当前位置:文档之家› 衰减器原理duyt

衰减器原理duyt

衰减器原理duyt
衰减器原理duyt

信号衰减器原理及设计

衰减器是在指定的频率范围内,一种用以引入一预定衰减的电路,一般以所引入衰减的分贝数及其特性阻抗的欧姆数来标明。

衰减器广泛地应用于电子设备中,它的主要用途是:

(1)调整电路中信号的大小;(2)改善阻抗匹配,若某些电路要求有一个比较稳定的负载阻抗时,则可在此电路与实际负载阻抗之间插入一个衰减器,能够缓冲阻抗的变化。

通常,衰减器接于信号源和负载之间,衰减器是由电阻元件组成的二端口网络,它的特性阻抗、衰减量都是与频率无关的常数,相移等于零。

实际应用中,有固定衰减器和可变衰减两大类。

1、固定衰减器的设计

常用的固定衰减器有对称型的T型、∏型、桥T型和倒L型(不对称型)等几种结构,其电路形式和计算公式如下。

图1. T型衰减器

图2. ∏型衰减器

1

2

1

1

2

2

1-

=

+

-

=

N

N

R

R

N

N

R

R

C

C

1

1

2

1

2

2

1-

+

=

-

=

N

N

R

R

N

N

R

R

C

C

1

)1

(

2

1-

=

-

=

N

R

R

N

R

R C

C

图3. 桥T 型衰减器

图4. 倒L 型衰减器

式中,Rc 为二端口网络的特性阻抗(对称时),即输入输出阻抗,Rc1和Rc2两侧特性阻抗,分别为非对称衰减器的输入输出阻抗;20

10A N =,为输入电压与输出电压之比,A 为衰减的分贝数。

电压比分贝:dB=20lg (Uo/Ui )

以上衰减器中,T 型、∏型、桥T 型属于对称衰减器,主要用于衰减。而倒L 型属于不对称衰减器,主要用于阻抗匹配。

倒L 型不对称衰减器构成阻抗匹配器,与对称衰减器所不同的是,不能指定衰减量,其输入输出阻抗确定后,其衰减量也就确定了。其衰减值见下表。

表1 倒L 型衰减器衰减值与输入输出阻抗比的关系

值得注意的是,桥T 型衰减器中,有两个电阻的值即为特性阻抗(输入输出电阻),且计算公式简洁,用于组成可调衰减器非常方便。

例1:设计一衰减器,匹配于信号源内阻R S =800欧与负载电阻R L =150欧之间,其衰减量为30dB 。

解:因为RS 、RL 不相等,所以选用一节倒L 型和一节对称T 型构成衰减器,如图5所示。

(1)倒L 型电路计算:

10.14

8001501111166.41150

800800

150721.11)150800(800)(1

1

1

2

12112

22111=????

??--=???

? ?

?--=Ω

=-=-=Ω=-?=-=--C C C C C C C C C R R N R R R R R R R R R

(2)T 型电路计算:

由于总衰减量A=30dB ,N=10^(30/20)=31.62;所以桥T 型衰减量N 2为 N 2=N/N 1=31.62/10.14=3.1184 计算R1和R2

1

122

11

2

2111112)(-?

????

?--=-=-=C C C C C C C C C R R N R R R R R R R R R

Ω=-?=-=Ω=+-=+-=107.2311184.31184

.3215012277.15611184.31

1184.3150112

221N N R R N N R R C C

(3)电路及仿真结果

图5. 由倒L-T 型构成的800-150 30dB 衰减器

(仿真电路:衰减器L-T 800-150 30dB.ewb )

例2. 设计一衰减器,匹配于信号源内阻R S -600欧与负载电阻R L =75欧之间,其衰减量为30dB 。

选用一节倒L 型和一节对称桥T 型组成衰减器,如图6所示。 (1)倒L 型电路计算:

(2)桥T 型电路计算:

由于总衰减量A=30dB ,N=10^(30/20)=31.62;所以桥T 型衰减量N 2为 N 2=N/N 1=31.62/15.48=2.04 计算R 1和R 2

R 1=Rc(N 2-1)=75×(2.04-1)=78.18Ω R 2=Rc/(N 2-1)=75/(2.04-1)=71.95Ω (3)电路及仿真结果

48.1560075111118.8075600600

7525.561)75600(600)(1

1121211222111=???? ??--=???? ?

?--=Ω

=-=-=Ω=-?=-=--C C C C C C C C C R R N R R R R R R R R R

图6. 由倒L和桥T型组成的600-75 30dB衰减器

(仿真电路:衰减器L-BrgT 600-75 30dB)

2、可变衰减器的设计

可变衰减器,一般是指特性阻抗值恒定的,而它的衰减值是可变的衰减器,由桥T型衰减器构成比较方便。

可变桥T型衰减器的电路结构如图7所示。

图7 可变T型衰减器

采用这种可变衰减器电路的优点是,电路中只有两个可变化部分,而可变T型或可变∏型衰减将有三个可变部分),而且R为固定电阻,可以避免因旋钮换档时,由于旋钮触点接触不良而引起电路中断现象。

例:设计一个可变桥T型衰减器。各档衰减值分别为10、20、30dB,特性阻抗Rc=600欧。解: 计算各档电阻值

(1)10dB N1=3.162

Rs1=Rc*(N1-1)=600*(3.162-1)=1297.37Ω

Rp1=Rc/(N1-1)=600/(3.162-1)=277.49 Ω

(2)20dB N2=10

Rs2=Rc*(N2-1)=600*(10-1)=5400 Ω

Rp2=Rc/(N2-1)=600/(10-1)=66.67 Ω

(3)30dB N3=31.62

Rs3=Rc*(N3-1)=600*(31.62-1)=18373.67 Ω

Rp3=Rc/(N3-1)=600/(31.62-1)=19.59 Ω

(4) 计算各档电阻值

R11=Rs1=1297.37 Ω

R12=Rs2-Rs1=5400-1297.37=4102.63 Ω

R13=Rs3-Rs2=18373.67-5400=12973.67 Ω

R23=Rp3=19.59 Ω

R22=Rp2-Rp3=66.67-19.59=47.08 Ω

R21=Rp1-Rp2=277.49-66.67=210.82 Ω

(5) 电路及仿真结果

图8 由桥T型衰减器构成的可变(0,10,20,30dB)衰减器(仿真电路:衰减器brg-T 600可调.ewb)

衰减器培训投影片(PPT)

光纖衰減器功能屬性 (Fiber Optical Attenuator)?功能: 致光信號衰減,使光信號調節在光接收器動態範圍內,以確保光信號傳輸正確性之光被動元件. ?分類:(以衰減值型式) –固定值衰減器(Fixed Attenuator) –可變值衰減器(Variable Attenuator) ?連續式(Continuously): 0.5~30dB. ?階段式(Discretely): <5dB interval.

光纖衰減器分類方式 (Fiber Optical Attenuator) ?分類:(以結構型式) –引線式(In-Line type) ?將衰減器包裝在光纖引線中間,兩端再組裝不同 型式連接器稱之. ATTENUATOR –接頭式(Adaptor type) ?依兩端是插頭(Plug;Male)或插座(Receptacle;Female) 分為公對母(M/F);母對母(F/F);公對公(M/M)三種, 兩端亦可依不同插頭或插座型式設計稱之.

光纖衰減器製作原理 ---插座式固定值光纖衰減器--- ?光吸收原理: –濾光片式光纖衰減器 ?利用一片固定光吸收率的濾光片以浮動設計原理 置於光學基準面上,兩端以Ferrule接觸方式進行. –反射損失過大(約-17dB) –濾光片需具抗壓強度(800~1200gf) ?MoT(Sleeve) ?o¥ú¤ù

光纖衰減器製作原理 ---插座式固定值光纖衰減器--- ?光發散原理: –塑膠片式光纖衰減器 ?利用不同厚度造成光斑大小不同的塑膠片置於光 學基準面上,兩端以Ferrule接觸方式進行. ?塑膠片折射率約1.46(接近光纖Core的折射率). ?機械基準面隨塑膠片厚度變化而不同. –反射損失過大(約-30dB) –零件共通性差(零件尺寸隨衰減值變化而不同) –塑膠片需具抗壓強度(800~1200gf)

信号隔离安全栅与信号隔离器的区别

信号隔离安全栅与信号隔离器的区别 一、定义 1、信号隔离器(isolator ):一般指弱电系统中的信号隔离器,既保护下级信号系统不受上级系统影响和干扰。 2、信号隔离安全栅(safety barrier):接在本质安全电路和非本质安全电路之 间。将供给本质安全电路的电压或电流限制在一定安全范围内的装置。安全栅是一种统称,分为齐纳式安全栅和隔离式安全栅,隔离式安全栅简称隔离栅。 金湖英普瑞电子设备有限公司主营产品有:隔离安全栅,信号隔离器,信号隔离配电器,直流信号隔离器,开关量信号安全栅,电流变送器。同时代理日本横河EJA变送器,横河AXF 电磁流量计,横河DY涡街流量计,罗斯蒙特3051系列变送器,罗斯蒙特248系列温度变送器,罗斯蒙特475手操器。 二、工作原理 1、信号隔离器工作原理:首先将变送器或仪表的信号,通过半导体器件调制变换,然后通过光感或磁感器件进行隔离转换,然后再进行解调变换回隔离前原信号,同时对隔离后信号的供电电源进行隔离处理。保证变换后的信号、电源、地之间绝对独立。 2、齐纳式安全栅的工作原理 安全栅的主要功能就是限制安全场所的危险能量进入危险场所,及限制送往危险场所的电压和电流。 齐纳管Z用于限制电压。当回路电压接近安全限压值时,齐纳管导通,使齐纳管两端的电压始终保持在安全限压值以下。 电阻R用于限制电流。当电压被限制后,适当选择电阻值,可将回路电流限制在安全限流值以下。 保险丝F的作用是防止因齐纳管被长时间流过的大电流烧断而导致回路限压失效。当超过安全限压值的电压加在回路上时,齐纳管导通,如果没有保险丝,流经齐纳管的电流将无限上升,最终烧断齐纳管,使回路失去限压。 为确保回路限压安全,保险丝的熔断速度要比齐纳管可能被烧断的速度快十倍。 采用图一所示的三冗余齐纳管的安全栅基本限能电路结构,能够确保安全栅在正常工作、一个故障点和两个故障点时均能将安全栅的输出能量限制在安全参数规定的范围之内,从而满足ia级本质安全电路的要求。 3、隔离式信号隔离安全栅的工作原理 与齐纳安全栅相比,隔离式安全栅除具有限压与限流的作用之外,还带有电流隔离的功能。隔离栅通常由回路限能单元、电流隔离单元和信号处理单元三部分组成,基本功能电路如图二所示。回路限能单元为安全栅的核心

DDS信号发生器原理

2 基本原理 2.1 直接数字频率合成器 直接数字合成(Direct Digital Synthesis,简称DDS)技术是从相位概念出发,直接对参考正弦信号进行抽样,得到不同的相位,通过数字计算技术产生对应的电压幅度,最后滤波平滑输出所需频率。 2.1.1 DDS工作原理 下面,通过从相位出发的正弦函数产生描述DDS的概念。 图1表示了半径R为1的单位圆,半径R绕圆心旋转与X轴的正方向形成夹角θ(t),即相位角。 图1 单位圆表示正弦函数S= R sinθ(t) DDS的原理框图如图2所示。图中相位累加器可在每一个时钟周期来临时将频率控制字(FTW)所决定的相位增量M累加一次,如果记数大于2N,则自动溢出,而只保留后面的N位数字于累加器中[9]。 图2 DDS原理框图

DDS的数学模型可归结为:在每一个时钟周期T c 内,频率控制字M与N比特相位累加器累加一次,并同时对2N取模运算,得到的和(以N位二进制数表示)作为相位值,以二进制代码的形式去查询正弦函数表ROM,将相位信息转变成相应的数字量化正弦幅度值,ROM输出的数字正弦波序列再经数模转换器转变为阶梯模拟信号,最后通过低通滤波器平滑后得到一个纯净的正弦模拟信号。 由于ROM表的规模有限,相位累加器一般仅取高位作为寻址地址送入正弦查询表获得波形幅度值。正弦查询表中以二进制数形式存入用系统时钟对正弦信号进行采样所得的样值点,可见只需改变查询表内容就可实现不同的波形输出。 2.1.2 DDS的结构 DDS的基本结构包括相位累加器、正弦查询表(ROM)、数模转换器(DAC)和低通滤波器(LPF),其中从频率控制字到波形查询表实现由数字频率值输入生成相应频率的数字波形,其工作过程为: ⑴确定频率控制字M; ⑵在时钟脉冲f c 的控制下,该频率控制字累加至相位累加器生成实时数字相位值; ⑶将相位值寻址ROM转换成正弦表中相应的数字幅码。 模块DAC实现将数字幅度值高速且线性地转变为模拟幅度值,DDS产生的混叠干扰由DAC之后的低通滤波器滤除]7[。 ㈠相位累加器 相位累加器是DDS最基本的组成部分,用于实现相位的累加并存储其累加结果。 若当前相位累加器的值为Σ n ,经过一个时钟周期后变为Σ 1+ n ,则满足 Σ 1+ n =Σ n +M Σ n 为一等差数列,不难得出:Σ n =nM+Σ 其中Σ 为相位累加器的初始相位值。 ㈡正弦查询表(ROM) DDS查询表所存储的数据是每一个相位所对应的二进制数字正弦幅值,在每一个时钟周期内,相位累加器输出序列的高m位对其进行寻址,最后的输出为该相位相对应的二进制正弦幅值序列。 ㈢数模转换器(DAC) 数模转换器的作用是将数字形式的波形幅值转换成所要求合成频率的模拟形式

IIR数字滤波器设计原理

IIR 数字滤波器设计原理 利用双线性变换设计IIR 滤波器(只介绍巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数)(s H a ,然后由)(s H a 通过双线性变换可得所要设计的IIR 滤波器的系统函数)(z H 。 如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率 s p w w 和的转换,对s p αα和指标不作变化。边界频率的转换关系为)21tan(2w T =Ω。接着,按照模拟低通滤波器的技术指标根据相应 设计公式求出滤波器的阶数N 和dB 3截止频率c Ω;根据阶数N 查巴特沃斯归一 化低通滤波器参数表,得到归一化传输函数 )(p H a ;最后,将c s p Ω=代入)(p H a 去归一,得到实际的模拟滤波器传输函数)(s H a 。之后,通过双线性变换法转换公式 11 112--+-=z z T s ,得到所要设计的IIR 滤波器的系统函数)(z H 。 步骤及内容 1) 用双线性变换法设计一个巴特沃斯IIR 低通数字滤波器。设计指标参数为: 在通带内频率低于π2.0时,最大衰减小于dB 1;在阻带内[]ππ,3.0频率区间上,最小衰减大于dB 15。 2) 以π02.0为采样间隔,绘制出数字滤波器在频率区间[]2/,0π上的幅频响应特 性曲线。 3) 程序及图形 程序及实验结果如下: %%%%%%%%%%%%%%%%%%

%iir_1.m %lskyp %%%%%%%%%%%%%%%%%% rp=1;rs=15; wp=.2*pi;ws=.3*pi; wap=tan(wp/2);was=tan(ws/2); [n,wn]=buttord(wap,was,rp,rs,'s'); [z,p,k]=buttap(n); [bp,ap]=zp2tf(z,p,k); [bs,as]=lp2lp(bp,ap,wap); [bz,az]=bilinear(bs,as,.5); [h,f]=freqz(bz,az,256,1); plot(f,abs(h)); title('双线性z 变换法获得数字低通滤波器,归一化频率轴'); xlabel('\omega/2\pi'); ylabel('低通滤波器的幅频相应');grid; figure; [h,f]=freqz(bz,az,256,100); ff=2*pi*f/100; absh=abs(h); plot(ff(1:128),absh(1:128)); title('双线性z 变换法获得数字低通滤波器,频率轴取[0,\pi/2]'); xlabel('\omega'); ylabel('低通滤波器的幅频相应');grid on; 运行结果: 00.050.10.150.20.25 0.30.350.40.450.500.1 0.2 0.3 0.40.50.60.70.8 0.9 1 双线性z 变换法获得数字低通滤波器,归一化频率轴 ω/2π低通滤波器的幅频相应

几种简单的函数信号发生器电路图分析

几种简单的函数信号发生器电路图分析 时间:2012-01-10 15:30 作者:赛微编辑来源:赛微电子网 引言 随着模拟电路技术和电力电子技术发展,电路设计中对信号的精度、稳定性、抗干扰能力等要求进一步提高,电子行业中将一些功能进行集成到IC芯片供其他的厂家来使用。在电路设计中,我们除了正常的电源输入之外,还需要提供三角波、方波、正弦波、脉冲波、单次脉冲等特殊的波形来给某个电路提供输入。 这种可以提供三角波、方波、正弦波、脉冲波、单次脉冲等特殊的波形的电路或者仪器(函数信号发生器的种类),我们可以称之为函数信号发生器,它对电子工程师设计的整个系统来说,发挥着重要的作用,它具有各种内置信号、自定义的任意波形和脉冲能力,能帮助您验证设计,检验新的构想,从而让整个设计更具有可靠性。 本文结合几种简单的函数信号发生器电路图,并对其工作原理(函数信号发生器原理)、可以实现的功能和性能、电路特点等方面做了详细的分析,供电子发烧友参考。 程控函数信号发生器电路图 它主要由主控制器LPC2114、MAX038、D/A转换器以及八选一模拟开关CD4051LED显示、键盘、波段切换,波形处理和峰值检波等部分组成,研究了LPC2114通过D/A转换器实现对MAX038频就绪和占空比的调控方法,并给出

了在0.1Hz~20MHz内产生精确的正弦波、方波和三角波的方法。此外,它还具有可调范围大、精度高、信号稳定等特点,可以应用于各种电子测量和控制场合。 LPC2114主要通过D/A转换器TLC5618、DAC0832和八选一模拟开关CD4051对MAX038输出的波形、频率以及占空比进行控制。通过对A1和A0端的不同设置来选择不同的波形。当A1为高电平、A0为任意时,输出波形为正弦波;当A1、A0同时为低电平时,输出波形为方波;当A1为低电平、A0为高电平时,输出波形为三角波。 MAX038输出波形的幅值为2 V(P-P),最大输出电流为+20 mA,输出阻抗的典型值为0.1 Ω。可直接驱动100 Ω的负载。为了得到更大的输出幅度和驱动能力,就需要对波形信号作进一步处理,下图为一个波形输出与驱动电路。

衰减器原理及其设计

衰减器原理及其设计 时间:2012-01-07 来源:作者: 关键字:衰减器原理 衰减器广泛地应用于电子设备中,它的主要用途是: (1)调整电路中信号的大小; (2)在比较法测量电路中,可用来直读被测网络的衰减值; (3)改善阻抗匹配,若某些电路要求有一个比较稳定的负载阻抗时,则可在此电路与实际负载阻抗之间插入一个衰减器,能够缓冲阻抗的变化。 通常,衰减器接于信号源和负载之间,衰减器是由电阻元件组成的四端网络,它的特性阻抗、衰减都是与频率无关的常数,相移等于零。 实际应用中,有固定衰减器和可变衰减两大类。 1、固定衰减器的设计 常用的固定衰减器有L型、T型、X型和桥T型等几种结构,其电路形式和计算公式见表5.1-16。

注:RC为特性阻抗;RC1、RC2为两侧特性阻抗,B为固有衰减值N=EB。 其中L型属于不对称衰减器,主要用于阻抗匹配,而T型、X型、桥T型属于对称衰减器,主要用于衰减。一端接地的衰减器称为不平衡衰减器;反之,两端不接地的衰减器称为平衡衰减器。 例:设计一衰减器,匹配于信号源内阻RS-600欧与负载电阻RL=150欧之间,其衰减量为30DB。 解计算过程: (1)因为RS、RL不相等,所以选用一节倒L型和一节对称T型号组成衰减器,如图5.1-19A所示 倒L型电路计算: (2)T型电路计算:由于总衰减量为30DB,所以T型衰减量为 (3)电路简化:对设计电路进行变换,进而得到简化电路,由图5.1-19A变换为图B及图C的形式。

2、可变衰减器的设计 可变衰减器,一般是指特性阻抗值恒定的,而它的衰减值是可变的衰减器,此外,还有一种分压式可变衰减器,由于它的负载往往是高阻抗,因此对这种分压式可变衰减器的特性阻抗就没有什么具体要求。 1)可变桥T型衰减器可变桥T型衰减器的电路结构如图5.1-20所示。

信号隔离器的工作原理及功能是什么

信号隔离器的工作原理及功能是什么? 1.工作原理: 首先将变送器或仪表的信号,通过半导体器件调制变换,然后通过光感或磁感器件进行隔离转换,然后再进行解调变换回隔离前原信号,同时对隔离后信号的供电电源进行隔离处理。保证变换后的信号、电源、地之间绝对独立。 2.功能: 一:保护下级的控制回路。 二:消弱环境噪声对测试电路的影响。 三:抑制公共接地、变频器、电磁阀及不明脉冲对设备的干扰;同时对下级设备具有限压、额流的功能是变送器、仪表、变频器、电磁阀PLC/DCS输入输出及通讯接口的忠实防护。 DIN系列导轨结构,易于安装,可有效的隔离:输入、输出和电源及大地之间的电位。能够克服变频器噪声及各种高低频脉动干扰。 信号隔离器的主要类型有哪些? 1.隔离器: 工业生产中为增加仪表负载能力并保证连接同一信号的仪表之间互不干扰,提高电气安全性能。需要将输入的电压、电流或频率、电阻等信号进行采集、放大、运算、和进行抗干扰处理后,再输出隔离的电流和电压信号,安全的送给二次仪表或plc\dcs使用。 2.配电器: 工业现场一般需要采用两线制传输方式,既要为变送器等一次仪表提供24V配电电源,同时又要对输入的电流信号进行采集、放大、运算、和进行抗干扰处理后,再输出隔离的电流和电压信号,供后面的二次仪表或其它仪表使用。 3.安全栅:

一些特殊的工业现场(如燃气公司和化工厂)不但需要两线制传输,既提供配电电源又有信号隔离功能,同时还需要具有安全火花防爆的性能,可靠地遏制电源功率、防止电源、信号及地之间的点火,限流、降压双重限制信号及电源回路,把进入危险场所的能量限制在安全定额范围内。 信号隔离器安装维护应注意哪些事项? 由于生产厂家不同,对隔离器的生产工艺、接线定义也不都相同,但使用场合基本相同,所以对产品的防护要求及维护基本相同。 1. 使用前应详细阅读说明书。 2. 作为信号隔离使用时,应将输入端串入环路电路中,输出端接取样回路。 3. 作为隔离配电使用时,应将输入端串入电源电路中,输出端接变送器。 4. 若不正常工作应先检查接线是否正确,注意电源有无及极性反正。 为什么有时PLC接收到的现场信号误差大且稳定性差? 造成这种现象的原因很多,不同仪表信号参考点之间的电位差是重要因素。由于这个“电位差”造成仪表信号之间产生干扰电流,致使PLC误差大且稳定性差。所以不同设备、仪表的信号有一个共同的参考点是最佳状况。隔离器使输入/输出电气上完全隔离,在PLC模拟接口板形成共同的参考点,达到理想状况问题就解决了。 设计隔离端子的原则是什么? 需要为每台隔离器都配电源吗?设计要遵循两个原则。第一:外部设备与中央处理系统(例如PLC、DCS)之间要进行电气隔离。第二:外部设备信号(无论是向中央处理系统发送信号的外部设备到还是接收信号的外部设备)之间要实现相互电气隔离。例如要把PLC输出的一路

信号发生器的基本参数和使用方法

信号发生器 本人介绍一下信号发生器的使用和操作步骤. 1、信号发生器参数性能 频率范围:0.2Hz ~2MHz 粗调、微调旋钮 正弦波, 三角波, 方波, TTL 脉波 0.5" 大型LED 显示器 可调DC offset 电位 输出过载保护 信号发生器/信号源的技术指标: 波形正弦波, 三角波, 方波, Ramp 与脉波输出 振幅>20Vp-p (open circuit);>10Vp-p (加50Ω负载) 阻抗50Ω+10% 衰减器-20dB+1.0dB (at 1kHz) DC 飘移<-10V ~ >+10V, (<-5V ~ >+5V 加50Ω负载) 周期控制 1 : 1 to 10 : 1 continuously rating 显示幕4位LED显示幕 频率范围0.2Hz to2MHz(共7 档) 频率控制Separate coarse and fine tuning

失真< 1% 0.2Hz ~ 20kHz , < 2% 20kHz ~ 200kHz 频率响应< 0.2dB 0.2Hz ~100kHz;< 1dB100kHz~2MHz 线性98% 0.2Hz ~100kHz;95%100kHz~2MHz 对称性<2% 0.2Hz ~100kHz 上升/下降时间<120nS 位准4Vp-p±1Vp-p ~ 14.5Vp-p±0.5Vp-p 可调 上升/下降时间<120nS 位准>3Vpp 上升/下降时间<30nS 输入电压约0V~10V ±1V input for 10 : 1 frequency ratio 输入阻抗10kΩ(±10%) 交流100V/120V/220V/230V ±10%, 50/60Hz 电源线×1, 操作手册×1, 测试线GTL-101 ×1

信号发生器电路的焊接与调试-电路图

一、信号发生器电路安装与调试考核评分表 准考证号姓名规定时间分钟 开始时间结束时间实用时间得分 考核内容及要求配分评分标准扣分 1 元器件清点检查:在10分钟内对所有元 器件进行检测,并将不合格元器件筛选出来进 行更换,缺少的要求补发。 10 超时更换或要求补发按损坏 元件扣分,扣3分/个。 2 安装电路:按装配图进行装接,要求不装 错,不损坏元器件,无虚焊,漏焊和搭锡,元 器件排列整齐并符合工艺要求。 30 漏装,错装或虚焊、漏焊、 搭锡,扣2分/个,安装不整 齐和不符合工艺要求的扣1 分/处,损坏元件扣3分/个。 3 电源电路:接通交流电源,测量交流电压 和各直流电压+12V、-12V、V CC 、-5V。 信号发生器电路:接通+12V、-12V、V CC 、 -5V电源。测量函数信号波形:方波、正弦波、 三角波形。 20 电压测试方法不正确扣10 分,测量值有误差扣5分。 4 选择C=10uf,调节RW13、RW14、RW15, 记录方波的占空比: 1、 2、 3、 10 不会用示波观察输出信号波 形扣10分, 调节不正确扣5分, 波形记录不正确扣5分。 5 改变电容:100nf——100uf,并调节RW11, 记录正弦波输出频率f: 1、 2、 3、 10 最大不失真电压测试方法不 正确扣5分,测量值不准确 扣5分,不会计算最大不失 真功率扣5分。 6 调节RW21、RW22, 记录正弦波输出Vpp: 1、 2、 3、 10 不会测试功放电路的灵敏度 扣5分,不会计算电压放大 倍数扣5分。 7 调节电位器RW16、RW17, 记录正弦波形的失真: 1、 2、 3、 10 测量方法不正确扣5分, 测量数据每处2分,不会绘 制频响曲线扣5分 开始时间:结束时间:实用时间:

信号隔离器原理及应用

信号隔离器原理及应用 在工业生产过程中,生成过程的监视和控制中要用到各种各样的仪器仪表,会产生各种各样的信号:既有微弱的毫伏级的小信号,又有数十伏的大信号,甚至还有高达数千伏和数百安培的强信号;既有直流低频信号,也有高频或脉冲尖峰信号;而这些信号都要经过互相传递和输送的过程,因此如何保证这些信号,特别是模拟信号在传输过程中不失真将成为系统调试中必须解决的问题。 具体地说,只有当控制装置和分布在现场的传感器和执行器之间的模拟信号传输无故障并且不失真时,才能保证过程控制安全可靠。尤其是小功率的模拟信号在干扰大的工业环境中传输时受各种外部干扰信号的影响,它们需要一条可靠的传输通道。日常工作经验表明,受设备要求的制约,必须谨慎小心的处理和传输模拟信号。而现场和控制层之间以模拟信号形式传输的测量和控制参数,在传输工程中常处于较恶劣的工业环境中,很可能会造成这些信号的失真。 z造成模拟信号失真的原因 1.接地环路问题:如下图所示,当过程环路中有两处或两处以上接地电阻不相等时,就会产生接地环路,过 程信号就会失真。 要使信号完整而不失真地传输,理想化的情况是所有设备、仪表中的信号都有一个共同的参考点,也就是有一个共同的“地”。只有这样,所有的设备、仪表的信号参考点之间电位差才能为“零”。很显然,不同设备的接地电阻很难保证都相等,接地电阻也会随着传输距离的增加而升高,有时甚至产生高达200V的电位差。 2.测量回路相互连接问题:如下图所示,在这些回路中,参考点要将因为接通多个信号回路而升高。 设备一 设备二 设备三 设备四 U 如上图,在这种相互连接的测量回路中,由于线间电阻的不断增加,必然会引起参考电压的不断升高。

DDS信号发生器电路设计

1. 信号产生部分 1.1 频率控制字输入模块 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; entity ddsinput is port(a,b,c,clk,clr:in std_logic; q1,q2,q3,q4,q5:buffer unsigned(3 downto 0)); end ddsinput; architecture a of ddsinput is signal q:std_logic_vector(2 downto 0); begin q<=c&b&a; process(cp,q,clr) begin if clr='1'then q1<="0000";q2<="0000";q3<="0000";q4<="0000";q5<="0000"; elsif clk 'event and clk='1'then

DDS信号信号发生器电路设计 case q is when"001"=>q1<=q1+1; when"010"=>q2<=q2+1; when"011"=>q3<=q3+1; when"100"=>q4<=q4+1; when"101"=>q5<=q5+1; when others=>NULL; end case; end if; end process; end a; 1.2 相位累加器模块 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; entity xiangwei is port(m:in std_logic_vector(19 downto 0); clk,clr:in std_logic; data:out std_logic_vector(23 downto 0)); end xiangwei; architecture a of xiangwei is signal q:std_logic_vector(23 downto 0); begin process(clr,clk,m,q) begin if clr='1'then q<="000000000000000000000000"; elsif (clk'event and clk='1')then q<=q+m; end if; data<=q; end process; end a;

衰减器课程设计的基本原理及电路图

信号衰减器原理及设计 衰减器是在指定的频率范围内,一种用以引入一预定衰减的电路,一般以所引入衰减的分贝数及其特性阻抗的欧姆数来标明。 衰减器广泛地应用于电子设备中,它的主要用途是: (1)调整电路中信号的大小;(2)改善阻抗匹配,若某些电路要求有一个比较稳定的负载阻抗时,则可在此电路与实际负载阻抗之间插入一个衰减器,能够缓冲阻抗的变化。 通常,衰减器接于信号源和负载之间,衰减器是由电阻元件组成的二端口网络,它的特性阻抗、衰减量都是与频率无关的常数,相移等于零。 实际应用中,有固定衰减器和可变衰减两大类。 1、固定衰减器的设计 常用的固定衰减器有对称型的T型、∏型、桥T型和倒L型(不对称型)等几种结构,其电路形式和计算公式如下。 图1. T型衰减器 图2. ∏型衰减器 1 2 1 1 2 2 1- = + - = N N R R N N R R C C 1 1 2 1 2 2 1- + = - = N N R R N N R R C C 1 )1 ( 2 1- = - = N R R N R R C C

图3. 桥T 型衰减器 图4. 倒L 型衰减器 式中,Rc 为二端口网络的特性阻抗(对称时),即输入输出阻抗,Rc1和Rc2两侧特性阻抗,分别为非对称衰减器的输入输出阻抗;20 10A N =,为输入电压与输出电压之比,A 为衰减的分贝数。 电压比分贝:dB=20lg (Uo/Ui ) 以上衰减器中,T 型、∏型、桥T 型属于对称衰减器,主要用于衰减。而倒L 型属于不对称衰减器,主要用于阻抗匹配。 倒L 型不对称衰减器构成阻抗匹配器,与对称衰减器所不同的是,不能指定衰减量,其输入输出阻抗确定后,其衰减量也就确定了。其衰减值见下表。 表1 倒L 型衰减器衰减值与输入输出阻抗比的关系 值得注意的是,桥T 型衰减器中,有两个电阻的值即为特性阻抗(输入输出电阻),且计算公式简洁,用于组成可调衰减器非常方便。 例1:设计一衰减器,匹配于信号源内阻R S =800欧与负载电阻R L =150欧之间,其衰减量为30dB 。 解:因为RS 、RL 不相等,所以选用一节倒L 型和一节对称T 型构成衰减器,如图5所示。 (1)倒L 型电路计算: 10.14 8001501111166.41150 800800 150721.11)150800(800)(1 1 1 2 12112 22111=???? ??--=??? ? ? ?--=Ω =-=-=Ω=-?=-=--C C C C C C C C C R R N R R R R R R R R R (2)T 型电路计算: 由于总衰减量A=30dB ,N=10^(30/20)=31.62;所以桥T 型衰减量N 2为 N 2=N/N 1=31.62/10.14=3.1184 计算R1和R2 1 122 11 2 2111112)(-? ???? ?--=-=-=C C C C C C C C C R R N R R R R R R R R R

数字隔离器工作原理及应用实例

龙源期刊网 https://www.doczj.com/doc/b74445631.html, 数字隔离器工作原理及应用实例 作者:徐华 来源:《电脑知识与技术·学术交流》2008年第22期 摘要:讨论了隔离技术的发展,分析了数字隔离器的工作原理,给出了数字隔离器的应用实例。 关键词:隔离;数字隔离器;高频通道;低频通道;传感器;接口 中图分类号:TN305文献标识码:A文章编号:1009-3044(2008)22-772-02 The Working Principle and Applications of the Digital Isolator XU Hua (Xiamen Kerun Electronic Technology Co.Ltd, Xiamen 361006, China) Abstract: Discuss the development of isolation technology, analysis the working principle of the digital isolator, and also give the applications of digital isolators. Key words: isolation; digital isolators; high-frequency channel; low-frequency channel; sensor; interface 1 引言 进行隔离是防止电流在两个通讯点之间流动的一种方法。一般在两种情况下采用隔离:第一种情况是,在有可能存在损坏设备或危害人员的潜在的电流浪涌时。第二种情况是必须避免存在不同地电位和分裂的接地回路的互连。两种情形都是采用隔离来避免电流流过,而允许两点之间有数据或功率传送。隔离应用涉及高电压、高速/高精度通信、或者长距离通信。普通的例子如工业I/O系统、传感器接口、电源/调节杆,发动机控制/驱动系统以及仪器仪表。 2 早期的隔离技术 早期的设计除使用变压器之外,还使用各种模拟隔离放大器,将工厂地面的传感器电路与控制室内的信号处理系统进行隔离。在通道数量有限及信号带宽小的应用中,目前仍在采用这些放大器。隔离放大器虽然具有高可靠性和高精度,但受限于信号带宽50kHz。其老旧的技 术要求最小±4V的电源,不支持目前的3V及以下的低电压应用。此外,其制造过程涉及输入和输出部分单独制作,异常电路匹配的激光微调,以及在两部分间安装隔离电容,使这些器件相当昂贵。 3 多通道隔离

pwm波信号发生器

电子技术综合训练 设计报告 题目:PWM信号发生器的设计 姓名: 学号: 班级: 同组成员: 指导教师: 日期: 摘要 本次课程设是基于TTL系列芯片的简易PWM信号发生器,PWM信号发生器应用所学的数字电路和模拟电路的知识进行设计。在设计过程中,所有电路仿真均基于Multisim10仿真软件。本课程设计介绍了PWM信号发生器的设计方案及其基本原理,并着重介绍了PWM信号发生器各单元电路的设计思路,原理及仿真,整体电路的的工作原理,控制器件的工作情况。设计共有三大组成部分:一是原理电路的设计,本部分详细讲解了电路的理论实现,是关键部分;二是性能测试,这部分用于

测试设计是否符合任务要求。三是是对本次课程设计的总结。 关键字: 目录 1 设计任务和要求…………………………………………………………? 1.1设计任务……………………………………………………………? 1.2设计要求…………………………………………………………….? 2 系统设计…………………………………………………………………? 2.1系统要求…………………………………………………………….? 2.2方案设计……………………………………………………………? 2.3系统工作原理……………………………………………………….? 3 单元电路设计……………………………………………………………? 3.1 单元电路A(单元电路的名称) ……………………………………? 3.1.1电路结构及工作原理……………………………………………? 3.1.2电路仿真…………………………………………………………?

3.1.3元器件的选择及参数确定……………………………………………? 3.2单元电路B(单元电路的名称) ……………………………………? 3.2.1电路结构及工作原理…………………………………………? 3.2.2电路仿真…………………………………………………………? 3.2.3元器件的选择及参数确定…………………………………………….? …… 4 系统仿真……………………………………………………………………?. 5 电路安装、调试与测试……………………………………………………? 5.1电路安装………………………………………………………………? 5.2电路调试………………………………………………………………? 5.3系统功能及性能测试…………………………………………………? 5.3.1测试方法设计………………………………………………………? 5.3.2测试结果及分析……………………………………………………? 6 结论…………………………………………………………………………?

衰减器原理

衰减器原理,用途及设计 - 衰减器原理,用途及设计 衰减器广泛地应用于电子设备中,它的主要用途是: (1)调整电路中信号的大小; (2)在比较法测量电路中,可用来直读被测网络的衰减值; (3)改善阻抗匹配,若某些电路要求有一个比较稳定的负载阻抗时,则可在此电路与实际负载阻抗之间插入一个衰减器,能够缓冲阻抗的变化。 通常,衰减器接于信号源和负载之间,衰减器是由电阻元件组成的四端网络,它的特性阻抗、衰减都是与频率无关的常数,相移等于零。 实际应用中,有固定衰减器和可变衰减两大类。 1、固定衰减器的设计 常用的固定衰减器有L型、T型、X型和桥T型等几种结构,其电路形式和计算公式见表5.1-16。

注:RC为特性阻抗;RC1、RC2为两侧特性阻抗,B为固有衰减值N=EB。 其中L型属于不对称衰减器,主要用于阻抗匹配,而T型、X型、桥T型属于对称衰减器,主要用于衰减。一端接地的衰减器称为不平衡衰减器;反之,两端不接地的衰减器称为平衡衰减器。 例:设计一衰减器,匹配于信号源内阻RS-600欧与负载电阻RL=150欧之间,其衰减量为30DB。 解计算过程: (1)因为RS、RL不相等,所以选用一节倒L型和一节对称T型号组成衰减器,如图5.1-19A

所示倒L型电路计算: (2)T型电路计算: 由于总衰减量为30DB,所以T型衰减量为 (3)电路简化: 对设计电路进行变换,进而得到简化电路,由图5.1-19A变换为图B及图C的形式。

上一页1 2 下一页 2、可变衰减器的设计 可变衰减器,一般是指特性阻抗值恒定的,而它的衰减值是可变的衰减器,此外,还有一种分压式可变衰减器,由于它的负载往往是高阻抗,因此对这种分压式可变衰减器的特性阻抗就没有什么具体要求。 1)可变桥T型衰减器

信号隔离器应用场合及使用原理

信号隔离器应用场合及使用原理 2008/3/6/09:04 1.信号隔离器的作用 (1)地环流干扰 在工业生产过程中实现监视和控制需要用到各种自动化仪表、控制系统和执行机构,他们之间的信号传输既有微弱到毫伏级、毫安级的小信号;又有几十伏,数千伏、数百安培的大信号;既有低频直流信号,也有高频脉冲信号等等,构成系统后往往发现在仪表和设备之间传输相互干扰,造成系统不稳定甚至误操作,出现这种情况除了每个仪器、设备本身的性能原因如抗电磁干扰影响,还有一个十分重要的原因就是各种仪器设备根据要求和目的都需要接地,例如为了安全,机壳需要接大地;为了使电路正常工作,系统需要有公共参考点;为了抑制干扰加屏蔽罩,屏蔽罩也需要接地,但是由于仪表和设备之间的参考点之间存在电势差(也就是各设备的共地点不同)因而形成“地环流”、“接地环流”问题是在系统处理信号过程中必须解决的问题。 (2)自然干扰 雷电是一种主要的自然干扰源,雷电产生的干扰可以传输到数千公里以外的地方。雷电干扰的时域波形是叠加在一串随机脉冲背景上的一个大尖峰脉冲。宇宙噪音是电离辐射产生的,在一天中不断变化。太阳噪音则随着太阳活动情况的剧烈变化。自然界噪声主要会对通讯产生干扰,而雷电能量尖蜂脉冲可以对很多设备造成损坏,应该加以避免或降低损坏程度,减少损失。 (3)人为干扰 电磁干扰产生的根本原因是导体中有电压或电流的变化,即较大dv/dt或di/dt.dv/dt或di/dt能够使导体产生电磁波辐射。一方面,人们可以利用这一特点实现特定功能,例如,无限通信、雷达或其他功能,另一方面,电子设备在工作时,由于导体中的dv/dt或di/dt会产生伴随电磁辐射。无论主观上出于什么目的,客观上对电磁环境造成了污染。还有工厂企业在生产过程中会经常有一些大型的设备(电机、变频器)频繁开关,他们也会造成一些容性、感性的干扰,也将影响仪器仪表正常显示或采集。凡是有电压电流突变的场合,肯定会有电磁干扰存在。数字脉冲电路就是一种典型的干扰源,随着电子技术的广泛应用,电磁污染情况会越来越严重. 2.解决各种干扰的方法 首先干扰的三要素是干扰源、敏感源和耦合路径,这三要素缺少一个,电磁兼容问题都不会存在。因此要从这三要素入手。找出最方便的解决方法,一般干扰源和敏感源是没办法解决的,通常是从耦合路径想办法,也是最常用的方法。如加屏蔽、加滤波等手段。而处理环流最常见也最为麻烦,现在以此为探讨话题。 (1)第一种方法;所有现场设备不接地,使所有过程环路只有一个接地点,不能形成回路,这种方法看似简单,但实际应用中往往很难实现,因为某些设备要求必须接地才能保证测量精度或人身安全,某些设备可能因为长期遭到腐蚀和磨损后或气候影响而形成新的接地点。

信号发生器的基本原理

信号发生器的基本原理- 信号发生器使用攻略 信号发生器的基本原理 现代信号发生器的结构非常复杂,与早期的简易信号发生器天差地别,但总体基本结构功能单元还是类似的。信号发生器的主要部件有频率产生单元、调制单元、缓冲放大单元、衰减输出单元、显示单元、控制单元。早期的信号发生器都采用模拟电路,现代信号发生器越来越多地使用数字电路或单片机控制,内部电路结构上有了很大的变化。 频率产生单元是信号发生器的基础和核心。早期的高频信号发生器采用模拟电路LC振荡器,低频信号发生器则较多采用文氏电桥振荡器和RC移相振荡器。由于早期没有频率合成技术,所以上述LC、RC振荡器优点是结构简单,可以产生连续变化的频率,缺点是频率 稳定度不够高。早期产品为了提高信号发生器频率稳定度,在可变电容的精密调节方面下了很多功夫,不少产品都设计了精密的传动机构和指示机构,所以很多早期的高级信号发生器体积大、重量重。后来,人们发现采用石英晶体构成振荡电路,产生的频率稳定,但是石英晶体的频率是固定的,在没有频率合成的技术条件下,只能做成固定频率信号发生器。之后 也出现过压控振荡器,虽然频率稳定度比LC振荡器好些,但依然不够理想,不过压控振荡 器摆脱了LC振荡器的机械结构,可以大大缩减仪器的体积,同时电路不太复杂,成本也不高。现在一些低端的函数信号发生器依然采用这种方式。 随着PLL锁相环频率合成器电路的兴起,高档信号发生器纷纷采用频率合成技术,其 优点是频率输出稳定(频率合成器的参考基准频率由石英晶体产生),频率可以步进调节,频率显示机构可以用数字化显示或者直接设置。早期的高精度信号发生器为了得到较小的频率步进,将锁相环做得非常复杂,成本很高,体积和重量都很大。目前的中高端信号发生器 采用了更先进的DDS频率直接合成技术,具有频率输出稳定度高、频率合成范围宽、信号频谱纯净度高等优点。由于DDS芯片高度集成化,所以信号发生器的体积很小。 信号发生器的工作频率范围、频率稳定度、频率设置精度、相位噪声、信号频谱纯度都与频率产生单元有关,也是信号发生器性能的重要指标。 信号发生器的一大特性就是可以操控仪器输出信号的幅度,信号通过特定组合衰减量的衰减器达到预定的输出幅度。早期的衰减器是机械式的,通过刻度来读取衰减量或输出幅度。现代中高档信号发生器的衰减器单元由单片机控制继电器来切换,向电子芯片化过渡,衰减单元的衰减步进量不断缩小,精度相应提高。大频率范围的高精度衰减器和高精度信号输出属于高科技技术,这也是国内很少有企业能制造高端信号发生器的原因之一。信号发生器的信号输出范围和输出电平的精度和准确度也是标志信号发生器性能的重要指标。

衰减器

功率衰减器是一种能量损耗性射频/微波元件,元件内部含有电阻性材料。除了常用的电阻性固定衰减器外,还有电控快速调整衰减器。衰减器广泛使用于需要功率电平调整的各种场合。 原理 1.技术指标工作频带 2.衰减量 3.功率容量 4.回波损耗 5.功率系数 6.基本构成 7.主要用途 8.相关参数 9.种类位移型光衰减器 10.薄膜型光衰减器 11.衰减片型光衰减器 12.注意事项原理 13.技术指标工作频带 14.衰减量 15.功率容量 16.回波损耗 17.功率系数 18.基本构成 19.主要用途 20.相关参数 21.种类位移型光衰减器 22.薄膜型光衰减器 23.衰减片型光衰减器 24.注意事项 原理: 衰减器是在指定的频率范围内,一种用以引入一预定衰减的电路。一般以所引入衰减的分贝数及其特性阻衰减器抗的欧姆数来标明。在有线电视系统里广泛使用衰减器以便满足多端口对电平的要求。如放大器的输入端、输出端电平的控制、分支衰减量的控制。衰减器有无源衰减器和有源衰减器两种。有源衰减器与其他热敏元件相配合组成可变衰减器,装置在放大器内用于自动增益或斜率控制电路中。无源衰减器有固定衰减器和可调衰减器。 技术指标 工作频带 衰减器的工作频带是指在给定频率范围内使用衰减器,衰减器才能达到指标值。由于射频/

微波数字衰减器结构与频率有关,不同频段的元器件,结构不同,也不能通用。现代同轴结构的衰减器使用的工作频带相当宽,设计或使用中要加以注意。 衰减量 无论形成功率衰减的机理和具体结构如何,总是可以用下图所示的两端口网络来描述衰减器。图中,信号输入端的功率为P1,而输出端得功率为P2,衰减器的功率衰减量为A (dB)。若P1 、P2 以分贝毫瓦(dBm)表示,则两端功率间的关系为P2(dBm)=P1(dBm)-A(dB)可以看出,衰减量描述功率通过衰减器后功率的变小程度。衰减量的大小由构成衰减器的材料和结构确定。衰减量用分贝作单位,便于整机指标计算。 功率容量 衰减器是一种能量消耗元件,功率消耗后变成热量。可以想象,材料结构确定后,衰减器的功率容量就确定了。如果让衰减器承受的功率超过这个极限值,衰减器就会被烧毁。设计和使用时,必须明确功率容量。 回波损耗 回波损耗就是衰减器的驻波比,要求衰减器两端的输入输出驻波比应尽可能小。我们希望的衰减器是一个功率消耗元件,不能对两端电路有影响,也就是说,与两端电路都是匹配的。设计衰减器时要考虑这一因素。 功率系数 当输入功率从10mW变化到额定功率时,衰减量的变化系数表示为dB/(dB*W)。衰减量的变化值的具体算法是将系数乘以总衰减量功率(W)。如:一个功率容量50W,标称衰减量为40dB的衰减器的功率系数为0.001dB/(dB*W),意味着输入功率从10mW加到50W时,其衰减量会变化0.001*40*50=2dB之多! 基本构成 构成射频/微波功率衰减器的基本材料是电阻性材料。通常的电阻是衰减器的一大功率衰减器种基本形式,由此形成的电阻衰减器网络就是集总参数衰减器。通过一定的工艺把电阻材料放置到不同波段的射频/微波电路结构中就形成了相应频率的衰减器。如果是大功率衰减器,体积肯定要加大,关键就是散热设计。随着现代电子技术的发展,在许多场合要用到快速调整衰减器。这种衰减器通常有两种实现方式,一是半导体小功率快调衰减器,如PIN 管或FET单片集成衰减器;二是开关控制的电阻衰减网络,开关可以是电子开关,也可以是射频继电器。 衰减器有以下基本用途:1) 控制功率电平:在微波超外差接收机中对本振输出功率进行控制,获得光敏衰减器最佳噪声系数和变频损耗,达到最佳接收效果。在微波接收机中,实现自动增益控制,改善动态范围。2) 去耦元件:作为振荡器与负载之间的去耦合元

相关主题
文本预览
相关文档 最新文档