当前位置:文档之家› 2011年12月西工大数值分析试题答案

2011年12月西工大数值分析试题答案

2011年12月西工大数值分析试题答案
2011年12月西工大数值分析试题答案

西北工业大学研究生课程考试试题答案

考试科目: 数值分析 (2011年12月28日)

1.(15分)用反幂法计算矩阵AA =??1111

3333

33

11?1133

?1177

?的最接近-13的特征值和对应的特征向量。

解 此问题的求解需要将反幂法和 原点平移

BB =? 11333333

1111?1133

?111122

? 法结合起来进行计算,为此需要首先用反幂法近似求矩阵B 的按模最小的特征值λ以及相应特征向量,矩阵B 的数值如下 对矩阵B 采用直接三角分解,准确计算(不用计算器)得

BB =LLLL =?11222233

112233?1111/5511??11

33332255?111122

22?6666/55

?

取初始向量VV (22)=(11 11 11)TT , 用反幂法时需取求解线性方程组BBVV (11)=VV (22)得到向量VV (11)

具体求解过程列表如下(请仅完成表中第三步,小数点后保留四位)

从而求得矩阵A 的接近于-13的特征值的近似值为 -13.2202 相应近似特征向量为(1,,

-0.2351 , -0.1716

)。 2. (10分)试证明求解以正交矩阵为系数矩阵的线性代数

方程组的谱条件数为1,即证明CCCCCCdd 11(AA )=11

证明: CCCCCCdd 11(AA )的表达式为: CCCCCCdd 11(AA )= ‖AA ‖11?AA ?11?11

由于A 为正交矩阵,所以有 AA TT AA =II 或 AA TT =AA ?11

根据定义有:

‖AA ‖11= = ?ρρ(AA TT AA ) = ?ρρ(II )

1 ?AA ?11?11= = ?ρρ(AA ?TT AA ?11)

?ρρ(AAAA TT ) =

?ρρ(II )=11

综合得到:CCCCCCdd 11(AA )=11 3.(10分)取步长1.0=h ,求如下常微分方程初值问题

=? =

dy

2x y ,x >0

dx y y(0)1

的解函数在0.2x =处的近似值。要求用Euler 预测校正公式,即每步用Euler 法进行预估,用梯形法进行一次校正(结果保留四位小数)。

由 000x =0,

y =y(x )=1,h =0.1 求得1()y x 近似值计算如下

1.1

1.0959091

(0)

11y =y = 求得2y(x )近似值计算如下

(0)22 1.1872503

1.18409657

y y =

=

4.(12分)(1)建立如下Gauss 型求积公式

?ff (xx )ddxx ≈ww 2211

22

ff (xx 22)+ww 11ff (xx 11)

(2)利用如上Gauss 型求积公式,计算积分∫ssss CC (xx 11)ddxx 22.11

22.11的近似值(小数点后保留6位小数).

解:(1)根据需要建立的求积公式,定义内积如下 (gg ,hh )=∫gg (xx )hh (xx )ddxx 11

22

设高斯点是首项系数为1的多项式ww (xx )=xx 11+ppxx +qq 的零点

多项式ww (xx )应该满足如下条件:

(w, 1)=0 ∫xx 11

+ppxx +qqddxx 1122=22

(w, x)=0 ∫xx 33+ppxx 11+qqxx dd xx 1122=22

于是得到多项式ww (xx )中的参数应该满足的线性方程组

?

1133+11

11pp +qq =2211+11

pp +11qq =22

求得其解,即多项式中的参数的值为

P=--1 q=1/6

进而得到多项式ww (xx )的零点,即高斯点分别为:

11

11?1111

√33? 或者 0.211324865405187 0.788675134594813 求积系数计算如下:

???

?

??11ddxx 11

22

22+ww 11

?xxddxx 11

22=ww 2211?1111√33?+ww 1111?11+

11√33

?

ww 22=22.55 ww 11=22.55

(2)做变换 tt =1122(xx ?22.11) 或者 xx =22.11+22.11tt

, 这样有积分 ∫ssss CC (xx 11)ddxx 22.11

22.11= ∫ssss CC [(22.11+22.11tt )11]11

22ddtt ×22.11

由所建立的Gauss 型求积公式计算该积分的近似值,如下(小数点后保留6位小数)

22.11×22.55×{ssss CC [(22.11+22.11xx 22)11]+ssss CC [(22.11+22.11xx 11)11]}≈22.222211333333

5 (12分)(1)确定方程0?=x f(x)=e +x 2的实根个数,并写出相应隔根区间[a, b]; (2)试用二分法将隔根区间[a, b]减小为原长度的1/8,建立新的隔根区间[c, d];

(3)写出求解该非线性方程的牛顿迭代公式,并进行计算,当4

110k k x x ?+?≤停止迭代(小数点后保留六位);

解:(1)确定非线性方程根的个数

ff ′(xx )=ee xx +11>0 函数单调增加,最多1个零点

ff (22)=?11<0, ff (11)=ee ?11>0 函数在区间[0, 1]内有零点 综合起来函数f(x)仅有一个实零点 确定隔根区间 [a, b]=[0, 1]

(2) 用二分法建立更小的隔根区间

(3)牛顿迭代法求解

牛顿迭代公式为 xx kk +11=xx kk ?ff (xx kk )

ff ′(xx kk

)=xx kk ?

ee xx +xx?11

ee xx +11

选取初始近似xx 22= 0.5 迭代过程的中间数据如下表(如若表格不够,自己添加) (因为条件 ff (xx 22)ff ′′(xx 22)>0)

满足条件的方程根的近似值为:

0.442854 6 (11分)设函数ff (xx ) 四阶连续可导。

(1) 试用函数值 f(1)=2,f(2)=4 和 f(3)=12 建立函数ff (xx )的次数不超过2次的Newton

插值多项式pp 11(xx );

(2) 若进而已知ff ′(11)=33,试建立ff (xx )的次数不超过3次的插值多项式pp 33(xx ); (3) 写出插值余项 ff (xx )?pp 11(xx ) 和 ff (xx )?pp 33(xx )。

解: (1)建立Newton 插值多项式pp 11(xx )

利用数据f(1)=2 ,f(2)=4,f(3)=12建立如下差商表

f(1)=2 f[1,2]=2 f[2,3]=8 f[1 ,2 ,3]=3

插值多项式pp 11(xx )= 整理后为pp 11(xx )=33xx 11?77 xx +66 2+2(x-1)+3(x-1)(x-2)

(2)建立插值多项式pp 33(xx ),利用第一步的结果,可设

pp 33(xx )=pp 11(xx )+kk (xx ?11)(xx ?11)(xx ?33)

利用插值条件pp 33′(11)=ff ′(11), 可求得 K= 2

于是有

pp 33(xx )=pp 11(xx )+11(xx ?11)(xx ?11)(xx ?33)

整理后得pp 33(xx )=

11xx 33?99xx 11+1155xx ?66

(3)利用插值条件,可知

ff (xx )?pp 11(xx )=

ff

′′′

(??)

33!

(xx ?11)(xx ?11)(xx ?33)

ff (xx )?pp 33(xx )=

ff (11)(??)

11!

(xx ?11)(xx ?11)11(xx ?33)

7.填空(共30分,每题3分)

(1) 有效数0.5=*

1x , 2.0=*

2x ,依据绝对误差限传播公式,函数值12x /x 的近似值

**

12x /x 的绝对误差限近似为____0.03125__(小数点后保留三位)

; (2) 设矩阵AA =?

aa 112211

?

, 当且仅当参数 aa 满足条件 |aa |<1 时,对任意的向量xx ∈RR 11有极限ll ss ll CC→∞AA CC xx =22;

(3) 对于不超过3次的多项式f(x),有差商ff [22.11,22.11,22.33,22.11,22.55]= 0 ;

(4) 用Euler 预估校正公式求解常微分方程初值问题′?≤

y =20y,0

y(0)=1

,当步长h 满

足条件 hh ≤22.11 时,Euler 预估校正公式绝对稳定;

(5) 数值求积公式∫ff (xx )ddxx ≈11

11ff (22)+33

11ff ?11

33?11

22的代数精度为 2 次;

(6) 只要线性方程组系数矩阵行列式不等于零,就可以用选主元的Gauss 消去法求出解的

较好近似值。该叙述 错误 (正确或错误); (7) 在做数据的最小二乘拟合时,法方程组的系数矩阵(离散的Gram 矩阵)一定是对称正定矩阵。该叙述 错误 (正确或错误); (8) 在使用数值微分公式ff ′(xx )≈

ff (xx +hh )?ff (xx )

hh

计算导数近似值时, 步长h 过小,计算结果的误

差反而可能会增大。该论断 正确 (正确或错误);

(9) 求解线性方程组的不动点简单迭代公式xx (kk +11)=BBxx (kk )+gg , 如果迭代矩阵BB 的谱半径小于1,则与之对应的Gauss-Seidel 迭代法对任意初始近似都收敛。该论断 错误 (正确或错误); (10) 插值型求积公式∫ff (xx )ddxx ≈∑AA kk ff (xx kk )CC kk =2211

22, 求积系数满足∑AA kk CC kk =22=11。

该论断 正确 (正确或错误)。

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

西工大-有限元试题(附答案)

1、针对下图所示得3个三角形元,写出用完整多项式描述得位移模式表达式。 2、如下图所示,求下列情况得带宽: a)4结点四边形元; b)2结点线性杆元。 3、对上题图诸结点制定一种结点编号得方法,使所得带宽更小。图左下角得四边形在两种不同编号方式下,单元得带宽分别就就是多大? 4、下图所示,若单元就就是2结点线性杆单元,勾画出组装总刚后总刚空间轮廓线。系统得带宽就就是多大?按一右一左重新编号(即6变成3等)后,重复以上运算。 5、设杆件1-2受轴向力作用,截面积为A,长度为L,弹性模量为E,试写出 杆端力F 1,F 2 与杆端位移之间得关系式,并求出杆件得单元刚度矩阵 6、设阶梯形杆件由两个等截面杆件错误!与错误!所组成,试写出三个结点1、2、 3得结点轴向力F 1,F 2 ,F 3 与结点轴向位移之间得整体刚度矩阵[K]。 7、在上题得阶梯形杆件中,设结点3为固定端,结点1作用轴向载荷F 1 =P,求各结点得轴向位移与各杆得轴力。 8、下图所示为平面桁架中得任一单元,为局部坐标系,x,y为总体坐标系,轴与x轴得夹角为。 (1) 求在局部坐标系中得单元刚度矩阵 (2)求单元得坐标转换矩阵 [T]; (3) 求在总体坐标系中得单元刚度矩阵

9、如图所示一个直角三角形桁架,已知,两个直角边长度,各杆截面面积,求整体刚度矩阵[K]。 10、设上题中得桁架得支承情况与载荷情况如下图所示,按有限元素法求出各结点得位移与各杆得内力。 11、进行结点编号时,如果把所有固定端处得结点编在最后,那么在引入边界条件时就就是否会更简便些? 12、针对下图所示得3结点三角形单元,同一网格得两种不同得编号方式,单元得带宽分别就就是多大?

数值分析试卷及答案

二 1 求A的LU分解,并利用分解结果求 解由紧凑格式 故 从而 故 2求证:非奇异矩阵不一定有LU分解 证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。现考虑矩阵,显然A为非奇异矩阵。若A有LU分解,则 故,而,显然不能同时成立。这矛盾说明A不能做LU分解,故只假定A非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式时才能保证A一定有LU分解。 3用追赶法求解如下的三对角方程组 解设有分解 由公式 其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有 从而有 故,,, 故,,, 4设A是任一阶对称正定矩阵,证明是一种向量范数 证明(1)因A正定对称,故当时,,而当时, (2)对任何实数,有 (3)因A正定,故有分解,则 故对任意向量和,总有 综上可知,是一种向量范数。 5 设,,已知方程组的精确解为 (1)计算条件数; (2)若近似解,计算剩余; (3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么?解(1) (2)

(3)由事后误差估计式,右端为 而左端 这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。因此,当A病态时,用大小作为检验解的准确度是不可靠的。 6矩阵第一行乘以一数成为,证明当时,有最小值 证明设,则 又 故 从而当时,即时,有最小值,且 7 讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。如果收敛,比较哪一种方法收敛较快,其中 解对雅可比方法,迭代矩阵 , 故雅可比法收敛。 对高斯-赛德尔法,迭代矩阵 ,故高斯-赛德尔法收敛。 因=故高斯-赛德尔法较雅可比法收敛快。 8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。 解雅可比法的迭代矩阵 , 故雅可比法收敛的充要条件是。 高斯-赛德尔法的迭代矩阵 , 故高斯-赛德尔法收敛的充要条件是。 9 设求解方程组的雅可比迭代格式为,其中,求证:若,则相应的高斯-赛德尔法收敛。证明由于是雅可比法的迭代矩阵,故 又,故, 即,故故系数矩阵A按行严格对角占优,从而高斯-赛德尔法收敛。 10设A为对称正定矩阵,考虑迭代格式 求证:(1)对任意初始向量,收敛; (2)收敛到的解。 证明(1)所给格式可化为 这里存在是因为,由A对称正定,,故也对称正定。 设迭代矩阵的特征值为,为相应的特征向量,则与做内积,有 因正定,故,从而,格式收敛。

数值分析试卷及其答案

1、(本题5分)试确定7 22 作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22 =3.142857…=1103142857 .0-? π=3.141592… 所以 312102 11021005.0001264.0722--?=?=<=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22 作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3102 1 0005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:??? ?? ??=????? ??????? ??--654131*********x x x ; 解 设???? ? ??????? ? ?????? ??===????? ??--11111 1 131321112323121 32 132 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,215 27 ,25,2323121321- ==-== -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23 ,97,910(,)563, 7,4(== (3分) 3、(本题6分)给定线性方程组???????=++-=+-+=-+-=-+17 7222382311387 510432143213 21431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

最新应用数值分析第四版第一章课后作业答案

第一章 1、 在下列各对数中,x 是精确值 a 的近似值。 3 .14,7/100)4(143 .0,7/1)2(0031 .0,1000/)3(1 .3,)1(========x a x a x a x a ππ 试估计x 的绝对误差和相对误差。 解:(1)0132.00416 .01.3≈= ≈-= -=a e e x a e r π (2)0011.00143 .0143.07/1≈= ≈-=-=a e e x a e r (3)0127.000004 .00031.01000/≈= ≈-=-=a e e x a e r π (4)001.00143 .03.147/100≈= ≈-=-=a e e x a e r 2. 已知四个数:x 1=26.3,x 2=0.0250, x 3= 134.25,x 4=0.001。试估计各近似数的有效位数和误差限,并估计运算μ1= x 1 x 2 x 3和μ1= x 3 x 4 /x 1的相对误差限。 解:x 1=26.3 n=3 δx 1=0.05 δr x 1=δx 1/∣x 1∣=0.19011×10-2 x 2=0.0250 n=3 δx 2=0.00005 δr x 2=δx 2/∣x 2∣=0.2×10-2 x 3= 134.25 n=5 δx 3=0.005 δr x 3=δx 3/∣x 3∣=0.372×10 -4 x 4=0.001 n=1 δx 4=0.0005 δr x 4=δx 4/∣x 4∣=0.5 由公式:e r (μ)= e (μ)/∣μ∣≦1/∣μ∣Σn i=1∣?f/?x i ∣δx i e r (μ1)≦1/∣μ1∣[x 2 x 3δx 1+ x 1 x 3δx 2 +x 1 x 2δx 3] =0.34468/88.269275 =0.0039049 e r (μ2)≦1/∣μ2∣[x 3 x 4/ x 21δx 1+ x 4/ x 1δx 3 + x 3 / x 1δx 4] =0.501937 3、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。 解:设=()u f x , ()()()()() ()||||||||||()||()|| | |()||()||||r r r x e u df x e x df x e x e u u dx u dx u x df x x df x x e x x dx u dx u δ= ≈==≤ ()||10.2 (())| |()||ln ln ln r r r r df x x x x f x x x dx u x x x x δδδδ==??==

西工大有限元试题(附答案)

1.针对下图所示的3个三角形元,写出用完整多项式描述的位移模式表达式。 2.如下图所示,求下列情况的带宽: a) 4结点四边形元; b) 2结点线性杆元。 3.对上题图诸结点制定一种结点编号的方法,使所得带宽更小。图左下角的四边形在两种不同编号方式下,单元的带宽分别是多大? 4.下图所示,若单元是2结点线性杆单元,勾画出组装总刚后总刚空间轮廓线。系统的带宽是多大?按一右一左重新编号(即6变成3等)后,重复以上运算。 5. 设杆件1-2受轴向力作用,截面积为A ,长度为L ,弹性模量为E ,试写出杆端力F 1,F 2与杆端位移21,u u 之间的关系式,并求出杆件的单元刚度矩阵)(][e k 6.设阶梯形杆件由两个等截面杆件○ 1与○2所组成,试写出三个结点1、2、3的结点轴向力F 1,F 2,F 3与结点轴向位移321,,u u u 之间的整体刚度矩阵[K]。 7. 在上题的阶梯形杆件中,设结点3为固定端,结点1作用轴向载荷F 1=P ,求各结点的轴向位移和各杆的轴力。 8. 下图所示为平面桁架中的任一单元,y x ,为局部坐标系,x ,y 为总体坐标系,x 轴与x 轴的夹角为θ。 (1) 求在局部坐标系中的单元刚度矩阵 )(][e k (2) 求单元的坐标转换矩阵 [T]; (3) 求在总体坐标系中的单元刚度矩阵 )(][e k 9.如图所示一个直角三角形桁架,已知27/103cm N E ?=,两个直角边长度cm l 100=,各杆截面面积210cm A =,求整体刚度矩阵[K]。 10. 设上题中的桁架的支承情况和载荷情况如下图所示,按有限元素法求出各结点的位移与各杆的内力。 11. 进行结点编号时,如果把所有固定端处的结点编在最后,那么在引入边界条件时是否会更简便些? 12. 针对下图所示的3结点三角形单元,同一网格的两种不同的编号方式,单元的带宽分别是多大? 13. 下图所示一个矩形单元,边长分别为2a 与2b ,坐标原点取在单元中心。

数值分析试卷及答案

二 1求A的LU分解,并利用分解结果求 解由紧凑格式 故 从而 故 2求证:非奇异矩阵不一定有LU分解 证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。现考虑矩阵,显然A为非奇异矩阵。若A有LU分解,则 故,而,显然不能同时成立。这矛盾说明A不能做LU分解,故只假定A非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式 时才能保证A一定有LU分解。

3用追赶法求解如下的三对角方程组 解设有分解 由公式 其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有 从而有 故,,, 故,,,

4设A是任一阶对称正定矩阵,证明是一种向量范数 证明(1)因A正定对称,故当时,,而当时, (2)对任何实数,有 (3)因A正定,故有分解,则 故对任意向量和,总有 综上可知,是一种向量范数。 5 设,,已知方程组的精确解为 (1)计算条件数; (2)若近似解,计算剩余; (3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么?解(1) (2) (3)由事后误差估计式,右端为 而左端

这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。因此,当A病态时,用大小作为检验解的准确度是不可靠的。 6矩阵第一行乘以一数成为,证明当时,有最小值 证明设,则 又 故 从而当时,即时,有最小值,且 7讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。如果收敛,比较哪一种方 法收敛较快,其中 解对雅可比方法,迭代矩阵 , 故雅可比法收敛。 对高斯-赛德尔法,迭代矩阵

,故高斯-赛德尔法收敛。 因=故高斯-赛德尔法较雅可比法收敛快。 8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。 解雅可比法的迭代矩阵 , 故雅可比法收敛的充要条件是。 高斯-赛德尔法的迭代矩阵 ,

数值分析整理版试题及答案

数值分析整理版试题及答案

例1、 已知函数表 x -1 1 2 ()f x -3 0 4 求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。 解: (1)k x -1 1 2 k y -3 0 4 插值基函数分别为 ()()()()()()()()()() 1200102121()1211126 x x x x x x l x x x x x x x ----= ==-------- ()()()()()()()() ()()021******* ()1211122x x x x x x l x x x x x x x --+-= ==-+---+- ()()()()()()()()()()0122021111 ()1121213 x x x x x x l x x x x x x x --+-= ==-+--+- 故所求二次拉格朗日插值多项式为 () ()()()()()()()()()()2 20 2()11131201241162314 121123537623k k k L x y l x x x x x x x x x x x x x ==?? =-? --+?-+-+?+-????=---++-=+-∑ (2)一阶均差、二阶均差分别为

[]()()[]()()[][][]010********* 011201202303 ,11204 ,412 3 4,,5 2,,126 f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----= = =----=== --- k x ()k f x 一阶 二阶 -1 -3 1 0 3/ 2 2 4 4 5/6 故所求Newton 二次插值多项式为 ()()[]()[]()() ()()()20010012012,,,35 311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-+ +++-=+- 例2、 设2 ()32f x x x =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{} span 1,x Φ=的最佳平方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有

应用数值分析(第四版)课后习题答案第9章

第九章习题解答 1.已知矩阵????? ???????=??????????=4114114114,30103212321A A 试用格希哥林圆盘确定A 的特征值的界。 解:,24)2(, 33)1(≤-≤-λλ 2.设T x x x x ),...,,(321=是矩阵A 属于特征值λ的特征向量,若i x x =∞, 试证明特征值的估计式∑≠=≤-n i j j ij ii a a 1λ. 解:,x Ax λ = ∞∞∞∞≤==x A x x Ax i λλ 由 i x x =∞ 得 i n in i ii i x x a x a x a λ=++++ 11 j n j i i ij i ii x a x a ∑≠==-1)(λ j n j i i ij j n j i i ij i ii x a x a x a ∑∑≠=≠=≤=-11λ ∑∑≠=≠=≤≤-n j i i ij i j n j i i ij ii a x x a a 11λ 3.用幂法求矩阵 ???? ??????=1634310232A 的强特征值和特征向量,迭代初值取T y )1,1,1()0(=。 解:y=[1,1,1]';z=y;d=0; A=[2,3,2;10,3,4;3,6,1]; for k=1:100 y=A*z; [c,i]=max(abs(y)); if y(i)<0,c=-c;end

z=y/c if abs(c-d)<0.0001,break; end d=c end 11.0000 =c ,0.7500) 1.0000 0.5000(z 10.9999 =c ,0.7500) 1.0000 0.5000(z 11.0003 =c ,0.7500) 1.0000 0.5000(z 10.9989=c ,0.7500) 1.0000 0.5000(z 11.0040 =c ,0.7498) 1.0000 0.5000(z 10.9859=c ,0.7506) 1.0000 0.5001(z 11.04981 =c ,0.7478) 1.0000 0.4995(z 10.8316 =c ,0.7574) 1.0000 0.5020(z 11.5839 =c ,) 0.7260 1.0000 0.4928 (z 9.4706 =c ,0.8261) 1.0000 0.5280(z 17 = c ,0.5882) 1.0000 0.4118(z 11T (11)10T (10)9T (9)8T (8)7T (7)6T (6)5T (5)4T (4)3T (3)2T (2)1T (1)=========== 强特征值为11,特征向量为T 0.7500) 1.0000 0.5000(。 4.用反幂法求矩阵???? ??????=111132126A 最接近6的特征值和特征向量,迭代初值取 T y )1,1,1()0(=。 解:y=[1,1,1]';z=y;d=0; A=[6,2,1;2,3,1;1,1,1]; for k=1:100 AA=A-6*eye(3); y=AA\z; [c,i]=max(abs(y)); if y(i)<0,c=-c;end z=y/c; if abs(c-d)<0.0001,break; end d=c end d=6+1/c

西工大2003年硕士研究生入学有限元试题A-有限元

在平面三结点三角形单元中的位移、应变和应力具有什么特征? 在平面四结点单元中,位移模式能否取为: (1) 2 872 65243221),(),(y xy x y x v y xy x y x u αααααααα+++=+++= (2)2 876524321),(),(y y x y x v x y x y x u αααααααα+++=+++= 试写出下列单元的位移模式,并求出其形函数矩阵[]N 设图 所示三结点轴力杆件单元 ijm 的位移函数为2 321)(x x x u ααα++=,该位移函数是否满足收敛准则? 求出其形函数矩阵[]N 。 i EA j )(ξx 在1–2 图1–2所示平面三角形桁架,结点坐标为:1(0,0),2(2l ,2l ),3(l 2,0),E 、A 为弹性模量及截 面积。用有限元素法求: (1)结点位移; (2)元素内力; (3)支座反力; 图1–2

1–5 用有限元素法对结构问题进行静力分析中,协调条件、平衡条件、以及物理关系是如何体现的? 3–12 有中心椭球孔的矩形板,两个侧边受线性分布的侧压p ,如图3–12所示。如何利用对称面条件减少求解的工作量,并画出计算模型,列出计算步骤。(5.5) 3–13 高度为h 、宽度为a 9的矩形板,2/h 高度上有3个尺寸相同的矩形孔 (如图3–13所示),侧面受线性分布侧压。如何利用其自身的几何特点减少计算工作量,并画出计算模型、列出计算步骤。(5.6) 4–1 三结点三角形元素ijm 的位移函数能否选为: (1) ()()2 6543221,,y a x a a y x v y a x a a y x u ++=++= (2) ()()2 652 423221,,y a xy a x a y x v y a xy a x a y x u ++=++= 4–2 推导三结点平板元素在局部坐标系xoy 中的元素刚度矩阵? 4–3 正方形平板,厚度为t ,边长为a ,弹性模量E ,材料泊桑比μ,载荷P ,按图4–3所示分元,求1、3点的位移? 4–4 图4–4所示的矩形板1234,分成四个常应变三角形元素 (1)形成这些元素集合的刚度矩阵? 图4– 2 图4–3

数值分析试卷及其答案1

1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知6 5.0102 1 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620*2102 1 ,6,0,10325413.0-?= -=-=?=ε绝对误差限n k k X 2分 2. 已知?? ???=0 01 A 220- ?????440求21,,A A A ∞ (6分) 解: {}, 88,4,1max 1==A 1分 {}, 66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=0 1 A A T 4 2 ???? ? -420?????0 01 2 20 - ???? ?440= ?????0 01 80 ???? ?3200 2分 {}32 32,8,1max )(max ==A A T λ

1分 24322==A 3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (0,1……)产生的序列{}k x 收敛于 2 解: ①迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3 分 ②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-= a a x a x ?? 3分 4. 给定线性方程组,其中:?? ?=13A ?? ?2 2,?? ? ???-=13b 用迭代公式 )()()()1(k k k Ax b x x -+=+α(0,1……)求解,问取什么实数α ,可使 迭代收敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --???--=-=ααααα21231A I B 2分

数值分析第四版习题及答案

第四版 数值分析习题 第一章绪论 1.设x>0,x得相对误差为δ,求得误差、 2.设x得相对误差为2%,求得相对误差、 3.下列各数都就是经过四舍五入得到得近似数,即误差限不超过最后一位得半个单位,试指 出它们就是几位有效数字: 4.利用公式(3、3)求下列各近似值得误差限: 其中均为第3题所给得数、 5.计算球体积要使相对误差限为1%,问度量半径R时允许得相对误差限就是多少? 6.设按递推公式 ( n=1,2,…) 计算到、若取≈27、982(五位有效数字),试问计算将有多大误差? 7.求方程得两个根,使它至少具有四位有效数字(≈27、982)、 8.当N充分大时,怎样求? 9.正方形得边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g就是准确得,而对t得测量有±0、1秒得误差,证明当t增加时S得绝对误差增 加,而相对误差却减小、 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到得结果最好? 13.,求f(30)得值、若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果就是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c得误差分别为证明面积得误差满足 第二章插值法 1.根据(2、2)定义得范德蒙行列式,令 证明就是n次多项式,它得根就是,且 、 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)得二次插值多项式、 3. 4., 研究用线性插值求cos x 近似值时得总误差界、

数值分析试卷及其答案2

1、(本题5分)试确定7 22作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22=3.142857…=1103142857.0-? π=3.141592… 所以 3 12 10 2 110 21005.0001264.07 22--?= ?= <=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3 10 2 10005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:???? ? ??=????? ??????? ??--654131321 112321x x x ; 解 设???? ? ? ?????? ? ?????? ??===????? ? ?--11 1 11113 1321 11232312132 1 32 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,21527,25,2323121321- == - == -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23,97,910( ,)5 63, 7,4(== (3分) 3、(本题6分)给定线性方程组??? ? ? ??=++-=+-+=-+-=-+17722238231138751043214321 321431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

数值分析整理版试题及答案

例1、 已知函数表 求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。 解: (1) 故所求二次拉格朗日插值多项式为 (2)一阶均差、二阶均差分别为 例2、 设2 ()32f x x x =++,[0,1]x ∈,试求()f x 在[0,1]上关于()1x ρ=,{}span 1,x Φ=的最佳平 方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有 所以,法方程为

011231261192 34a a ??????????=?????????? ?????????? ,经过消元得012311 62110123a a ??? ???????=???????????????????? 再回代解该方程,得到14a =,011 6 a = 故,所求最佳平方逼近多项式为* 111()46S x x =+ 例3、 设()x f x e =,[0,1]x ∈,试求()f x 在[0,1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近 多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,这样,有 所以,法方程为 解法方程,得到00.8732a =,1 1.6902a =, 故,所求最佳平方逼近多项式为 例4、 用4n = 的复合梯形和复合辛普森公式计算积分1 ? 。 解: (1)用4n =的复合梯形公式 由于2h =,( )f x =()121,2,3k x k k =+=,所以,有 (2)用4n =的复合辛普森公式 由于2h =,( )f x =()121,2,3k x k k =+=,()12 220,1,2,3k x k k + =+=,所以,有 例5、 用列主元消去法求解下列线性方程组的解。 解:先消元 再回代,得到33x =,22x =,11x = 所以,线性方程组的解为11x =,22x =,33x = 例6、 用直接三角分解法求下列线性方程组的解。 解: 设 则由A LU =的对应元素相等,有 1114u = ,1215u =,1316u =, 2111211433l u l =?=,3111311 22 l u l =?=, 2112222211460l u u u +=?=-,2113232311 545l u u u +=?=-,

数值分析第四版习题及答案

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字: *****1 2 3 4 5 1.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234 ,,,x x x x 均为第3题所给 的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设0 28,Y =按递推公式 11 783100 n n Y Y -=( n=1,2,…) 计算到100Y .若取78327.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字78327.982). 8. 当N 充分大时,怎样求2 11N dx x +∞ +?? 9. 正方形的边长大约为100㎝,应怎样测量才能

使其面积误差不超过1㎝2 ? 10. 设212 S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1 101n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 21)f =,取2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 63 22)70 2. (21)(322)--++ 13. 2 ()ln(1)f x x x =-,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 2 2 ln(1)ln(1)x x x x -=-+ 计算,求对数时误差有多大? 14. 试用消元法解方程组 {101012121010;2. x x x x +=+=假定只用 三位数计算,问结果是否可靠? 15. 已知三角形面积 1 sin ,2 s ab c = 其中c 为弧 度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证明面积的误差s ?满足 .s a b c s a b c ????≤++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

西工大有限元试题(附答案)

1.针对下图所示的 3 个三角形元,写出用完整多项式描述的位移模式表达式。 2.如下图所示,求下列情况的带宽: a) 4 结点四边形元; b) 2 结点线性杆元。 3. 对上题图诸结点制定一种结点编号的方法,使所得带宽更小。图左下角的四 边形在两种不同编号方式下,单元的带宽分别是多大? 4. 下图所示,若单元是2 结点线性杆单元,勾画出组装总刚后总刚空间轮廓线。系统的带宽是多大?按一右一左重新编号(即 6 变成3 等)后,重复以上运算。

5. 设杆件 1-2 受轴向力作用,截面积为 A ,长度为 L ,弹性模量为 E ,试写 出杆端力 F 1 ,F 2 与杆端位移 u 1 , u 2 之间的关系式,并求出杆件的单元刚度矩阵 [ k ] (e) 6. 设 阶 梯形杆件由两个等截面杆件○ 2所组成,试写出三个结点 1、2、3 的结 点轴向力 F 1,F 2,F 3 与结点轴向位移 u 1 , u 2 , u 3 之间的整体刚度矩阵 [K]。 7. 在上题的阶梯形杆件中,设结点 3 为固定端,结点 1 作用轴向载荷 F 1 =P , 求各结点的轴向位移和各杆的轴力。

8. 下图所示为平面桁架中的任一单元,x, y 为局部坐标系,x,y 为总体坐标系,x 轴与x 轴的夹角为。 (1)求在局部坐标系中的单元刚度矩阵[ k ] (e) (2)求单元的坐标转换矩阵[T]; (3)求在总体坐标系中的单元刚度矩阵[k ] (e) 9. .如图所示一个直角三角形桁架,已 E 3 10 7 N / cm 2 ,两个直角边长度 知 l 100cm ,各杆截面面积 A 10cm2 ,求整体刚度矩阵[K]。

数值分析试题及答案

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110l x = B . ()00l x =0, ()111l x = C .() 00l x =1,()111 l x = D . () 00l x =1,()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 1231231 220223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A . 232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得 分 评卷人 二、填空题(每小题3分,共15分)

1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数()()() 33301213,88C C C ===,那么 () 33C = 4. 因为方程()420 x f x x =-+=在区间 []1,2上满足 ,所以()0f x =在区间 内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公式 . 填空题答案 1. 9和29 2. ()() 0101 f x f x x x -- 3. 1 8 4. ()()120 f f < 5. ()12 00.1 1.1,0,1,210.11k k y y k k y +???? ?=+? ?=+???? =??L 得 分 评卷人 三、计算题(每题15分,共60分) 1. 已知函数 21 1y x = +的一组数据: 求分 段线性插值函数,并计算 () 1.5f 的近似值. 计算题1.答案 1. 解 []0,1x ∈, ()1010.510.50110x x L x x --=?+?=---% []1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--%

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字. 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误 差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大?

数值计算方法试题集及答案要点

《数值计算方法》复习试题 一、填空题: 1、 ?? ??? ?????----=410141014A ,则A 的LU 分解为 A ? ???????? ???=????????? ?? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(, 0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求 得?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 3、1)3(,2)2(, 1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数 为 ,拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对 1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公

数值分析试题及答案

数值分析试题及答案 一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为的近似数具有()和()位有效数字. A.4和3 B.3和2 C.3和4 D.4和4 2. 已知求积公式,则=() A. B.C.D. 3. 通过点的拉格朗日插值基函数满足() A.=0,B.=0, C.=1,D.=1, 4. 设求方程的根的牛顿法收敛,则它具有()敛速。 A.超线性B.平方C.线性D.三次 5. 用列主元消元法解线性方程组作第一次消元后得到的第3个方程(). A.B. C.D. 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得分评卷 人 二、填空题(每小题3分,共15分) 1. 设, 则, . 2. 一阶均差 3. 已知时,科茨系数,那么 4. 因为方程在区间上满足,所以在区间内有根。 5. 取步长,用欧拉法解初值问题的计算公式.填空题答案

1. 9和 2. 3. 4. 5. 得分评卷 人 三、计算题(每题15分,共60分) 1. 已知函数的一组数据:求分段线性插值函数,并计算的近似值. 计算题1.答案 1. 解, , 所以分段线性插值函数为 2. 已知线性方程组 (1)写出雅可比迭代公式、高斯-塞德尔迭代公式; (2)对于初始值,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算(保留小数点后五位数字). 计算题2.答案 1.解原方程组同解变形为 雅可比迭代公式为 高斯-塞德尔迭代法公式 用雅可比迭代公式得 用高斯-塞德尔迭代公式得 3. 用牛顿法求方程在之间的近似根 (1)请指出为什么初值应取2? (2)请用牛顿法求出近似根,精确到0.0001. 计算题3.答案

相关主题
文本预览
相关文档 最新文档