要小。 4.1.2在均布荷载作用下,当桥轴向的跨长相同时,斜板桥的跨中横向弯矩比正桥要小

相关主题
文本预览
相关文档 最新文档