当前位置:文档之家› 线性代数计算法则

线性代数计算法则

线性代数计算法则
线性代数计算法则

第一部分:基本要求(计算方面)

四阶行列式的计算;

N阶特殊行列式的计算(如有行和、列和相等);

矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);

求矩阵的秩、逆(两种方法);解矩阵方程;

含参数的线性方程组解的情况的讨论;

齐次、非齐次线性方程组的求解(包括唯一、无穷多解);

讨论一个向量能否用和向量组线性表示;

讨论或证明向量组的相关性;

求向量组的极大无关组,并将多余向量用极大无关组线性表示;

将无关组正交化、单位化;

求方阵的特征值和特征向量;

讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;

通过正交相似变换(正交矩阵)将对称矩阵对角化;

写出二次型的矩阵,并将二次型标准化,写出变换矩阵;

判定二次型或对称矩阵的正定性。

第二部分:基本知识

一、行列式

1.行列式的定义

用n^2个元素aij组成的记号称为n阶行列式。

(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;

2.行列式的计算

一阶|α|=α行列式,二、三阶行列式有对角线法则;

N阶(n>=3)行列式的计算:降阶法

定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。特殊情况

上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;

(2)行列式值为0的几种情况:

Ⅰ行列式某行(列)元素全为0;

Ⅱ行列式某行(列)的对应元素相同;

Ⅲ行列式某行(列)的元素对应成比例;

Ⅳ奇数阶的反对称行列式。

二.矩阵

1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);

2.矩阵的运算

(1)加减、数乘、乘法运算的条件、结果;

(2)关于乘法的几个结论:

①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);

②矩阵乘法一般不满足消去律、零因式不存在;

③若A、B为同阶方阵,则|AB|=|A|*|B|;

④|kA|=k^n|A|

3.矩阵的秩

(1)定义非零子式的最大阶数称为矩阵的秩;

(2)秩的求法一般不用定义求,而用下面结论:

矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。

求秩:利用初等变换将矩阵化为阶梯阵得秩。

4.逆矩阵

(1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立);

(2)性质:(AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B的逆矩阵,你懂的)(注意顺序)

(3)可逆的条件:

①|A|≠0;②r(A)=n; ③A->I;

(4)逆的求解

伴随矩阵法A^-1=(1/|A|)A*;(A* A的伴随矩阵~)

②初等变换法(A:I)->(施行初等变换)(I:A^-1)

5.用逆矩阵求解矩阵方程:

AX=B,则X=(A^-1)B;

XB=A,则X=B(A^-1);

AXB=C,则X=(A^-1)C(B^-1)

三、线性方程组

1.线性方程组解的判定

定理:

(1) r(A,b)≠r(A) 无解;

(2) r(A,b)=r(A)=n 有唯一解;

(3)r(A,b)=r(A)

特别地:对齐次线性方程组AX=0

(1) r(A)=n 只有零解;

(2) r(A)

再特别,若为方阵,

(1)|A|≠0 只有零解

(2)|A|=0 有非零解

2.齐次线性方程组

(1)解的情况:

r(A)=n,(或系数行列式D≠0)只有零解;

r(A)

X=c1α1+c2α2+…+Cn-rαn-r。

(3)求解的方法和步骤:

①将增广矩阵通过行初等变换化为最简阶梯阵;

②写出对应同解方程组;

③移项,利用自由未知数表示所有未知数;

④表示出基础解系;

⑤写出通解。

3.非齐次线性方程组

(1)解的情况:

利用判定定理。

(2)解的结构:

X=u+c1α1+c2α2+…+Cn-rαn-r。

(3)无穷多组解的求解方法和步骤:

与齐次线性方程组相同。

(4)唯一解的解法:

有克莱姆法则、逆矩阵法、消元法(初等变换法)。

四、向量组

1.N维向量的定义

注:向量实际上就是特殊的矩阵(行矩阵和列矩阵)。

2.向量的运算:

(1)加减、数乘运算(与矩阵运算相同);

(2)向量内积α'β=a1b1+a2b2+…+anbn;

(3)向量长度

|α|=√α'α=√(a1^2+a2^2+…+an^2) (√根号)

(4)向量单位化(1/|α|)α;

(5)向量组的正交化(施密特方法)

设α1,α 2,…,αn线性无关,则

β1=α1,

β2=α2-(α2’β1/β1’β)*β1,

β3=α3-(α3’β1/β1’β1)*β1-(α3’β2/β2’β2)*β2,………。

3.线性组合

(1)定义若β=k1α1+k2α 2+…+knαn,则称β是向量组α1,α 2,…,αn的一个线性组合,或称β可以用向量组α1,α 2,…,αn的一个线性表示。

(2)判别方法将向量组合成矩阵,记

A=(α1,α 2,…,αn),B=(α1,α2,…,αn,β)

若r (A)=r (B),则β可以用向量组α1,α 2,…,αn的一个线性表示;

若r (A)≠r (B),则β不可以用向量组α1,α 2,…,αn的一个线性表示。

(3)求线性表示表达式的方法:

将矩阵B施行行初等变换化为最简阶梯阵,则最后一列元素就是表示的系数。

4.向量组的线性相关性

(1)线性相关与线性无关的定义

设 k1α1+k2α2+…+knαn=0,

若k1,k2,…,kn不全为0,称线性相关;

若k1,k2,…,kn全为0,称线性无关。

(2)判别方法:

① r(α1,α 2,…,αn)

r(α1,α 2,…,αn)=n,线性无关。

②若有n个n维向量,可用行列式判别:

n阶行列式aij=0,线性相关(≠0无关) (行列式太不好打了)

5.极大无关组与向量组的秩

(1)定义极大无关组所含向量个数称为向量组的秩

(2)求法设A=(α1,α 2,…,αn),将A化为阶梯阵,则A的秩即为向量组的秩,而每行的第一个非零元所在列的向量就构成了极大无关组。

五、矩阵的特征值和特征向量

1.定义对方阵A,若存在非零向量X和数λ使AX=λX,则称λ是矩阵A的特征值,向量X称为矩阵A的对应于特征值λ的特征向量。

2.特征值和特征向量的求解:

求出特征方程|λI-A|=0的根即为特征值,将特征值λ代入对应齐次线性方程组(λI-A)X=0中求出方程组的所有非零解即为特征向量。

3.重要结论:

(1)A可逆的充要条件是A的特征值不等于0;

(2)A与A的转置矩阵A'有相同的特征值;

(3)不同特征值对应的特征向量线性无关。

六、矩阵的相似

1.定义对同阶方阵A、B,若存在可逆矩阵P,使P^-1AP=B,则称A与B相似。

2.求A与对角矩阵∧相似的方法与步骤(求P和∧):

求出所有特征值;

求出所有特征向量;

若所得线性无关特征向量个数与矩阵阶数相同,则A可对角化(否则不能对角化),将这n个线性无关特征向量组成矩阵即为相似变换的矩阵P,依次将对应特征值构成对角阵即为∧。

3.求通过正交变换Q与实对称矩阵A相似的对角阵:

方法与步骤和一般矩阵相同,只是第三歩要将所得特征向量正交化且单位化。

七、二次型

1.定义n元二次多项式f(x1,x2,…,xn)=∑ aijxixj称为二次型,若aij=0(i≠j),则称为二交型的标准型。

2.二次型标准化:

配方法和正交变换法。正交变换法步骤与上面对角化完全相同,这是由于对正交矩阵Q,Q^-1=Q',即正交变换既是相似变换又是合同变换。

3.二次型或对称矩阵的正定性:

(1)定义(略);

(2)正定的充要条件:

①A为正定的充要条件是A的所有特征值都大于0;

②A为正定的充要条件是A的所有顺序主子式都大于0;

线性代数考试题库及答案(五)

线性代数考试题库及答案 一、单项选择题(共5小题,每题2分,共计10分) 1.在111 ()111111 x f x x x -+=-+-展开式中,2x 的系数为 ( ) (A) -1 (B) 0 (C) 1 (D) 2 2.A 是m ×n 矩阵,(),r A r B =是m 阶可逆矩阵,C 是m 阶不可逆矩阵,且 ()r C r <,则 ( ) (A) BAX O =的基础解系由n-m 个向量组成 (B) BAX O =的基础解系由n-r 个向量组成 (C) CAX O =的基础解系由n-m 个向量组成 (D) CAX O =的基础解系由n-r 个向量组成 3.设n 阶矩阵,A B 有共同的特征值,且各自有n 个线性无关的特征向量,则( ) (A) A B = (B) ,0A B A B ≠-=但 (C) A B (D) A B 与不一定相似,但 A B = 4.设,,A B C 均为n 阶矩阵,且AB BC CA E ===,其中E 为n 阶单位阵,则 222A B C ++= ( ) (A) O (B) E (C) 2E (D) 3E 5.设1010,0203A B ???? == ? ????? ,则A B 与 ( ) (A)合同,且相似 (B)不合同,但相似 (C)合同,但不相似 (D )既不合同,又不相似

二、填空题(共 二、填空题(共10小题,每题 2分,共计 20 分) 1.已知11 122 233 30a b c a b c m a b c =≠,则1111 22223333 232323a b c c a b c c a b c c ++=+ 。 2.设 1 010 2010 1A ?? ?= ? ?? ? ,若三阶矩阵Q 满足2,AQ E A Q +=+则Q 的第一行的行向量是 。 3.已知β为n 维单位列向量, T β为β的转置,若T C ββ= ,则 2C = 。 4.设12,αα分别是属于实对称矩阵A 的两个互异特征值12,λλ的特征向量,则 12T αα= 。 5.设A 是四阶矩阵,A * 为其伴随矩阵,12,αα是齐次方程组0AX =的两个线 性无关解,则()r A *= 。 6.向量组1 23(1,3,0,5,0),(0,2,4,6,0),(0,3,0,6,9)T T T ααα===的线性关系 是 。 7.已知三阶非零矩阵B 的每一列都是方程组1231231 23220 2030 x x x x x x x x x λ+-=?? -+=??+-=?的解,则 λ= 。 8.已知三维向量空间3R 的基底为123(1,1,0),(1,0,1),(0,1,1)T T T ααα===,则向量 (2,0,0)T β=在此基底下的坐标是 。 9.设21110012100,112004A a a ?? ?? ? ?== ? ? ? ????? 则 。 10.二次型2 2 2 123123121323(,,)222222f x x x x x x x x x x x x =++++-的秩为 。

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

线性代数模试题试题库(带答案)

第一套线性代数模拟试题解答 一、填空题(每小题4分,共24分) 1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12 i j = =。 令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。 2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D = (1)n D - 。 即行列式D 的每一行都有一个(-1)的公因子,所以D = (1)n D -。 3、设1101A ??= ??? , 则100A =110001?? ???。 23 111112121113,,010*********A A ????????????==== ??? ? ??? ????????????? L 可得 4、设A 为5 阶方阵,5A =,则5A =1 5n +。 由矩阵的行列式运算法则可知:1 555 n n A A +==。 5、A 为n 阶方阵,T AA E =且=+

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

50Mathematica线性代数运算命令与例题

50Mathematica线性代数运算命令与例题

第五章 线性代数运算命令与例题 线性代数中常用的工具是矩阵(向量)和行列式。用这些工具可以表示工程技术,经济工作中一些需要用若干个数量从整体上反映其数量关系的问题。用这些工具可以简明凝练而准确地把所要研究的问题描述出来,以提高研究的效率。在线性代数课程中我们看到了用这些工具研究齐次和非齐次线性方程组解的理论和解的结构,矩阵的对角化,二次型化标准形等问题的有力,便捷. 5.1向量与矩阵的定义 数学上矩阵是这样定义的: 由n m ?个数排成m 行n 列的数表 mn m m n n a a a a a a a a a Λ M M M Λ Λ21 2222111211 称为m 行n 列矩阵,特别,当m=1时就是线性代数中的向量。

记作: ????? ?? ?????=mn m m n n a a a a a a a a a A ΛM M M ΛΛ2122221 11211 两个n m ?矩阵称为同型矩阵。 线性代数中的运算对象是向量和矩阵,因此首先介绍向量和矩阵的输入。 5.1.1输入一个矩阵 命令形式1:Table[f[i,j],{i ,m},{j ,n}] 功能: 输入n m ?矩阵,其中f 是关于i 和j 的函数,给出[i , j]项的值. 命令形式2:直接用表的形式来输入 功能:用于矩阵元素表达式规律不易找到的矩阵的输入。 注意: 1.Mathematica 是采用一个二重表的形式来表示矩阵的,即用 {{…},{…},…,{…}} 其中表中的每个表元素都是等长的一维表,第一

个表元素是矩阵的第一行,第二个表元素是矩阵的第二行,一般,第n 个表元素是矩阵的第n 行。要看通常的矩阵形式可以用命令: MatrixForm[%] 2. 对应上述命令形式,输入一个向量的命令为 Table[f[j],{j,n}]或直接输入一个一维表{a1,a2,…,an},这里a1,a2,…,an 是数或字母。 例题 例 1.输入矩阵A=???? ??????---41381639121458561203 12、向量 b={1,4,7,-3}。 解:Mathematica 命令 In[1]:= a={{12,-3,0,2,1},{56,-8,-45,21,91},{3,6,81,13,4}} Out[1]:= {{12,-3,0,2,1},{56,-8,-45,21,91},{3,6,81,13,4}} In[2]:=b={1, 4, 7, -3} Out[2]:= {1, 4, 7, -3}

考研数学线性代数行列式的计算方法

考研数学线性代数行列式的计算方法考研数学线性代数行列式的计算方法 一、基本内容及历年大纲要求。 本章内容包括行列式的定义、性质及展开定理。从整体上来看,历年大纲要求了解行列式的概念,掌握行列式的性质,会应用行列 式的性质及展开定理计算行列式。不过要想达到大纲中的要求还需 要考生理解排列、逆序、余子式、代数余子式的概念,以及性质中 的相关推论是如何得到的。 二、行列式在线性代数中的地位。 行列式是线性代数中最基本的运算之一,也是考生复习考研线性 代数必须掌握的基本技能之一(另一项基本技能是求解线性方程组),另外,行列式还是解决后续章节问题的一个重要工具,不论是后续 章节中出现的重要概念还是重要定理、解题方法等都与行列式有着 密切的联系。 三、行列式的计算。 由于行列式的计算贯穿整个学科,这就导致了它不仅计算方法灵活,而且出题方式也比较多变,这也是广大考生在复习线性代数时 面临的第一道关卡。虽然行列式的计算考查形式多变,但是从本质 上来讲可以分为两类:一是数值型行列式的计算;二是抽象型行列式 的计算。 1.数值型行列式的计算 主要方法有: (1)利用行列式的定义来求,这一方法适用任何数值型行列式的 计算,但是它计算量大,而且容易出错;

(2)利用公式,主要适用二阶、三阶行列式的计算; (3)利用展开定理,主要适用出现零元较多的行列式计算; (4)利用范德蒙行列式,主要适用于与它具有类似结构或形式的行列式计算; (5)利用三角化的思想,主要适用于高阶行列式的计算,其主要思想是找1,化0,展开。 2.抽象型行列式的计算 主要计算方法有: (1)利用行列式的性质,主要适用于矩阵或者行列式是以列向量的形式给出的; (2)利用矩阵的运算,主要适用于能分解成两个矩阵相乘的'行列式的计算; (3)利用矩阵的特征值,主要适用于已知或可以间接求出矩阵特征值的行列式的计算; (4)利用相关公式,主要适用于两个矩阵相乘或者是可以转化为两个矩阵相乘的行列式计算; (5)利用单位阵进行变形,主要适用于既不能不能利用行列式的性质又不能进行合并两个矩阵加和的行列式计算。 我们究竟该做多少年的真题? 建议大家在刚开始复习的时候,不要去做真题,因为以你刚开始复习的程度还不足以支撑起真题的难度和深度。我们做真题的时间是在我们的强化阶段结束之后,也就是提高阶段和冲刺模考去做真题。 应该怎么样去做真题? 第一:练习重质不重量

昆明理工大学线性代数考试试题集及答案

《线性代数B 》 2010~ 2011 学年第 一 学期课程试卷A 一、填空 1. 125 642782516945 4321111= 12 . 2. 设A 、B 为4阶方阵,且,2||1 =-A 813=B ,则=||AB 1/2 . 3. 给定矩阵A ,且E A -可逆,满足B A E AB +=+2,则=B E A + . 4.设??????????=210110001A ,则=-1A ???? ??????--11012000 1 . 5.已知321,,ααα线性相关,3α不能由21,αα线性表示,则21,αα线性 相关 . 6.设???? ? ?????=??????????=??????????=120,61,321321αααt ,且1α,32αα,线性相关, 则=t 8 . 7.设A 是34?矩阵,且2)(=A R ,???? ? ?????=213010321B 则=)(AB R __2___ 8.设三阶方阵A 的每行元素之和均为零,又2)(=A R ,则齐次线性方程组O Ax =的通解为 )(111R k k ∈???? ?????? . 9. 向量组,11011????????????-=α,02132????????? ???-=α,31103????????????-=α???? ? ? ??????-=01014α的一个最大线性无关组为 421,,ααα . 10. 设A 为n 阶方阵,0=Ax 有非零解,则A 必有一个特征值为 0 . 二、单项选择

1..若=---+=--1 2 1 203242,112 2013z y x z y x 则( A ) )A ( 1- ; )B ( 2 ; )C ( 1 ; )D ( 0. 2.设C B A ,,均为二阶方阵,AC AB =,则当(C )时,可以推出C B =. .1111)D (;0110)C (;0011)B (;0101)A (? ? ? ???=? ?? ???=? ?? ???=? ?? ???=A A A A 3. 下列结论正确的是( A ) . )A ( s ααα,,,21 线性无关的充要条件是其中任意一个向量都不是其余向量的线性组合; )B ( 若向量321,,ααα线性相关,则21,αα线性相关; )C ( 若n 阶方阵A 与对角阵相似,则A 有n 个不同的特征值; )D ( 若方程组O Ax =有非零解,则b Ax =有无穷多解. 4. 已知321,,ηηη是四元方程组b Ax =的三个解,其中,3)(=A R ? ? ??? ???????=43211η,???? ????????=+444432ηη, 则以下不是方程组b Ax =的通解为( D ) . )A (;43214202???? ?? ??????+????????????--k )B ( ;43212101????????????+????????????--k )C (;22222101???? ????????+????????????--k )D (????? ? ??????+????????????43210123k . 5. 设向量组321,,ααα线性无关,则下列向量组中线性无关的是( B ) )A (133221,,αααααα--- ; )B (1321,,αααα+ ; )C (212132,,αααα- ; )D (32322,,αααα+. 6.若n 阶矩阵B A ,有共同的特征值,且各有n 个线性无关的特征向量,则(A )

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

线性代数基本定理-新版.pdf

线性代数基本定理一、矩阵的运算 1.不可逆矩阵的运算不满足消去律AB=O,A 也可以不等于 O 11-1-1?è???÷1-1-11?è???÷=0000?è?? ? ÷ 2.矩阵不可交换 (A+B)2=A 2+AB+BA+B 2 (AB)k =ABABABAB ...A B 3.常被忽略的矩阵运算规则 (A+B)T =A T +B T (l A)T =l A T

4.反称矩阵对角线元素全为0 4.矩阵逆运算的简便运算 (diag(a 1,a 2 ,...,a n ))-1=diag( 1 a 1 , 1 a 2 ,..., 1 a n ) (kA)-1=1 k A-1 方法 1.特殊矩阵的乘法 A.对角矩阵乘以对角矩阵,结果仍为对角矩阵。且: B.上三角矩阵乘以上三角矩阵,结果为上三角矩阵2.矩阵等价的判断 A@B?R(A)=R(B) 任何矩阵等价于其标准型

3.左乘初等矩阵为行变换,右乘初等矩阵为列变换如:m*n 的矩阵,左乘 m 阶为行变换,右乘 n 阶为列变换 4. 给矩阵多项式求矩阵的逆或证明某个矩阵可逆如:A 2 -A-2I =O ,证明(A+2I)可逆。把2I 项挪到等式右边,左边凑出含有 A+2I 的一个多项式, 在确保A 平方项与 A 项的系数分别为原式的系数情况下,看I 项多加或少加了几个。5.矩阵的分块进行计算加法:分块方法完全相同 矩阵乘法(以A*B 为例):A 的列的分法要与B 行的分法一 致,如: 如红线所示:左边矩阵列分块在第 2列与第3列之间,那么,右边矩阵分 块在第二行与第三行之间 1-1003-1000100002-1 é? êêêêù?úúúú1000-1000013-1021 4 é? ê êêêù? úúúú

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

#线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 0010020010000 00n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例2 一个n 阶行列式 n ij D a =的元素满足 ,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由i j j i a a =-知i i i i a a =-,即 0,1,2, ,ii a i n ==

故行列式D n 可表示为 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A '= 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)0 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式 若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。 因此化三角形是行列式计算中的一个重要方法。 例3 计算n 阶行列式 a b b b b a b b D b b a b b b b a = 解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,

线性代数期末考试试卷答案

线性代数期末考试题样卷 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, ,Λ21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,,Λ21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,,Λ21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, ,Λ21中任意两个向量都线性无关 ② s ααα,, ,Λ21中存在一个向量不能用其余向量线性表示 ③ s ααα,, ,Λ21中任一个向量都不能用其余向量线性表示

线性代数-特殊行列式及行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 111121 12,1221222,11,21,1 1,1 12 ,1 (1)2 12,1 1 000000000000000 00 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------= ==- 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????==? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????==-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式;

3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降 阶进行计算——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法) 【常见的化简行列式的方法】 1. 利用行列式定义直接计算特殊行列式 例1 (2001年考研题) 0001000200019990002000000 002001 D = 分析:该行列式的特点是每行每列只有一个元素,因此很容易联想到直接利用行列式定义进行计算。 解法一:定义法 (1,2,...,2,1,)012...19990(1)2001!(1)2001!2001!n n n D τ--+++++=-=-= 解法二:行列式性质法 利用行列式性质2把最后一行依次与第n -1,n -2,…,2,1行交换(这里n =2001),即进行2000次换行以后,变成副对角行列式。 2001(20011) 20011 20011 2 000020010 001000200(1) (1) (1)2001!2001!019990002000 00 D ?---=- =--=

上海财经大学《 线性代数 》课程考试卷(B)及答案

诚实考试吾心不虚 ,公平竞争方显实力, 考试失败尚有机会 ,考试舞弊前功尽弃。 上海财经大学《 线性代数 》课程考试卷(B )闭卷 课程代码 105208 课程序号 姓名 学号 班级 一、单选题(每小题2分,共计20分) 1. 当=t 3 时,311244s t a a a a 是四阶行列式中符号为负的项。 2. 设A 为三阶方阵,3A = ,则* 2A -=__-72__。 3. 设矩阵01000 01000010 00 0A ????? ?=?????? ,4k ≥,k 是正整数,则=k P 0 。 4. 设A 是n 阶矩阵,I 是n 阶单位矩阵,若满足等式2 26A A I +=,则 () 1 4A I -+= 2 2A I - 。 5. 向量组()()()1,2,6,1,,3,1,1,4a a a +---的秩为1,则 a 的取值为__1___。 6. 方程组1243400x x x x x ++=??+=? 的一个基础解系是 ???? ? ? ? ??--??????? ??-1101,0011 。 7. 设矩阵12422421A k --?? ?=-- ? ?--??,500050004A ?? ? = ? ?-?? ,且A 与B 相似,则=k 4 。 …………………………………………………………… 装 订 线…………………………………………………

8. 123,,ααα是R 3 的一个基,则基312,,ααα到基12,αα,3α的过渡矩阵为 ???? ? ??001100010 。 9. 已知413 1 210,32111 a A B A A I -===-+-, 则B 的一个特征值是 2 。 10. 设二次型222 12312132526f x x x tx x x x =++++为正定, 则t 为 5 4||< t 。 二.选择题(每题3分,共15分) 1. 设A 为n 阶正交方阵,则下列等式中 C 成立。 (A) *A A =; (B)1*A A -= (C)()1T A A -=; (D) *T A A = 2. 矩阵 B 合同于145-?? ? - ? ??? (A) 151-?? ? ? ??? ; (B )????? ??--321;(C )???? ? ??112;(D )121-?? ? - ? ?-?? 3. 齐次线性方程组AX O =有唯一零解是线性方程组B AX =有唯一解的( C )。 (A )充分必要条件; (B )充分条件; (C )必要条件; (D )无关条件。 4.设,A B 都是n 阶非零矩阵,且AB O =,则A 和B 的秩( B )。 (A )必有一个等于零;(B )都小于n ;(C )必有一个等于n ;(D )有一个小于n 。 5.123,,ααα是齐次线性方程组AX O =的基础解系,则__B___也可作为齐次线性方程组 AX O =的基础解系。 (A) 1231231222,24,2αααααααα-+-+--+ (B )1231212322,2,263αααααααα-+-+-+

线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 00100 20010000 n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---= . 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算

例2 一个n 阶行列式n ij D a =的元素满足 ,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由i j j a a =-知i i i a a =-,即 0,1,2,,ii a i n == 故行列式D n 可表示为 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A ' = 1213112 23213 2331230000n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)00 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

线性代数期末考试试题含答案

线性代数期末考试试题含 答案 The final edition was revised on December 14th, 2020.

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( )

线性代数常用公式

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确 (),n T A r A n A A Ax x Ax A Ax A A A E οοοββ==??≠≠≠??∈=?可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 , 0总有唯一解 是正定矩阵 R 12,s i A p p p p n B AB E AB E ?? ??? ????? ?? ??=????==?? 是初等阵 存在阶矩阵使得 或 ○注:全体n 维实向量构成的集合n R 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=?==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的?? ?? ?????特征向量 ○注 ()()a b r aE bA n aE bA aE bA x οολ+

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

相关主题
文本预览
相关文档 最新文档