当前位置:文档之家› 中达开关电源MCS3000H资料

中达开关电源MCS3000H资料

中达开关电源MCS3000H资料
中达开关电源MCS3000H资料

中达开关电源MCS3000H操作及参数设定

一、概述

此章是说明系统运作资料的显示和告警画面的说明, 以及系统如何进行操作参数设定,指导用户针对某些特定的参数重新设定, 其余则由出厂时

设定完成。

二、系统显示

系统开机显示产品系列和监控软件的版本,如下所示:

中达电通MCS3000H

版本:V1.0.00

监控模块提供4行16个字符格式数字式的液晶LCD显示器,通常显示系统输出直流电压、负载总电流和系统状态(浮充或均充),这就是默认的主页(如下图所示)。

200 A 54.0 V

浮充

-48V系统

注:无告警的情况下,如果当前画面不在主页,没有按键操作超过40秒显示器自动转回主页;有告警时,主页与告警提示页交替显示。

三、前面板按钮

除了在监控模块或菜单主页中,有下列5个菜单按钮中包括了系统中绝大多数的参数,通过这些菜单可直接进入相关联的项目:

a)

b)

中;

c),储存了最近发生的100条告警信息(包

括告警数据和时间)。

d),包括所有系统参数菜单,同时针对每一项设定利用加和减键来

修改设定值。

e)

结束后再按一次回车键确认。

四、状态指示灯

除了液晶显示器中的菜单内容外,另外有3个系统状态指示灯如下:

系统运行正常 绿色指示灯

告警/均充! 黄色指示灯

整流模块关机 红色指示灯

如果这3个指示灯都关闭,则表示系统关机,可能的原因如下所列:

监控模块内部故障

黄色告警指示灯代表任何告警状态的发生,既包括系统也包括模块的有关告警,当告警出现时,按回车键查看告警内容。红色告警灯亮表示有一个或多个整流模块关机。

监控模块中所有可能的告警列在下面的表格中:

五、操作

5.3节所示)。

数而不需一个一个的向下翻页。

参考后续的5.5.2,5.5.3,5.5.4节的描述。

任何情况下,要返回监控模块主页,只要再按当前的菜单按钮一次即可。例如:如果当

先按

1、系统菜单

1) 环境温度值(摄氏度℃)

2) 单相交流电压值

单相AC电压

218V

3) 单相交流电流值

单相AC电流

0A

4) 环境温度过高告警值(摄氏度℃)

环境温度告警值

39C

5) 输出电压过高告警值

高压告警值

57.5V

6) 输出电压过低告警值

低压告警值

46.5V

7) 模块限流之最小值。此项设定的作用是在模块自动限流时,能保证单个模块输出的最小电流值。当CSU计算出的限流值小于该设定值时,此时模块输出的电模块限流之最小值

30A

流值就等于该设定值。这样做是防止因电池的霍尔侦测

损坏,误进入深度限流状态而导致系统关机。如果正常

运行时,每个模块的输出电流小于这个设定值,则限流

时这个数据将起不到保护作用。所设值需依据实际负载

而定。

8) 密码设定。

密码设定

请按确认键

9) 测试指示。按确认键显示软件版本信息,同时对画

面进行显示测试。测试指示

请按确认键

10) 通讯波特率设定。

用来设定CSU与外界通过RS232口通讯时的速率。通讯波特率设定

9600

11) 系统设定。按确认键可选择UPS或待机。

当选择为待机时,模块无负载不告警,但在模块资料中有显示。系统设定

待机

12) 系统中的整流模块数量。这个数值是依照系统上实

际的整流模块个数来设定。模块数量

12

13) 选择系统上连接到监控模块的硬件界面。根据系统

接口选择

软件的不同,它可能会有一类接口板或二类接口板的不

同选择。(一类接口板主要用于一般功能的小系统;二

一类接口板类接口板主要用于功能强大及有扩充功能的大系统,相

对扩充功能有:a.直流负载分路的侦测;b.环境侦测板

等。在本系统中使用一类接口板。)

14)系统中电池模组的数量。

电池数量

1

15)电池电流传感器满刻度额定值。按霍尔传感器输入

电池电流满量程4V时的额定值而定。例如:如果一个霍尔传感器额定

值600A/4V,则显示屏上设定为600A。例:如果为

480A

600A/5V,则显示屏上设定为480A(600*4/5)。

16)按确认键选择功能开/关。

模块无负载告警当选择为关时,无负载状态将不产生任何告警。

选择为开时,当模块输出<1A,将产生告警。

17)侦测电池霍尔的开关,此功能目前未用,设定为关。

电池霍尔测试

18)进入局端的号码。最多7位字节。

局码

0000000

19)日期格式。日期格式可以被修改为日/月/年。

日期格式

日/月/年

20)时钟设定。监控模块时钟通过设定日期和时间来决

定。注:系统上显示为日/月/年,时:分:秒。日期01/01/2006

时间 00 :21 : 58 21)告警回拨。用开和关状态来设定。如果在开状态,

告警回拨

发生一个告警时,系统会拨出时间设定显示屏下面的第

1个电话号码(Phone 1) ;

如果Phone 1未响应,系统会自动拨Phone 2;如果Phone

告警回拨

2也没有响应,系统会自动拨Phone 3;如果Phone 3

也没有响应,则再从Phone1试拨。

22)日报单。有开和关状态,在开状态下,系统会自动

每日回拨

与时间设定显示屏下面的电话号码联机,并下载所有操

作参数的状态。

每日回拨

日报单时间。

每日回拨时间设定

15:15

23)Modem开启。Modem在开和关状态间切换,前面板

会正常显示开或面板操作无效。Modem

Modem在开状态,下面的显示内容才会出现。

Modem

电话号码 1。当告警出现时最先通告的号码。号码最长

存储20位,如果号码超过10位,会显示两个显示屏。电话号码 1

58635678,,

右图为超过10位的号码在下一个显示屏中继续显示。

电话号码 1 ……

8239 电话号码2。如果电话号码1未响应,则会拨这个号码。

电话号码2

58635678,,右图为超过10位的号码在下一个显示屏中继续显示。

电话号码 2 ……

8238

电话号码3。如果电话号码 2未响应,则会拨这个号

码。电话号码3

58635678,,右图为超过10位的号码在下一个显示屏中继续显示。

电话号码 3 ……

例如如果有分机的情况:右图号码58635678为主机号,

8237为自动应答的分机号,中间用两个逗号延时。

8237

右图为超过10位的号码在下一个显示屏中继续显示。

电话号码 3 ……

例如如果有分机的情况:右图号码58635678为主机号,

8237为自动应答的分机号,中间用两个逗号延时。

8237

注:如果需要有告警通知和/或日报单传送给本地PC机,则设定本地PC机为On状态,Modem为关状态。

24) 声音告警功能开启。有开、关和定时长三个状态。

声音告警在开状态和定时长状态,发生任何告警都会发出告警声

开状态时告警声一直存在,定时长状态时告警声响2分

钟后停止,如果告警时,在首页中按「回车」键查看告

警内容时,告警声会立即停止,但之后若有新的告警出

现,声音则又会发出。

关闭状态,关闭告警声音

声音告警

定时长状态,告警声音持续2分钟

声音告警

定时长

25)输入断路器连锁触点。这个输入可设定为常开,常

闭或未用状态。本系统设为未用。告警输入定义

-未用-

26) 电池断路器输入连锁触点。有常开,常闭或未用状

态。本系统设为未用。电池开关输入

-未用-

27)低压隔离开关输入连锁触点。有常开,常闭或未用

状态。本系统设定为常闭。LVDS1输入

常闭

LVDS2输入

常闭

28)模块分组设定状态。在系统上的SMR不连续放置

时,请打开此功能,存在SMR且连续的位置设为一组,空缺的位置设为1组。例如:系统存在10个SMR,分别放置的位置为1-4,7-12,那么:模块分组设置请按确认键

28-1)第一组末尾模块号为4;

第一组末尾模块号

4

28-2) 第二组末尾模块号为6;

第二组末尾模块号

6

28-3

) 第三组末尾模块号为12。

第三组末尾模块号

12

28-4

) 第四组末尾模块号为*。

第四组末尾模块号

*

29) 辅助单元设定

辅助单元参数设定 请按确认键

29-1)单相交流侦测开关设定

注:只有当该项处于开启状态时才能显示下列29-1-1)

至29-1-4)各项内容。

单相交流侦测板 请按回车键

29-1-1)单相交流侦测开关设定(包括开启和关闭状态)。本系统设置为开。

单相交流侦测板

开/关

29-1-2)单相交流高压告警值,高于该设定值时便产生告警。

单相AC 高压告警值

290V

29-1-3)单相交流低压告警值,低于该设定值时便产生告警。

单相AC 低压告警值

154V

29-1-4)单相交流满刻度电流(本系统不用设定)。

单相AC满刻度电流

600A

29-2)三相交流侦测开关设定

三相交流#1侦测板

注:只有当该项处于开启状态时才能显示下列29-1-1)

至29-1-4)各项内容。

请按确认键注:本系统软件保留了三相电压侦测功能,但在系统正常工作时,该功能是被关闭掉的,因为本系统是侦测单相电压。因此在系统菜单中没有显示相应的资料信息。

29-2-1)三相交流侦测开关设定(包括开启和关闭状

态)。三相交流#1侦测板

开/关

29-2-2)三相交流高压告警值,高于该设定值时便产生

告警。三相AC高压告警值

450V

29-2-3)三相交流低压告警值,低于该设定值时便产生

告警。三相AC低压告警值

200V

29-2-4)三相交流高频告警值,高于该设定值时便产生

告警。三相AC高频告警值

55.0Hz

29-3)电池组监控单元

电池组监控单元

开/关

29-4)直流分路侦测设定(其中包括#1、#2、#3、#4直流侦测板)。

注:当系统里有直流侦测板时才需要设定。本系统设置为关。

直流侦测板#1 请按回车键

直流侦测板#1

2、整流模块菜单

按监控模块前面板上的

键,可以查阅所有与单个整流模块相关的信息。任何时

1) 如果一个整流模块没有被正确接入系统或模块开关未打开,或模块故障,显示屏上会出现整流模块通讯故障的画面。

整流模块 1 通讯故障

警告: 利用监控模块主页菜单正确输入整流模块的个数对避免误告警非常关键。 注:输出电流和限流值显示在画面的下面(如图所示对于一个额定50A 的设备)。

显示正常模块的输出电流。

模块的显示个数与系统设定的模块数目相同。

整流模块2

21A

2)

浮充电压值。这个参数是间接的在电池菜单中设定的,所以在这个画面中不能进行修改。

模块浮充 54.0V

3) 如果在上面的画面中按

键,会显示下面的信

息。模块浮充

不可调节的

4) 像浮充电压值一样,均充电压参数也是间接的从电

池菜单中设定的,在此画面中不能进行修改。模块均充

56.4V

5)

息。模块均充

不可调节的

2.1可编辑的整流模块菜单参数画面

通过按

/

1) 整流模块高压关机 (HVSD)值

模块高压关机值

59V

2) 整流模块限流值

模块限流值

55A

3) 高压关机重置。如果模块发生高压关机,当系统电

压恢复正常,确认模块也没损坏时,通过按

键,高压关机会重置,则关机的模块会重新启动。

模块高压关机恢复

请按确认键

注:任何参数的重新设定对所有的整流模块都有效。

3、电池菜单

在监控模块前面板上按

如果试图去改变一个不可修改的参数,则会出现一个“不可调节”的画面。

1) 电池1电流

电池组 1

12A

2)

电池温度(如果安装了电池温度侦测线)。电池温

度以摄氏度表示。侦测线要放在两个电池间最热的

一点上;

电池温度

23℃

如果电池温度侦测线未接入,且温度传感器告警开

关打开了,会显示‘传感器故障’的画面。电池温度

传感器故障

3) 电池1剩余容量状态。这个画面显示电池1的剩余

容量。电池1剩余容量

499Ah

4) 电池放电告警值。这项功能可以在放电状态的电池

的电压降到设定值时发出一个低压放电告警。电池低压放电告警

47.0V

5) 放电不平衡设定值。两路电池放电时电流之差大于

这个设定值时会出现告警。通常一个合理的参数值

为总的放电电流的20%。

此项设定只有当系统充电电流值>1时,才会显示。

放电不平衡设定值

37 A

6) 电池的额定值(Ah)。必须在这个画面中输入电池

的额定A/H值。(按电池的规格而定)电池标称值

500 Ah

常用开关电源芯片大全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 DC-DC 电源转换器 1. 低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2. 低功耗开关型DC-DC电源转换器ADP3000 3. 高效3A开关稳压器AP1501 4. 高效率无电感DC-DC电源转换器FAN5660 5. 小功率极性反转电源转换器ICL7660 6. 高效率DC-DC电源转换控制器IRU3037 7. 高性能降压式DC-DC电源转换器ISL6420 8. 单片降压式开关稳压器L4960 9. 大功率开关稳压器L4970A 高效率单片开关稳压器L4978 高效率升压/降压式DC-DC电源转换器L5970 14. 高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 降压单片开关 稳压器LM2576/LM2576HV 16. 可调升压开关稳压器LM2577 降压开关稳压器LM2596 18. 高效率5A 开关稳压器LM2678 19. 升压式DC-DC电源转换器LM2703/LM2704 20. 电流模式升压式电源转换器LM2733 21. 低噪声升压式电源转换器LM2750 22. 小型75V降压式稳压器LM5007 23. 低功耗升/降压式DC-DC电源转换器LT1073 24. 升压式DC-DC电源转换器LT1615 25. 隔离式开关稳压器LT1725 26. 低功耗升压电荷泵LT1751 27. 大电流高频降压式DC-DC电源转换器 LT176 5 28. 大电流升压转换器LT1935 29. 高效升压式电荷泵LT1937 30. 高压输入降压式电源转换器LT1956 32. 高压升/ 降压式电源转换器LT3433

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

300w开关电源设计(图纸)

TND313/D Rev 3, Sep-11 High-Efficiency 305 W ATX Reference Design Documentation Package ? 2011 ON Semiconductor.

Disclaimer: ON Semiconductor is providing this reference design documentation package “AS IS” and the recipient assumes all risk associated with the use and/or commercialization of this design package. No licenses to ON Semiconductor’s or any third party’s Intellectual Property is conveyed by the transfer of this documentation. This reference design documentation package is provided only to assist the customers in evaluation and feasibility assessment of the reference design. The design intent is to demonstrate that efficiencies beyond 80% are achievable cost effectively utilizing ON Semiconductor provided ICs and discrete components in conjunction with other inexpensive components. It is expected that users may make further refinements to meet specific performance goals.

开关电源维修步骤及常见故障分析 - 电源

开关电源维修步骤及常见故障分析- 电源 1、修理开关电源时,首先用万用表检测各功率部件是否击穿短路,如电源整流桥堆,开关管,高频大功率整流管;抑制浪涌电流的大功率电阻是否烧断。再检测各输出电压端口电阻是否异常,上述部件如有损坏则需更换。 2、第一步完成后,接通电源后还不能正常工作,接着要检测功率因数模块(PFC)和脉宽调制组件(PWM),查阅相关资料,熟悉PFC和PWM模块每个脚的功能及其模块正常工作的必备条件。 3、然后,对于具有PFC电路的电源则需测量滤波电容两端电压是否为380VDC左右,如有380VDC左右电压,说明PFC模块工作正常,接着检测PWM组件的工作状态,测量其电源输入端VC ,参考电压输出端VR ,启动控制Vstart/Vcontrol端电压是否正常,利用220VAC/220VAC隔离变压器给开关电源供电,用示波器观测PWM模块CT端对地的波形是否为线性良好的锯齿波或三角形,如TL494 CT端为锯齿波,FA5310其CT端为三角波。输出端V0的波形是否为有序的窄脉冲信号。 4、在开关电源维修实践中,有许多开关电源采用UC38××系列8脚PWM组件,大多数电源不能工作都是因为电源启动电阻损坏,或芯片性能下降。当R断路后无VC,PWM 组件无法工作,需更换与原来功率阻值相同的电阻。当PWM组件启动电流增加后,可减小R值到PWM组件能正常工作为止。在修一台GE DR电源时,PWM模块为UC3843,检测未发现其他异常,在R(220K)上并接一个220K的电阻后,PWM组件工作,输出电压均正常。有时候由于外围电路故障,致使VR端5V电压为0V,PWM组件也不工作,在修柯达8900相机电源时,遇到此情况,把与VR端相连的外电路断开,VR从0V变为5V,PWM 组件正常工作,输出电压均正常。 5、当滤波电容上无380VDC左右电压时,说明PFC电路没有正常工作,PFC模块关键检测脚为电源输入脚VC,启动脚Vstart/control,CT和RT脚及V0脚。修理一台富士3000相机时,测试一板上滤波电容上无380VDC电压。VC,Vstart/control,CT和RT波形以及V0波形均正常,测量场效应功率开关管G极无V0 波形,由于FA5331(PFC)为贴片元件,机器用久后出现V0端与板之间虚焊,V0信号没有送到场效应管G极。将V0端与板上焊点焊好,用万用表测量滤波电容有380VDC电压。当Vstart/control 端为低电平时,PFC亦不能工作,则要检测其端点与外围相连的有关电路。

各种开关电源介绍-开关电源设计知识大全

开关电源介绍 一、基础知识: 新型变压器:磁性元件,新型磁材料和新型变压器的开发。如集成磁路,平面型磁心,超薄型变压器;以及新型变压器如压电式,无磁芯印制电路变压器等,使开关电源的尺寸重量都可减少许多。 硬开关的条件下MOSFET和IGBT开关损耗分析: 1).开通损耗方面:由于MOSFET的输出电容大,器件处于断态时,输入电压加在输出电容上,输出电容储存较大能量。在相继开通时这些能量全部消耗在器件内,开通损耗大。器件的开通损耗和输出电容成正比,和频率成正比和输入电压的平方成正比[12]。而IGBT的输出电容比MOSFET小得多,断态时电容上储存的能量较小,故开通损耗较小。 2).关断损耗方面:MOSFET属单极型器件,可以通过在施加栅极反偏电压的方法,迅速抽走输入电容上的电荷,加速关断,使MOSFET关断时电流会迅速下降至零,不存在拖尾电流,故关断损耗小[10];而IGBT由于拖尾电流不可避免,且持续时间长(可达数微秒),故关断损耗大。 综合以上分析,硬开关条件下MOSFET的开关损耗主要是由开通损耗引起,而IGBT则主要是由关断损耗引起。因此使用MOSFET作为主开关器件的电路,应该工作于ZVS条件下,这样在器件开通前,漏极和源极之间的电压先降为零,输出电容上储存能量很小,可以大大降低MOSFET的开通损耗;而使用IGBT作为主开关器件的电路,应该工作于ZCS条件下,这样在器件关断前,流过器件的电流先降为零,可以大大降低因拖尾电流造成的关断损耗。 软开关:当电流过零时,使器件关断;当电压过零时,使器件开通-实现开关损耗为零。 变流器:把输入的电源,进行电压、电流变换,达到规定的要求后输出给用电设备。 DC-DC:直流变压器。斩波器。 为什么反激开关电源只能适合小功率?200W以下。正激开关电源适合大功率开关电源? 高效率小体积(高功率密度)一直是DC-DC变换器用户的追求,也是设计的要点。提高功率密度最有效的方式就是提高开关频率,线圈和变压器对高速变化的磁力线感应灵敏度高、特别高效率,衰减特别小,传递效率特别高,而对低频变化的磁力线灵敏度低、衰减大,传递效率差,因此高频下的磁芯体积会大幅度减小,但频率的提高会使开关管的开关损耗加大,对变换器的效率造成影响。如何在高频下减小开关管的开关损耗,是DC-DC变换器是否能实现高效率高功率密度的关键,在这种背景下,高频软开关技术逐渐成为研究的热点,LLC谐振变换器是在串联谐振变换器的基础上增加了一个与负载并联的电感,是目前效率最高的开关电源。

开关电源控制芯片M51995资料资料精

SWITCHING REGULATOR CONTROL DESCRIPTION M51995A is the primary switching regulator controller which is especially designed to get the regulated DC voltage from AC power supply. This IC can directly drive the MOS-FET with fast rise and fast fall output pulse. Type M51995A has the functions of not only high frequency OSC and fast output drive but also current limit with fast response and high sensibility so the true "fast switching regulator" can be realized. It has another big feature of current protection to short and over current,owing to the integrated timer-type protection circuit,if few parts are added to the primary side. The M51995A is equivalent to the M51977 with externally re-settable OVP(over voltage protection)circuit. 500kHz operation to MOS FET ?Output current...............................................................±2A ?Output rise time 60ns,fall time 40ns ?Modified totempole output method with small through current Compact and light-weight power supply ?Small start-up current............................................90μA typ. ?Big difference between "start-up voltage" and "stop voltage" makes the smoothing capacitor of the power input section small.Start-up threshold 16V,stop voltage 10V ?Packages with high power dissipation are used to with-stand the heat generated by the gate-drive current of MOS FET. 16-pin DIP,20-pin SOP 1.5W(at 25°C) Simplified peripheral circuit with protection circuit and built-in large-capacity totempole output ?High-speed current limiting circuit using pulse-by-pulse method(Two system of CLM+pin,CLM-pin) ?Protection by intermittent operation of output over current...... ..........................................................Timer protection circuit ?Over-voltage protection circuit with an externally re-settable latch(OVP) ?Protection circuit for output miss action at low supply voltage(UVLO) High-performance and highly functional power supply ?Triangular wave oscillator for easy dead time setting APPLICATION Feed forward regulator,fly-back regulator RECOMMENDED OPERATING CONDITIONS Supply voltage range............................................12 to 36V Operating frequency.................................less than 500kHz Oscillator frequency setting resistance ?T-ON pin resistance R ON ...........................10k to 75k ? ?T-OFF pin resistance R OFF ..........................2k to 30k ?

史上最全的开关电源设计经验资料

三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。 则代入k 后,dB =μ0×I ×dl ×R/4πR 3 对其积分可得B = 3 40R C R Idl ?? π μ

开关电源设计教学内容

开关电源设计

开关直流稳压电源设计 摘要 直流稳压电源应用广泛,几乎所有电器,电力或者电子设备都毫不例外的需要稳定的直流电压(电流)供电,它是电子电路工作的“能源”和“动力”。不同的电路对电源的要求是不同的。在很多电子设备和电路中需要一种当电网电压波动或负载发生变化时,输出电压仍能基本保持不点的电源。电子设备中的电源一般由交流电网提供,如何将交流电压(电流)变为直流电压(电流)供电?又如何使直流电压(电流)稳定?这是电子技术的一个基本问题。解决这个问题的方案很多,归纳起来大致可分为线性电子稳压电源和开关稳压电源两类,他们又各自可以用集成电路或分立元件构成。开关稳压电源具有效率高,输出功率大,输入电压变化范围宽,节约能耗等优点。 一、引言 1.1基本要求 稳压电源。 1.基本要求 ①输出电压UO可调范围:12V~15V; ②最大输出电流IOmax:2A; ③U2从15V变到21V时,电压调整率SU≤2%(IO=2A); ④IO从0变到2A时,负载调整率SI≤5%(U2=18V); ⑤输出噪声纹波电压峰-峰值UOPP≤1V(U2=18V,UO=36V,IO=2A); ⑥DC-DC变换器的效率≥70%(U2=18V,UO=36V,IO=2A); ⑦具有过流保护功能,动作电流IO(th)=2.5±0.2A; 1.2发挥部分 (1)排除短路故障后,自动恢复为正常状态; (2)过热保护; 二、方案设计与论证 开关式直流稳压电源的控制方式可分为调宽式和调频式两种。实际应用中,调宽式应用较多,在目前开发和使用的开关电源集成电路中,绝大多数为脉宽调制(PWM)型。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值,即占空比来改变输出电压,通常有三种方式:脉冲宽度调制(PWM)、脉冲频率调制(PFM)和混合调制。PWM调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式。因为周期恒定,滤波电路的设计比较简单,因此本次设计采用PWM调制方式实现电路设计要求。主要框架如图1所示。由变压器降压得到交流电压,再经过整流滤波电路,将交流电变成直流电,然后再经过DC-DC变换,由PWM的驱动电路去控制开关管的导通和截止,从而产生一个稳定的电压源。

Power Management-电源管理IC

Yuming电子知识系列 Power Management Power Management 电源管理 IC Yuming Sun Jul, 2011 Jul2011 yuming924@https://www.doczj.com/doc/b79970270.html,

CONTENTS 础知识 ?基础知识 ?LDO Regulator ?Switching Regulator (DC-DC) ?Charge Pump(电荷泵) Ch P ?W-LED Driver ?Voltage Reference (电压参考/基准源) Voltage Reference( ?Reset IC (Voltage Detector) ?MOSFET Driver ?PWM Controller

基础知识

Portable Device

便携电子产品常用电源

电力资源-电源管理IC-用电设备 IC :5、3.3、2.5、1.8、1.2、0.9V 等;电力用电电 源管马达:3、6、12V ;LED 灯背光;资源 设备理 IC LCD 屏:12、-5V ;AC Rectifier/PWM IC )AC :110、220V DC C t 升降压DC DC Ch P 等整流:PWM IC (3843或VIPER12)、开关电源DC 或电池 DC Converter :LDO 、升降压DC-DC 、Charge Pump 等。Reset IC 或电压检测:如808、809。电池管理:保护IC 、充电管理(4054Fuel Gauge 等。电池管理保护、充电管理)、g 等DC 或电池AC Inverter/逆变:for CCFL …… (比喻:电荷-水、电流-水流、电容-水桶、电压-水压。)

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

常用开关电源芯片大全复习课程

常用开关电源芯片大 全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751

27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875 40.低噪声高效率降压式电荷泵LTC1911 41.低噪声电荷泵LTC3200/LTC3200-5 42.无电感的降压式DC-DC电源转换器LTC3251 43.双输出/低噪声/降压式电荷泵LTC3252 44.同步整流/升压式DC-DC电源转换器LTC3401 45.低功耗同步整流升压式DC-DC电源转换器LTC3402 46.同步整流降压式DC-DC电源转换器LTC3405 47.双路同步降压式DC-DC电源转换器LTC3407 48.高效率同步降压式DC-DC电源转换器LTC3416 49.微型2A升压式DC-DC电源转换器LTC3426 50.2A两相电流升压式DC-DC电源转换器LTC3428 51.单电感升/降压式DC-DC电源转换器LTC3440 52.大电流升/降压式DC-DC电源转换器LTC3442 53.1.4A同步升压式DC-DC电源转换器LTC3458 54.直流同步降压式DC-DC电源转换器LTC3703 55.双输出降压式同步DC-DC电源转换控制器LTC3736 56.降压式同步DC-DC电源转换控制器LTC3770

最新开关电源安规要求内容

开关电源安规主要内容 森树强电子 一. 安全距离规范 (针对初, 次级及高压, 大电流区域PCB布板) 1. 交流输入L - N, N- GND, L- GND间距必须大于 3.5毫米. 2. 初级整流滤波电容正, 负级间距须大于4毫米. 3. 初, 次级间距须大于6毫米(光耦处间距最小). 4. 次级电路电压小于48V的区域布板时一般不作安全间距要求. 注: 电气间隙与爬电距离应符合相关要求. 二. 耐压测试规范 测试内容及标准: 1. 输入–输出耐压测试及标准 l 交流3000V, 1分钟打耐压, 漏电流设为10mA

l 耐压仪指示漏电流<10mA, 且无飞弧现象为合格. 2. 输入–大地耐压测试 l 交流1500V, 1分钟打耐压, 漏电流设为10mA l 耐压仪指示漏电流<10mA, 且无飞弧现象为合格. 3. 输出–大地耐压测试 l 直流500V, 1分钟打耐压, 漏电流设为10mA l 耐压仪指示漏电流<10mA, 且无飞弧现象为合格. 注:大地为外壳地.测试仪器为耐压测试仪. 三. 绝缘测试规范 测试内容及标准: 1. 输入 - 大地>500Mohm为合格 2. 输出 - 大地 >500Mohm为合格 3. 输入 - 输出 >500Mohm为合格 四. 温度测试规范

1. 测试内容: 开关电源长时间稳定工作后, 测试开关 MOSFET, 开关变压器, 初级整流滤波电容, 次级整流管, 滤波电感的温度值并记录. 2. 判定标准: 将所测温度数值和相关标准安全值对比, 以 上器件的温度值必须小于安全值. 五. 过载测试规范 测试内容: 对每路输出均单独作过载试验(多路输出不同 时作过载试验). 测试方法及判定标准 (1) 在该路输出开关变压器次级交流输出端加负载并使其带满载, 长时间通电工作. (2) 监测开关变压器(磁芯, 漆包线包)的恒定温度值并记录, 不能超过允许值(厂商提供), 且应有15%左右裕量. 同时, 应无过温度保护动作. (3) 若出现过温度保护, 记录此时温度值.

开关电源设计(精通型)

开关电源设计 三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定 条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7H/m 为真空的磁导率。

开关电源常用芯片

FSGM0765RWDTUFSL106HR 、FSL106MR 、FSL116LR 、 开关电源常用芯片 FSCQ1265RTYDTU 、 FSCQ1565RTYDTUFSDL321 FSDH321 、FSDL0165RN 、FSDM0265RNB 、FSDH0265RN 、 FSDM0365RNB 、 FSDL0365RN 、 FSDM0465REWDTU FSDM0565REWDTU 、FSDM07652REWDTU FSDM311A 、FSEZ1016AMY 、 FSEZ1317NY 、 Fairchild 仙童(飞兆)系列开关电源驱动芯片 FAN100MY 、 FAN102MY 、FAN103MY 、 FAN6208 、 FAN6300AMY 、 FAN6754AMRMY 、FAN6862TY 、 FAN6921MRMY 、FAN6961SZ 、FAN7346MX 、FAN7384MX 、 FAN7319MX 、FAN7527BMX 、FAN7527BN 、FAN7554N 、 FAN7554DFAN7621 、FAN7621SSJ 、FAN7621B 、FAN7631 、 FAN7930CMX ;FAN6204MYFL103 、FL6300A 即 FAN6300 、 FL6961 、FL7701 、FL7730 、FL7732 、FL7930B 、 FLS0116 、FLS3217 、FLS3247 、FLS1600XS 、 FLS1800XS 、 FLS2100XSFSFR1600 、 FSFR1600XSL 、 FSFR1700 、FSFR1700XS 、FSFR1700XSL 、FSFR1800 、 FSFR1800XS 、 FSFR1800XSL 、FSFR2100XSL 、 FSFR2100FSCQ0565RTYDTU 、FSCQ0765RTYDTU 、FSDM311 、

开关电源论文资料(DOC)

目录 1 前言 (2) 2.总体方案设计 (3) 2.1 方案一 (3) 2.2 方案二 (4) 2.3方案选择 (4) 3.单元模块设计 (5) 3.1单元模块功能介绍 (5) 3.1.1辅助电源部分设计 (5) 3.1.2主要电源部分设计 (6) 3.1.3保护电路部分设计 (7) 3.1.4继电器驱动部分设计 (8) 3.1.5输出电压比较部分设计 (8) 3.1.6编码译码部分设计 (9) 3.2电路设计及参数计算 (10) 3.3特殊器件介绍: (11) 3.4各单元模块连接 (16) 4.系统调试及结果分析 (17) 5.设计总结 (17) 【参考文献】 (18) 6 系统原理图 (19)

1、前言 可以说,有电器的地方就有电源。所有的电子设备都离不开可靠的电源为其供电。现代电子设备中的电路使用了大量的半导体器件,这些半导体需要几伏到几十伏的直流供电,以便得到正常工作所必需的能源。这些直流电源有的属于化学电源,如采用干电池和蓄电池,但这些不能持久性的供电。大多数电子设备的直流供电方法都是将交流电源经过变压、整流、滤波、稳压等变换为所需的直流电压。完成这种变换任务的电源成为直流稳压电源。 现代电子设备中使用的直流稳压电源有两大类:线性稳压电源和开关性稳压电源。所谓线性稳压电源就是其调整管工作在线性放大区,这种稳压电源的最主要的缺点是变换效率低,一般只有35%~60%左右。开关稳压电源的开关管工作在开关状态,其主要的优越性就是变换效率高,可高达70%~95%。目前,计算机、通信设备、雷达、电视及家用电器等现代电子设备中的稳压电源已基本采用了开关稳压电源,因此,下面将介绍开关稳压电源的设计。

常用开关电源芯片

--------------------------------------------------------------------------- 常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725

中达电通动力环境系统操作说明

SuperWare 该文档的所有版权属于中达电通股份有限公司,其它任何组织和个人未经授权不得复制和传播此文档。中达电通股份有限公司保留对该版权的解释权。 Delta-CIMIC Electronics co.,Ltd owns the sole copyright to this file, any other organization or individual has no rights to copy and distribute this file, except gets the formal authorization. These rights are provided for information clarification, other restrictions of rights may apply as well. Delta-CIMIC Electronics co.,Ltd reserves the explanation right. 动力环境集中监控系统操作说明 SuperWare 5.0 2008年01月 中达电通股份有限公司 Delta-CIMIC Electronics co.,Ltd

目录 1.基本操作方法 (3) 2.系统基本显示与声响 (4) 2.1连接符号说明 (4) 2.2告警颜色等级分类说明 (4) 2.2.1正常告警颜色 (4) 2.2.2告警过滤颜色 (5) 2.2.3通讯中断颜色 (5) 3.警报确认 (5) 3.1告警发生与确认 (5) 3.1.1闪烁 (5) 3.1.2确认 (5) 3.2告警自动恢复画面闪动 (6) 3.2.1告警自动恢复自动确认 (6) 3.2.2告警自动恢复人工确认 (6) 4.告警讯息查询 (6) 4.1告警查询 (6) 4.2讯息查询 (7) 5.基本操作方法 (7) 5.1登入/注销 (7) 5.2更改密码 (8) 6.系统查询显示功能 (8) 6.1显示群点编号 (8) 6.2群点状态查询 (9) 6.3历史数据库查询 (11) 6.4实时数据记录指定查询 (11) SuperWare

相关主题
文本预览
相关文档 最新文档