当前位置:文档之家› 材料力学思考题知识分享

材料力学思考题知识分享

材料力学思考题知识分享
材料力学思考题知识分享

材料力学思考题

1. 强度、刚度、稳定性的概念?

强度:强度要求就是指构件应有足够的抵抗破坏的能力。

刚度:刚度要求就是指构件应有足够抵抗变形的能力。

稳定性:稳定性要求就是指构件应有足够的保持原有平衡型态的能力。

2. 材料力学的研究对象是什么?

材料的力学性能

3. 材料力学的任务是什么?

在满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。

4. 变形固体的基本假设有哪些?

连续性假设:均匀性假设;个相同性假设。

5. 外力是如何分类的?

按外力的作用方式分为:表面力和体积力。

按载荷随时间变化的特点,又可分成静载荷和动载荷。

6. 内力、应力的概念?

内力:物体因受外力作用而变形,其内部格部分之间因相对位置改变而引起的相互作用就是内力。

应力:单位面积上的内力。

7. 应变有哪两种?

切应变和角应变

8. 杆件变形的基本形式有哪些?其各自受力特点是什么?

拉伸或压缩:这类变形形式是由大小相等、方向相反、作用线与杆件轴线重合的一对力引起的,表现为杆件长度的身长或缩短。

剪切:一对垂直于杆件轴线的横向力,他们大小相等、方向相反、作用线相互平行且靠的很近。

扭转:大小相等、转向相反、作用面都垂直于杆轴线的两力偶引起的。表现为杆件的任意两个横截面发生绕轴线的相对转动。

弯曲:作用垂直于杆件轴线的横向力,或作用一对大小相等、转向相反的力偶

引起的,表现为杆件轴线有直线变为曲线。

9. 简述轴向拉伸和压缩时的平面假设。

变形前原为平面的横截面,变形后仍保持为平面且仍垂直于轴线。

10. 简述轴向拉伸和压缩时横截面正应力如何分布。

正应力均匀分布于横街面上。

11. 哪个角度斜截面切应力最大?

与杆件轴线成45°的斜截面上切应力最大。

12. 简述材料力学的力学性能。

指材料在外力作用下表现出的变形、破坏等方面的特性。

13. 通过拉伸和压缩实验,可获得材料的力学性能强度指标和索性指标有哪些?比例极限(弹性极限)σp、屈服极限σs、强度极限σb、弹性模量E、伸长率δ和断面收缩率ψ。

14. 极限应力的概念。

脆性材料断裂时的应力是强度极限σb;塑性材料屈服时的应力是屈服极限σs,这两者都是构件失效时的极限应力。

15. 工程上确定安全因素时应考虑什么?

(1)材料的素质,包括材料的均匀程度、质地好坏、是塑性的还是脆性的等(2)在和情况,包括对载荷的估计是否准确、是静载荷还是动载荷等。

(3)时间构件简化过程和计算方法的精确程度。

(4)零件再设比重的重要性、工作条件、损坏后造成后果的严重程度、制造和维修的难易程度等。

(5)对减轻设备自重和提高设备机动性的要求。

16. 强度条件可解决哪几类的强度计算题?

强度校核、界面设计和确定许可载荷

17. 简述胡克定律。

当应力不超过比例极限时,应变与应变成正比(σ=Eε)。

18. 应变能和应变能密度的概念。

应变能:弹性固体在外力作用下,因变形而储存的能量称为应变能。

应变能密度:每单位体积物体内所积蓄的应变能称为应变能密度。

19. 什么是超静定问题?

杆件的轴力并不能全能静力平衡方程解出,这就是超静定问题。

20. 计算温度应力、装配应力的关键是什么?

建立变形协调方程。

21. 何为应力集中?

因杆件外形突然变化而引起的局部应力急剧增大的现象,称为应力集中。22. 剪切实用计算的关键是什么?

建立强度条件τ=Fs/A≤[τ]

23. 挤压的概念。

在外力作用下,连接件和被连接的构构件之间,必将在接触面上相互压紧,这种现象称为挤压。

24. 简述切应力互等定理。

在单元体相互垂直的两个平面上,切应力必然成对存在,且数值相等;两者都垂直于两个平面得交线,这就是切应力互等定理。

25. 纯剪切的概念。

在上述单元体的顶、底面和左、右两个侧面上,只有切应力并无正应力,这种应力状况称为纯剪切。

26. 简述圆轴扭转的平面假设。

等直圆轴扭转变形前原为平面的横截面变形后仍保持为平面,形状和大小不变,半径仍保持为直线;且相邻两横截面间的距离保持不变。这就是圆轴扭转的平面假设。

27. 试分析汽车采用空心传动轴的原因。

这是因为横截面上的切应力沿半径按线性规律分布,圆心附近切应力很小,材料没有充分发挥作用。若把轴心附近的材料向边缘移置,使其成为空心轴,就会增大Ip(极惯性矩)和Wt(抗扭截面系数)

28.什么是密圈螺旋弹簧?

螺旋弹簧簧丝是一条空间螺旋线,近似地认为,弹簧横截面与弹簧轴线在同一平面内。一般将这种弹簧称为密圈螺旋弹簧。

29.什么是自由扭转?

等值杆两端受扭力偶作用且翘曲不受任何限制时,属于自由扭转。

30.什么是约束扭转?

若由于约束条件或受力条件的限制,杆件各横界面的翘曲程度不同,这势必引起相邻两横截面间纵向线段的长度改变。于是横截面上除了切应力外还有正应力。这种情况称为约束扭转。

31.什么是对称弯曲?

当作用于杆件上的所有外力都在纵向对称面内时,弯曲变形后的轴线也将是位于这个对称面内的一条曲线。这是弯曲问题中最常见的情况,称为对称弯曲。

32.梁的支座可以简化成哪几种方式?

固定铰支座、可动铰支座

33.静定梁分为哪几种形式?

简支梁、外伸梁、悬臂梁

34.弯曲内力包括哪两项?

剪力和弯矩

35.弯曲内力图包括那两项?

(1)横截面的位置(2)横截面上的剪力或弯矩

36.载荷集度、剪力和弯矩之间的关系。

dFs(x)/dx=q(x) dM(x)/dx=Fs(x)

37.何为平面曲杆,弯曲内力包括哪几项?

1)平面曲杆:某些构件,如活塞环、链环、拱等,一般都有一纵向对称面,其轴线是一平面曲线,称为平面曲杆

2)弯矩、剪力、轴力

38.什么是纯弯曲?

横截面上的剪力等于零,而弯矩为常量,于是就只有正应力而无切应力,这种情况就成为纯弯曲。

39.什么是横力弯曲?

横截面上既有弯矩又有剪力,因而既有正应力又有切应力。这种情况称为横力弯曲。

40.提高梁弯曲强度措施都有哪些?

1)改善梁的受力状况,以降低M max的值;

2)采用合理的截面形状,以提高W(抗弯截面系数)的值。

41.什么是等强度梁?

如变截面梁各横截面上的最大正应力都相等,且都等于许用应力,按此要求设计的梁就是等强度梁。

42.一般用什么参数来衡量梁的弯曲变形?

挠度、转角

43.用积分法求弯曲变形时积分常数如何确定?

由边界条件和连续性条件确定。

44.什么是超静定梁?

梁的支座约束力只用静力平衡方程并不能全部确定的梁,叫超静定梁。

45.减小梁弯曲变形的措施有哪些?

1)改善结构形式和在和作用方式,减小弯矩。

2)选择合理的截面形状。

46.求解梁弯曲变形的方法有哪些?

积分法、截面法

47.何为应力状态?

应力状态指的是物体受力作用是,其内部应力的大小和方向不仅随着截面的方位而变化,而且在同一截面上的各点处也不一定相同。

48.应力状态分为哪几项?

应力状态简单应力状态—单项应力状态

复杂应力状态二项应力状态

三项应力状态

49.何为二项应力状态分析?

二项应力状态下,已知通过一点的某些截面上的应力后,确定通过这一点的其他截面上的应力,从而确定主应力和主平面。

50.梁承受横力弯曲时中性轴上各点处与何种应力状态?

纯剪切

51.二向力状态分析有哪几种方法?

解析法、图解法

52.复杂应力状态下,应变能密度由哪两部分组成体积改变能密度(V V)、畸变能密度(V d)53.何为强度理论?

判断材料在复杂应力状态下是否破坏的理论。

材料力学概念及基础知识

一、基本概念 1 材料力学的任务是:研究构件的强度、刚度、稳定性的问题,解决安全与经济的矛盾。 2 强度:构件抵抗破坏的能力。 3 刚度:构件抵抗变形的能力。 4 稳定性:构件保持初始直线平衡形式的能力。 5 连续均匀假设:构件内均匀地充满物质。 6 各项同性假设:各个方向力学性质相同。 7 内力:以某个截面为分界,构件一部分与另一部分的相互作用力。 8 截面法:计算内力的方法,共四个步骤:截、留、代、平。 9 应力:在某面积上,内力分布的集度(或单位面积的内力值)、单位Pa。 10 正应力:垂直于截面的应力(σ) 11 剪应力:平行于截面的应力( ) 12 弹性变形:去掉外力后,能够恢复的那部分变形。 13 塑性变形:去掉外力后,不能够恢复的那部分变形。 14 四种基本变形:拉伸或压缩、剪切、扭转、弯曲。 二、拉压变形 15 当外力的作用线与构件轴线重合时产生拉压变形。 16 轴力:拉压变形时产生的内力。 17 计算某个截面上轴力的方法是:某个截面上轴力的大小等于该截面的一侧各个轴向外力的代数和,其中离开该截面的外力取正。 18 画轴力图的步骤是: ①画水平线,为X轴,代表各截面位置; ②以外力的作用点为界,将轴线分段; ③计算各段上的轴力; ④在水平线上画出对应的轴力值。(包括正负和单位) 19 平面假设:变形后横截面仍保持在一个平面上。 20 拉(压)时横截面的应力是正应力,σ=N/A 21 斜截面上的正应力:σα=σcos2α 22 斜截面上的切应力: α=σSin2α/2 23 胡克定律:杆件的变形时与其轴力和长度成正比,与其截面面积成反比,计算式△L=NL/EA(适用范围σ≤σp) 24 胡克定律的微观表达式是σ=Eε。 25 弹性模量(E)代表材料抵抗变形的能力(单位Pa)。 26 应变:变形量与原长度的比值ε=△L/L(无单位),表示变形的程度。 27 泊松比(横向变形与轴向变形之比)μ=∣ε1/ε∣ 28 钢(塑)材拉伸试验的四个过程:比例阶段、屈服阶段、强化阶段、劲缩阶段。 29 比例极限σp :比例阶段的最大应力值。 30 屈服极限σs :屈服阶段的最小应力值。 31 强化极限σb :断裂前能承担的最大应力值。 32 脆、塑材料的比较: ①脆材无塑性变形,抗压不抗拉;塑材抗拉也抗压。 ②脆材对应力的集中的反应敏感,塑材不敏感。。 33 应力集中:在形状变化处,应力特别大的现象。 34 延伸率:拉断后,变形量与原长的比值(δ=△L1/L,≥5%为塑材) 35 冷作硬化:进入强化阶段后,卸载再重新加载,比例极限增大的现象。 38 极限应力σjx:失去承载能力时的应力 39 许用应力〔σ〕:保证安全允许达到的最大应力。 42 计算思路:外力内力应力。 43 超静定问题:未知力多于平衡方程个数的问题(用平衡方程不能或不能全部计算出构件的外力)。 44 计算超静定问题:除平衡方程以外,更需依据变形实际建立补充方程。 45 剪力:平行于截面的内力(Q),该截面称作剪切面。 46 单剪:每个钉有一个剪切面。双剪:每个钉有两个剪切面。 48 挤压力:两构件相互接触面所承受的压力。 三、扭转 1 外力偶矩的矢量方向与杆件的轴线重合时杆件发生(扭转)变形。杆件的两个相邻截面发生绕轴线的相对转动。 2 传动轴所传递的功P(kw),转速n(r/min),则此外力偶矩为Me=9.549P/n(N*m)。 3 扭转变形时,杆件横截面上的内力称扭矩。表示各截面上扭矩大小的图形,称作扭矩图。 4 两正交线之间的直角的改变量( ),称为剪应变。表示剪切变形的严重程度。 5 剪切胡克定律τ=G ,式中G称为材料剪切弹性模量。 6 薄壁扭转构件横截面上某点的剪应力 n δ,式中 为圆形横截面包围的面积,δ为该点处的壁厚。 7 Ip=∫Aρ2dA称为截面的极惯性矩。 四、弯曲应力: 1 梁弯曲时,作用线与横截面平行的内力,称为剪力。数值上等于该截面之左侧或右侧梁上各个横向外力的代数和,绕截面顺转的力为正。 2 梁弯曲时,作用面垂直于轴线的内力偶矩,称为弯矩。数值上等于该截面之左侧或右侧梁上各个外力(包括力偶)对截面力矩的代数和,使截面处产生凹变形的力矩为正。 3 无均布载荷梁段,剪力为水平直线。 无剪力(零)的梁段,弯矩为水平直线。 在集中力作用的截面,剪力图上发生转折,在集中力偶作用的截面,弯矩图上发生跃变。 在剪力为零的截面,弯矩有极大值。最大弯矩发生在Q=0 ,集中力偶两侧、悬臂梁根部和集中力的截面上。 Iz=∫Ay2dA称为截面的轴惯性矩。式中y是微面积dA到中性轴的距离。 中性轴通过截面的形心,是拉压区的分界线。 五、弯曲时的位移 1 挠度是梁弯曲时横截面的形心在垂直于梁轴线方向的位移。 2 转角是梁变形时横截面绕其中性轴旋转的角度。 六、超静定问题 1 使用静力平衡方程不能求出结构或构件全部约束力或内力的问题。 2 多余约束力 解除维持构件平衡的多余约束后,以力代替该约束对构件的作用力。 变形协调方程 多余约束力与基本力共同作用的变形满足梁的约束条件。 七、应力状态和强度理论 1 应力状态: 受力构件内部一点处不同方位截面应力的集合。 单元体:围绕构件内一点处边长为无穷小的立方体。 主平面:单元体上剪力为零的截面 4 截面核心:压力作用线通过此区域,受压杆横截面上无拉应力。 5 弯矩扭合构件选用空心圆形截面比较合理。 九、压杆稳定 1 稳定性:受压杆件保持原有直线平衡形式的能力。 2 临界力Pcr:受压杆件能保持稳定的最大压力。 9 提高稳定措施:①环形截面;②减小长度;③固定牢固。 冷拉是在常温条件下,以超过原来钢筋屈服点强度的拉应力,强行拉伸钢筋,使钢筋产生塑性变形以达到提高钢筋屈服点强度和节约钢材为目的。 冷拔-是材料的一种加工工艺,对于金属材料,冷拔指的是为了达到一定的形状和一定的力学性能,而在材料处于常温的条件下进行拉拔。冷拔的产品较之于热成型有:尺寸精度高和表面光洁度好的优点。第一章绪论 §1.1 材料力学的任务 二、基本概念 1、构件:工程结构或机械的每一组成部分。(例如:行车结构中的横梁、吊索等) 材料力学—研究变形体,研究力与变形的关系。 2、变形:在外力作用下,固体内各点相对位置的改变。(宏观上看就是物体尺寸 和形状的改变) 弹性变形—随外力解除而消失 塑性变形(残余变形)—外力解除后不能消失 刚度:在载荷作用下,构件抵抗变形的能力 3、内力:构件内由于发生变形而产生的相互作用力。(内力随外力的增大而增大) 强度:在载荷作用下,构件抵抗破坏的能力。 4、稳定性:在载荷作用下,构件保持原有平衡状态的能力。 强度、刚度、稳定性是衡量构件承载能力的三个方面,材料力学就是研究构件承 载能力的一门科学。 三、材料力学的任务 材料力学的任务就是在满足强度、刚度和稳定性的要求下,为设计既经济又安全 的构件,提供必要的理论基础和计算方法 研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在进行理论分 析的基础上,实验研究是完成材料力学的任务所必需的途径和手段。 四、材料力学的研究对象 构件的分类:杆件、板壳*、块体* 材料力学主要研究杆件﹜直杆——轴线为直线的杆曲杆——轴线为曲线的 杆 等截面杆——横截面的大小形状不变的杆变截面杆——横截面的大小或形状 变化的杆 等截面直杆——等直杆 §1.2 变形固体的基本假设 在外力作用下,一切固体都将发生变形,故称为变形固体。在材料力学中,对变 形固体作如下假设: 1、连续性假设:认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织球墨铸铁的显微组织 2、均匀性假设:认为物体内的任何部分,其力学性能相同 普通钢材的显微组织优质钢材的显微组织 3、各向同性假设:认为在物体内各个不同方向的力学性能相同 (沿不同方向力学性能不同的材料称为各向异性材料。如木材、胶合板、纤维增 强材料等) 4、小变形与线弹性范围:认为构件的变形极其微小,比构件本身尺寸要小得多。 如右图,δ远小于构件的最小尺寸,所以通过节点平衡求各杆内力时,把支架的 变形略去不计。计算得到很大的简化。 §1.3 外力及其分类 外力:来自构件外部的力(载荷、约束反力) 按外力作用的方式分类 体积力:连续分布于物体内部各点的力。如重力和惯性力 表面力: 分布力:连续分布于物体表面上的力。如油缸内壁的压力,水坝受到的水压力等 均为分布力 集中力:若外力作用面积远小于物体表面的尺寸,可作为作用于一点的集中力。 按外力与时间的关系分类 静载:载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著,称为静 载 动载:载荷随时间而变化。如交变载荷和冲击载荷 §1.4 内力、截面法和应力的概念 内力:外力作用引起构件内部的附加相互作用力。 求内力的方法—截面法 (1)假想沿m-m横截面将杆切开(2)留下左半段或右半段(3)将弃去部分对留 下部分的作用用内力代替(4)对留下部分写平衡方程,求出内力的值。 §1.4 内力、截面法和应力的概念 为了表示内力在一点处的强度,引入内力集度,即应力的概念。 §1.5 变形与应变 1.位移:MM' 刚性位移;变形位移。 2.变形:物体内任意两点的相对位置发生变 化。 取一微正六面体 两种基本变形: 线变形——线段长度的变化角变形——线段间夹角的变化 3.应变 正应变(线应变) x方向的平均应变:切应变(角应变) 杆件的基本变形:拉伸(压缩)、剪切、扭转、弯曲 第二章拉伸、压缩与剪切(1) §2.1 轴向拉伸与压缩的概念和实例 受力特点与变形特点:作用在杆件上的外力合力的作用线与杆件轴线重合,杆件 变形是沿轴线方向的伸长或缩短。 §2.2 轴向拉伸或压缩时横截面上的内力和应力 2、轴力:截面上的内力 由于外力的作用线与杆件的轴线重合,内力的作用线也与杆件的轴线重合。所以 称为轴力。 4、轴力图:轴力沿杆件轴线的变化 杆件的强度不仅与轴力有关,还与横截面面积有关。必须用应力来比较和判断杆 件的强度。 在拉(压)杆的横截面上,与轴力FN对应的应力是正应力。根据连续性假设, 横截面上到处都存在着内力。 观察变形: 平面假设—变形前原为平面的横截面,变形后仍保持为平面且仍垂直于轴线。 从平面假设可以判断: (1)所有纵向纤维伸长相等(2)因材料均匀,故各纤维受力相等 (3)内力均匀分布,各点正应力相等,为常量 §2.3 直杆轴向拉伸或压缩时斜截面上的应力 实验表明:拉(压)杆的破坏并不总是沿横截面发生,有时却是沿斜截面发生的 §2.4 材料拉伸时的力学性能 一试件和实验条件:常温、静载 二低碳钢的拉伸 明显的四个阶段 1、弹性阶段ob 2、屈服阶段bc(失去抵抗变形的能力) 3、强化阶段ce(恢 复抵抗变形的能力) 4、局部径缩阶段ef 两个塑性指标: 断后伸长率断面收缩率 δ>5%为塑性材料δ<5%为脆性材料 低碳钢的S≈20-30% ψ≈60%为塑性材料 三卸载定律及冷作硬化 1、弹性范围内卸载、再加载 2、过弹性范围卸载、再加载 材料在卸载过程中应力和应变是线性关系,这就是卸载定律。 材料的比例极限增高,延伸率降低,称之为冷作硬化或加工硬化。 四其它材料拉伸时的力学性质 对于没有明显屈服阶段的塑性材料,用名义屈服极限σp0.2来表示。 对于脆性材料(铸铁),拉伸时的应力应变曲线为微弯的曲线,没有屈服和径缩 现象,试件突然拉断。断后伸长率约为0.5%。为典型的脆性材料。 拉伸与压缩在屈服阶段以前完全相同 三脆性材料(铸铁)的压缩 脆性材料的抗拉与抗压性质不完全相同 压缩时的强度极限远大于拉伸时的强度极限 一、安全因数和许用应力 变形特点:位于两力之间的截面发生相对错动。 切应力强度条件:[τ]许用切应力,常由实验方法确定 第三章扭转 §3.1 扭转的概念和实例 扭转受力特点及变形特点: 杆件受到大小相等,方向相反且作用平面垂直于杆件 轴线的力偶作用, 杆件的横截面绕轴线产生相对转动。 1.材料力学就是研究构件强度、刚度、稳定性理论 2.变形性质分为弹性变形、塑性变形 3.研究内力的方法是截面法 4.表示内力密集的程度是应力 5.基本变形有:轴向拉伸或压缩、剪切、扭转、弯曲 6轴力图是表示轴力与横截面积关系 7.平面假设是受轴向拉伸的杆件,变形后横截面积仍保持不变为平面,两平面相 对位移了一段距离 8.应力集中是会在其局部应力骤然增大的现象 9低碳钢的四个表现阶段弹性阶段、屈服阶段、强化阶段、局部变形阶段 10.代表材料强度性能的主要指标是屈服强度和抗拉强度 11塑性指标主要是伸长率和断面收缩率 12.5 ≥ δ%为塑性材料% 5 < δ为脆性材料 13连接杆主要有铆钉链接、螺栓链接、焊接、键连接、销轴链接 14剪切计算主要有安全计算、加工计算、运算安全计算 15焊接的对焊接和搭焊接两种,其中对焊接有对接、V型、 X型 16按照强度条件设计的构件尺寸取大值,许应用荷载取小值, 17切应力互等原理是在单元体互相垂直的平面上,垂直于两面交线的切应力数值 相等,其方向均指向或背离该交线, 18脆性材料的抗拉能力低于其抗剪能力,塑性材料的抗剪能力则低于抗拉能力 19纯弯曲是指梁横截面上只有弯矩无剪力的弯曲 20横力弯曲指的是梁横截面上既有弯矩又有剪力的弯曲变形 21材料力学的基本假设连续性假设、均匀性假设、各向同性假设

材料力学重点总结

材料力学阶段总结 一、 材料力学得一些基本概念 1. 材料力学得任务: 解决安全可靠与经济适用得矛盾。 研究对象:杆件 强度:抵抗破坏得能力 刚度:抵抗变形得能力 稳定性:细长压杆不失稳。 2、 材料力学中得物性假设 连续性:物体内部得各物理量可用连续函数表示。 均匀性:构件内各处得力学性能相同。 各向同性:物体内各方向力学性能相同。 3、 材力与理力得关系, 内力、应力、位移、变形、应变得概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、与符号规定。 应力:正应力、剪应力、一点处得应力。应了解作用截面、作用位置(点)、作用方向、与符号规定。 正应力 应变:反映杆件得变形程度 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、 物理关系、本构关系 虎克定律;剪切虎克定律: ???? ? ==?=Gr EA Pl l E τεσ夹角的变化。剪切虎克定律:两线段 ——拉伸或压缩。拉压虎克定律:线段的 适用条件:应力~应变就是线性关系:材料比例极限以内。 5、 材料得力学性能(拉压): 一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G ,泊松比v , 塑性材料与脆性材料得比较: 安全系数:大于1得系数,使用材料时确定安全性与经济性矛盾得关键。过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 塑性材料 脆性材料 7、 材料力学得研究方法

1)所用材料得力学性能:通过实验获得。 2)对构件得力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论 应用得未来状态。 3)截面法:将内力转化成“外力”。运用力学原理分析计算。 8、材料力学中得平面假设 寻找应力得分布规律,通过对变形实验得观察、分析、推论确定理论根据。 1) 拉(压)杆得平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转得平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力为零。 3) 纯弯曲梁得平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁得纵向纤维;正应力成线性分布规律。 9 小变形与叠加原理 小变形: ①梁绕曲线得近似微分方程 ②杆件变形前得平衡 ③切线位移近似表示曲线 ④力得独立作用原理 叠加原理: ①叠加法求内力 ②叠加法求变形。 10 材料力学中引入与使用得得工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷 载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯 曲,截面核心,折算弯矩,抗弯截面模量。 6) 相当应力,广义虎克定律,应力圆,极限应力圆。 7) 欧拉临界力,稳定性,压杆稳定性。 8)动荷载,交变应力,疲劳破坏。 二、杆件四种基本变形得公式及应用 1、四种基本变形:

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

材料力学复习提纲

材料力学复习提纲(二) 弯曲变形的基本理论: 一、弯曲力 1、基本概念:平面弯曲、纯弯曲、横力弯曲、中性层、中性轴、惯性矩、极惯性矩、主轴、主矩、形心主轴、形心主矩、抗弯截面模 2、弯曲力:剪力方程、弯矩方程、剪力图、弯矩图。 符号规定 3、剪力方程、弯矩方程 1、首先求出支反力,并按实际方向标注结构图中。 2、根据受力情况分成若干段。 3、在段任取一截面,设该截面到坐标原点的距离为x ,则截面一侧所有竖向外力的代数和即为该截面的剪力方程,截面左侧向上的外力为正,向下的外力为负,右侧反之。 4、在段任取一截面,设该截面到坐标原点的距离为x ,则截面一侧所有竖向外力对该截面形心之矩的代数和即为该截面的弯矩方程,截面左侧顺时针的力偶为正,逆时针的力偶为负,右侧反之。 对所有各段均应写出剪力方程和弯矩方程 4、作剪力图和弯矩图 1、根据剪力方程和弯矩方程作图。剪力正值在坐标轴的上侧,弯矩正值在坐标轴的下侧,要逐段画出。 2、利用微积分关系画图。 二、弯曲应力 1、正应力及其分布规律 ()() max max max 3 2 4 3 41 1-12 6 64 32 z z Z z z z z z z I M E M M M y y y W EI I I W y bh bh d d I W I W σσσρ ρ ππα== = = === = = = ?抗弯截面模量矩形 圆形 空心

2、剪应力及其分布规律 一般公式 z z QS EI τ* = 3、强度有条件 正应力强度条件 [][][] max z z z M M M W W W σσσσ= ≤≤≥ 剪应力强度条件 [] max max max z maz z QS Q I EI E S τττ** ≤= = 工字型 4、提高强度和刚度的措施 1、改变载荷作用方式,降低追大弯矩。 2、选择合理截面,尽量提高 z W A 的比值。 3、减少中性轴附近的材料。 4、采用变截面梁或等强度两。 三、弯曲变形 1、挠曲线近似微分方程: ()EIy M x ''=- 掌握边界条件和连续条件的确定法 2、叠加法计算梁的变形 掌握六种常用挠度和转角的数据 3、梁的刚度条件 ; []max y f l ≤ max 1.5 Q A τ= max 43Q A τ= max 2 Q A =max max z z QS EI *=

材料力学知识

一、材料在拉伸时的力学性能 分析构件的强度时,除计算应力外,还应了解材料的机械性能。材料的力学性能也称为机械性质,是指材料在外力作用下出现的变形、破坏等方面的特性。它主要由实验一测定。一般以缓慢平稳的加载方式进行试验,称为常温静载试验,是测定材料力学性能的基本试验。 对圆截面试样,标距L 与直径d, L=5d, L=10d 低碳钢(含碳量在0.3%以下的)拉伸时的力学性能。 应力 A P = σ ,应变 L L ?=ε 弹性阶段:应力应变成正比 εσ∝ εσE =这就是拉伸和压缩的胡克定律。其中E 为与材料有关的比例常数,称为弹性模量,因为应变没有量纲,故E 的量纲与应力相同,常用单位是吉帕,记为GPa ,胡克定律应用范围是应力低于比例极限P σ。 屈服阶段:当应力超过b 点增加到某一数值时,应变有非常明显的增加,而应力先是下降,然后作微小的波动,在εσ-曲线上出现接近水平线的小锯齿形线段。这种应力基本保持不变,而应变显著增加的现象,称为屈服或流动,通常把下屈服极限称为屈服极限或屈服点,用S σ表示。表面磨光的试样屈服时,表面将出现与轴线大致成?45倾角的条纹。这是由于材料内部相对滑移形成的,称为滑移线,因为拉伸时在与杆成?45倾角的斜截面上,剪应力为最大值,可见屈服现象的出现与最大剪应力有关。材料的屈服表现为显著的塑性变形,而零件的塑性变形将影响机器的正常工作,所以屈服极限S σ是衡量材料强度的重要指标。 强化阶段:过屈服阶段后,材料又恢复了抵抗变形的能力,要使它继续变形必须增加拉力。这种现象称为材料的强化。强化阶段中的最高点e 所对应的应力b σ是材料所能承受的最大应力,称为强度极限或抗拉强度。它是衡量材料强度的另一重要指标。在强化阶段中,试样的横向尺寸有明显的缩小。 局部变形阶段:过e 点后,在试样的某一局部范围内,横向尺寸突然急剧缩小,形成颈缩现象。由于在颈缩部分横截面面积迅速减小,使试样继续伸长所需要的拉力也相应减少。在应力-应变图中,用横截面原始面积A 算出的应力A P = σ随之下降,降落到f 点,试样被拉断。 延伸率和断面收缩率:%100L L L 1?-=δ延伸率是衡量材料塑性的指标。低碳钢的延伸率 很高,其平均值约为20-30%,这说明低碳钢的塑性性能很好。 工程上通常按延伸率的大小把材料分成两大类,%5>δ的材料称为塑性材料,如碳钢,黄 铜、铝合金等;而把%5<δ的材料称为脆性材料,如灰铸铁、玻璃、陶瓷等。

材料力学重点总结-材料力学重点

材料力学阶段总结 一.材料力学的一些基本概念 1.材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2.材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3.材力与理力的关系 , 内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、作用方向、 和符号规定。 压应力 正应力拉应力 线应变 应变:反映杆件的变形程度角应变 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4.物理关系、本构关系虎 克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E —— Pl l EA 剪切虎克定律:两线段夹角的变化。Gr 适用条件:应力~应变是线性关系:材料比例极限以内。 5.材料的力学性能(拉压): 一张σ - ε图,两个塑性指标δ 、ψ ,三个应力特征点:p、s、b,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量,剪切弹性模量,泊松比 v , G E (V) E G 2 1 塑性材料与脆性材料的比较: 变形强度抗冲击应力集中

塑性材料流动、断裂变形明显 较好地承受冲击、振动不敏感 拉压s 的基本相同 脆性无流动、脆断仅适用承压非常敏感 6.安全系数、许用应力、工作应力、应力集中系数 安全系数:大于 1的系数,使用材料时确定安全性与经济性矛盾的关键。过小,使 构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 s0 塑性材料 s n s b 脆性材料0b n b 7.材料力学的研究方法 1)所用材料的力学性能:通过实验获得。 2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理 论应用的未来状态。 3)截面法:将内力转化成“外力” 。运用力学原理分析计算。 8.材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1)拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2)圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力 为零。 3)纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分 布规律。 9小变形和叠加原理 小变形: ①梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1)荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶, 极限荷载。 2)单元体,应力单元体,主应力单元体。

工程力学(一)知识要点

《工程力学(一)》串讲讲义 (主讲:王建省工程力学教授,Copyright 2010-2012 Prof. Wang Jianxing) 课程介绍 一、课程的设置、性质及特点 《工程力学(一)》课程,是全国高等教育自学考试机械等专业必考的一门专业课,要求掌握各种基本概念、基本理论、基本方法,包括主要的各种公式。在考试中出现的考题不难,但基本概念涉及比较广泛,学员在学习的过程中要熟练掌握各章的基本概念、公式、例题。 本课程的性质及特点: 1.一门专业基础课,且部分专科、本科专业都共同学习本课程; 2.工程力学(一)课程依据《理论力学》、《材料力学》基本内容而编写,全面介绍静力学、运动学、动力学以及材料力学。按重要性以及出题分值分布,这几部分的重要性排序依次是:材料力学、静力学、运动学、动力学。 二、教材的选用 工程力学(一)课程所选用教材是全国高等教育自学考试指定教材(机械类专业),该书由蔡怀崇、张克猛主编,机械工业出版社出版(2008年版)。 三、章节体系 依据《理论力学》、《材料力学》基本体系进行,依次是 第1篇理论力学 第1章静力学的基本概念和公理受力图 第2章平面汇交力系 第3章力矩平面力偶系 第4章平面任意力系 第5章空间力系重心 第6章点的运动 第7章刚体基本运动 第8章质点动力学基础 第9章刚体动力学基础 第10章动能定理 第2篇材料力学 第11章材料力学的基本概念 第12章轴向拉伸与压缩 第13章剪切 第14章扭转 第15章弯曲内力 第16章弯曲应力 第17章弯曲变形 第18章组合变形 第19章压杆的稳定性 第20章动载荷 第21章交变应力

考情分析 一、历年真题的分布情况 结论:在全面学习教材的基础上,掌握重点章节内容,基本概念和基本计算,根据各个章节的分数总值, 请自行给出排序结果。 二、真题结构分析 全国2010年1月自学考试工程力学(一)试题 课程代码:02159 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

材料力学必备知识点

材料力学必备知识点 1、材料力学的任务:满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。 2、变形固体的基本假设:连续性假设、均匀性假设、各向同性假设。 3、杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、低碳钢:含碳量在0.3%以下的碳素钢。 5、低碳钢拉伸时的力学性能:弹性阶段、屈服阶段、强化阶段、局部变形阶段 极限:比例极限、弹性极限、屈服极限、强化极限 6、名义(条件)屈服极限:将产生0.2%塑性应变时的应力作为屈服指标 7、延伸率δ是衡量材料的塑性指标塑性材料 随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。 >5%的材料称为塑性材料:<5%的材料称为脆性材料 8、失效:断裂和出现塑性变形统称为失效 9、应变能:弹性固体在外力作用下,因变形而储存的能量

10、应力集中:因杆件外形突然变化而引起的局部应力急剧增大的现象 11、扭转变形:在杆件的两端各作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动。12、翘曲:变形后杆的横截面已不再保持为平面;自由扭转:等直杆两端受扭转力偶作用且翘曲不受任何限制;约束扭转:横截面上除切应力外还有正应力 13、三种形式的梁:简支梁、外伸梁、悬臂梁 14、组合变形:由两种或两种以上基本变形组合的变形 15、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。 16、根据强度条件可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。 17、低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。 18、积分法求梁的挠曲线方程时,通常用到边界条件和连续性条件;因杆件外形突然变化引起的局部应力急剧增大的现象称为应力集中;轴向受压直杆丧失其直线平衡形态的现象称为失稳 19、圆杆扭转时,根据(切应力互等定理),其纵向截

材料力学知识点总结教学内容

材料力学总结一、基本变形

二、还有: (1)外力偶矩:)(9549 m N n N m ?= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:t r T 22πτ= (3)矩形截面杆扭转剪应力:h b G T h b T 32max ;β?ατ= =

三、截面几何性质 (1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑=== n i i n i ci i c A y A y 1 1 ; ∑∑=== n i i n i ci i c A z A z 1 1 2.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )( 四、应力分析: (1)二向应力状态(解析法、图解法) a . 解析法: b.应力圆: σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+” α:从x 轴逆时针转到截面的 法线为“+” ατασσσσσα2sin 2cos 2 2 x y x y x --+ += ατασστα2cos 2sin 2 x y x +-= y x x tg σστα-- =220 22 min max 22 x y x y x τσσσσσ+??? ? ? ?-±+= c :适用条件:平衡状态 (2)三向应力圆: 1max σσ=; 3min σσ=;2 3 1max σστ-= x

(3)广义虎克定律: [])(13211σσνσε+-=E [] )(1 z y x x E σσνσε+-= [])(11322σσνσε+-=E [] )(1 x z y y E σσνσε+-= [])(12133σσνσε+-=E [] )(1 y x z z E σσνσε+-= *适用条件:各向同性材料;材料服从虎克定律 (4)常用的二向应力状态 1.纯剪切应力状态: τσ=1 ,02=σ,τσ-=3 2.一种常见的二向应力状态: 22 3122τσσ σ+?? ? ??±= 2234τσσ+=r 2243τσσ+=r 五、强度理论 *相当应力:r σ 11σσ=r ,313σσσ-=r ,()()()][2 12 132322214σσσσσσσ-+-+-= r σx σ

第四章 材料力学知识99

第二篇材料力学 第四章材料力学基本知识 第一节变形固体的假设 在工程实际问题中,一般来说,构件都应具有足够的承载能力,即足够的强度、刚度和稳定性,但对具体的构件又有所侧重。例如,储气罐主要保证强度,车床主轴主要要求具有足够的刚度,受压的细长杆应该保持其稳定性。对某些特殊的构件还可能有相反的要求。例如为防止超载,当载荷超过某一极限时,安全销应立即破坏。又如为发挥缓冲作用,车辆的缓冲弹簧应有较大的变形。 研究构件的承载能力时必须了解材料在外力作用下表现出的变形和破坏等方面的性能,及材料的力学性能。材料的力学性能由实验来测定。经过简化得出的理论是否可信,也要由实验来验证。此外,对于一些尚无理论结果的问题,需要借助实验方法来解决。所以,实验分析和理论研究同是材料力学解决问题的方法。 一、变形固体的基本假设 材料力学中,当分析强度、刚度和稳定性时,这些问题都与变形有关,因而即使极其微小的变形也必须加以考虑,这就必须把物体抽象为变形固体。 材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。任何固体在外力作用下都会发生形状和尺寸的改变——即变形。因此,这些材料统称为变形固体。 变形固体的性质是很复杂的,在对用变形固体做成的构件进行强度、刚度和稳定性计算时,为了使计算简化,经常略去材料的次要性质,并根据其主要性质做出假设,将它们抽象为一种理想模型,作为材料力学理论分析的基础。

实验证明,在一定的荷载作用下,变形固体加载时将产生变形,卸载后能恢复原形。变形固体的这种性质称为弹性。卸载后消失的那一部分变形,称为弹性变形。当外荷载超过某极限值时,卸载后除消除的一部分弹性变形外,还将存在一部分未消失的变形,称为塑性变形。为了使问题的研究得到简化,通常对变形固体作如下假设: (一)连续性假设:假设在固体所占有的空间内毫无空隙地充满了物质。实际上,组成固体的粒子之间存在空隙,但这种空隙极其微小,可以忽略不计。于是可认为固体在其整个体积内是连续的。基于连续性假设,固体内的一些力学量(例如点的位移)既可用连续函数表示,并可采用无穷小的高等数学分析方法研究。 连续性不仅存在于变形前,同样适用于变形发生之后。既构件变形后不出现新的空隙,也不出现重叠。 (二)均匀性假设:材料在外力作用下在强度和刚度方面所表现出的性能称为材料的力学性能。所谓的均匀性假设指材料的力学性能在各处都是相同的,与其在固体内的位置无关。即从固体内任意取出一部分,无论从何处取也无论取多少其性能总是一样的。 由此假设可以认为,变形固体均由同一均质材料组成,因而体内各处的力争性质都是相同的,并认为在其整个体积内毫无空隙地充满了物质。事实上,从固体的微观结构看,各种材料都是由无数颗粒(如金属中的晶粒)组成的,颗粒之间是有一定空隙的,而且各颗粒的性质也不完全一致。但由于材料力学是从宏观的角度去研究构件的强度、刚度和稳定性问题,这些空隙远远小于构件的尺寸,而且各颗粒是错综复杂地排列于整个体积内,因此,由统计平均值观点看,各颗粒性质的差异和空隙均可忽略不计,而认为变形固体是均匀连续的。 (三)各向同性假设:即认为材料沿各个方向的力学性质是相同的。具有这种属性的材料称为各向同性材料。例如钢、铜、铸铁、玻璃等,而木材、竹和轧制过的钢材等,则为各向异性材料。但是,有些各向异性材料也可近似地看作是各向同性的。 构件在外力作用下将发生变形,当外力不超过一定限度时,绝大多数构件在外力去掉后均能恢复原状。当外力超过某一限度时,则在外力去掉后只能部分地复原而残留一部分不能

材料力学主要知识点归纳

材料力学主要知识点 一、基本概念 1、构件正常工作的要求:强度、刚度、稳定性。 2、可变形固体的两个基本假设:连续性假设、均匀性假设。另外对于常用工程材料(如钢材),还有各向同性假设。 3、什么是应力、正应力、切应力、线应变、切应变。 杆件截面上的分布内力集度,称为应力。应力的法向分量σ称为正应力,切向分量τ称为切应力。 杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。 4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。 5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。 6、强度理论及其相当应力(详见材料力学ⅠP229)。 7、截面几何性质 A 、截面的静矩及形心 ①对x 轴静矩?=A x ydA S ,对y 轴静矩?=A y xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。 B 、极惯性矩、惯性矩、惯性积、惯性半径 ① 极惯性矩:?=A P dA I 2ρ ② 对x 轴惯性矩:?= A x dA y I 2,对y 轴惯性矩:?=A y dA x I 2 ③ 惯性积:?=A xy xydA I ④ 惯性半径:A I i x x =,A I i y y =。 C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b 为y c 距y 轴距离。 ② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离, b 为截面形心距y 轴距离。 二、杆件变形的基本形式 1、轴向拉伸或轴向压缩: A 、应力公式 A F = σ B 、杆件伸长量EA F N l l =?,E 为弹性模量。

材料力学总结Ⅱ(乱序,建议最后阶段复习)

材料力学阶段总结 一.材料力学的一些基本概念 1. 材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2. 材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3. 材力与理力的关系,内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、 作用方向、和符号规定。 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4. 物理关系、本构关系 虎克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E ——I 巴 EA 剪切虎克定律:两线段 夹角的变化。 Gr 适用条件:应力?应变是线性关系:材料比例极限以内。 5. 材料的力学性能(拉压): 一张C - &图,两个塑性指标3、书,三个应力特征点: p 、 s 、 b ,四个 变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G,泊松比v , G E 2(1 V ) 正应力 压应力 拉应力 应变:反映杆件的变形程度 线应变 角应变

6. 安全系数、 许用应力、工作应力、应力集中系数 安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。 过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 脆性材料 7. 材料力学的研究方法 1) 所用材料的力学性能:通过实验获得。 2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理 论,预测理论应用的 未来状态。 3) 截面法:将内力转化成“外力”。运用力学原理分析计算。 8. 材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1) 拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面 上正应力为零。 3) 纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维; 正应力 成线性分布规律。 9小变形和叠加原理 小变形: ① 梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力, 集中力偶,极限荷载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 塑性材料 n s n b

(完整版)材料力学必备知识点

材料力学必备知识点 1、 材料力学的任务:满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。 2、 变形固体的基本假设:连续性假设、均匀性假设、各向同性假设。 3、 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、 低碳钢:含碳量在0.3%以下的碳素钢。 5、 低碳钢拉伸时的力学性能:弹性阶段、屈服阶段、强化阶段、局部变形阶段 极限:比例极限、弹性极限、屈服极限、强化极限 6、 名义(条件)屈服极限:将产生0.2%塑性应变时的应力作为屈服指标 7、 延伸率δ是衡量材料的塑性指标塑性材料 随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。 >5%的材料称为塑性材料: <5%的材料称为脆性材料 8、 失效:断裂和出现塑性变形统称为失效 9、 应变能:弹性固体在外力作用下,因变形而储存的能量 10、应力集中:因杆件外形突然变化而引起的局部应力急剧增大的现象 11、扭转变形:在杆件的两端各作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动。 12、翘曲:变形后杆的横截面已不再保持为平面;自由扭转:等直杆两端受扭转力偶作用且翘曲不受任何限制;约束扭转:横截面上除切应力外还有正应力 13、三种形式的梁:简支梁、外伸梁、悬臂梁 14、组合变形:由两种或两种以上基本变形组合的变形 15、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。 16、根据强度条件 可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。 17、低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。 18、积分法求梁的挠曲线方程时,通常用到边界条件和连续性条件;因杆件外形突然变化引起的局部应力急剧增大的现象称为应力集中;轴向受压直杆丧失其直线平衡形态的现象称为失稳 19、圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。 20、组合图形对某一轴的静矩等于(各组成图形对同一轴静矩)的代数和。 21、图形对于若干相互平行轴的惯性矩中,其中数值最小的是对( 距形心最近的)轴的惯性矩。 22、当简支梁只受集中力和集中力偶作用时,则最大剪力必发生在(集中力作用面的一侧)。 23、应用公式z My I σ=时,必须满足的两个条件是(各向同性的线弹性材料)和小变形。 24、一点的应力状态是该点(所有截面上的应力情况)。 在平面应力状态下,单元体相互垂直平面上的正应力之和等于(常数)。 25、强度理论是(关于材料破坏原因)的假说。 在复杂应力状态下,应根据(危险点的应力状态和材料性质等因素)选择合适的强度理论。 26、强度是指构件抵抗 破坏 的能力;刚度是指构件抵抗 变形 的能力;稳定性是指构件维持其原有的 平衡状态 的能力。 27、弹性模量E 是衡量材料抵抗弹性变形能力的指标。 28、使材料丧失正常工作能力的应力,称为极限应力

相关主题
文本预览
相关文档 最新文档