当前位置:文档之家› 低氮条件下氮高效水稻株系产量形成和稻米品质等性状的基本特征

低氮条件下氮高效水稻株系产量形成和稻米品质等性状的基本特征

低氮条件下氮高效水稻株系产量形成和稻米品质等性状的基本特征
低氮条件下氮高效水稻株系产量形成和稻米品质等性状的基本特征

低氮条件下氮高效水稻株系产量形成和稻米品质等性状的基本

特征

在大田低氮条件下,2012-2013年以染色体单片段代换系水稻遗传群体114

个株系为供试材料,测定了源库、物质生产与分配、氮素吸收利用、产量及其构成因素等性状,采用最小平方和的动态聚类分析方法,按氮素籽粒生产效率高低

将供试群体分为6类,从小到大依次为A、B、C、D、E、F类,分析不同氮素籽粒生产效率类型水稻株系上述性状的变化趋势、差异及其与氮素籽粒生产效率的关系;2014年以典型的氮高效、氮低效各3个株系,在测定上述性状基础上,增测

了稻米主要品质指标。通过3年的试验,初步分析了低氮条件下影响水稻氮素籽粒生产效率的主要因素,明确了低氮条件下氮高效利用水稻源库、物质生产与分配、氮素吸收利用、产量及其构成因素、稻米品质等性状的基本特点,以期为水稻氮素高效利用、高产、优质遗传改良提供参考依据。

主要结果如下:1.供试遗传群体株系间氮素籽粒生产效率差异显著。供试群体中氮素籽粒生产效率最大的株系为最小株系的2.23倍,类型间变异丰富。

2.随着氮素籽粒生产效率的提高,产量呈明显增加趋势,高氮素籽粒生产效

率(以下简称氮高效)类型水稻产量明显高于低氮素籽粒生产效率(以下简称氮低效)类型水稻,典型氮高效、氮低效水稻株系理论产量和实收产量具有相同的趋势。成熟期吸氮量、氮素籽粒生产效率与供试遗传群体水稻株系的产量均呈极显著线性正相关(r吸氧量=0.657**,rNUEg=0.510**),成熟期吸氮量对产量的直接通径

系数(0.889)略大于氮素籽粒生产效率对产量的直接通径系数(0.77)。

说明提高水稻的氮素吸收(吸氮量)和氮素利用(氮素籽粒生产效率)能力可

显著提高水稻产量水平,氮素吸收对产量的作用虽然仍大于氮素利用对产量的作

用,但较标氮条件下要小。3.产量构成因素方面,高氮素籽粒生产效率类型水稻具有每穗粒数多、结实率高、单穗穗重大的特点,而单位面积穗数不占优势,千粒重与氮素籽粒生产效率关系不密切。

4.源库方面,高氮素籽粒生产效率类型水稻成熟期叶面积系数较小,库容量及单穗库容量较大,抽穗期单位叶面积籽粒产量较高;而抽穗期叶面积系数与氮素籽粒生产效率关系不密切。

5.物质生产与分配方面,不同氮素籽粒生产效率类型水稻抽穗期、成熟期干物质生产量及抽穗期各器官干重比例无明显差异,但高氮素籽粒生产效率类型水稻成熟期茎鞘、叶干重比例低,穗重比例高,结实期茎鞘叶尤其是茎鞘干物质运转量大、运转率高,从而表现出经济系数较高的特点。

6.氮素积累与运转方面,随着氮素籽粒生产效率的提高,抽穗期全株含氮率(主要是茎鞘)、成熟期全株含氮率(包括茎鞘、叶、穗)而呈下降趋势,成熟期更明显,成熟期吸氮量亦随着氮素籽粒生产效率的提高而降低。氮高效水稻结实期茎鞘叶(尤其是茎鞘中)氮素运转量、氮素运转率明显大于氮低效水稻,是其氮素利用效率(包括氮素干物质生产效率、氮素收获指数、氮素籽粒生产效率)高的重要的氮素运转特征。

7.稻米品质方面(1)加工品质方面,氮高效水稻的精米率、糙米率明显高于氮低效水稻,前者达显著水平,但氮高效水稻与氮低效水稻在整精米率上无明显差异。(2)外观品质方面,氮高效水稻的垩白米率、垩白度大于氮低效水稻,长宽比略小于氮低效水稻,但均未达显著水平。

(3)营养品质方面,氮高效水稻精米中蛋白质含量明显低于氮低效水稻。氮高效水稻糙米中Cu、Fe、Mn、Zn、Ca、K、Mg、P等元素累积量均大于氮低效水稻,增幅在33.33%-47.63%,其中Zn、Ca两种元素累积量的差异达极显著水平,Cu、K、

Mg、P四种元素累积量的差异达显著水平,Fe、Mn两种元素累积量的差异接近显著水平。

氮高效水稻精米中Cu、Fe、Mn、Zn、Ca、K等元素累积量均大于氮低效水稻,增幅在36.43%-65.02%,其中Zn、Ca元素差异达极显著水平,Cu、Fe、K三种元素达显著水平,Mn元素接近显著水平。元素累积量与籽粒产量的相关分析表明,除精米中Mg元素外,糙米和精米中的元素累积量与籽粒产量均呈显著或极显著线性正相关。

氮高效水稻糙米中Zn、Ca、Mg、P等四种元素浓度均低于氮低效水稻,降幅达7.18%-9.81%,达极显著(P)、显著(Mg)及接近显著(Zn、Ca)水平。氮高效水稻精米中Zn、Ca元素浓度低于氮低效水稻,但差异未达显著水平。

精米中元素浓度与蛋白质含量的相关分析表明,精米中Cu、Zn元素浓度与蛋白质含量呈极显著线性正相关。氮高效水稻精米中总氨基酸浓度小于氮低效水稻,降幅达9.13%,其中人体必需氨基酸表现为不显著;在人体必需氨基酸浓度中,异亮氨酸、亮氨酸、苯丙氨酸、赖氨酸浓度均呈降低趋势,降幅为9.67%-10.71%,差异达显著(亮氨酸、苯丙氨酸)或接近显著(异亮氨酸、赖氨酸)水平,其它人体必需氨基酸浓度的差异未达显著水平。

如何进一步提高水稻产量品质与效益

龙源期刊网 https://www.doczj.com/doc/b714135475.html, 如何进一步提高水稻产量品质与效益 作者:王丹刘健孔繁军 来源:《农民致富之友》2017年第09期 摘要:通过选育栽培优质高产抗逆性强的品种与高效的栽培方法相结合的方式,来进一步提高鸭绿河农场水稻的产量品质,进而增加种植户与农场的效益。 关键词:水稻;高产;优质;效益 随着水稻生产的发展和生活水平的提高,人们对稻米品质的要求越来越高,优质米在我国乃至世界贸易中所占的比重越来越大。我国从八十年代起就把选育和栽培优质水稻品种作为水稻科研和生产的重要任务来抓。但由于目前大部分优质水稻的抗性较低、栽培困难、产量和效益偏低,严重制约了优质水稻的生产和发展。鸭绿河农场年水稻栽培面积35万多亩,地块之间产量、效益差异很大,高产地块亩产超过600公斤,亩效益可达600元;低产地块亩产仅450公斤,亩效益仅450元左右。如何改低产为高产,进一步提鸭绿河农场水稻产量品质与效益,本着良种配良方的原则,提出如下解决措施。 1、选择优质、高产、抗病品种 在保证粮食安全、稳产、高产的前提下,适当搭配种植优质、高产、抗病新品种,提高水稻品质,保稳产争高产。品种是水稻增产的内因,是水稻增产的依据。水稻的产量水平是遗传因素决定的,是水稻高产的首要决定因素,但增产的潜力是有限度的,不能无限地发挥,每个品种如果增产潜力发挥到极致,也可以认为是个常数。我场主要以11叶品种为主,主栽品种为空育131、龙粳26号、龙粳25号、垦稻20等品种。 2、适时早播育壮苗 本地区生育期短,活动积温少,前期升温慢,中期高温时间短,后期降温快,易遭受低温冷害,因此,培育健壮秧苗尤为重要。培育壮苗的宗旨是“以旱育为基础,以同伸理论为指导、以调温控水为手段”,根据建三江水稻生产技术标准,突出育苗先育根,育根先育种子根的原则,育成地上地下均衡发展的标准壮苗,为稳产、高产打下坚实基础。 3、加强田间肥水管理 配方施肥,提高肥料利用率。在国家项目测土配方施肥技术基础上,根据土壤肥力状况,合理搭配氮、磷、钾比例及用量,科学施用有机肥,以最大限度发挥肥料作用,提高肥料利用率。施肥总的原则是因地施肥,土地肥沃、地理条件好的地号少施,尤其是氮肥,地号贫瘠、肥力较差的多施。

哪些因素影响大米品质

从以下图中四个方面对比,影响大米品质主要有4个方面: 1、加工储存; 2、稻谷品种; 3、产地环境; 4、种植方式。 其中,品种与环境,两个因素,都对稻禾的生长周期有影响。生长周期越长,米质越好。一般来说,晚熟品种的米质比早熟品种的米质更好。而同样的品种,在气温高的情况下,成熟得就快。因此,只种一季的,播种时间晚(一般在6月份)的,米质要更好。 新米与陈米,只是在少量营养成分与口感上的差别。有少许米虫,但未发霉,对健康没什么影响,也谈不上危害,这就看个人经济条件,自行选择了。当然,有些不良商家,通过抛光处理,将陈米冒充新米销售,甚至用一些有害的化学药剂对低质米进行处理,以次充好,那要受到法律的严惩! ——关于转基因品种以及农药残留等问题,显而易见,这不仅仅是品质高低差别的问题,而是关乎安全问题了。 能吃饱,但如果有危害,那就是“饮鸩止渴”。随着人们生活条件的不断改善,为解决吃饱,而选择明知有害的食物,这应该不太可能——除非不知情。 从上图看出,安全,是比温饱还更低级的要求!如果为安全,而去选择某些天价大米,听信某些商家关于安全问题耸人听闻的恐吓,实在没有多大的必要。我们要相信国家政府的监管,相信绝大多数进入市场的产品,还是安全可靠的。 在温饱之上的需求,就是要“吃好”。所以,你可以挑剔不吃陈米,而要选新米。你可以不吃普通米,而要选优质米(指优质品种)。再挑剔一些,你追求的就不只是植物蛋白营养成分含量的高低,口感或软或硬、或香或不香的区别,此时,某些富含特种“微量元素”

的稀土产地大米,可能可以满足你更多健康需求。 对米最高级别的追求,将不只是“可检测”的营养成分或者可感知的口感、气味差别,而是探寻更高级别的天然活性能量。——这个时候,你就会选择纯天然的生态大米。

水稻的生物学特性

水稻的生物学特性 2.1水稻品种生育期水稻的一生,包括营养生长和生殖生长两个阶段,一般以幼穗开始分化作为生殖生长开始的标志。 2.1水稻品种生育期水稻的一生,包括营养生长和生殖生长两个阶段,一般以幼穗开始分化作为生殖生长开始的标志。 2.1.1 营养生长阶段是水稻营养体的增长,它分为幼苗期和分蘖期。在生产上又分为秧田期和大(本)田期(从移栽返青到拔节)。 2.1.2 生殖生长阶段是结实器官的增长,从幼穗分化到开花结实,又分为长穗期和开花结实期。幼穗分化到抽穗是营养生长和生殖生长并进时期,抽穗后基本上是生殖生长期。长穗期从幼穗分化开始到抽穗止,一般30天左右。结实期从抽穗开花到谷粒成熟,因气候和品种而异一般25?/FONT>50天之间。 2.1.3 水稻生育类型(幼穗分化和拔节的关系)早、中、晚稻品种各异,早稻品种先幼穗分化后拔节,称重叠生育型;中稻品种,拔节和幼穗分化同时进行,称衔接生育型;晚稻品种拔节后隔一段时间再幼穗分化,称分离生育型。 2.2 水稻品种生育期的稳定性和可变性水稻品种的生育期受自身遗传特性的控制,又受环境条件的影响。 2.2.1 水稻品种生育期的稳定性同一品种在同一地区.同一季节,不同年份栽培,由于年际间都处于相似的生态条件下,其生育期相对稳定,早熟品种总是表现早熟,迟熟品种总是表现迟熟。这种稳定性主要受遗传因子所支配。因此在生产实践中可根据品种生育期长短划分为早稻,全生育期100?/FONT>125天,中稻130?/FONT>150天,连作晚恼120?/FONT>140天,一季晚稻150?/FONT>170天,还可把早、中、迟熟稻中生育期长短差异划分为早、中、迟熟品种,以适应不同地区自然条件和耕作制度的需要,从而保证农业生产在一定时期内的相对的稳定性和连续性。 2.2.2 水稻品种生育期的可变性随着生态环境和栽培条件不同而变化,同一品种在不同地区栽培时,表现出随纬度和海拔的升高而生育期延长,相反,随纬度和海拔高度的降低,生育期缩短;同一品种在不同的季节里栽培表现出随播种季节推迟生育期缩短,播种季节提早其生育期延长。早稻品种作连作晚稻栽培,生育期缩短;南方引种到北方,生育期延长。 2.3 水稻品种的“三性”三性是感光性、感温性和基本营养生长性的遗传特性。不同地区、不同栽培季节,水稻品种生育期长短(从播种到抽穗的日教),基本上决定于品种“三性”的综合作用。因此水稻品种的三性是决定品种生育期长短及其变化的实质。水稻三性是气候条件和栽培季节的影响下形成的,对任何一个具体品种来说,三性是一个相互联系的整体。 2.3.1水稻品种的感光性在适于水稻生长的温度范围内,因日照长短使生育期延长或缩短发生变化的特性,称水稻的感光性。对于感光性品种,短日照可以加速其发育转变而提早幼穗分化,这就是指短于某一日长时抽穗较早;长于某一日长时抽穗显著推迟,这又称为“延迟抽穗的临介日长”,即是诱导幼穗分化的日长高限。水稻品种不同,种植地区不同,延迟抽穗的临介日长亦不同。我国南北稻区,水稻生育期间大多处于11?/FONT>16小时之间。 2.3.2 水稻品种的感温性在适于水稻生长的温度范围内,高温可使水稻生育期缩短,低温可使生育期延长,这种因温度高低而使生育期发生变化的特性,称水稻品种的感温性。水稻在高温条伴下品种生育期会缩短,但缩短的程度因品种特性而有所不同。晚稻品种的感温性比早稻更强,但晚稻品种其发育转变,主要受日长条件的支配,当日长不能满足要求时,则高温的效果不能显现。中稻品种介于早、晚稻之间。 2.3.3 水稻品种的基本营养生长性水稻进入生殖生长之前,在受高温短日影响下,而不能被缩短的营养生长期,称为水稻的基本营养生长期。它不受环境因子所左右的品种本身所固有的特性,又称为品种的基本营养生长性。营养

水稻不同种植方式产量与效益比较

安徽农学通报,Anhui Agri. Sci. Bull.2011,17(06) 44水稻不同种植方式产量与效益比较 姚金和1 吴建中2 王受荣3 张卫清4 郭早兄5 孙万纯6 (1盐城市亭湖区伍佑镇农业技术推广服务中心,江苏盐城224041;2盐城市盐都区粮油作物技术指导站;3盐城市盐都区农业干部学校;4盐城市盐都区葛武镇农业技术推广服务中心;5盐城市盐都区大冈镇农业技术推广服务中心; 6盐城市盐都区大纵湖镇农技推广服务中心) 摘 要:采用直播、机条播、抛秧、旱育移栽及机插等5种种植方式种植水稻,分别对其生育期、生育进程、茎蘖动态、产量及构成因素、成本效益进行了比较分析,从而得出不同水稻种植方式的优缺点,为农业生产提供参考。关键词:水稻;直播;机条播;抛秧;旱育移栽;机插 中图分类号S511 文献标识码A 文章编号1007-7731(2011)06-044-003 选用盐城市亭湖区大面积推广种植水稻品种宁粳3号,分别采用直播、机条播、抛秧、旱育移栽及机插等5种种植方式种植,现将不同种植方式结果报告如下。 1 不同种植方式比较分析 1.1 生育期 详见表1。由表1可知,直播与机条播的分蘖期、齐穗期、成熟期及全生育期基本一致,两者的分蘖期比其他3种种植方式推迟约7~8d,齐穗期推迟约10d,成熟期延长约5d,全生育期减少约13d。 1.2 生育进程 详见图1。由图1可知,由于直播、机条播播种迟,生育进程始终比抛秧、旱育移栽、机插秧慢,两者生长前期(7月13日)叶龄最大相差3.1叶,后随时间推移,直播与机条播生长发育进程加快,生长后期(8月16日)两者叶龄仅相差1叶。由于直播与机条播生育期缩短,最终叶龄比其他种植方式减少1叶。1.3 茎蘖动态 详见图2。由图2可知,直播与机条播由于没有受到移栽植伤,没有缓苗期,早发分蘖优势强,群体总苗数始终比其他3种方式多,且高峰苗出现迟,无效分蘖消亡速度慢。旱育移栽、抛秧、机插的高峰苗出现在7月27日左右,直播与机条播的高峰苗出现时间在8月3日左右,推迟7d。从高峰苗出现时间开始至8月16日,直播、机条播、抛秧、旱育移栽、机插无效分蘖消亡速率分别为21.1%、19.5%、28%、33%、33.2%,可见直播与机条播无效分蘖消亡的持续时间相对较长,不利于水稻个体生长发育。1.4 产量及构成因素 详见表2。由表2可知,5种种植方式中,直播稻产量最低,为550.7kg/667m 2;机条播产量比直播稻略高,为560.5kg/667m 2;产量最高的是旱育移栽,为665.4kg/667m 2。 作者简介: 姚金和(1964-),男,大专,农艺师,从事农业技术推广服务工作。 收稿日期: 2011-02-09

行株距配置对寒地水稻产量与品质的影响

行株距配置对寒地水稻产量与品质的影响 摘要:为明确寒地盐碱地区水稻高产栽培行株距和穴苗数配置及高产行株距配置下垦鉴稻5号产量及品质特征,采用裂区设计,于2009年对黑龙江大庆盐碱地区主栽水稻品种垦鉴稻5号进行不同行株距配置、群体结构优化研究。结果表明,大庆盐碱地区采用6株苗/穴、株距10 cm,行距30 cm的配置可以获得高产(9 896.90 kg/hm2),垦鉴稻5号理论产量较常规配置(4株苗/穴,30.0 cm ×13.3 cm)增产31.42%,差异达到极显著水平;株、行距与产量均呈负相关,达显著或极显著水平,株距是3个因子中对高产影响作用最大的;垦鉴稻5号不同处理随株距增大,粗蛋白质含量降低、直链淀粉含量增加;口感和综合评分均以每穴2株苗的处理最好,以每穴6株苗的处理品质最差。综合比较,处理16(6~8株苗/穴,30.0 cm×10.0 cm)产量和品质是最佳群体配置。 关键词:水稻;株行距配置;穴苗数;产量构成 中图分类号:s511.044 文献标识码:a 文章编号:0439-8114(2013)04-0758-05 influence of row and plant spacing on yield and quality of rice in cold area wang xiu-zhi1,liu chong-wen2,xu yi-qiang2,l?譈 yan-dong1,qian yong-de1,zheng gui-ping1 (1. college of agriculture, heilongjiang bayi agricultural university/key laboratory of crop cultivation

(完整word版)实验水稻田间测产及产量性状调查

实验水稻田间测产及产量性状调查 一、目的要求 掌握成熟期田间测产方法。学会成熟期有关产量性状的调查研究方法。 二、仪器用具 测产规(或框)、钢卷尺、剪刀、米尺、天平等。 三、内容与方法 (一)水稻成熟期产量测定 测产是在水稻收获前,通过田间调查,估测水稻产量的方法。在实际生产中通常是把不同生产水平的田块进行分类,然后选出能够代表该类的田块进行测产,并通过计算(把测产的结果分别乘以各代表类型的面积,并将各类型田块的产量累计),便可求出全部田块的产量了。 代表性田块的田间测产方法很多,常用的有下列二种: 1、小面积试割法 在大面积测产中,选择有代表性的小田块,进行收割,脱粒、称湿谷重。有条件的则送干燥器烘干,称重,而一般按早、晚季稻和收割时天气情况,按70-85%折算干谷,并丈量该小田块面积,计算出每公顷干谷产量。 2、穗数、粒数、粒重测产法 水稻单位面积产量是由每公顷有效穗数、每穗平均实粒数和千粒重构成,对这三个因子进行调查测定,就可求出理论产量。 选好测产田块后,即取样调查,根据田块大小及田间生长状况定取样点(调查点),取样点力求有代表性和均匀分布,常用的取样方法有五点取样法、八点取样法和随机取样法(如下图)。 图1 取样方法

确定取样点后,按下列步骤进行调查: (1)测定实际穴、行距,求每公顷穴数。在每个取样点上,测量11穴稻的横、直距离;分别以10除之,求出该取样点的行、穴距,再把各样点的数值进行统计,求出该田的平均行、穴距,则求得: 10000(m2) 每公顷实际穴数=—————————————————— 平均行距(m)×平均穴距(m) (注:1公顷=10000 m2) (2)调查每穴有效穗数,求每公顷穗数。在每个样点上,连续取样10-20穴(每公顷田一般共调查1500穴),数记每穴有效穗数(具有5粒以上结实谷粒的穗才算有效穗),统计出各点及全田的平均每穴穗数,则求得: 每公顷穗数=每公顷实际穴数×每穴平均穗数 (二)成熟期产量构成因素和主要植株经济性状调查 结合测产取样,从调查田选取10个代表穴,拨出稻株,拨时注意保持较多的根系,洗去泥土,然后小心分株,注意不要把分蘖误作主茎拆出,分株时最好边洗泥边拆开,或洗尽泥土后,用剪刀剪去纠缠在一起的根系易于拆开了。然后按下列“水稻成熟期产量构成因素和植株性状田间调查表”项目进行调查。调查时,先用原始记录表记录,而后计算整理。 四、作业 1、填写下列产量构成因素和植株经济性状调查表。 2、根据调查结果,评价这块田的产量构成。

水稻名词解释

名词解释 一、杂交水稻:杂种优势是生物界普遍现象,利用杂种优势提高农作物产量和品质是现代农业科学的主要成就之一。选用两个在遗传上有一定差异,同时它们的优良性状又能互补的水稻品种,进行杂交,生产具有杂种优势的第一代杂交种,用于生产,这就是杂交水稻。 二、雄性不育系:是一种雄性退化(主要是花粉退化)但雌蕊正常的母水稻,由于花粉无力生活,不能自花授粉结实,只有依靠外来花粉才能受精结实。因此,借助这种母水稻作为遗传工具,通过人工辅助授粉的办法,就能大量生产杂交种子。 三、保持系:是一种正常的水稻品种,它的特殊功能是用它的花粉授给不育系后,所产生后代,仍然是雄性不育的。因此,借助保持系,不育系就能一代一代地繁殖下去。 四、恢复系:是一种正常的水稻品种,它的特殊功能是用它的花粉授给不育系所产生的杂交种雄性恢复正常,能自交结实,如果该杂交种有优势的话,就可用于生产。 五、三系杂交水稻:是指雄性不育系、保持系和恢复系三系配套育种,不育系为生产大量杂交种子提供了可能性,借助保持系来繁殖不育系,用恢复系给不育系授粉来生产雄性恢复且有优势的杂交稻。 六、两系杂交稻:一种命名为光温敏不育系的水稻,其育性转换与日照长短和温度高低有密切关系,在长日高温条件下,它表现雄性不育;在短日平温条件下,恢复雄性可育。利用光温敏不育系发展杂交水稻,在夏季长日照下可用来与恢复系制种,在秋季或在海南春季可以繁殖自身,不再需要借助保持系来繁殖不育系,因此用光温敏不育系配制的杂交稻叫做两系杂交稻。 七、超级杂交稻:水稻超高产育种,是近20多年来不少国家和研究单位的重点项目。日本率先于1981年开展了水稻超高产育种,计划在15年内把水稻的产量提高50%。国际水稻研究所1989年启动了“超级稻”育种计划,要求2000年育成产量比当时最高品种高20%-25%的超级稻。但他们的计划至今未实现。我国农业部于1996年立项中国超级稻育种计划,其中一季杂交稻的产量指标为,第一期(1996-2000年)亩产700公斤,第二期(2001-2005年)亩产800公斤。 1、安全齐穗期:生产中常将秋季连续2天或3天低于20-23℃的始日定为安全齐花期,向前推5天为安全齐穗期。 2、拔节:水稻基部节间开始显著伸长,株高开始迅速增加的现象。 3、拔节长穗期: 长穗期从穗分化开始到抽穗止,一般需要30d左右,生产上也

低氮条件下氮高效水稻株系产量形成和稻米品质等性状的基本特征

低氮条件下氮高效水稻株系产量形成和稻米品质等性状的基本 特征 在大田低氮条件下,2012-2013年以染色体单片段代换系水稻遗传群体114 个株系为供试材料,测定了源库、物质生产与分配、氮素吸收利用、产量及其构成因素等性状,采用最小平方和的动态聚类分析方法,按氮素籽粒生产效率高低 将供试群体分为6类,从小到大依次为A、B、C、D、E、F类,分析不同氮素籽粒生产效率类型水稻株系上述性状的变化趋势、差异及其与氮素籽粒生产效率的关系;2014年以典型的氮高效、氮低效各3个株系,在测定上述性状基础上,增测 了稻米主要品质指标。通过3年的试验,初步分析了低氮条件下影响水稻氮素籽粒生产效率的主要因素,明确了低氮条件下氮高效利用水稻源库、物质生产与分配、氮素吸收利用、产量及其构成因素、稻米品质等性状的基本特点,以期为水稻氮素高效利用、高产、优质遗传改良提供参考依据。 主要结果如下:1.供试遗传群体株系间氮素籽粒生产效率差异显著。供试群体中氮素籽粒生产效率最大的株系为最小株系的2.23倍,类型间变异丰富。 2.随着氮素籽粒生产效率的提高,产量呈明显增加趋势,高氮素籽粒生产效 率(以下简称氮高效)类型水稻产量明显高于低氮素籽粒生产效率(以下简称氮低效)类型水稻,典型氮高效、氮低效水稻株系理论产量和实收产量具有相同的趋势。成熟期吸氮量、氮素籽粒生产效率与供试遗传群体水稻株系的产量均呈极显著线性正相关(r吸氧量=0.657**,rNUEg=0.510**),成熟期吸氮量对产量的直接通径 系数(0.889)略大于氮素籽粒生产效率对产量的直接通径系数(0.77)。 说明提高水稻的氮素吸收(吸氮量)和氮素利用(氮素籽粒生产效率)能力可 显著提高水稻产量水平,氮素吸收对产量的作用虽然仍大于氮素利用对产量的作

水稻-玉米112的选育及其生物学特性

水稻-玉米112是深圳市百绿生物科技有限公司朱培坤采用水稻R998的染色体及其片段作为供体,用一个地方玉米品种百绿马齿Mf1的细胞作为受体,进行染色体杂交而获得的,是具有新核型的水稻-玉米杂交染色体的新类型粮食作物水稻-玉米的杂交植株[1],其后代出现了巨大的变异和分离现象,获得了多种多样的变异材料。后来经过一系列严格的常规遗传选育与细胞核型分析,进一步获得了具备特异性,同时一致性、稳定性均符合农业部新品种确定的相关技术要求的新类型玉米自交系--百绿珍宝112,并获得农业部授予的新品种权号“CNA20060829.0”。 1水稻-玉米112的品种来源 水稻(Oryza sativa ,Oryza glaberrima.),一年生草 本,高30~150cm ,栽培历史悠久,在热带、半热带和温带等地区的沿海平原、潮汐三角洲和河流盆地的淹水地广泛栽培。水稻是世界三大主粮之一,也是世界上三分之一人口的主食。本试验所采用的供体水稻R998是广东省选育的一个产量高、品质好、抗性好的恢复系。受体玉米百绿马齿Mf 是从广东省的一个农家地方品种通过自交繁殖出的自交系,具有产量高、抗逆性强、适应性好、配合力高的特点。科学家 发现,当人体同时食用水稻和玉米的时候,可以大大提高蛋白质的吸收率,于是采用水稻染色体与玉米染色体杂交,改良玉米品种的营养品质,培育出具有水稻蛋白的玉米高产品种,使得人们在食用玉米的时候,也能获得在水稻上所具有的营养,造福全人类。将制备好的水稻染色体,在适当的条件下,导入到玉米细胞中,使两者发生染色体杂交,形成新核型的水稻-玉米杂交染色体,再培育成植株,就获得了具有水稻染色体和玉米染色体杂交的新类型粮食作物———“水稻-玉米”。 通过染色体杂交获得的“水稻-玉米”植株,和对照玉米相比,叶片、株型、雄穗等性状均发生较大的变异。另外,果穗及其种子也有明显变化。此外,经过核型分析,其结果显示,水稻-玉米杂交植物的染色体核型发生了变化,与对照玉米Mf 的染色体核型有明显的差别,核型的不对称性有了一定的增加[2]。由于是采用普通玉米品种Mf 作为受体,通过植物染色体杂交技术获得的杂交植物,因此该植物所结种子在外观上保持了对照玉米Mf 的大部分性状,同时也表达了供体水稻的很多性状。而后经过多年的遗传育种,采用分离、筛选、自交等手段,最终达到性状基本纯合,选育出一个富含稻谷类蛋白的新型自交系, 水稻-玉米112的选育及其生物学特性 作者简介:朱培坤,男,植物染色体杂交技术发明人和植物染色体杂交理论奠基人,深圳市百绿生物科技有限公司董事长、深圳市百绿生物染色体杂交研究所所长。 朱培坤1,2 张洪胜1 党高兵3 张亚建4 方 雷5 张 越1 (1.广东省深圳市百绿生物染色体杂交研究所,深圳市百绿生物科技有限公司 深圳518172;2.四川省成都百绿生物科技有限公司都江堰611835;3.陕西省蒲城县农业局 蒲城715500;4.陕西省铜川市农业科学研究所 铜川727031;5.江苏省宿迁市农业委员会 宿迁223800) 摘要:将水稻的染色体及其片段作为供体,在一定的条件下导入到受体玉米的细胞中,和受体细胞的玉米染色体进行染色体杂交,形成新型的水稻-玉米杂交染色体,从而获得该杂交染色体表达的水稻-玉米染色体杂交植株。与未经杂交的对照玉米比较,其植株、叶片、果穗、籽粒等生物学性状均发生了明显变化。文章对该水稻-玉米112杂交品种的创制和生物学性状作一简要的分析报道。关键词:水稻;玉米;染色体;水稻-玉米;高等植物染色体杂交236--

水稻突变体介绍及鉴定(很详细)

RMD水稻突变体信息及基因型鉴定 1.背景介绍: 突变体对于遗传学研究有着重要作用,随着拟南芥和水稻等物种全基因组测序的开展,人类积累了前所未有的基因序列信息,为了弄清这些基因序列的生物学信息,寻找该基因区段序列发生变异的突变体是阐释基因功能最直接最有效的方法。 植物在自然的环境条件下也会产生突变性状,早期普通正向遗传学研究往往通过寻找与某种生物学特性相关的突变体来发掘或定位某个特定基因。为配合植物功能基因组研究高通量的策略,构建水稻等物种的大型突变体库已成为必然,借助水稻全基因组测序信息、通过反向遗传学的手段大规模地筛选突变体库,理论上可以获得基因组中任一基因的突变体,最终实现阐释基因功能的目的。 2.原理: 2.1农杆菌介导的T-DNA 插入 农杆菌是寄主范围非常广泛的土壤杆菌,它能通过伤口侵染植物导致冠瘿瘤和毛状根的发生。1974从根癌农杆菌中分离出一种与肿瘤诱导相关的质粒,称为致瘤质粒(Tumor-inducing plasmid),简称Ti 质粒。Ti 质粒上存在一段DNA,能够转移并整合到植物基因组中,称为Transferred DNA,简称T-DNA。 研究发现,T-DNA 两端存在非常保守的同向重复的25bp 序列,分别称为左边界(LB)和右边界(RB)。T-DNA 的转移只与边界序列相关,尤其是RB,而与T-DNA区段的其它基因或序列无关。我们将T-DNA 区段上的致瘤基因和其它无关序列去掉,利用其转移的特性,实现农杆菌介导的T-DNA 转入水稻愈伤,从而构建水稻突变体库。大量研究表明,农杆菌T-DNA 整合到植物基因组中的位置是随机的,并且整合到植物基因组中的T-DNA 能稳定遗传。由于插入到植物基因组中的T-DNA 区段序列已知,这样随机插入到植物基因组中的T-DNA 类似于给植物基因“贴”了一个序列标签。我们利用这个标签,通过各类PCR技术最终可以获取其插入的位点。 2.2 水稻Tos17 反转录转座子 创造水稻突变体的另一种方法是利用植物的反转录转座子,它们是以DNA→RNA→DNA 的方式进行转座,在水稻上已发现大约40 种长未端重复的反转录转座子,它们是Tos1-Tos32,RIRE1-RIRE8,其中5 类被证明是有转座活性的,分别是Tos10、Tos17、Tos19、Tos25 和Tos27。这些反转录转座子只有在组织培养条件下才具备转座活性,其中Tos17 的转座活性最强,容易插入到富含基因的区域,因此可以直接用于创造插入失活的突变体库。利用含有Tos17 插入的水稻突变体库,可以进行突变性状的筛选, T os17 反转录转座子正成为水稻功能基因组研究的一个有力工具。由于Tos17 反转录转座子为水稻内源的转座子,不需要进行转基因的过程,而且平均每株含有8 个Tos17 个拷贝,在正常情况下能够稳定遗传,因此Tos17 转座子突变体库是水稻功能基因组研究的一个有用资源。但也有研究表明,Tos17 在转座过程中

相关主题
文本预览
相关文档 最新文档