当前位置:文档之家› 盾构隧道结构ansys计算方法

盾构隧道结构ansys计算方法

盾构隧道结构ansys计算方法
盾构隧道结构ansys计算方法

一、盾构隧道结构计算模型

1、惯用法(自由圆环变形法)

惯用法的想法早在1960年就提出了,在日本国内得到了广泛的应用。惯用法假设管片环是弯曲刚度均匀的环,不考虑管片接头部分的柔性特征和弯曲刚度下降,管片截面具有同样刚度,并且弯曲刚度均匀的方法。这种方法计算出的管片环变形量偏小,导致在软弱地基中计算出的管片截面内力过小,而在良好地基条件下计算出的内力又过大。地层反力假设仅在水平方向上下45°范围内按三角形规律分布,这种模型可以计算出解析解。

P 0

k δ

2、修正惯用法

在采用惯用法的60年代,怎样评价错缝拼装效应是一个问题。如果错缝拼装管片,可弥补管片接头存在造成的刚度下降。于是,在对带有螺栓接头的管片环进行多次核对研究时,首次引入了η-ξ对错缝拼装的衬砌进行内力计算,即为修正惯用法。该法将衬砌视为具有刚度ηEI的均质圆环,将计算出的弯矩增大即(1+ξ)M,得到管片处的弯矩;将求出的弯矩减少即(1-ξ)M,得到接头处的弯矩。其中η称为弯曲刚度有效率,ξ称为弯矩增加率,它为传递给邻环的弯矩与计算弯矩之比。管片接头由于存在一些铰的作用,所以可以认为弯矩并不是全部经由管片接头传递,其一部分是利用环接头的剪切阻力传递给错缝拼装起来的邻接管片。

接头传递弯矩示意图

二、管片计算荷载的确定

1、荷载的分类

衬砌设计所考虑的各种荷载,应根据不同的地质条件和设计方法进行假定并根据隧道的用途加以考虑。衬砌设计所考虑的各种荷载见表所示。

衬砌设计荷载分类表

2、计算断面选择

●埋深最大断面

●埋深最小断面

●埋深一般断面

●水位

3、水土压力计算

对于粘性土层,如西安地铁黄土地层、成都地铁二号线膨胀土地

层等,地下水位以上地层荷载用湿容重计算,地下水位以下用饱和容重计算。

对于透水性较好的砂性地层,如西安地铁粗砂、中砂地层,成都

地铁卵石土地层等,此时地下水位以上地层荷载用湿容重计算,地下水位以下用浮容重计算。

水土压力合算与分算,主要影响管片结构侧向荷载。一般水土分算时侧向压力更大。

4、松弛土压力

将垂直土压力作为作用于衬砌顶部的均布荷载来考虑。其大小宜根据隧道的覆土厚度、隧道的断面形式、外径和围岩条件等来决定。考虑长期作用于隧道上的土压力时,如果覆土厚度小于隧道外径,一般不考虑地基的拱效应而采用总覆土压力。但当覆土厚度大于隧道外径时,地基中产生拱效应的可能性比较大,可以考虑在计算时采用松弛土压力,一般采用泰沙基公式计算。

P 0

1010/.tan 0/.tan 0110)1(tan )/1(B H K B H K e P e K B c B h ??γ

?γ--+--=

1010/.tan 0/.tan 011)1(tan )/(B H K B H K v e P e K B c B ???

γσ--+--=

)22

/4/cot(01?π+=R B

式中:—土的松动高度—0h

力—太沙基竖向松弛土压—v σ

?

—内摩擦角

P

—上覆荷载

γ

—土的容重

c

—土的粘聚力

三、管片内力有限元计算单元选择

1、beam3单元

输入参数:

(1)实常数(Real Constants)

AREA –横截面积

IZZ –横截面惯性矩

HEIGHT –梁高

(2)材料参数(Material Properties)

EX——弹模

DENS——密度

PRXY——泊松比

其它选项采用默认即可

2、Link10单元

(1)Real Constants

AREA –横截面积,取单位面积1。

(2)Material Properties

EX ——弹模,需满足E*A=地层抗力刚度

其它选项采用默认即可

3、link1单元

(1)Real Constants

AREA – 横截面积,取单位面积1。

(2)Material Properties

EX ——弹模,为了不影响计算结果取足够小,如1。

四、结点力计算

1、均布荷载时

中间结点:

2/)(11-+-=n n x x p Fn

两端结点:

2/)(121x x p F -=

2/)(1--=N N N x x p F

2、梯形荷载时

中间结点:

[]))(2())(2(6

11111n n n n n n n n y y p p y y p p Fn -++-+=++-- 两端结点:

[]))(2(6

112211y y p p F -+= []))(2(6

111---+=N N N N N y y p p F

五、圆形结构内力计算

1、计算参数

R=4.5m;B=1.5m;H=0.5m(厚);

Pw1=0.1MPa;Pe1=0.14MPa;

Pw2=0.19MPa;Pe2=0.05MPa;

Q1=0.14MPa

Q2=0.23MPa

2、在自重情况下的结构内力分布

计算命令流为:

/prep7

et,1,beam3

et,2,link10

keyopt,2,3,1 !*****只受压******

R,1,0.75,0.015625,0.5, , , ,

R,2,1, ,

!定义混凝土衬砌材料

mp,ex,1,2.76e10

mp,prxy,1,0.2

mp,dens,1,2600

mp,ex,2,5e7

mp,prxy,2,0.01

!建立几何模型

k,1,0,0,0

circle,1,4.5

!设置划分单元大小为0.5m/个

Lsel,all

LESIZE,all,0.5, , , , , , ,1

Type,1

Mat,1

Real,1

Lmesh,all

!复制建立地层弹簧

CSYS,1

wpcsys,-1

nsel,s,loc,x,4.4,4.6

NGEN,2,500,all, , ,1 , , ,1,

allsel,all

*do,i,1,60

type,2

real,2

mat,2

e,i,i+500

*enddo

nsel,s,loc,x,5.4,5.6

d,all,all

nsel,s,,,32

D,all, , , , , ,UX, , , , ,

allsel,all

csys,0

wpcsys,-1

/sol

ACEL,0,10,0,!********施加重力命令********* solve

/post1

ETABLE, ,SMISC, 1

ETABLE, ,SMISC, 7

ETABLE, ,SMISC, 2

ETABLE, ,SMISC, 8

ETABLE, ,SMISC, 6

ETABLE, ,SMISC, 12

工况一:πg+地层反力作为主动荷载施加

工况二:πg+地层反力作为被动荷载施加

结果比较:

隧道结构计算

一.基本资料 惠家庙公路隧道,结构断面尺寸如下图,内轮廓半径为 6.12m ,二衬 厚度为 0.45m 。围岩为 V 级,重度为19.2kN/m3,围岩弹性抗力系数为 1.6×105kN/m3,二衬材料为 C25 混凝土,弹性模量为 28.5GPa ,重度 为 23kN/m 3。考虑到初支和二衬分别承担部分荷载,二衬作为安全储备,对其围岩压力进行折减,对本隧道按照 60%进行折减。求二衬内力,作出内力图,偏心距分布图。 1)V1级围岩,二衬为素混凝土,做出安全系数分布图,对二衬安全性进行验算。 2)V2级围岩,二衬为钢筋混凝土,混凝土保护层厚度 0.035m ,按结构设计原理对其进行配筋设计。 二.荷载确定 1.围岩竖向均布压力:q=0.6×0.45?1 2-S γω 式中: S —围岩级别,此处S=5; γ--围岩重度,此处γ=19.2KN/3m ; ω--跨度影响系数,ω=1+i (m l -5),毛洞跨度m l =13.14+2?0.06=13.26m ,其中0.06m 为一侧平均超挖量,m l =5—15m 时,i=0.1,此处ω=1+0.1?(13.26-5)=1.826。 所以,有:q=0.6×0.451 -52 ??19.2?1.826=151.456(kPa )

此处超挖回填层重忽略不计。 2.围岩水平均布压力:e=0.4q=0.4?151.456=60.582(kPa ) 三.衬砌几何要素 5. 3.1 衬砌几何尺寸 内轮廓线半径126.12m , 8.62m r r == 内径12,r r 所画圆曲线的终点截面与竖直轴的夹角1290,98.996942φφ=?=?; 拱顶截面厚度00.45m,d = 墙底截面厚度n 0.45m d = 此处墙底截面为自内轮廓半径2r 的圆心向内轮廓墙底做连线并延长至与外轮廓相交,其交点到内轮廓墙底间的连线。 外轮廓线半径: 110 6.57m R r d =+= 2209.07m R r d =+= 拱轴线半径: '1200.5 6.345m r r d =+= '2200.58.845m r r d =+= 拱轴线各段圆弧中心角: 1290,8.996942θθ=?=? 5.3.2 半拱轴线长度S 及分段轴长S ? 分段轴线长度: '1 1190π 3.14 6.3459.9667027m 180180S r θ? = = ??=?? '2228.996942π 3.148.845 1.3888973m 180180S r θ?==??=?? 半拱线长度: 1211.3556000m S S S =+= 将半拱轴线等分为8段,每段轴长为: 11.3556 1.4194500m 88 S S ?= ==

隧道ansys计算程序算例——荷载结构模式

选取新建铁路宜昌(宜)-万州(万)铁路线上的别岩槽隧道某断面,该断面设计单位采用的支护结构如图3-3所示。为保证结构的安全性,采用了荷载—结构模型,利用ANSYS 对其进行计算分析。 主要参数如下: ●隧道腰部和顶部衬砌厚度是65cm,隧道仰拱衬砌厚度为85cm。 ●采用C30钢筋混凝土为衬砌材料。 ●隧道围岩是Ⅳ级,洞跨是5.36米,深埋隧道。 ●隧道仰拱下承受水压,水压0.2MPa。 图3-3 隧道支护结构断面图 隧道围岩级别是Ⅳ级,其物理力学指标及衬砌材料C30钢筋混凝土的物理力学指标见表3-3所示。 根据《铁路隧道设计规范》,可计算出深埋隧道围岩的垂直匀布力和水平匀布力。对于竖向和水平的分布荷载,其等效节点力分别近似的取节点两相临单元水平或垂直投影长度的一般衬砌计算宽度这一面积范围内的分布荷载的总和。自重荷载通过ANSYS程序直接添加密

度施加。隧道仰拱部受到的水压0.2MPa按照径向方向载置换为等效节点力,分解为水平竖直方向加载。 3.3.3 GUI操作方法 3.3.3.1 创建物理环境 1) 在【开始】菜单中依次选取【所有程序】/【ANSYS10.0】/【ANSYS Product Launcher】,得到“10.0ANSYS Product Launcher”对话框。 2)选中【File Management】,在“Working Directory”栏输入工作目录“D:\ansys\example301”,在“Job Name”栏输入文件名“Support”。 3)单击“RUN”按钮,进入ANSYS10.0的GUI操作界面。 4)过滤图形界面:Main Menu> Preferences,弹出“Preferences for GUI Filtering”对话框,选中“Structural”来对后面的分析进行菜单及相应的图形界面过滤。 5)定义工作标题:Utility Menu> File>Change Title,在弹出的对话框中输入“Tunnel Support Structural Analysis”,单击“OK”,如图3-4所示。 图3-4 定义工作标题 6)定义单元类型:Main Menu> Preprocessor> Element Type> Add/Edit/Delete,弹出“Element Types”单元类型对话框,如图3-5所示,单击“Add”按钮,弹出“Library of Element Types”单元类型库对话框,如图3-6所示。在该对话框左面滚动栏中选择“Beam”,在右边的滚动栏中选择“2D-elastic 3”,单击“Apply”,定义了“Beam3”单元。再在左面滚动栏中选取“Combination”,右边的滚动栏中选择“Spring-damper 14”,如图3-7所示。然后单击“OK”按钮,这就定义了“Combin14”单元,最后单击图3-5单元类型对话框中的“Close”按钮。 图3-5 单元类型对话框

区间盾构隧道结构设计

区间盾构隧道结构设计 1)主要设计原则 ①盾构隧道衬砌结构应满足运营功能要求以及建筑限界、施工工艺、结构防水和城市规划等方面的要求。结构安全等级为一级,按地震烈度为7度进行结构抗震设计,采取相应的构造处理措施,以提高结构的整体抗震能力。结构抗力应满足人防部门的要求,抗力级别为6级。 ②结构类型和施工方法,应根据工程地质、水文地质和周围的环境条件,通过技术经济比选确定,并应按相关规范的规定进行结构设计计算。 ③结构设计应符合强度、刚度、稳定性、抗浮和裂缝宽度验算的要求,并满足施工工艺的要求。 ④对于钢筋混凝土结构应就其施工和正常使用阶段进行结构强度计算,必要时也应进行刚度和稳定性验算。钢筋混凝土结构应进行裂缝宽度验算,其最大裂缝允许值为:明挖法和矿山法施工的结构为0.2~0.3mm;盾构法施工的结构为0.15~0.20mm。结构进行抗浮验算时,其抗浮安全系数不得小于1.05,否则应采取抗浮处理措施。 ⑤采用暗挖法施工时,区间隧道为平行的双洞单线隧道,两隧道的净距一般不宜小于1.0倍隧道洞径。 ⑥所选择的盾构机型,必须对地层有较好的适应性,并同时依据盾构推进速度、周围环境状况、工期、造价等各方面进行技术经济比较后确定。 ⑦严格控制工程施工引起的地面沉降量,其允许数值应根据地铁沿线的地面建筑及地下构筑物等实际情况确定,并因地制宜地采取措施。 ⑧结构防水设计应根据工程地质、水文地质、地震烈度、环境条件、结构形式、施工工艺及材料来源等因素进行,并应遵循“以防为主、多道设防、刚柔结合、因地制宜、综合防治”的原则。车站及出入口通道防水等级为一级;车站风道及区间隧道防水等级为二级。 2)盾构机类型的选择

盾构法隧道基本原理及特点

盾构法隧道基本原理及特点 1.盾构法隧道基本原理 盾构法隧道的基本原理是用一件有形的钢质组件沿隧道设计轴线开挖土体而向前推进。这个钢质组件在初步或最终隧道衬砌建成前,主要起防护开挖出的土体、保证作业人员和机械设备安全的作用,这个钢质组件被简称为盾构。盾构另一个作用是能够承受来自地层的压力,防治地下水或流沙的入侵。 隧道拱内圈的空洞由盾构本体防护,同时还需要其他辅助措施对工作面进行支护。盾构法隧道主要有以下几种支护土体方法和与之相匹配的盾构类型,见图1,各种类型盾构掘进机的支护面板见图2。 几种支护土体方法和与之相匹配的盾构类型 各种类型盾构掘进机的支护面板 2.盾构法隧道优缺点 盾构法隧道优点: (1)在盾构支护下进行地下工程暗挖施工,不受地面交通、河道、航运、潮汐、季节、气候等条件的影响,能较经济合理地保证隧道安全施工;

盾构法隧道施工不受地面自然条件的影响 (2)盾构的推进、出土、衬砌拼装等可实行自动化、智能化和施工远程控制信息化,掘进速度较快,施工劳动强度较低; 盾构法隧道机械化、自动化高 (3)地面人文自然景观受到良好的保护,周围环境不受盾构施工干扰;在松软地层中,开挖埋置深度较大的长距离、大直径速度,具有经济、技术、安全、军事等方面的优越性。 盾构法隧道能保护地面人文自然,经济效益明显 盾构法隧道缺点: (1)盾构机械造价较昂贵,隧道的衬砌、运输、拼装、机械安装等工艺较复杂;在饱和含水的松软地层中施工,地表沉陷风险极大; (2)需要设备制造、气压设备供应、衬砌管片预制、衬砌结构防水及堵漏、施工测量、场地布置、盾构转移等施工技术的配合,系统工程协调难; (3)建造短于750m的隧道没有经济性;对隧道曲线半径过小或隧道埋深较浅时,施工难度大。

隧道ansys计算程序算例——荷载结构模式

选取新建铁路宜昌(宜)-万州(万)铁路线上的别岩槽隧道某断面,该断面设计单位采用的支护结构如图3-3所示。为保证结构的安全性,采用了荷载—结构模型,利用ANSYS对其进行计算分析。 主要参数如下: ●隧道腰部与顶部衬砌厚度就是65cm,隧道仰拱衬砌厚度为85cm。 ●采用C30钢筋混凝土为衬砌材料。 ●隧道围岩就是Ⅳ级,洞跨就是5、36米,深埋隧道。 ●隧道仰拱下承受水压,水压0、2MPa。 图3-3 隧道支护结构断面图 隧道围岩级别就是Ⅳ级,其物理力学指标及衬砌材料C30钢筋混凝土的物理力学指标见表3-3所示。 表3-3 物理力学指标 名称容重 γ(3 /m kN) 弹性抗力系数 K(MPz/m) 弹性模量 E(GPa) 泊松比 v 内摩擦角 ?(。) 凝聚力 C(MPa) Ⅳ级围岩22 300 1、5 0、32 29 0、35 C30钢筋25 - 30 0、2 54 2、42

混凝土 表3-4 荷载计算表 荷载 种类 围岩压力结构自重水压 N/m3垂直匀布力N/m3水平匀布力N/m3 值80225 16045 通过ANSYS添加200000 根据《铁路隧道设计规范》,可计算出深埋隧道围岩的垂直匀布力与水平匀布力。对于竖向与水平的分布荷载,其等效节点力分别近似的取节点两相临单元水平或垂直投影长度的一般衬砌计算宽度这一面积范围内的分布荷载的总与。自重荷载通过ANSYS程序直接添加密度施加。隧道仰拱部受到的水压0、2MPa按照径向方向载置换为等效节点力,分解为水平竖直方向加载。 3、3、3 GUI操作方法 3、3、3、1 创建物理环境 1) 在【开始】菜单中依次选取【所有程序】/【ANSYS10、0】/【ANSYS Product Launcher】,得到“10、0ANSYS Product Launcher”对话框。 2)选中【】,在“Working Directory”栏输入工作目录“D:\ansys\example301”,在“Job Name”栏输入文件名“Support”。 3)单击“RUN”按钮,进入ANSYS10、0的GUI操作界面。 4)过滤图形界面:Main Menu> Preferences,弹出“Preferences for GUI Filtering”对话框,选中“Structural”来对后面的分析进行菜单及相应的图形界面过滤。 5)定义工作标题:Utility Menu> File> Change Title,在弹出的对话框中输入“Tunnel Support Structural Analysis”,单击“OK”,如图3-4所示。 图3-4 定义工作标题 6)定义单元类型:Main Menu> Preprocessor> Element Type> Add/Edit/Delete,弹出“Element Types”单元类型对话框,如图3-5所示,单击“Add”按钮,弹出“Library of Element Types”单元类型库对话框,如图3-6所示。在该对话框左面滚动栏中选择“Beam”,在右边的滚动栏中选择“2D-elastic 3”,单击“Apply”,定义了“Beam3”单元。再在左面滚动栏中选取“Combination”,右边的滚动栏中选择“Spring-damper 14”,如图3-7所示。然后单击“OK”按钮,这就定义了“Combin14”单元,最后单击图3-5单元类型对话框中的“Close”按钮。

软土地区地铁盾构隧道课程设计计算书(1)

软土地区地铁盾构隧道课程设计说明书 (共00页) 姓名杨均 学号 070849 导师丁文琪 土木工程学院地下建筑与工程系 2010年7月

1. 设计荷载计算 1.1 结构尺寸及地层示意图 ?=7.2 ?=8.9 2 q=20kN/m 图1-1 结构尺寸及地层示意图 如图,按照要求,对灰色淤泥质粉质粘土上层厚度进行调整: mm 43800 50*849+1350h ==灰。 按照课程设计题目,以下只进行基本使用阶段的荷载计算。 1.2 隧道外围荷载标准值计算 (1) 自重 2 /75.835.025m kN g h =?==δγ (2)竖向土压 若按一般公式:

2 1 /95.44688.485.37.80.11.90.185.018q m KN h n i i i =?+?+?+?+?==∑=γ 由于h=1.5+1.0+3.5+43.8=48.8m>D=6.55m ,属深埋隧道。应按照太沙基公式或普氏公式计算竖向土压: a 太沙基公式: )tan ()tan (0010 ]1[tan )/(p ??? γB h B h e q e B c B --?+--= 其中: m R B c 83.6)4/7.75.22tan(/1.3)4/5.22tan(/0000=+=+=? (加权平均值0007.785 .5205 .42.7645.19.8=?+?= ?) 则: 2 )9.8tan 83 .68 .48()9.8tan 83.68 .48(11/02.18920]1[9 .8tan )83.6/2.128(83.6p m KN e e =?+--=-- b 普氏公式: 2 012/73.2699.8tan 92.7832tan 32p m KN B =??== ?γ 取竖向土压为太沙基公式计算值,即: 2 1/02.189p m KN e =。 (3) 拱背土压 m kN R c /72.286.7925.2)4 1(2)4 1(2G 22=??- ?=?- =π γπ 。 其中: 3/6.728 .1645.11 .728.10.8645.1m KN =+?+?= γ。 (4) 侧向主动土压 )2 45tan(2)245(tan )(q 0021? ?γ-?--?+=c h p e e 其中: 21/02.189p m KN e =, 3/4.785 .5205 .41.7645.18m KN =?+?= γ 0007.785 .5205.42.7645.19.8=?+?=?

隧道衬砌ANSYS强度检算

一、衬砌结构的计算模型 隧道工程建筑物是埋置于地层中的结构物,它的受力和变形与围岩密切相关,支护结构与围岩作为一个统一的受力体系相互约束,共同工作。这种共同作用正是地下结构与地面结构的主要区别。根据本工程浅埋及松散地层的特点,使用阶段结构安全性检算采用“荷载—结构”模式,即将支护和围岩分开考虑,支护结构是承载主体,围岩作为荷载的来源和支护结构的弹性支承。支护结构与围岩的相互作用是通过弹性支承对支护结构施加约束来实现的。 计算模型中,二衬结构采用弹性平面梁单元模拟,弹性抗力以及隧底地基均采用弹簧单元模拟。组合荷载根据不同作用方向分别转换成等效节点力施加在相应的单元结点上。具体计算模型见图1。 图1 计算模型 二、荷载计算 围岩压力计算参照课本中有关我国铁路隧道推荐的方法进行确定(双线隧道)或参照《铁路隧道设计规范》,深浅埋分别计算。 三、配筋计算 结构强度检算和配筋计算应按照现行《铁路隧道设计规范》的方法进行。 四、ANSYS操作过程 1、更改路径和工作名 2、进入前处理模块(preprocessor) (1)定义单元类型element type

(2)定义实常数real constant (3)定义材料参数material props (4)定义梁的截面特性sections (5)进入modeling进行建模,生成几何模型 (6)进行网格划分meshing a)给几何模型赋属性 meshing>mesh attribute>picked lines (7)施加弹性约束 Model>Creat>piping models>spring support

定义弹性抗力系数K和距离所选结构节点的相对距离DX, DY, DZ。 3、进入求解器solution (1)定义分析类型analysis type>new analysis>static (2)定义荷载define loads (3)设置荷载添加形式setting>replace vs add>force,按如下图示设置 (4)施加等效节点力 define loads>apply>force(编程实现) (5)施加重力 define loads>apply>inertia>gravity>global (6)求解计算 Solve>current LS 4、后处理(general postproc) (1)读入结果 Read results>last set (2)查看变形图,(plot results>deformed shape)检查弹簧约束范围是否正确(所有弹簧均应受压,即处于抗力区)否则添加或删除弹簧单元,重新计算。 (3)定义单元表 Element table>define table,出现对话框后点击add按钮,出现下列对话框:

地下建筑结构课程设计__隧道盾构施工

目录 1 荷载计算-------------------------------------3 1.1 结构尺寸及地层示意图-----------------------3 1.2 隧道外围荷载标准值-------------------------3 1.2.1 自重--------------------------------3 1.2.2 均布竖向地层荷载----------------------4 1.2.3 水平地层均布荷载----------------------4 1.2.4 按三角形分布的水平地层压力--------------5 1.2.5 底部反力-----------------------------5 1.2.6 侧向地层抗力--------------------------5 1.2.7 荷载示意图----------------------------6 2 内力计算---------------------------------------6 3 标准管片配筋计算--------------------------------8 3.1 截面及内力确定-----------------------------8 3.2 环向钢筋计算--------------------------------8 3.3 环向弯矩平面承载力验算-----------------------11 4 抗浮验算-------------------------------------10 5 纵向接缝验算--------------------------------12 5.1 接缝强度计算------------------------------12 5.2 接缝张开验算------------------------------14 6 裂缝张开验算------------------------------15

地铁隧道盾构法施工

地铁隧道盾构法施工 导语:盾构法施工是一种机械化和自动化程度较高的隧道掘进施工方法,从20世纪60年代开始,西方发达国家大量将这种技术应用于城市地铁和大型城市排水隧道施工。我国近年来也开始在城市地铁隧道、越江越海隧道、取排水隧道施工中采用此项技术,以替代原来落后的开槽明挖或浅埋暗挖等劳动密集型施工方法。 关键词:地铁盾构施工盾构施工技术盾构施工测量点击进入VIP充值通道 地铁盾构机分类及组成 地铁盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥浆式,土压平衡式等不同类型。盾构机主要由开挖系统、推进系统排土系统管片拼装系统、油压、电气、控制系统、资态控制装置、导向系统、壁后注浆装置、后方台车、集中润滑装置、超前钻机及预注浆、铰接装置、通风装置、土碴改良装置及其他一些重要装置如盾壳、稳定翼、人闸等组成。海瑞克公司在广州地铁使用的典型土压平衡式盾构机为主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。主要由已下部分构成:刀盘、主轴承、前体、中体、推进油缸、

铰接油缸、盾尾、管片安装机。主机外形尺寸:7565mm(L)X6250(前体)X6240(中体)X6230(盾尾)。 ①压缩空气式盾构 1886 年Greatbhad 首次在盾构掘进隧道中引了这种工法,该工法利用压缩空气使整个盾构都防止地下水的侵入, 它可在游离水体下或地下水位下运作。其工作原理是利用用压缩空气来平衡水压和土压。传统的压缩空气式盾构要求在隧道工作面和止水隧道之间封闭一个相对较大的工作腔,大部分工人经常处于压缩空气下, 这会对掘进隧道和衬砌造成干扰,为了解决这些问题,又出现了用无压工作腔及全断面开挖的压缩空气式盾构和带有无压工作腔及部分断面开挖的压缩空气式盾构等。 ②土压平衡式盾构 20 世纪70 年代日本就开发土压平衡式盾构,不用辅助的支撑介质,切割轮开挖出的材料可作为支撑介质。该法用旋转的刀盘开挖地层,挖下的渣料通过切割轮的开口被压入开挖腔,然后在开挖腔内与塑性土浆混合。推力由压力舱壁传递到土浆上。当开挖腔内的土浆不再被当地的土和水压固化时就达到平衡。如果土浆的支撑压增大超过了平衡,开挖腔的土浆和在工作面的地层将进一步固化。与泥浆式盾构相比优点在于:无分离设备在淤泥或粘土地层中使用,覆盖层浅时无贯穿浆化的支撑泥浆泄露的危险。 ③泥浆式盾构 1912 年,Grauel 首次建造了泥浆式盾构。该法可以适用于各种松

浅谈ANSYS系统在隧道结构计算中的应用条件

浅谈ANSYS系统在隧道结构计算中的应用条件 刘平录弭坤 西安公路研究院710054 摘要:在公路隧道设计与施工中,为了提前判断在开挖和支护工程中隧道的结构安全性,隧道结构计算的数值研究方法就成为了一种重要的设计依据和施工控制措施。本文提供了一种方法,即利用ANSYS软件模拟隧道结构在开挖个步骤中的计算模式与应用条件。 关键词:隧道结构ANSYS模拟 隧道的结构分析是利用工程力学原理,选取合理的介质,通过相似模型体系对其结构进行计算,具体过程一般通过两个途径来进行,其一是利用相似性理论,采取合理的相似系数,在室内通过模型试验来模拟实际的工程问题。其二是数值计算,这种方法伴随着计算机的发展有了长足的进步。目前,伴随着岩土力学的发展,再加上计算机的普遍使用及其性能的不断提高,有限元法成为发展最迅速的用于隧道结构分析的数值计算方法。 有限元法先将结构分解为有限的小单元,在每一个单元上,利用弹性力学、弹塑性力学等力学理论建立力学性能参数之间的关系,然后根据位移或者应力协调条件把这些小单元组合起来,求出整体结构的力学特征。因为有限元法是利用矩阵代数方法求解方程组,而矩阵代数建立的方程组非常方便与计算机的存储与求解,所以,有限元法非常适用于分析复杂的地下结构。 1模型的建立 利用ANSYS来模拟隧道开挖过程,有两种建模方法,一个是建立真三维的模型,三维模型不仅可考虑围岩的流变特性,还能考虑开挖和支护的空间效应,能保证较好的计算精度。但是建模复杂,计算时间长,且费用较高。另一种建模方法是建立二维模型,即按平面应变问题来处理,隧道在长度方向的尺寸比横截面的尺寸大得多,在忽略掘进的空间效应及岩石流变效应的影响时,计算模型取为平面应变是可行的。另外,可以通过各阶段相应的初始应力释放系数来考虑开挖过程和支护时间早晚对围岩及支护受力的影响。本文采用后者建立有限元模型。 相对于整个岩体而言,开挖所引起的应力重分布的区域是有限的,因而要确定计算模型的范围。实践和理论分析表明,对于地下洞室开挖后的应力应变,仅在洞室周围距洞室中心点3~5倍洞室开挖宽度(或高度)的范围内存在实际影响。在3倍宽处的应力变化一般在10%以下,在5倍宽处的应力变化一般在3%以内。所以,计算宽度可确定在3~5倍洞室开挖宽度(或高度)。本文所采用的模型水平方向上隧道两边的长度均取洞跨的5倍为限,即计算模型的水平宽度为开挖隧道跨度的7倍;垂直方向上,隧道下方的距离为洞高的3倍,而隧道上方按实际地形尺寸。

盾构隧道管片排版总结

管片选型与排版 区间盾构结构为预制钢筋混凝土环形管片,外径6200mm,内径5500mm,厚度350mm,宽度1200mm。在盾构施工开工前,应对管片进行预排版,确定管片类型数量. 1)隧道衬砌环类型 为满足盾构隧道在曲线上偏转及蛇形纠偏的需要,应设计楔形衬砌环,目前国际上通畅采用的衬砌环类型有三种:①直线衬砌环与楔形衬砌环的组合;②通用型管片;③左、右楔形衬砌环之间相互组合。国内一般采用第③种,项目隧道采用该衬砌环。 直线衬砌环与楔形衬砌环组合排版优缺点:优点—简化施工控制,减少管片选型工作量;缺点—需要做好管片生产计划,增加钢模数量。 盾构推进时,依据预排版及当前施工误差,确定下一环衬砌类型。由于采用衬砌环类型不完全确定性,所以给管片供应带来一定难度。2)管片预排版 1、转弯环设计 区间转弯靠楔形环完成,分三种:标准换、右转弯环、左转弯环。即管片环向宽度六块不是同一量,曲线外侧宽,内侧窄。 管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度;③标准环数与楔形环数之比u值。还有一个可供参考的因素:楔形量管模的使用地域。楔形量理论公式如下: △=D(m+n)B/nR ①

(D-管片外径,m:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径) 本次南门路到团结桥楔形环设计为双面楔形,楔形量对称设置于楔形环的两侧环面。按最小水平曲线半径R=300m计算,楔形量△=37.2mm,楔形角β=0.334°。 值得注意的是转弯环设计时,环宽最大和最小处是固定的,左转弯以K块在1点位设计,右转弯以K块在11点位设计,即在使用转弯环时,要考虑错缝拼装和管片位置要求。 2、圆曲线预排版 设需拟合圆曲线半径为450m(南门路到团结桥区间曲线半径值),拟合轴线弧长270m,需用总楔形量计算如下: β=L/R=0.6 ② △总=(R+D/2)β-(R-D/2)β=3720mm ③ 由△总计算出需用楔形环数量: n1=△总/△=100 ④ 标准环数量为: n2=(L-n1*B)/B=125 ⑤ 标准环和楔形环的比值为: u=n2:n1=5:4 ⑥ 即在R=450圆曲线上,标准环和楔形环比例为5:4,根据曲线弧长计算管片数量,确定出各类型管片具体数量,出现小数点时标准环数量减1,转弯环加1。

隧道 结构计算分析

一、计算原则和依据 1、采用ANSYS有限元通用程序(注:该程序是目前唯一通过 ISO9001国际认证的有限元计算分析程序)对竹篱晒网隧道进行结构受力及变形分析。 2、采用地层-结构模型对暗挖隧道的受力和变形进行分析。 3、分析对象为纵向宽1m的隧道结构和地层。 4、依据《竹篱晒网隧道施工图设计文件》、《公路路隧道设计规范》等建立计算模型。 二、计算内容 对竹篱晒网隧道的计算,分别取洞口段、洞身段中V、IV、III级围岩进行计算,取断面计算如下: 1、出洞段KY2+760(V级围岩,采用双侧壁法施工); 2、洞身段KY2+480(IV级围岩,采用环形台阶法施工); 3、洞身段KY2+500(III级围岩,采用台阶法施工)。 三、结构计算模型、荷载 1、计算模型 采用隧道与地层共同作用的地层-结构模式,模拟分析施工过程地层和结构的受力及变形特点。计算模型所取范围是:水平方向取隧道两侧3倍洞跨,而竖直方向,仰拱以下地层,以洞跨的3倍为限,即从

仰拱至地层下3倍洞跨深度范围,隧道拱顶以上地层:V级围岩1 级围岩根据计算高度取值。计算中地层及初期支护III取至地面,IV、材料的弹塑性实体单元模拟,而DP(初衬喷砼及钢架除外)采用了、二次衬砌采用弹性梁模拟,为使点和点之间位移初衬(钢架喷砼)初衬和二衬之间用只传递轴初衬和地层之间用约束方程联系、协调,向压力的链杆连接。)来死”(ALIVE生”(KILL)、“ANSYS程序中,采用单元的“时,受力体系模拟衬砌和临时支撑的施作和拆除过程,当单元“死”,而后被激单元的应力、应变不计(即内力为0)不受其影响,“死”的单元只对以后的单元不计以前自身应变,也就是说,“活”“活”应力发生变化时产生作用。2、计算荷载毛洞”模拟开挖过程中,先计算初始应力,每开挖一步形成“时,释放一部分初始应力,施作支护时释放余下的初始应力。采用莫尔—库仑屈服准则对结构的开挖过程进行有限元计算中,)模型计算结构非线形(DP 弹塑性分析。也即采用Drucker-Prager 的变形特性。其等效应力为:??????T?????SMS3??m2??1????????T式中;11??2 ?????????00S1?11?0zymxm3??so2sin6c c;????????y??ni3s3sin33?? —材料的内聚力,MPa;—材料的内摩擦角。?c屈服准则为: 2 ??????T????0?3M?S?FS???ym2??计算时将地层以岩性和11??2 地质特点划分为几个不同的类别,各层计算时围岩的物理力学指标依据施工图中《地质详勘报告》加以选取。具体如表1所示。 有限元计算围岩物理力学参数 表1

第3章-ANSYS隧道工程中的应用实例分析

. 第3章ANSYS隧道工程中的应用实例分析 本章重点 隧道工程概述隧道施工ANSYS模拟的实现 ANSYS隧道结构实例分析ANSYS隧道开挖模拟实例分析 本章典型效果图 可编辑

. 3.1 隧道工程相关概念 3.1.1 隧道工程设计模型 为达到各种不同的使用目的,在山体或地面下修建的建筑物,统称为“地下工程”。在地下工程中,用以保持地下空间作为运输孔道,称之为“隧道”。由于地层开挖后容易变形、塌落或是有水涌入,所以在除了在极为稳固地层中且没有地下水的地方以外,大都要在坑道的周围修建支护结构,称之为“衬砌”。隧道工程建筑物是埋于地层中的结构物,它的受力和变形与围岩密切相关,支护结构与围岩作为一个统一的受力体系相互约束,共同作用。隧道工程所处的环境条件与地面工程是全然不同的,但长期以来都沿用适应地面的工程理论和方法来解决地下工程中所遇到的各类问题,因而常常不能正确地阐明地下工程中出现的各种力学现象和过程,是地下工程长期处于“经验设计”和“经验施工”的局面。这种局面与迅速发展的地下工程现实 可编辑

. 极不相称,促使人们努力寻找新的理论和方法来解决地下工程遇到的各种问题。 地下工程的设计理论和方法经历了一个相当长的发展过程。在20世纪20年代以前,地下工程支护理论主要有古典的压力理论和散体压力理论,以砖、石头材料作为衬砌,采用木支撑或竹支撑的分部开挖方法进行施工。此时,只是将衬砌作为受力结构,围岩是看作载荷作用在衬砌结构上,这种设计理论过于保守,设计出的衬砌厚度偏大。20世纪50年代以来,岩石力学开始成为一门独立的学科,围岩弹性、弹塑性和粘弹性解答逐步出现。土力学的发展促使松散地层围岩稳定和围岩压力理论的发展,而岩石力学的发展则促使围岩压力和地下工程支护结构理论的进一步的飞跃。同时,锚杆和喷射混凝土的作为初期支护得到广泛应用。这种柔性支护允许开挖后的围岩有一定的变形,使围岩能够发挥其稳定性,从而可以大大地减小衬砌厚度。 国际隧道学会认为,目前采用的隧道设计模型主要有以下几种: ◆以工程类比为主的经验设计方法。 ◆以现场测试和实验室试验为主的实用设计方法(如现场和实验室的岩土力学试验、以 洞周围测量值为基础的收敛—约束法以及实验室模型试验等)。 ◆作用—反作用设计模型,即目前隧道设计常用的载荷—结构模型,包括弹性地基梁、 弹性地基圆环等。 ◆连续介质模型,包括解析法(封闭解和近似解)和数值法(以FEM为主)。 国际隧道学会于1978年成立了隧道结构设计模型研究小组,收集和汇总了各会员国目前 可编辑

盾构隧道结构ansys计算方法

一、盾构隧道结构计算模型 1、惯用法(自由圆环变形法) 惯用法的想法早在1960年就提出了,在日本国内得到了广泛的应用。惯用法假设管片环是弯曲刚度均匀的环,不考虑管片接头部分的柔性特征和弯曲刚度下降,管片截面具有同样刚度,并且弯曲刚度均匀的方法。这种方法计算出的管片环变形量偏小,导致在软弱地基中计算出的管片截面内力过小,而在良好地基条件下计算出的内力又过大。地层反力假设仅在水平方向上下45°范围内按三角形规律分布,这种模型可以计算出解析解。 P 0 k δ

2、修正惯用法 在采用惯用法的60年代,怎样评价错缝拼装效应是一个问题。如果错缝拼装管片,可弥补管片接头存在造成的刚度下降。于是,在对带有螺栓接头的管片环进行多次核对研究时,首次引入了η-ξ对错缝拼装的衬砌进行内力计算,即为修正惯用法。该法将衬砌视为具有刚度ηEI的均质圆环,将计算出的弯矩增大即(1+ξ)M,得到管片处的弯矩;将求出的弯矩减少即(1-ξ)M,得到接头处的弯矩。其中η称为弯曲刚度有效率,ξ称为弯矩增加率,它为传递给邻环的弯矩与计算弯矩之比。管片接头由于存在一些铰的作用,所以可以认为弯矩并不是全部经由管片接头传递,其一部分是利用环接头的剪切阻力传递给错缝拼装起来的邻接管片。 隧 道 纵 向 接头传递弯矩示意图

二、管片计算荷载的确定 1、荷载的分类 衬砌设计所考虑的各种荷载,应根据不同的地质条件和设计方法进行假定并根据隧道的用途加以考虑。衬砌设计所考虑的各种荷载见表所示。 衬砌设计荷载分类表

2、计算断面选择 埋深最大断面 埋深最小断面 埋深一般断面 水位 3、水土压力计算 对于粘性土层,如西安地铁黄土地层、成都地铁二号线膨胀土地层等,应采用水土压力合算的方式进行荷载计算。此时,地下水位以上地层荷载用湿容重计算,地下水位以下用饱和容重计算。 对于透水性较好的砂性地层,如西安地铁粗砂、中砂地层,成都地铁卵石土地层等,应采用水土压力分算的方式进行荷载计算。此时地下水位以上地层荷载用湿容重计算,地下水位以下用浮容重计算。 水土压力合算与分算,主要影响管片结构侧向荷载。一般水土分算时侧向压力更大。 4、松弛土压力 将垂直土压力作为作用于衬砌顶部的均布荷载来考虑。其大小宜根据隧道的覆土厚度、隧道的断面形式、外径和围岩条件等来决定。考虑长期作用于隧道上的土压力时,如果覆土厚度小于隧道外径,一般不考虑地基的拱效应而采用总覆土压力。但当覆土厚度大于隧道外径时,地基中产生拱效应的可能性比较大,可以考虑在计算时采用松弛土压力,一般采用泰沙基公式计算。

隧道衬砌计算

第五章隧道衬砌结构检算 5.1结构检算一般规定 为了保证隧道衬砌结构的安全,需对衬砌进行检算。隧道结构应按破损阶段法对构件截面强度进行验算。结构抗裂有要求时,对混凝土应进行抗裂验算。5.2 隧道结构计算方法 本隧道结构计算采用荷载结构法。其基本原理为:隧道开挖后地层的作用主要是对衬砌结构产生荷载,衬砌结构应能安全可靠地承受地层压力等荷载的作用。计算时先按地层分类法或由实用公式确定地层压力,然后按照弹性地基上结构物的计算方法计算衬砌结构的内力,并进行结构截面设计。 5.3 隧道结构计算模型 本隧道衬砌结构验算采用荷载—结构法进行验算,计算软件为ANSYS10.0。 取单位长度(1m)的隧道结构进行分析,建模时进行了如下简化处理或假定: ①衬砌结构简化为二维弹性梁单元(beam3),梁的轴线为二次衬砌厚度中线位置。 ②围岩的约束采用弹簧单元(COMBIN14),弹簧单元以铰接的方式支撑在衬砌梁单元之间的节点上,该单元不能承受弯矩,只有在受压时承受轴力,受拉时失效。计算时通过多次迭代,逐步杀死受拉的COMBIN14单元,只保留受压的COMBIN14单元。

图5-1 受拉弹簧单元的迭代处理过程 ③衬砌结构上的荷载通过等效换算,以竖直和水平集中力的模式直接施加到梁单元节点上。 ④衬砌结构自重通过施加加速度来实现,不再单独施加节点力。 ⑤衬砌结构材料采用理想线弹性材料。 ⑥衬砌结构单元划分长度小于0.5m。 隧道结构计算模型及荷载施加后如图5-2所示。

5.4 结构检算及配筋 本隧道主要验算明洞段、Ⅴ级围岩段和Ⅳ级围岩段衬砌结构。根据隧道规范深、浅埋判定方法可知,Ⅴ级围岩段分为超浅埋段、浅埋段和深埋段。Ⅳ级围岩段为深埋段。根据所给的材料基本参数和修改后的程序,得出各工况下的结构变形图、轴力图、建立图和弯矩图。从得出的结果可知,Ⅴ级围岩深埋段,所受内力均较大,故对此工况进行结构检算。 5.4.1 材料基本参数 (1)Ⅴ级围岩 围岩重度318.5/kN m γ=,弹性抗力系数300/k MPa m =,计算摩擦角 045?=o ,泊松比u=0.4。 (2) C25钢筋混凝土 容重325/kN m γ=,截面尺寸 1.00.6b h m m ?=?,弹性模量29.5Pa E G =。轴心抗压强度:12.5cd a f MP =;弯曲抗压强度:13.5cmd a f MP =;轴心抗拉强度: 1.33cd a f MP =;泊松比u=0.2; (3) HPB235钢筋物理力学参数 密度:37800/s kg m ρ=; 抗拉抗压强度:188std scd a f f MP ==; 弹性模量: 210s a E GP =; 5.4.2 结构内力图和变形图(Ⅴ级围岩深埋段) 5.4.3 结构安全系数 从上面的轴力图和弯矩图可知,需要对截面8、11、21、47、73进行检算, 而根据对称性可知只需要对截面8、11、47进行检算。 (1)配筋前检算 混凝土和砌体矩形截面轴心及偏心受压构件的抗压强度应按下式计算:

公路隧道施工盾构法

公路隧道施工盾构法、沉管法介绍 第1题 沉管隧道施工工序中,沉管与连接之后的工序是()。 A.预制管段 B.修建临时干坞 C.基础处理 D.回填覆盖 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第2题 ?关于盾构法,下列()的说法是错误的。 A.盾构法是暗挖隧道的一种施工方法 B.盾构法穿越地面建筑群的区域时,周围可不受施工影响 C.盾构机推进系统包括推进千斤顶和液压系统 D.盾构壳体由切口环和支承环两部分组成 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注: 第3题 盾构机的外壳沿纵向从前到后可分为前盾、中盾、后盾三段。通 常所指的支承环是() A.前盾 B.中盾 C.后盾 D.盾尾 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第4题 泥水平衡盾构开挖的渣土以()形式输送到地面。 A.岩石

B.泥浆 C.土体 D.砂浆 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第5题 以下不属于盾构始发端头加固方法的是()。 A.旋喷桩法 B.注浆法 C.内嵌钢环 D.冻结法 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第6题 ()盾构机配备有泥水分离处理系统。 A.土压平衡 B.硬岩TBM C.双护盾TBM D.泥水平衡 答案:D 您的答案:D 题目分数:4 此题得分:4.0 批注: 第7题 以下()设备不属于盾构机后配套设备。 A.注浆系统 B.管片运输设备 C.出土设备 D.刀盘 答案:D 您的答案:D

题目分数:4 此题得分:4.0 批注: 第8题 以下()工序不属于盾构始发阶段。 A.安装反力架 B.凿除洞门 C.拼装负环管片 D.到达端口加固 答案:D 您的答案:D 题目分数:4 此题得分:4.0 批注: 第9题 沉管隧道按照管段的制作方式分为()和干坞型。 A.圆形 B.矩形 C.钢筋混凝土 D.船台型 答案:D 您的答案:D 题目分数:4 此题得分:4.0 批注: 第10题 以下()不属于沉管隧道优势。 A.可浅埋,与两岸道路衔接容易 B.结构为现浇混凝土,造价低 C.防水性能好 D.对地质水文条件适应能力强 答案:B 您的答案:B 题目分数:4 此题得分:4.0 批注: 第11题

盾构区间隧道结构计算书

西场站~西村站~广州火车站~草暖公园区间盾构 隧道结构计算书 一、结构尺寸 隧道内径:5400;隧道外径:6000;管片厚度:300mm;管片宽度:1500mm。 二、计算原则 选择区间隧道地质条件较差、隧道埋深较大、地面有特殊活载(地面建筑物桩基、铁路线等)等不同地段进行结构计算。 三、计算模型 计算模型采用修正惯用设计法。考虑管片接头影响,进行刚度折减后按均质圆环进行计算;水平地层抗力按三角形抗力考虑;计算结果考虑管片环间错缝拼装效应的影响进行内力调整。弯曲刚度有效率η=0.8,弯矩增大系数ξ=0.3。计算简图如下图所示。使用ANSYS程序软件进行结构计算。 修正惯用设计法计算模型

计算模型节点划分 四、计算荷载 荷载分为永久荷载、活载、附加荷载和特殊荷载等四种。 1)永久荷载:管片自重、水土压力、上部建筑物基础产生的荷载。考虑地层特征采取水土合算或水土分算。 2)活载:地面超载一般按20KN/m2计;有列车通过地段按40KN/m2计。 3)附加荷载:施工荷载——盾构千斤顶推力,不均匀注浆压力,相邻隧道施工影响等。 4)特殊荷载:地震力——按抗震基本烈度为7度计算,人防荷载按六级人防计算,按动载化为静载计算。 五、内力计算 1、一般地段:地质条件较差、埋深较大地段(地面超载20KN/m2):里程YCK5+990

选取地质钻孔为MEZ2-A073。隧道埋深约33.9m,地下水位在地面下5.0m。地层由上至下分别为<1>-7.3m;<5-1>-39.2m;<5-2>-20m。隧道所穿过地层为<5-2>。隧道横断面与地层关系如下图所示: 隧道横断面与地层关系 2、列车通过地段:地面超载40KN/m2,里程YCK6+050 选取地质钻孔为MEZ2-A166。隧道埋深约35.5m,地下水位在地面下12.5m。地层由上至下分别为<1>-8.5m;<5-2>-12.7m;<6>-19.3m;<7>-20m。隧道所穿过地层为<6>。隧道横断面与地层关系如下图所示:

盾构隧道设计

盾构隧道设计 发表时间:2018-10-25T09:59:07.767Z 来源:《知识-力量》2018年11月上作者:李帅远周鹏方保江 [导读] 盾构机是现在常用的一种地下隧道挖掘设备,被广泛应用与我国的隧道建设中,本文以汕头市苏埃通道为力,根据地质情况,才去明挖逆作施工法进行施工,进行盾构隧道设计提供相应的方案,并以此为例为其他盾构隧道 (郑州大学机械工程学院,河南郑州 450001) 摘要:盾构机是现在常用的一种地下隧道挖掘设备,被广泛应用与我国的隧道建设中,本文以汕头市苏埃通道为力,根据地质情况,才去明挖逆作施工法进行施工,进行盾构隧道设计提供相应的方案,并以此为例为其他盾构隧道设计提供参考。 关键词:隧道;结构设计 ABSTRACT: Shield machine is now a common underground tunnel excavation equipment, widely used in the tunnel construction of our country, this article to shantou Sue Mr Channel, according to the geological conditions, to Ming dig top-down construction method the construction, shield tunnel design to provide the corresponding solutions, and provide a reference for other design of shield tunnel. Keywords:tunnel, structure desig 引言 本文以汕头苏埃通道为研究路线全长6680m,其中北岸路基长250m,南岸路基长360m,南岸互通立交长770m,隧道长5300m。工程跨越三个不同的地貌单元。南部为丘陵区,基岩埋藏浅,地形高低起伏,建筑物少。北部为滨海三角洲平原区,基岩埋深大,地势低平,为居民区,其间高楼林立,巷道纵横。中部为海区。本文重点对结构进行设计,为工程施工进行参考。 1 盾构隧道设计方案 图0-1 盾构隧道路线图 盾构接收井采取明挖逆作法施工,第一道环框梁(3500mm×1800mm)、第二道环框梁(3500mm×2500mm)与砼支撑同时施工,设置一道中隔墙,厚1200mm。底板为1500mm,侧墙为1200mm,中板为400mm,顶板为800mm。风塔底板为1000mm,侧墙为1200mm,顶板为800mm。见图1-1北岸盾构接收井结构形式。 图1-1 北岸盾构接收井结构形式 1.2盾构始发井的设计 南岸盾构始发井位于围堰内,盾构始发井尺寸为25m(长)×49.9m(宽)×26m(深)。基坑围护结构采用1200mm厚地连墙,竖向设置六道斜砼支撑,中间设置临时中立柱(采用460mm×460mm格构柱),柱下采用Φ1200mm的钻孔桩基础。盾构始发井采取明挖逆作法施工。第一道环框梁(1000mm×1200mm)、第二道环框梁(3500mm×2500mm)与砼支撑同时施工。设置两道厚1000mm中隔墙,底板厚度为2000mm,侧墙厚

相关主题
文本预览
相关文档 最新文档