当前位置:文档之家› 《拓扑学导论》第2 章拓扑空间及其基本概念

《拓扑学导论》第2 章拓扑空间及其基本概念

《拓扑学导论》第2 章拓扑空间及其基本概念
《拓扑学导论》第2 章拓扑空间及其基本概念

《拓扑学导论》第2章 拓扑空间及其基本概念

(作业题)

1、分别定义1ρ,2ρ:n R ×n R →R 为),(1y x ρ|}{|max 1i i n

i y x ?=≤≤和),(2y x ρ = 1

||n i i i x y =?∑. 证明: 1ρ,2ρ都是集合n R 上的度量.

2、设),(ρX 为度量空间,分别定义1ρ,2ρ:→×X X R 为),(1y x ρ),(1),(y x y x ρρ+=, 并且. 试证明: X y x ∈,???>≤=1

),(11),()

,(),(2y x y x y x y x ρρρρ当当1ρ,2ρ都是X 上的度量. 3、设:f n R →R 是一映射,我们称在是连续的,如果f n R ∈?0x n R , 0>?ε, 0>?δ,使得),(δx B x ∈?时, 恒有

ε

试证明: 当是连续映射时, f ∈x {n R }0)(|>x f 开于n R .

4、设X 是一个度量空间,A X ?,试证: (1) 是IntA A 所包含的所有开集的并集; (2) A 是所有含A 的闭集的交.

5、若A 是度量空间X 的稠密子集,O 为X 中开集, 证明:O A O I ?

6、证明: 度量空间中任何子集的导集都是闭集.

7、 证明:集合上的任意两个拓扑的交也是上的一个拓扑. 集合上两个拓扑的并一定是上一个拓扑吗? 为什么?

X X X X 8、设(,是拓扑空间,G , 则)X T ∈T x G ?∈, 有()G x ∈U . 反之, 若U 为其中任意点的邻域,则U 必为中开集.

X 9、设是拓扑空间, F 为中的闭集的全体,则F 满足条件: (F1) (,)X T X φ, ;(F2) 若, , 则X ∈F 1F 2F ∈F 12F F ∈U F ;(F3) 若{}, 则.

F λλ∈Λ?F F λλ∈Λ∈U F 10、设(,是一个拓扑空间,)X T A X ?, 则

(i) A ∈T 当且仅当0A A =;(ii) A 等于包含A 的一切闭集的交.

11、设(,是有限余拓扑空间,)X T A X ?,求证:,A A A X A ?=??

当为有限集,当为无限集. 12、 设是拓扑空间, 对于(,)X T A X ??,对应着一个o A , 称为内核算子. 求证内核算子满足条件:

o i A A =()(I1) ; (I2) o X X =o A A ?; (I3) o o o A A =(); (I4)

o o o A B A B =I I (), (?A ,).

B X ?13、设为实数集, 赋予右序拓扑,R [01]A =,,求o A ,'A 和A .

14、设是拓扑空间, (,)X T A 为的子空间,若{X }x δ为A 中的网, 则{}x δ在A 收敛于x A ∈当且仅当{}x δ在收敛于X x A ∈.

15、设是拓扑空间, 则为中开集当且仅当(,)X T G X x G ?∈及?网{}x δ收敛于x , 有{}x G δφ≠I .

16、 设是拓扑空间, {}(,)X T A λλ∈ΛX ?. 集族{}A λλ∈Λ称为在中是局部有限(离散)的, 如果X x X ?∈,使得{|()U x ?∈U }U A λλφ∈Λ≠I 是一个有限集(至多单点集).试证明:

(1) 离散集族是局部有限集族;

(2) 若{}局部有限,则, A λλ∈Λ'?Λ?Λ'{}A λλ∈Λ也局部有限;

(3) 若{}局部有限并且A λλ∈Λλ?∈Λ,B A λλ?, 则{}B λλ∈Λ也局部有限;

(4) 若{}局部有限, 则A λλ∈ΛA A λλλ∈Λ∈Λ=U U λ.

17、设为欧氏空间,下列子集族是否构成的一个拓扑基?

2R 2R (1) 中所有开等边三角形; (2) 所有其边平行于坐标轴的开长方形.

2R 18、 设:f X Y →,A X ?, 证明:f 在A 上的限制A f :A Y →是A 上的连续映射.

19、 求解下列两个问题

(1) 设为拓扑空间, Y 为平凡拓扑空间, 则从到Y 的任何映射都是连续映射;

X X (2) 设为离散空间, Y 为任意拓扑空间, 则从到Y 的任何映射都是连续映射.

X X 20、设X 是一个拓扑空间,A Y X ??,试证明:

(1)如果Y 是X 的开子集,则A 开于Y 当且仅当A 开于X ;

(2)如果Y 是X 的闭子集,则A 闭于Y 当且仅当A 闭于X .

21、设X 是一个拓扑空间,A Y X ??,证明:=int .

int ()X A ()int ()Y X A Y I 22、(邻域基与邻域子基)设X 是一个拓扑空间,x X ∈,()x U 为点的邻域系,x ()x B ?()x U ,()x ??()x U . (i) ()x B 称为点的邻域基, 如果x U ?∈()x U ,B ?∈()x B 使得B ?U ; (ii)()x ?称为是点的邻域子基,如果x U ?∈()x U ,12,,,()n S S S x ??∈L 使得.

1n

i i S U =?I 设X 与都是拓扑空间, ,Y :f X Y →x X ∈,试证明下列各条等价

(1) 在点处连续;

f x (2) 点有一个邻域基()f x ()f x V 使得V ?∈()f x V ,有1()f V ?∈()x U ;

(3) 点有一个邻域子基()f x ()f x W 使得W ?∈()f x W ,有1()f

W ?∈()x U . 23、 举例说明从拓扑空间到另一个拓扑空间Y 的1-1连续映射未必是同胚映射.

X 24、证明:邻域、内点、闭包都是拓扑不变性质. 25、一个拓扑空间称为是可分的,如果存在一个至多可数集合X A X ?使得A X =. 试证明: 可分空间的连续象也是一个可分空间.

点集拓扑学

点集拓扑学 注明:这篇文章是一篇读后感,绝大部分是引用别人的观点,其中有本人不同的观点,写出来是和大家共同研究与学习交流。本文灵感来源主要有这些作者或老师:张德学,张景祖,熊金城。由于篇幅比较长,本人也正在学习中,只能一部分一部分续写。 点集拓扑学是几何学的分支,研究的是更一般的几何图形,即拓扑空间中的集合,是研究拓扑不变性与不变量的学科,主要表现在图形的弹性变形后的那些不变性和不变量,比如联通性,可数性,分离性等。其中有几个代表性的例子:1,一笔画问题,2,哥尼斯堡七桥问题,3,四色问题。这种弹性变形指的是拓扑学中的同柸,相近点变相近点的连续概念。拓扑学包括点集拓扑学,代数拓扑学,几何拓扑学,微分拓扑学,其中点集拓扑学是基础,称为一般拓扑学。 集合概念的发展历程: 集合论的最早创立是由德国数学家康托尔创立的朴素集合论,运用于纯数学中,然后经过进一步的规范公理化使其理论更加严谨规范化。朴素集合论对集合没有做出严格的定义,只是表示对元素或者对象的搜集,没有形式化的理解,而公理集合论只使用明确定义的公理列表,是对集合这门学科的进一步认识在现实中得到了广泛的运用。 集合的定义: ① 公认定义:具有共同属性的对象的全体成为集合,对象又可以理解为个体或者集合中的元素。 ② 个人(本人)定义:我们把各种对象按照某种要求抽样集中起来构成一个群体称为集合,这种对象可能是独立的个体或者群体,也可能对象之间本身就有包涵关系的集合但不相同或相等,当我们把所有对象集中在一起称为全集或者幂集族。全集的一部分称为子集,幂集的一部分称为子集族。集合一般用大写字母表示,其中元素用小写。 集合的表示方式: 1枚举法 一般在大括号里罗列出集合的元素,如下: {}{}{}{}香蕉,大象,人,,3,2,1,3,2,1,,, c b a 2文字语言表述法 用文字语言来表达构成集合的要求: 某个班级的全体男生,一盒象棋,一箱牛奶等。 3图示法 4数学关系描述法或者数学语言描述法 用数学关系式来抽象表达构成集合的要求,我们平时研究的最多的也就是这种表达方法: (){}(){}x P X x x x P X x ,∈∈或者 对集合的描述必须合理,要不然会出现悖论比如:理发师只给不给自己理发的人理发,这种表述就不合理,导致理发师傅是给自己理发还是不给自己理发都是矛盾,这句话应该理解为理发师只给除自己以外不给自己理发的人理发。 又比如:

拓扑空间

算子拓扑空间 1..算子拓扑空间: 设(X,ζ)是拓扑空间,Τ为2Χ到2Χ的一个算子,记Ω={A∈2Χ|A=TA}。 定义1.若ζ?Ω,则称T为X的一个强算子,Ω中元素称为强算子开集,如果T进一步还是一个保并算子(算子运算与并运算可交换次序的算子),则称Ω为X的一个强 算子拓扑。 定义2.若?≠Ω?ζ则称T为X的一个弱算子,Ω中的元素称为弱算子开集,如果T进一步还是一个保并算子,则称Ω为X的一个弱算子拓扑。 强算子开集和弱算子开集统称为算子开集,或称T开集。 强算子拓扑和弱算子拓扑统称为算子拓扑,又称T拓扑。 我们约定:下文讨论的算子开集均指强算子开集,算子拓扑均指强算子拓扑。 由算子开集的定义显然有: (1){X,?} ?Ω; (2)Ω中任意多个成员的并仍在Ω中; 事实上,设Γ?Ω,因T(? A∈ΓA)=? A∈Γ TA=? A∈Γ A,故? A∈Γ A∈Ω (3)Ω中两个成员的交集不一定在Ω中。 定义 3. 设(X,ζ)是拓扑空间,Τ为2Χ到2Χ的一个保并算子,Ω={A∈2Χ|A=TA},若ζ?Ω,则称(X,Ω)为一个算子拓扑空间。 一般地,若ζ 1和ζ 2 都是X上的拓扑,则ζ 1 ∩ζ 2 是X上的拓扑。对算子拓扑也有 类似结论: 命题1.设(X,ζ)是拓扑空间,Ωi为由算子T i诱导的算子拓扑(i=1,2)则Ω1∩Ω2是X上的算子拓扑。 T 1(A)∩T 2 (A),A∈Ω 1 ∩Ω 2 证:令TA= ? A ?Ω1∩Ω2 一方面当A∈Ω 1∩Ω 2 时,TA= T 1 (A)∩T 2 (A)=A∩A=A 所以,A∈Ω;

另一方面当A ?Ω 1∩Ω 2 时,TA≠A,所以,A?Ω; 可见Ω 1∩Ω 2 =Ω是由T诱导的拓扑。 命题2.设(X,ζ)是拓扑空间,Ωi为由算子T i诱导的算子拓扑(i=1,2)则Ω1?Ω2是X上的算子拓扑。 T 1(A), A∈Ω 1 证:令TA= T 2(A), A∈Ω 2 类似地可证Ω 1? Ω 2 =Ω是由T诱导的算子拓扑。 ? A ?Ω1且A ?Ω2 2.算子连续映射: 有了算子拓扑空间,我们可以在这个空间上讨论算子连续映射,就像在拓扑空间中讨论连续映射可以得到一系列连续映射的等价刻划那样,我们将会得到算子连续映射的一系列等价刻划。 参考文献:[1] 尤承业基础拓扑学讲义[M] 北京:北京大学出版社,1997 [2] 钱有华,陈胜敏杨忠道定理在算子开集理论下的推广[J] 浙江科技学院 学报,2004,16(1):1-3 [3] 钱有华,关于算子紧空间[J] 浙江师范大学学报(自然科学版),2003, 26(4):333-336

点集拓扑学教学大纲

《点集拓扑学》教学大纲 一、课程的教学目的和任务 本课程为数学系师范成人专升本选修课程,课程内容为点集拓扑学的一些基本概念、基本理论和基本方法。通过本课程的学习要求学生在掌握基本内容和基本方法的前提下,能以一般的观点总结和提高在一、二年级所学过的课程中有关的概念、理论和方法,进一步培养和提高学生的抽象思维和逻辑推理能力,同时,为进一步学习拓扑学、几何学、泛函和微分方程等课程提供所需用的最基础的知识。本课程总课时为72学时,习题课及机动课时约占总课时的四分之一。由于点集拓扑学是一门理论性强且较为抽象的课程,同时作为几何学的一个分支它的许多概念又有直观的几何背景,因此在教学中特别要注意概念的引入、具体例子和反例的选配,以便更好地阐明各个基本概念的含义从而使学生能准确把握各个基本概念,同时搞清这些例子和反例也是加深理解抽象概念的重要途径之一。带*号的内容可根据学生实际情况自由舍取。 二、课程内容及学时分配建议 第一章集合论的基本知识*12学时这部分内容是研究后续内容的一个知识平台,应该熟练掌握。如果学生对集合论内容熟悉且知识够用可采用复习方式,否则应采用讲授方式。 1.集合的基本概念及运算(包括集族的概念和运算) 2.关系、等价关系和映射 3.可数集与不可数集、基数 4.选择公理* 第二章拓扑空间和连续映射20学时这一部分重点在于建立拓扑结构,理解拓扑空间的概念,掌握拓扑空间的基本性质,为进一步学习拓扑性质打好基础。在教学中应多给一些具体的例子从具体到抽象并通过度量空间的模形来突破抽象空间建立的难点。 1. 度量空间 (1)度量空间的定义和例子 (2)连续函数的ε-δ定义与开集的刻划

答案-拓扑学基础a

东 北 大 学 秦 皇 岛 分 校 课程名称: 拓扑学基础 (答案) 试卷: A 考试形式:闭卷 授课专业:数学与应用数学 考试日期: 2013年 7月 试卷:共 3 页 一、填空题:(每空2分,共20分) 1.设{1,2,3}X =,写出5个拓扑,使得每个拓扑中的所有集合按包含关系构成一个升链 平凡拓扑 ,{,,{3},{1,3}}X ?,{,,{1}}X ?, {,,{2}}X ?,{,,{3}}X ?。 (注:答案不唯一,正确即可) 2. 汉字“东” 的连通分支的个数是 3 ,抛物线的连通分支的个数是 1 。 ( 3.字母Y 的割点个数为 无穷 。字母T 中指数为3的点个数为 1 。 4.叙述同胚映射的定义 拓扑空间之间的连续映射称为同胚映射,若它是一一对应且它的逆也是连续的 。 二、选择题:(每题2分,共8分) 1.下列说法中正确的是( B ) A 连通空间一定是道路连通空间 B 道路连通空间一定是连通空间 C 道路连通空间一定局部道路连通 D 以上说法都不对 2.下列说法正确的是( A ) A 紧空间的闭子集紧致 B 紧致空间未必局部紧致 } C 有限空间一定不紧致 D 列紧空间是紧致空间 3.下列说法错误的是( A ) A 离散空间都是1T 空间 B 2T 空间中单点集是闭集 C 赋予余有限拓扑不是2T 空间 D 第二可数空间可分 4.下列不具可乘性的是( D ) A 紧致性 B 连通性 C 道路连通性 D 商映射 三、计算题:(共16分) - 1.在上赋予余有限拓扑,记 为有理数集合,[0,1]I =。试求'和I 。 (4分) 答:'= ,I =。 2.确定欧式平面上子集22{(,)|01}A x y x y =<+≤的内部、外部、边界和闭包。(8分) 答:内部,22{(,)|01}x y x y <+<; 外部,22{(,)|1}x y x y <+ 边界,22{(,)|1}x y x y +=; 闭包 A A =。 3.在 上赋予欧式拓扑。(4分) { (1)计算道路2t α=与1t β=+的乘积αβ在1 3 处的值。 答:αβ在13处的值是4 9 。 装 订 线 装 订 线 内 不 要 答 题 学 号 姓 名 班 级

点集拓扑学练习题

练习(第二章)参考答案: 一.判断题(每小题2分) 1.集合X 的一个拓扑有不只一个基,一个基也可以生成若干个拓扑( × ) 2.拓扑空间中任两点的距离是无意义的.( √ ) 3.实数集合中的开集,只能是开区间,或若干个开区间的并.( × ) 、T 2是X 的两个拓扑,则T 1UT 2是一个拓扑.( × ) 5.平庸空间中任一个序列均收敛,且收敛于任一个点。( √ ) 6.从(X ,T 1)到(X ,T 2)的恒同映射必是连续的。( × ) 7.从离散空间到拓扑空间的任何映射都是连续映射( √ ) 8.设12, T T 是集合X 的两个拓扑,则12 T T ?不一定是集合X 的拓扑( × ) 9.从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( √ ) 10.设A 为离散拓扑空间X 的任意子集,则()d A φ= ( √ ) 11.设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( × ) 12.设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( √ ) 二.填空题:(每空格3分) 1、X=Z +,T={Z 1,Z 2,…Z n …},其中 Z n ={n,n+1,n+2,…}, 则包含3的所有开集为 321,,Z Z Z 包含3的所有闭集为 ,...,,,/ 6/5/41Z Z Z Z 包含3的所有邻域为 3321}1{,,,Z Z Z Z ? 设A={1,2,3,4,5} 则A 的导集为{1,2,3,4} ,A 的闭包为{1,2,3,4,5}

2、设X 为度量空间,x ∈X,则d ({x})=? 3、在实数空间R 中,有理数集Q 的导集是____ R ____. 4、)(A d x ∈当且仅当对于x 的每一邻域U 有 ; 答案: ({})U A x φ?-≠ 5、设A 是有限补空间X 中的一个无限子集,则()d A = ; A = ; 答案:X ;X 6、设A 是可数补空间X 中的一个不可数子集,则()d A = ; A = ; 答案:X ;X 7、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ; 答案:{2} 三、单项选择题(每题2分) 1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑. ① {,,{},{,},{,,}}X a a b a c e φ=T ② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T ③ {,,{},{,}}X a a b φ=T ④ {,,{},{},{},{},{}}X a b c d e φ=T 答案:③ 2、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( ) ①φ ② X ③ {}b ④ {,,}b c d 答案:④ 3、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( ) ①φ ② X ③ {,}a b ④ {,,}b c d 答案:②

基础拓扑学讲义11的习题答案

习题 2、1、18 记S 就是全体无理数的集合,在实数集R 上规定子集族 {} 1\A ,A S U U τ=?是E 的开集、 (1)验证τ就是R 上的拓扑; (2)验证(),R τ满足2T 公理,但不满足3T 公理; (3)验证(),R τ就是满足1C 公理的可分空间; (4)证明τ在S 上诱导的子空间拓扑s τ就是离散拓扑,从而(),s S τ就是不可分的; (5)说明 (),R τ不满足2 C 公理。 证明:(1)○ 1,A U R R U A ττ=?=?? ??∈?∈??=?=??? 所以R 与?都含在τ中 ○ 2()U A U A λλλλλλλ∈Λ ∈Λ ∈Λ -= - ()0 000,,,x U A x U A x U x A x U x A x U A λλλ λλλλλλλλλλ λλλ∈Λ ∈Λ ∈Λ ∈Λ ∈Λ ?∈ -??∈Λ∈-?∈??∈ ? ?∈ - 使 U A λλλλτ∈Λ ∈Λ - ∈ ∴τ中任意多个成员的并集仍在τ中 ○3() ()()() 11221212\\\U A U A U U A A = () ()()() 11221122 11221212121 2\\,,,,,\x U A U A x U A x U A x U x A x U x A x U U x A A x U U A A ?∈?∈-∈-?∈?∈??∈??∈ ()()1212\U U A A τ∈ ∴τ中两个成员的交集仍在τ中 综上所述:τ就是R 上的拓扑 (2)任取一个有理数a ,则a 在(),R τ中存在一个开邻域11\U A 这样我们就可以在1 E 中找到一个与1U 不相交的开集2U ,令有理数2b U ∈

点集拓扑21n维欧氏空间度量空间拓扑空间的概念定义

第二章 点 集 拓 扑 §2.1. n 维欧氏空间、度量空间、拓扑空间的概念 定义2.1.1.) , ,(n 1ξξ =x ,n R y ∈=) , ,(n 1ηη ,定义 R R R d n n →?: 为 ∑=-= n 1 2 )()y ,(i i i x d ηξ. 称d 为n R 上的Euclid 距离. 易证距离d 满足: 01.y x 0)y ,( ,0)y ,(=?=≥x d x d ; 02.) x ,()y ,(y d x d =; 03.)z ,()y ,()z ,(y d x d x d +≤, )R z y, ,(n ∈x . 定义2.1.2.( 距离空间,Metrical Space ) X 为非空集合,二元函数 R X X d →?: 满足: 01.非负性:y x 0)y ,( ,0)y ,(=?=≥x d x d ; 02.对称性:) x ,()y ,(y d x d =; 03.三角不等式:)z ,()y ,()z ,(y d x d x d +≤ )R z y, ,(∈x . 称d 为X 上的一个距离,)d ,(X 为距离空间或度量空间.如 X A ?,称)d ,(A 为距离子空间. 0r ,>∈X x ,开球:} ) ,({)r ;(r x y d X y x B <∈=; 闭球:} ) ,({)r ;(r x y d X y x S ≤∈=. 开集:X A ? .A x ∈,?球 A x B ?)r ;(,称x 为A 的一个内点.如A 中每个点都是内点,则称A 为开集. 开球是开集;2R 中第一象限区域(不含坐标轴)是开集. 记)d ,(A 中开集全体为τ,则有如下结论. 定理2.1.1.(1) τφ∈X ,; (2) ττ∈?∈)( ,2121G G G G ; (3) τλτλλλ∈?Λ∈∈Λ ∈ )( G G . 例:(1) 离散空间. φ≠X ,定义 ) X y x,( y x ,1y x ,0)y ,(∈?? ?≠==x d . 称X 为离散距离空间. (2) ] ,[b a C 空间. } b] [a, )( )({] ,[上连续函数为t x t x b a C =.] ,[y(t)y ),(b a C t x x ∈==, 定义y(t)x(t) max )y ,( -=≤≤b t a x d , d 是距离. (3) 有界函数空间)(X B . φ≠X ,} X )( )({)(上有界函数为t x t x X B =. 定义 y(t)x (t) sup )y ,( -=∈X t x d ,()(y ,X B x ∈),d 是距 离.称)(X B 为有界函数空间. 取 +=N X ,记} )( )( {)(有界 n n x l X B ξξ===∞.)(y ),(n ηξ==n x ,n n sup )y ,(ηξ-=∈N n x d . 定义2.1.3.设 φ≠X ,)(X P ?τ 满足:

《点集拓扑学》第5章 §5.2 可分空间

§5.2可分空间 本节重点: 掌握可分空间的定义及可分空间与第二可数性公理空间的关系,与度量空间的关系; 掌握稠密子集的定义及性质. 定义5.2.l 设X是一个拓扑空间,D X.如果D的闭包等于整个拓扑空间X,即=X,则称D是X的一个稠密子集. 以下定理从一个侧面说明了讨论拓扑空间中的稠密子集的意义. 定理5.2.1 设X是一个拓扑空间,D是X中的一个稠密子集.又设f,g:X→Y都是连续映射.如果,则f=g(本定理说明两个映射只须在稠密子集上相等,就一定在整个空间相等) 证明设.如果f≠g,则存在x∈X使得 f(x)≠g(x).令:ε=|f(x)-g(x)|, 则ε>0.令 =(f(x)-ε/2,f(x)+ε/2) =(g(x)-ε/2,g(x)+ε/2) 则根据映射f和g的连续性可知都是x的邻域,从而U =也是x的一个邻域.由于子集D是稠密的,所以U∩D≠.对于任意一个y∈U∩D,我们有, f(y)=g(y)∈,矛盾. 我们也希望讨论有着较少“点数”稠密子集的拓扑空间,例如具有有限稠密点集的拓扑空间.但这类拓扑空间比较简单,大部分我们感兴趣的拓扑空间都不是这种情形,讨论起来意思不大.例如一个度量空间如果有一个有限的稠密子集的话,那么这个空间一定就是一个离散空间.相反,后继的讨论表明,许多重要的拓扑空间都有可数稠密子集.

定义5.2.2 设X是一个拓扑空间.如果X中有一个可数稠密子集,则称X是一个可分空间. 定理5.2.2 每一个满足第二可数性公理的空间都是可分空间. 证明设X是一个满足第二可数性公理的空间,B是它的一个可数基.在B中的每一个 非空元素B中任意取定一个点∈B.令 D={|B∈B,B≠} 这是一个可数集.由于X中的每一个非空开集都能够表示为B中若干个元素(其中当然至少会有一个不是空集)之并,因此这个非空开集一定与D有非空的交,所以可数集D是X的一个稠密子集. 包含着不可数多个点的离散空间一定不是可分的.这是因为在这样一个拓扑空间中,任何一个可数子集的闭包都等于它的自身而不可能等于整个空间. 可分性不是一个可遗传的性质,也就是说一个可分空间可能有子空间不是可分的.例子见后面的例5.2.1.然而由于满足第二可数性公理是一个可遗传的性质,因此根据定理5.2.2我们立即得到: 推论5.2.3 满足第二可数性公理的空间的每一个子空间都是可分空间. 特别,n维欧氏空间中的每一个子空间(包括它自己)都是可分空间. 例5.2.1 设(X,T)是一个拓扑空间,∞是任何一个不属于X的元素(例如我们可以取∞=X).令X*=X∪{∞}和T*={A∪{∞}|A∈T}∪{}.容易验证(请读者自己证明)(X*,T*)是一个拓扑空间. 我们依次给出以下三个论断: (1)(X*,T*)是可分空间.这是因为∞属于(X*,T*)中的每一个非空开集,所以单点集{∞}是(X*,T*)中的一个稠密子集. (2)(X*,T *)满足第二可数性公理当且仅当(X,T)满足第二可数性公理. 事实上,B是(X,T)的基当且仅当B*={B∪{∞}|B∈B}是(X*,T*)的一个基,而B 与B*有相同的基数则是显然的. (3)(X,T)是(X*,T*)的一个子空间.因为T*T.

点集拓扑学练习题及答案

点集拓扑学练习题 一、单项选择题(每题1分) 1、已知X {a,b,c,d,e},下列集族中,( )是X上的拓扑? ① T {X, ,{a},{ a,b},{ a,c,e}} ② T {X, ,{ a,b, c},{ a,b,d},{ a,b, c,e}} ③ T {X, ,{a},{a,b}} ④ T {X, ,{a},{ b},{ c},{ d},{ e}} 答案:③ 2、设X {a,b,c},下列集族中,( )是X上的拓扑? ①T {X, ,{a},{ a,b},{ c}} ②T {X, ,{a},{ a,b},{ a,c}} ③T {X, ,{a},{ b},{ a,c}} ④T {X, ,{a},{ b},{ c}} 答案:② 3 、 已知X {a,b,c,d},下列集族中,' ( )是X上的拓扑? ①T {X, ,{a},{ a, b},{ a,c,d}} ②T {X, ,{a,b,c},{ a,b, d}} ③T {X, ,{a},{ b},{ a,c,d}} ④T {X, ,{a},{b}} 答案:① 4、设X {a, b, c},下列集族中,()是X上的拓扑. ①T {X, ,{b},{ c},{ a,b}} ②T {X, ,{a},{ b},{ a,b},{ a,c}} ③T {X, ,{a},{ b},{ a,c}} ④T {X, ,{a},{ b},{ c}} 答案:② 5、已 知 汨X {a,b,c,d},下列集 :族中, (( )是X上的拓扑? ①T {X, ,{a,b},{ a,c,d}} ②T {X, ,{a,b},{ a,c, d}} ③T {X, ,{a},{ b},{ a,c,d}} ④T {X, ,{a},{ c},{ a,c}} 答案:④ 6、设X {a, b, c},下列集族 中 ,( )是X上的拓扑? ①T {X, ,{a},{ b},{ b,c}} ②T {X, ,{a,b},{ b, c}} ③T {X, ,{a},{a,c}} ④T {X, ,{a},{b},{c}} 答案:③ 7、已知X {a,b,c,d},拓扑T {X, ,{a}},贝U{b}=() ①?②X ③{b} ④{b, c, d} 答案:④

基础拓扑学讲义1.1的习题答案

习题 记S 是全体无理数的集合,在实数集R 上规定子集族 {} 1\A ,A S U U τ=?是E 的开集. (1)验证τ是R 上的拓扑; (2)验证(),R τ满足2T 公理,但不满足3T 公理; (3)验证(),R τ是满足1C 公理的可分空间; (4)证明τ在S 上诱导的子空间拓扑s τ是离散拓扑,从而(),s S τ是不可分的; (5)说明 (),R τ不满足2 C 公理。 证明:(1)○ 1,A U R R U A ττ=?=?? ??∈?∈??=?=??? 所以R 和?都含在τ中 ○ 2()U A U A λλλλλλλ∈Λ ∈Λ ∈Λ -= - ()0 000,,,x U A x U A x U x A x U x A x U A λλλ λλλλλλλλλλ λλλ∈Λ ∈Λ ∈Λ ∈Λ ∈Λ ?∈ -??∈Λ∈-?∈??∈ ? ?∈ - 使 U A λλλλτ∈Λ ∈Λ - ∈ ∴τ中任意多个成员的并集仍在τ中 ○3() ()()() 11221 212\\\U A U A U U A A = () ()()() 11221122 11221212121 2\\,,,,,\x U A U A x U A x U A x U x A x U x A x U U x A A x U U A A ?∈?∈-∈-?∈?∈??∈??∈ ()()1212\U U A A τ∈ ∴τ中两个成员的交集仍在τ中 综上所述:τ是R 上的拓扑 (2)任取一个有理数a ,则a 在(),R τ中存在一个开邻域11\U A 这样我们就可以在1 E 中找到一个与1U 不相交的开集2U ,令有理数2b U ∈

点集拓扑学拓扑知识点

(点集拓扑学拓扑)知识点

————————————————————————————————作者:————————————————————————————————日期:

第4章 连通性重要知识点 本章讨论拓扑空间的几种拓扑不变性质,包括连通性,局部连通性和弧连通性,并且涉 及某些简单的应用.这些拓扑不变性质的研究也使我们能够区别一些互不同胚的空间. §4.1 连通空间 本节重点: 掌握连通与不连通的定义. 掌握如何证明一个集合的连通与否? 掌握连通性的拓扑不变性、有限可积性、可商性。 我们先通过直观的方式考察一个例子.在实数空间R 中的两个区间(0,l )和[1,2), 尽管它们互不相交,但它们的并(0,1)U [l ,2)=(0,2)却是一个“整体”;而另外两 个区间(0,1)和(1,2),它们的并(0,1)U (1,2)是明显的两个“部分”.产生上述 不同情形的原因在于,对于前一种情形,区间(0,l )有一个凝聚点1在[1,2)中;而对 于后一种情形,两个区间中的任何一个都没有凝聚点在另一个中.我们通过以下的定义,用 术语来区别这两种情形. 定义4.1.1设A 和B 是拓扑空间X 中的两个子集.如果 ?=???)()(A B B A 则称子集A 和B 是隔离的. 明显地,定义中的条件等价于?=?B A 和 ?=?A B 同时成立,也就是说,A 与B 无交并且其中的任何一个不包含另一个的任何凝聚点. 应用这一术语我们就可以说,在实数空间R 中,子集(0,1)和(1,2)是隔离的, 而子集(0,l )和[1,2) 不是隔离的. 又例如,易见,平庸空间中任何两个非空子集都不是隔离的,而在离散空间中任何两个 无交的子集都是隔离的. 定义4.1.2 设X 是一个拓扑空间.如果X 中有两个非空的隔离子集A 和B 使得X=A ∪B ,则称X 是一个不连通空间;否则,则称X 是一个连通空间. 显然,包含着多于两个点的离散空间是不连通空间,而任何平庸空间都是连通空间. 定理4.1.1设X 是一个拓扑空间.则下列条件等价: (l )X 是一个不连通空间; (2)X 中存在着两个非空的闭子集A 和B 使得A ∩B=? 和 A ∪B = X 成立; (3) X 中存在着两个非空的开子集A 和B 使得A ∩B=? 和 A ∪B = X 成立; (4)X 中存在着一个既开又闭的非空真子集. 证明(l )蕴涵(2): 设(1)成立.令A 和B 是X 中的两个非空的隔离子集使得 A ∪ B =X ,显然 A ∩B=?,并且这时我们有 B B B A B B A B X B B =???=??=?=)()()( 因此B 是X 中的一个闭子集;同理A 也是一个X 中的一个闭子集.这证明了集合A 和B 满足条件(2)中的要求. (2)蕴涵(3).如果X 的子集A 和B 满足条件(2)中的要求,所以A 、B 为闭集, 则由于这时有A =B /和B=A ',因此A 、B 也是开集,所以A 和B 也满足条件(3)中的要

《点集拓扑学》第3章 §3.1 子空间

第3章子空间(有限),积空间,商空间 在这一章中我们介绍通过已知的拓扑空间构造新的拓扑空间的三种惯用的办法.为了避免过早涉及某些逻辑上的难点,在§3.2中我们只讨论有限个拓扑空间的积空间,而将一般情形的研究留待以后去作. §3.1子空间 本节重点:掌握度量子空间、拓扑空间子空间的概念,子空间的拓扑与大空间拓扑之间的关系以及子空间的闭集、邻域、基、导集、闭包与大空间相应子集之间的关系及表示法. 讨论拓扑空间的子空间目的在于对于拓扑空间中的一个给定的子集,按某种“自然的方式”赋予它一个拓扑使之成为一个拓扑空间,以便将它作为一个独立的对象进行考察.所谓“自然的方式”应当是什么样的方式?为回答这个问题,我们还是先从度量空间做起,以便得到必要的启发. 考虑一个度量空间和它的一个子集.欲将这个子集看作一个度量空间,必须要为它的每一对点规定距离.由于这个子集中的每一对点也是度量空间中的一对点,因而把它们作为子集中的点的距离就规定为它们作为度量空间中的点的距离当然是十分自然的.我们把上述想法归纳成定义: 定义3.1.1 设(X,ρ)是一个度量空间,Y是X的一个子集.因此,Y×Y X×X.显然:Y×Y→R是Y的一个度量(请自行验证).我们称Y的度量,是由X的度量ρ诱导出来的度量.度量空间(Y,ρ)称为度量空间(X,ρ)的一个度量子空间. 我们常说度量空间Y是度量空间X的一个度量子空间,意思就是指Y是X的一个子集,并且Y的度量是由X的度量诱导出来的.我们还常将一个度量空间的任何一个子集自动地认作一个度量子空间而不另行说明.例如我们经常讨论的:实数空间R中的各种区间(a,b), [a,b],(a,b]等;n+1维欧氏空间中的 n维单位球面: n维单位开、闭球体:

《点集拓扑学》第7章§7.1紧致空间

第7章 紧致性 §7.1 紧致空间 本节重点: 掌握紧致子集的定义及判断一个子集是紧致子集的方法.(这些方法哪些是充要条件); 掌握紧致性是否是连续映射可保留的,是否是可遗传的、有限可积的. 在§5.3中,我们用关于开覆盖和子覆盖的术语刻画了一类拓扑空间,即Lindeloff空间.现在来仿照这种做法,即将Lindeloff空间定义中的“可数子覆盖”换成“有限子覆盖”,以定义紧致空间.读者在数学分析中早已见过的Heine-Borel定理断言:实数空间R的任何一个子集为有界闭集的充分必要条件是它的每一个开覆盖都有一个有限子覆盖.(在§7.3中我们将要推广这个定理.)因此我们现在作的事也应当在意料之中. 定义7.1.1 设X是一个拓扑空间.如果X的每一个开覆盖有一个有限子覆盖,则称拓扑空间X是一个紧致空间. 明显地,每一个紧致空间都是Lindeloff空间.但反之不然,例如包含着无限但可数个点的离散空间是一个Lindeloff空间,但它不是一个紧致空间. 例7.1.1 实数空间R不是一个紧致空间.这是因为如果我们设 A={(-n,n)R|b∈Z+},则A的任何一个有限子族 { },由于它的并为 (-max{},max{}) 所以不是R的一个子覆盖.因此R的开覆盖A没有任何一个有限子覆盖. 定义7.1.2 设X是一个拓扑空间,Y是X中的一个子集,如果Y作为X的子空间是一个紧致空间,则称Y是拓扑空间X的一个紧致子集. 根据定义,拓扑空间X中的一个子集Y是X的紧致子集意味着每一个由子空间Y中的开集构成的Y的开覆盖有一个有限子覆盖,这并不明显地意味着由X中的开集构成的每一个Y的覆盖都有有限子覆盖.所以陈述以下定理是必要的. 定理7.1.1 设X是一个拓扑空间,Y是X中的一个子集.则Y是X的一个紧致子集当且仅当每一个由X中的开集构成的Y的覆盖都有有限子覆盖.(此定理表明开覆盖中的开子集可以是X的,也可以是Y的)

点集拓扑学的基本概念

点集拓扑学 点集拓扑学(Point Set Topology),有时也被称为一般拓扑学(General Topology),是数学的拓扑学的一个分支。它研究拓扑空间以及定义在其上的数学结构的基本性质。这一分支起源于以下几个领域:对实数轴上点集的细致研究,流形的概念,度量空间的概念,以及早期的泛函分析。它的表述形式大概在1940年左右就已经成文化了。通过这种可以为所有数学分支适用的表述形式,点集拓扑学基本上抓住了所有的对连续性的直观认识。 具体地说,在点集拓扑学的定义和定理的证明中使用了一些基本术语,诸如: ?开集和闭集 ?开核和闭包 ?邻域和邻近性 ?紧致空间 ?连续函数 ?数列的极限,网络,以及滤子 ?分离公理 度量空间 在数学中,度量空间是一个集合,在其中可以定义在这个集合的元素之间的距离(叫做度量)的概念。 度量空间中最符合我们对于现实直观理解的是三维欧几里得空间。事实上,“度量”的概念就是对从欧几里得距离的四个周知的性质引发的欧几里得度量的推广。欧几里得度量定义了在两个点之间的距离为连接它们的直线的长度。 空间的几何性质依赖于所选择的度量,通过使用不同的度量我们可以构造有趣的非欧几里得几何,比如在广义相对论中用到的几何。 度量空间还引发拓扑性质如开集和闭集,这导致了对更抽象的拓扑空间的研究。 【性质】 度量空间是元组(M,d),这里的M 是集合而 d 是在M 上的度量(metric),就是函数 使得 ?d(x, y) ≥ 0 (非负性) ?d(x, y) = 0 当且仅当 x = y (不可区分者的同一性) ?d(x, y) = d(y, x) (对称性)

?d(x, z) ≤ d(x, y) + d(y, z) (三角不等式)。 函数d 也叫做“距离函数”或简单的叫做“距离”。经常对度量空间省略d 而只写M,如果在上下文中可明确使用了什么度量。不要求第二、第三或第四个条件分别导致伪度量空间、准度量空间或半度量空间的概念。 第一个条件实际上可以从其他三个得出: 2d(x, y) = d(x, y) + d(y, x) ≥ d(x,x) = 0. 它做为度量空间的性质更恰当一些,但是很多课本都把它包括在定义中。某些作者要求集合M 非空。 —作为拓扑空间的度量空间 把度量空间处理为拓扑空间相容得几乎都成为定义的一部分了。 对于任何度量空间M 中的点x,我们定义半径r (>0) 的关于x 的开球为集合 。 这些开球生成在M 上的拓扑,使它成为拓扑空间。明显的,M 的子集被称为开集,如果它是(有限或无限多)开球的并集。开集的补集被称为闭集。以这种方式从度量空间引发的拓扑空间叫做可度量化空间 因为度量空间是拓扑空间,在度量空间之间有连续函数的概念。这个定义等价于平常的连续性的ε-δ定义(它不提及拓扑),并可以使用序列的极限直接定义。 开集 在拓扑学和相关的数学领域中,集合U被称为开集,如果在直觉上说,从U中任何一点x开始你可以在任何方向上稍微移动一下而仍处在集合U中。换句话说,在U中任何点x与U的边界之间的距离总是大于零。 例如,实数线上的由不等式规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式,或者规定的区间由于包含其边界,因此不能称之为开集。 开集是指不包含自己边界点的集合。或者说,开集把它所包含的任何一点的充分小的邻域也包含在其自身之中。开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。

(点集拓扑学拓扑)知识点

第4章连通性重要知识点 本章讨论拓扑空间的几种拓扑不变性质,包括连通性,局部连通性和弧连通性,并且涉及某些简单的应用?这些拓扑不变性质的研究也使我们能够区别一些互不同胚的空间. § 4. 1连通空间 本节重点:掌握连通与不连通的定义. 掌握如何证明一个集合的连通与否? 掌握连通性的拓扑不变性、有限可积性、可商性。 我们先通过直观的方式考察一个例子?在实数空间R中的两个区间(0, I)和]1, 2), 尽管它们互不相交,但它们的并(0, 1)U :1, 2) = (0, 2)却是一个“整体”;而另外两个区间(0, 1)和(1, 2),它们的并(0, 1)U (1, 2)是明显的两个“部分”.产生上述不同情形的原因在于,对于前一种情形,区间(0, I)有一个凝聚点1在]1, 2)中;而对于后一种情形,两个区间中的任何一个都没有凝聚点在另一个中. 我们通过以下的定义,用 术语来区别这两种情形. 定义4. 1. 1设A和B是拓扑空间X中的两个子集.如果 (A - B)(B - A)二?一 则称子集A和B是隔离的. 明显地,定义中的条件等价于 A r B =、和B r A二.一同时成立,也就是说,A 与B无交并且其中的任何一个不包含另一个的任何凝聚点. 应用这一术语我们就可以说,在实数空间R中,子集(0, 1)和(1, 2)是隔离的, 而子集(0, I )和[1 , 2)不是隔离的. 又例如,易见,平庸空间中任何两个非空子集都不是隔离的,而在离散空间中任何两个 无交的子集都是隔离的. 定义4. 1. 2设X是一个拓扑空间.如果X中有两个非空的隔离子集A和B使得X=A U B,则称X 是一个不连通空间;否则,则称X是一个连通空间. 显然,包含着多于两个点的离散空间是不连通空间,而任何平庸空间都是连通空间. 定理4. 1. 1设X是一个拓扑空间.则下列条件等价: (1)X是一个不连通空间; (2)X中存在着两个非空的闭子集A和B使得A A B= ?一和A U B = X成立; (3)X中存在着两个非空的开子集A和B使得A A B= ?一和A U B = X成立; (4)X中存在着一个既开又闭的非空真子集. 证明(I)蕴涵(2):设(1)成立.令A和B是X中的两个非空的隔离子集使得 A U B = X,显然A A B= ?_ ,并且这时我们有 B = B 一X = B「(A 一B)=(B 一A)一(B 一B)= B 因此B是X中的一个闭子集;同理A也是一个X中的一个闭子集.这证明了集合A和B 满足条件(2)中的要求. (2)蕴涵(3).如果X的子集A和B满足条件(2)中的要求,所以A、B为闭集,则由于

基础拓扑学第4章答案

《基础拓扑学讲义》部分习题解答四 ex.1(P.43)称X 满足0T 公理,如果对X 中的任意两 个不相同的点中必有一个点有一个开邻域不包含另一点。试举出满足0T 公理但不满足1T 公理的拓扑空间的例 子。 答:{,,}X a b c =,{,,{},{,},{,}}X a a b a c τ=?,则X 满足0T 公理但不满足1T 公理。 ex.6(P.43)证明X 为Hausdorff 空间当且仅当}|),{()(X x x x X ∈=?是乘积空间X X ×的闭集。 证:(必要性)要证)(X ?为闭集,只要证它的余集是 开集。C X y x ))((),(?∈?,),(y x 为内点。由 C X y x ))((),(?∈知,y x ≠,因X 为Hausdorff 空间知,存在x 的开邻域U ,y 的开邻域V ,使得Φ=V U ∩,于是C X V U y x ))((),(??×∈,所以),(y x 为内点,这就证明了)(X ?为闭集。 (充分性)对,,x y X x y ?∈≠,由()X ?的定义知,(,)()x y X ??,即(,)(())C x y X ∈?,由)(X ?为闭集知:()C X ?为开集,于是存在开集,U V 使得C X V U y x ))((),(??×∈,由(())C U V X ×??知,,U V 为,x y

的不相交的邻域,这就证明了X 为Hausdorff 空间。 ex.7(P.43)证明Hausdorff 空间的子空间也是Hausdorff 空间。 证:设X 是Hausdorff 空间,A 是X 的子空间。,x y A ?∈,则,x y X ∈。因X 是Hausdorff 空间,故x ?的邻 域U ,y ?的邻域V , 有U V =?∩。从而()()A U A V =?∩∩∩,因A U ∩是x 在A 中的邻域,A V ∩是y 在A 中的邻域,所以A 是Hausdorff 空间。 ex.16(P.44)记{[,)|}a b a b Γ=<。证明拓扑空间(,)Γ 不是2C 空间。 证:设μ是拓扑空间(,)Γ 的拓扑基,设a ∈ ,则 [,1)a a +是开集,从而在μ中存在成员a U ,有[,1)a a U a a ∈?+,并且a U 中最小的成员是a 。显然,当a b ≠时,a b U U ≠。于是μ中有不可数个成员,从而(,)Γ 中不存在可数拓扑基。故拓扑空间(,)Γ 不是2C 空间。

拓扑空间

拓扑空间 维基百科,自由的百科全书 汉漢▼ 上圖為三點集合{1,2,3}上四個拓撲的例子和兩個反例。左下角的集合並不是個拓撲空間,因為缺少{2}和{3}的聯集{2,3};右下角的集合也不是個拓撲空間,因為缺少{1,2}和{2,3}的交集{2}。 拓扑空间是一种数学结构,可以在上頭形式化地定義出如收敛、连通、连续等概念。 拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。 拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。 目录 [隐藏] ? 1 定义 o 1.1 例子 ? 2 拓扑之间的关系 ? 3 连续映射 ? 4 等價定义 o 4.1 闭集 o 4.2 邻域 o 4.3 闭包运算 o 4.4 开核运算 o 4.5 网

? 5 拓扑空间的例子 ? 6 拓扑空间的构造 ?7 拓扑空间的分类 o7.1 分离性 o7.2 可数性 o7.3 连通性 o7.4 紧性 o7.5 可度量化 ?8 拥有代数结构的拓扑 空间 ?9 拥有序结构的拓扑空 间 ?10 历史 ?11 参考书目 [编辑]定义 拓撲空間是一個集合?X,和一個包含?X?的子集族?τ,其滿足如下公理: 1. 空集和?X?都屬於?τ。 2. τ?內任意个集合的並集都仍然會屬於?τ。 3. τ?內任意两個集合的交集也仍然會屬於?τ。 滿足上述公理的集族?τ?即稱為?X?的拓撲。X?內的元素通常稱做「點」,但它們其實可以是任意的元素。裡面的「點」為函數的拓撲空間稱為「函數空間」。τ?內的集合稱為開集,而其在?X?內的補集則稱為閉集。一個集合可能是開放的、封閉的、非開非閉或亦開亦閉。 [编辑]例子

《点集拓扑学》期末复习

期末复习 学了一个学期的点集拓扑,大家对它应当有了更多的了解,更深刻的认识.大家掩卷回忆一下,点集拓扑学的主要内容有哪些?沿着什么思路研究?研究手法是什么? 下面把这几个方面的内容理一下,仅供参考. 一、点集拓扑学的主要内容: 1.一般拓扑空间: (1)任何点集只要定义了拓扑,就成了拓扑空间.任何拓扑空间中均有开集、基、闭集、闭包.任何点集均可能有凝聚点,任何点均有邻域.指定了顺序的元素就成了序列.(这些名词的定义是什么?相互关系是什么?如何判定?) (2)常见的拓扑空间有:度量空间、平庸空间、离散空间、有限补空间、可数补空间等.任何集合均可通过指定开集而构成上述空间.因此一个集合与不同的拓扑(开集族)配对,可以构成不同的拓扑空间.(实数集合可能成为上述空间吗?)(注意:实数集合与实数空间不同.) (3)一般拓扑空间均可以有子空间,任意有限个拓扑空间均可以构成乘积空间.任一拓扑空间中的一个等价关系均可以造出商空间.(这些空间的拓扑是怎样的?或基是怎样的?) 2.有个性的拓扑空间:与连通性有关的空间、各可数性公理空间、各分离性公理空间、与紧致性有关的空间、完备度量空间. (1)并不是任何空间都可以成为上述空间的.只有符合上述空间定义的空间才可以成为上述空间.(各类空间之间没有必然的联系) (2)R及是上述空间吗? (3)若有两个空间,之间通过连续映射联系起来,则原象空间的哪些性质可以传递到象空间? (4)上述空间的哪些性质可以遗传给子空间?(或闭遗传?) (5)上述空间的哪些性质可以是有限可积的? 3.连通性: (1)§4.1的所有定义,定理均要掌握.以应对判断一个空间的连通性. (2)两种分支的性质.

相关主题
文本预览
相关文档 最新文档