当前位置:文档之家› (整理)隧道光面爆破施工技术

(整理)隧道光面爆破施工技术

(整理)隧道光面爆破施工技术
(整理)隧道光面爆破施工技术

凤凰关隧道光面爆破施工技术

1 工程概述

凤凰关隧道出口段位于湖北省武汉至英山高速公路一期土建第9合同段。该隧道双幅全长575m,隧道采用左线、右线分离的双洞单向行车双车道。隧道设计为净跨10.79m,净高7.0m的三心圆曲墙半圆拱,拱部半径为5.5m,边墙半径为8.5m,为特长隧道。隧址区属乌江侵蚀河谷发育的低山峡谷地貌,地形总体呈不规则M形态,最大埋深667.16m,主要出飞仙关组及长兴组地层,岩性主要为灰岩,部分洞身段为泥质灰岩,出口段处于陡岩上,出口段主要由灰岩组成,弱风化,围岩级别高。出口段隧道穿越以灰岩为主,其围岩级别主要为Ⅲ、Ⅳ级,其中Ⅲ级占61%。采用全断面法开挖,锚、喷、网初期支护,全断面复合式衬砌。

2 光面爆破的特点

根据公路隧道“新奥法”施工的需要和工程地质条件,结合施工现场实际情况,决定采用光面爆破施工。光面爆破施工,可以减少对围岩的扰动,增强围岩的自承能力,特别是在不良地质条件下效果更为显著,不仅可以减少危石和支护的工程量,而且保证了施工的安全;由于光面爆破使开挖面平整,岩石无破碎,减少了裂隙,这样可以大大减少超欠挖量。据有关资料统计,光面爆破与普通爆破相比,超挖量由原来的15%~20%降低到4%~7%,不但减少出碴量,而且还很大程度的减少了支护的工作量,从而降低了成本,加快了施工进度。

3 光面爆破方案的确定

目前,大断面隧道光面爆破施工有2种方法:一是预留光爆层法;二是全断面一次性开挖法,根据施工现场的实际条件及本合同段围岩情况,该隧道采用全断面一次性开挖法(图1)。

4 爆破方案设计

4.1 爆破参数的选择

光面爆破参数选择主要与地质条件有关,其次是炸药的品种与性能,隧道开挖断面的形状与尺寸,装药结构与起爆方法。凤凰关隧道出口段主要为III级围岩,全断面法开挖断面的面积为81.86m2,采用2号岩石硝铵炸药,周边眼采用空气间隔装药,其他炮眼采用连续柱状装药,采用火雷管和塑料导爆管孔内微差非电毫秒雷起爆。

严格控制周边眼的装药量,采用合理的装药结构,尽可能使药沿炮眼长均匀的分布,这是实现光面爆破的重要条件。

在光面爆破中,周边眼间距E、最小抵抗线V、相对距系数K、装药密度q是相互制约的。

4.1.1 最小抵抗线(V)

周边眼最小抵抗线与开挖的隧道断面大小有关。在断面跨度大,光爆眼所受到的夹制作用小,岩石比较容易崩落,最小抵抗线可以大些;断面小,光爆眼所受到的夹制作用大,最小抵抗线可以小些。最小抵抗线与岩石的性质和地质构造也有关,坚硬岩石最小抵抗线可小些,松软破碎的岩石最小抵抗线可大些。凤凰关隧道确定最小抵抗线(V)为50~80cm。

4.1.2 相对距系数(K)

相对距系数是周边眼间距(E)与最小抵抗线(V)的比值,是影响爆破效果的重要因素。

K= E/V

式中E为周边炮眼间距,cm;

V为最小抵抗线,cm;

K值总是小于1当E=40~50cm,

V=50~80cm时,K=0.5~1.0。

4.1.3 装药量计算

光面爆破装药量的计算,主要是确定周边光爆孔炮眼装药集中度,即以kg/m表示,一般采用实验方法求得或从同类工程中选取。

q=QaB

式中q—装药集中度,kg/m;

Q—单位体积耗药量,kg/m3;

a—周边眼间距,m;

B—最小抵抗线,m;

通过现场试验和施工经验数据,用计算法进行校核,确定q=0.15~0.25kg/m 。

单位:厘米

图1 全断面开挖炮眼布置示意图

4.1.4 装药结构和起爆方式

光面爆破采用不耦合装药,一般不耦合系数为 1.5~2.0,炮眼装药按装药集中度计算出的药量均匀装入炮眼内。为克服底部炮眼的阻力,在炮眼底部放半个标准药卷,使光爆层易于脱离岩体。施工中采用如下(图2)装药结构:①1/2普通标准药卷(?32)起爆;②小直径药卷(?25)空气间隔装药。

导爆管

竹片支架

1/2φ32

起爆药卷

φ25药卷

堵塞物

导爆索

图2 周边眼装药结构示意图

4.1.5 光面爆破的起爆顺序

起爆顺序为:掏槽眼——辅助眼——底板眼——二周边眼——周边眼。采用多段微差起爆(由内向外),其中主爆区的周边眼比辅助眼眼跳2段起爆,并用同一段雷管。主爆区使用非电毫秒雷管。光爆眼用导爆索一次同时起爆。

装药量(表1)及光面爆破参数(表2)

全断面开挖爆破装药量表 表1

炸药单耗量:k=0.75kg/立方米。

复式楔形掏槽:槽口尺寸80cm×240cm和120cm×280cm。

周边眼直径:φ42mm,使用小直径药卷φ25mm,装药不耦合系数λ=1.7。

周边眼间距E=45cm,最小抵抗线V=50~80cm,E/V=0.6~0.9,单孔装药量q=0.4kg。

5 施工方法及工艺

5.1 钻爆机具材料

钻孔采用13台YT—28型凿岩机和4台20m3空压机,人工钻孔,钻孔直径为42mm,一字形合金钢钻头。周边眼采用? 25mm小直径药卷,其余炮眼采用? 32mm×200mm2号岩石硝铵炸药。引爆雷管为8号工业纸壳火雷管,爆破网络采用塑料导爆管连接孔内微差非电毫秒雷管起爆,掏槽眼采用跳段雷管以利用扩大掏槽效果。

5.2 光面爆破施工工艺

5.2.1 放样布眼

钻眼前,测量人员用全站仪和水准仪,准确定出隧道中心线和拱顶面高程;用红油漆画出开挖轮廓线,并标出炮眼位置,其误差不得超过5cm;每次测量放线的同时,要对上次爆破断面进行检查,及时调整爆破参数,以达到最佳爆破效果。

5.2.2 钻眼要求

掏槽眼:深度、角度按设计施工,眼口间距误差和眼底间距误差不得大于5cm。

辅助眼:深度、角度按设计施工,眼口排距、行距误差均不大于5cm。

周边眼:开眼位置在设计断面轮廓线上的间距误差不得大于5cm;周边眼外斜率不得大于5cm/m,眼底

不得超出开挖断面轮廓线10cm,最大不得超过15cm。内圈眼至周边眼的排距,误差不得大于5cm;炮眼深度超过2.5m时,内圈眼与周边眼宜采用相同的斜率。钻眼装药率调整,当开挖面凹凸较大时,应按实际情况调整炮眼深度并相应调整装药量,力求所有炮眼(除掏槽眼外)眼底在同一垂直面上。钻眼完毕,按炮眼布置图进行检查并做好记录,有不符合要求的炮眼应重钻,经检查合格后,方可装药爆破

5.2.3 炮眼布置要求

(1)先布置掏槽眼,其方向在岩层层理明显时应尽量垂直于层理,掏槽眼应比其他眼加深20cm。

(2)周边眼严格按设计开挖轮廓线布置,在硬岩层中,周边眼的眼口在断面设计轮廓线上,眼底超出轮廓线小于10cm;在软岩中,周边眼的眼口在断面设计轮廓线内小于8cm,眼底落在轮廓线上。

(3)辅助眼均匀分布的原则布置。

5.2.4 孔口堵塞长度

已装药的炮眼应及时用炮泥堵塞、密封,周边眼的堵塞长度不宜小于20cm,其余炮眼的堵塞长度不宜小于35cm,且堵塞密实,严禁用纸箱等易燃物进行堵塞。

5.2.5 清孔装药

装药前用小直径高压风管将炮眼内石屑吹净,装药需分片,分组按炮眼设计图确定的装药量自上而下进行,雷管要“对号入座”不得混装。所有炮孔均用炮泥堵塞,堵塞长度周边眼不小于20cm,其它眼不小于35cm。周边眼采用小直径药卷配导爆索,以增加不耦合系数和爆破时的缓冲作用,炮孔装药均采用反向装药结构。

5.2.6 连接起爆网络

起爆网络采用复式网络,以保证起爆的可靠性和准确性。导爆管采用四通管连接,不能打结和拉伸,各类炮眼雷管连接段数相同。引爆雷管应用绝缘胶布包扎在离一根导爆管自由端15cm处,聚能穴背向传爆方向,网络连好后要有专人负责检查后再起爆。

5.2.7 光面爆破施工技术措施

(1)对所有爆破作业人员进行岗前培训,使他们充分了解光面爆破的重要性及一些有效可行的施工方法,以提高操作熟悉程度。

(2)选用低爆速、低猛度、低密度、传爆性能好、爆炸威力大的2号岩石硝铵炸药。

(3)用不耦合装药结构,光面爆破不耦合系数为1.5~2.0,但药卷直径不应小于该炸药的临界直径,以保证稳定传爆。

(4)严格掌握与周边眼相邻的内圈眼的爆破效果,为周边眼爆破创造临空面。炮眼深度大于2.5m时,内圈眼应与周边眼有相同的外插角,周边眼应尽量同时起爆。

(5)控制周边眼装药集中度,必要时采取间隔装药结构,为克服眼底岩石的夹制作用,可在眼底加强装药。

(6)当岩石层理明显时,炮眼方向应尽量垂直于层理面,如节理发育,炮眼应尽量避开节理,以防卡钻和影响爆破效果。

6 光面爆破实施效果与经济效益

6.1 光爆效果

凤凰关隧道开挖掘进工作已接近尾声,隧道开挖全部实行光面爆破,除开始的试验段外,现已开挖地段光爆效果良好。

6.1.1 爆破后周边炮眼痕迹保存率达80%~90%,两茬炮衔接台阶最大尺寸为8cm,超欠挖量仅为5%左右,比非光面爆破的超欠挖量(达20%)要低得多。

6.1.2 岩碴块度较小亦均匀,利于装碴,节省装运时间。

6.1.3 减少支护投入,降低工程造价。

6.1.4 岩面平整,应力集中小,减少安全隐患。

6.2 经济效益

6.2.1 节省时间:光面爆破施工钻眼及装药延长20min,清理危石或补炮缩短20min,初期支护缩短20min,装碴及出碴缩短20min,并方便了后续工作的施工。

6.2.2 节省材料:光面爆破比非光面爆破减少超挖量15%,按现行规范标准平均超挖值为10cm,即每延米少开挖约2.0m3。减少同标号喷射混凝土超挖回填量约2m3,同时也节省了火工品和因非光面爆破所造成的围岩破碎所需锚杆、钢筋网等初期支护的工程量。

隧道光面爆破专项施工方案

隧道光面爆破专项施工方案 一、编制依据 1、xxxA1合同段工程施工总承包招标文件及设计文件、两阶段施工图设计等; 2、国家、交通部现行的公路工程建设施工规范、设计规范、验收标准、安全规范等; 3、国家及福建省相关法律、法规及条例等; 4、现场踏勘收集到的地形、地质、气象和其它地区性条件等资料; 5、近年来高速公路等类似施工经验、施工工法、科技成果; 6、福建省高速公路标准化建设指南和施工要点; 7、我单位拥有的国家级、部级工法、科技成果和长期从事高等级公路建设所积累的丰富施工经验。 二、工程概况 1、工程概况 我部承建的xx隧道0.5座,为分离式双洞隧道,隧道全长855.8m,为长隧道,左洞长854.1m,右洞长857.5m。隧道进出口均位于平面曲线内,进口左右线曲线半径分别为R左=3000m和R右=2850m;隧道纵坡坡率/坡长:左洞为0.7%/854.1m,右洞0.7%/857.5m;隧道进口设计桩号:左洞为ZK63+572,右洞为YK63+565;进口设计高程:左洞为586.69m,右洞为586.64m。。 2、地形、地貌 隧址区属剥蚀低山地貌,隧道轴线大致呈南北走向,地形呈波状起伏,起伏较大,隧道最大埋深约为160m,地表植被较发育,覆盖层较薄。进口

侧山坡自然坡度25~30°,出口侧山坡自然坡度35~40°。 3、地层岩性 本隧址场区表层多为第四系残坡积土,一般厚度3-6m,冲沟底部及陡坎略薄些,下伏侏罗系南园组(J3n)凝灰熔岩及其风化层。 隧道洞身围岩为侏罗系南园组(J3n)的凝灰熔岩,属较硬-坚硬岩,岩体一般较完整,对隧道洞身围岩的稳定较有利,据地质调绘及钻孔揭露隧道区主要发育有3条裂隙带及断裂构造带,对隧道围岩不利,影响隧道围岩级别,隧道开挖时,围岩稳定性较差,易产生塌方掉块,应加强支护和监测措施,各段的具体评价见隧道纵断面图。 拟建隧道最大埋深约160m,深部围岩主要为微风化凝灰熔岩,节理裂隙发育较少-较发育,较有利于地应力的释放和调整,但钻孔中未见有岩芯饼化等高应力作用现象,综合临近泉三高速公路等工程经验分析,本隧道在隧洞区内出现高地应力的可能性不大。 隧址区未见有矿体分布,不会产生瓦斯等有害气体。但施工中粉尘可能较大,施工中应注意粉尘污染监测工作,并做好通风工作。 4、地质构造及地震动参数 根据《厦门至沙县高速公路(安溪至沙县)泉州段线路工程地震安全性评价》,线路地震设防烈度属于6度区,测区内50年超越概率10%的平均土质条件下峰值加速度为0.05g,中硬土场地动反应谱特征周期为0.45s,区域地质相对稳定,建议抗震设计按《公路工程抗震设计规范》(JTJ004-89)

隧道光面爆破施工工法

隧道光面爆破施工工法

一、工艺原理 光面爆破是控制开挖轮廓的一种爆破技术,它沿开挖轮廓周边布孔,利用主炮孔爆破后形成的良好临空面,在光爆层中起爆,借以减少光爆孔爆破的夹制作用,降低炸药单耗,减少一次起爆药量,使其获得平滑的开挖廓面,减轻围岩的破坏,减小超欠挖和避免产生冒顶和坍塌。 二、光面爆破技术要点 隧道开挖应根据工程地质条件、开挖断面、开挖方法、掘进循环进尺、钻眼机具和爆破器材等结合爆破振动要求进行钻爆设计。施工中应根据爆破效果不断调整爆破参数。 2.1爆破参数选定 2.1.1周边眼间距E 周边眼间距直接控制开挖轮廓线平整度的主要因素,一般E=(12~15)d,其中炮眼直径d=35~45cm,对于节理发育,层理明显的围岩地段,周边眼的间距可适当减小,也可在两个炮眼之间 2.1.2最小抵抗线W(光面层厚度) 最小抵抗线W直接影响光面爆破效果和爆碴块度,周边抵抗线应大于周边眼间距E,软岩取较小的E值时,W值应适当增大。 2.2周边眼装药结构 2.2.1软岩周边眼装药结构 一般采用两种形式:一种是较破碎围岩采用空气间隔装药,导爆索传爆。导爆索作为炮眼装药时,按10g/m折算为2号岩石硝铵炸药。另一种是较完整的软弱岩层采用小直径光爆炸药连续装药。

分别如下图所示: 2.2.2硬岩周边眼装药结构 硬岩一般采用导爆索间隔装药,装药结构如下图: 炮泥导爆索 药卷 周边眼间隔装药结构 (单位:cm) 除周边眼、中空眼外,其余掏槽、底眼、掘进眼的装药结构均为连续装药,只是装药长度不同 2.2本隧道钻爆参数 ①循环进尺的确定:根据实际情况,为减少对围岩的扰动,IV、V级围岩根据钢架支护间距确定,本隧道IV级围岩2.0m,V级围岩 1.0m,II、III级围岩不大于3.5m。 ②钻孔直径选择:采用Φ42mm钻眼直径,炸药选择2号岩石乳化炸药。 ③隧道开挖断面的大小:由岩石和开挖方法确定。, 总药量Q=q单×S×L,式中q单是单耗,本隧道初步确定q单=0.9Kg/m3

隧道常用爆破全参数及爆破设计

一、单位耗药量 单位耗药量(一) 按岩石坚固系数选定单位耗药量 岩石名称岩体特征坚固系 数f K值(kg/m3) 抛掷松动 各种土较松软 坚实的 <1 1~2 1~1.1 1.1~ 1.2 0.3~ 0.4 0.4~ 0.5 土夹石密实的1~4 1.2~ 1.4 0.4~ 0.6 页岩、千枚岩风化、破碎 完整的 2~6 4~6 1~1.2 1.2~ 1.4 0.4~ 0.5 0.5~ 0.6 板岩、泥灰岩较破碎面层、面层张开、泥质、薄层 较完整、层面闭合 3~5 5~8 1.1~ 1.3 1.2~ 1.4 0.4~ 0.6 0.5~ 0.7 砂岩 泥质胶结、中薄层、风化、破碎 钙质胶结、中厚层、中细粒结构、缝隙不甚发育 硅质胶结、石英质砂岩、厚层、缝隙不发育 4~6 7~8 9~14 1.1~ 1.2 1.3~ 1.4 1.4~ 1.7 0.4~ 0.5 0.5~ 0.6 0.6~ 0.7 砾岩 胶结较差、以砂为主 胶结较好、以砾石为主 5~8 9~12 1.2~ 1.4 1.4~ 1.6 0.5~ 0.6 0.6~ 0.7 白云岩、大理岩较破碎、裂隙频率>4条/ m 完整、原岩 5~8 9~12 1.2~ 1.4 1.4~ 1.6 0.5~ 0.6 0.6~ 0.7 石灰岩中薄层、含泥质、裂隙较发育厚层 完整、含硅质、致密状 6~8 9~15 1.2~ 1.4 1.4~ 1.6 0.5~ 0.6 0.6~ 0.7

花岗岩风化严重、节理裂隙很发育多组交割、裂隙频率>5条/ m 风化较轻、节理不甚发育、伟晶结构 未风化、完整、细粒结构、致密岩体 4~6 7~12 12~20 1.1~ 1.3 1.3~ 1.6 1.6~ 1.8 0.4~ 0.6 0.6~ 0.7 0.7~ 0.8 流纹岩、粗面岩、蛇纹岩较破碎的 完整的 6~8 9~12 1.2~ 1.4 1.5~ 1.7 0.5~ 0.7 0.7~ 0.8 片麻岩片理或节理裂隙结构发育的 完整、坚硬、密致 5~8 9~14 1.2~ 1.4 1.4~ 1.7 0.5~ 0.7 0.7~ 0.8 正长岩、闪长岩 较风化、整体性较差的 未风化、完整致密的 风化、裂隙频率>5条/ m 8~12 12~18 5~7 1.3~ 1.5 1.5~ 1.8 1.1~ 1.3 0.5~ 0.7 0.7~ 0.8 0.5~ 0.6 石英岩石风化破碎、裂隙频率>5条/ m 中等坚硬、较完整的 很坚硬、完整致密的 5~7 8~14 5~7 1.1~ 1.3 1.4~ 1.6 1.7~ 2.0 0.5~ 0.6 0.6~ 0.7 0.7~ 0.8 安山岩、玄武岩裂隙、节理较发育 完整、致密的 7~12 12~20 1.3~ 1.5 1.6~ 2.0 0.6~ 0.7 0.7~ 0.8 辉长岩、辉绿岩、橄榄岩 裂隙、节理较发育 完整、致密的 8~14 14~25 1.4~ 1.7 1.8~ 2.1 0.6~ 0.7 0.8~ 0.9 单位耗药量(二) 按岩石密度选定单位耗药量(kg /m3) 岩石名称 岩石密度 (kg /m3) K值(kg/m3) 拋掷松动

隧道爆破施工安全技术交底(标准版)

Companies want to improve production, safety is the top priority. The occurrence of unsafe accidents must be stifled in the cradle. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 隧道爆破施工安全技术交底(标 准版)

隧道爆破施工安全技术交底(标准版)导语:企业想要提高生产,安全问题就是重中之重。如果不具备安全管理条件,企业生产就不能顺利进行。想要企业顺利生产,就要不断更新安全技术,把不安全事故的发生扼杀在摇篮中。 安全技术交底内容: 一般性技术交底: 1、进入施工现场,必须正确佩戴安全帽,登高作业必须系安全带;进入隧道内施工作业必须穿反光衣;进入施工现场首先检查作业环境是否安全; 2、作业人员必须服从现场管理人员的统一安排和指挥,各施工班组长在施工作业前应对作业人员进行安全技术交底及坚持班前安全讲话制度。 3、严禁打膊赤裸、穿拖鞋上班,作业时根据本工种作业要求正确佩戴安全防护用品。 4、施工作业必须按本工种施工工序进行施工作业,发现隐患应及时上报班组长及现场管理人员。 5、施工所用的各种机具设备和劳保用品应定期进行检查和必要的验收,保证其处于良好状态,不合格的机具设备和劳保用品应及时更

换,禁止使用。 6、配合现场安全管理人员的安全检查工作,对施工现场施工状况应密切关注,如有异常应在安全管理人员及技术员的统一组织指挥下撤离。 针对性技术交底: 1、洞内爆破作业必须统一指挥。并有经过专业培训持有爆破操作合格证的专职爆破工担任,进行爆破时,所有人应撤到不受气体、震动和飞石损伤的地点,安全距离为:①独头巷道不少于200m;②相邻的上下坑道内不少于100m;③全断面开挖进行深孔爆破(孔深3~5m)时,不少于500m。 2、在两个开挖面相距200m内时,爆破必须提前一个小时通报,以变另一头作业人员撤离险区。 3、爆破炸材临时存放室,应设在洞口50m以外的安全地点,并由专职爆破员负责看守;严禁非爆破人员领用或盗取炸材。 4、洞内每天爆破次数应有明确的规定,装药离爆破时间不得过久。装药与钻孔不宜平行作业,爆破作业期间(包括领取、临时看守)严禁穿戴纤化衣物及容易摩擦带电衣物。 5、装药前应检查爆破工作面附近的支护是否牢固;炮眼内的泥浆,

3隧道微台阶开挖施工工法

隧道微台阶开挖施工工法 中铁二局贵广铁路工程指挥部 二〇一一年一月十日

Ⅳ、Ⅴ级围岩隧道微台阶开挖施工工法 中铁二局贵广铁路工程指挥部 1.前言 新奥法隧道施工方法自上世纪六十年代末被引入到我国,七、八十年代得到迅速发展,九十年代开始被广泛应用,是当前使用最广泛的隧道施工方法。新奥法施工一般有全断面法、台阶法、分部开挖法。全断面法开挖主要适用于Ⅰ~Ⅲ级硬质围岩;台阶法主要适用于Ⅲ、Ⅳ、Ⅴ级中等硬度围岩;分部开挖法主要适用于Ⅴ、Ⅵ级以下软弱围岩地质条件。台阶法施工又分为长台阶、短台阶法,对于自稳较好的Ⅲ、Ⅳ级围岩常采用长台阶法,上台阶长度超过50m;短台阶法适用偏软的Ⅳ、Ⅴ级围岩,上台阶长度为5~50m;围岩稳定性较差时,台阶长度应控制在一倍洞径。 近年来,国内外隧道施工过程中发生多起坍塌事故,造成较大的人员伤亡和财产损失。调查统计表明,发生这些事故的主要原因是隧道开挖台阶长度过长、初期支护未及时封闭成环和二次衬砌未及时跟进导致围岩失稳造成。为了控制和降低铁路隧道施工安全事故,铁道部对仰拱与掌子面的距离要求越来越严格,《铁路隧道工程施工安全技术规程》(TB10304-2009)规定:III级围岩中仰拱与掌子面的距离不得超过90m,IV级围岩不得超过50m,V级及以上围岩不得超过40m.铁道部《关于进一步明确软弱围岩及不良地质铁路隧道设计施工有关技术规定的通知》(铁建设[2010]120号)文件对隧道开挖掌子面与仰拱、二衬之间的距离做出强制性规定:隧道开挖后初期支护应及时施作并封闭成环, IV、V、VI级围岩仰拱封闭位置距离掌子面不得大于35m,IV级围岩二次衬砌与掌子面距离不大于90m;V、VI级围岩二衬与掌子面距离不大于70m。 无论围岩的稳定性如何,采用长台阶法施工,都难以满足上述工序安全距离的强制性规定;采用长度大于20m的短台阶法施工时,受变台阶处交通和仰拱施工作业空间要求的限制,工序安全距离仍然会超标;采用长度小于20m的短台阶法施工时,虽然能满足工序安全距离的要求,但因为上台阶作业空间窄小,工序间相互干扰严重,机械设备的工作效率大大受阻,施工进度缓慢。 本文所介绍的Ⅳ、Ⅴ级围岩隧道微台阶开挖施工工法,有效地解决了上述问题,即保障了隧道施工安全,也提高了施工进度。

隧道施工第班组级安全教育内容

隧道施工作业人员三级安全教育 (班组级) 一、隧道施工安全生产形势、工种性质。 1、2016年以来,我项目施工隧道主洞围岩变差、斜井进入主洞后开设四个作业面,现场交叉作业集中,斜井运输通道狭窄,纵坡较大,现场交通运输压力大,安全生产形势非常严峻。 2、隧道施工工种主要包括衬砌工、锚喷工、掌子面作业人员,仰拱作业人员,主要面对的危险源:物体打击、高处坠落、坍塌、机械伤害、触电、粉尘。 二、班组安全活动制度和纪律 1、积极配合现场技术员落实三级教育、班前教育和班前检查的工作。 2、进入施工隧道必须正确佩戴劳动保护用品。 3、遵守设备、人员进出施工隧道进行登记的要求。 4、隧道内禁止使用碘钨灯、人员吸烟。 5、认真配合管理人员做好各种应急演练工作,包括隧道坍塌事故应急演练(努力学习和掌握如何通过逃生通道、如何对受伤人员进行急救等),消防及防汛应急演练、触电事故应急演练。 6、对本岗位常用的安全设备、设施、工具要能够做到熟练应用。 三、各岗位安全操作规程 爆破作业人员操作规程

1、凡从事爆破作业的人员,必须经过公安部门组织的专业培训、考试合格后持证上岗。 2、露天、地下、水下和其他爆破,必须按审批的爆破设计书或爆破说明书进行,深孔爆破、峒室爆破以及特殊环境下的爆破工程,都必须编制爆破设计书。 3、装药和钻孔不得平行、同时作业。 4、爆破器材加工房应设在安全地点,严禁在加工房以外的地点改制和加工爆破器材。爆破作业和爆破器材加人员员严禁穿着化纤衣物。 5、爆破工作开始前,必须确定危险区域的边界,并设置明显的标记,进行爆破作业时,必须发出撤离信号,使所有人员撤离到安全区域,隧道其安全距离为:独头巷道不少于200m;相邻的上下坑道内不少于100m;相邻的平行坑道,横通道及横洞间不少于50m;全断面开挖进行深孔爆破(孔深3~5m)时,不少于500m。 6、装炮时应使用木质炮棍装药,严禁火种,无关人员与机具等均应撤离到安全地点。发现“盲炮”时,必须由原爆破人员按规定处理。 7、火药起爆时严禁明火点炮,其导火索的长度不得短于米,应保证点完导火索后,人员能撤至安全地点,一个爆破工一次点燃的根数不宜超过5根。 8、采用电雷管爆破时,必须按国家现行的《爆破安全规程》(GB6722—2003)的有关规定进行。 9、洞内爆破不得使用黑色火药。洞内每天放炮次数应有明确规定,装药离放炮时间不得过久。爆破后必须经过15分钟通风排烟后,检查

隧道光面爆破施工方案

隧道光面爆破施工方案 一、工程概况 隧道施工开挖总体上要求拱部采用光面爆破,边墙部采用预裂爆破,以最大限度地保护周边岩体的完整性,同时减少超挖量,提高初期支护的承载能力。在v级围岩地段要求采用短台阶法施工,台阶长度在控制在5?10m保证初 期支护及时落地封闭,以确保初期支护的承载能力。由于二次衬砌是按要求的承载结构设计,因此在二次衬砌应紧跟开挖面:子初期支护落地后应及时施作二次衬砌仰拱和仰拱回填层,然后施作二次衬砌。在w级围岩地段要求采用短台阶法施工,台阶长度控制在io?15m注意上半断面及基础锁脚锚杆的施工质量。由于二次衬砌是按承受少量荷载进行设计,因此二次衬砌的施作可滞后开挖面20?30m在初期支护基本稳定后施作,但是二次衬砌仰拱和仰拱回填层应紧跟衬砌支护。在川级围岩地段推荐采用台阶法施工,当机械化程度较高,各隧道施工工序能及时完成时,也可以采用全断面法施工。 二、施工准备 1 、施工测量施工测量按照《公路测量技术规则》的有关规定进行,主要测量仪器为GPS全站仪、和水准仪。 ⑴导线、水准控制测量施工前会同勘测设计部门与其他相邻标段现场交接导线控制桩和设计水准点,测量组和其他相邻标段施工单位进行施工复测后,对控制桩加以保护,设护桩,如有遗失和损坏,及时恢复和校正。 ⑵洞口联系测量 为保证地面控制测量精度很好传递到洞内控制点,拟定采用如下洞口控制测量方案: ①洞口施工至设计标高后,在洞口埋设三个稳固导线控制点。 ②为保证方向传递精度,洞口控制点与地表控制点组成大地四边形边角网进行联测。 ⑶洞内控制测量 ①洞内控制测量根据隧道施工进度及时进行引伸测量工作。 ②洞内导线的布设按主附导线的形式进行敷设,并在适当地段进行闭合检查。 ③洞内精密导线采用测角精度<2”、测边精度高于2+2pp m的全站仪进行测量。 ⑷洞内施工测量

隧道光面爆破施工控制要点

隧道光面爆破施工控制要点 光面爆破效果的好坏,直接影响到隧道开挖及后续工序的质量,硬岩炮眼残留率不低于80%.中硬岩不低于70%,软岩不低于50%,而石灰岩硬而脆,力争达到90%-95%. 1 钻爆设计应根据工程地质条件、开挖断面、开挖方法、掘进循环进尺、钻眼机具、爆破材料和出渣能力等因素综合考虑. 钻爆设计的内容应包括:炮眼(掏槽眼、辅助眼、周边眼)的布置、数目、深度和角度、装药量和装药结构、起爆方法和爆破顺序等.设计图应包括:炮眼布置图、周边眼装药结构图、钻爆参数表主要技术经济指标及必要的说明. 2 硬岩宜采用光面爆破,软岩宜采用预裂爆破,分部开挖可采用预留光面层光面爆破. 3 采用光面爆破时,应满足以下技术要求: (1)根据围岩特点合理选择周边眼间距及周边眼的最小抗抵线; (2)严格控制周边眼的装药量,并使药量沿炮眼全长合理分布; (3)周边眼宜采用小直径药卷和低爆速炸药.可借助传爆线以实现空气间隔装药; (4)采用毫秒雷管微差顺序起爆,应使周边爆破时产生临空面.周边眼同段的雷管起爆时差应尽可能小; (5)各光面爆破参数如周边眼间距(E)、最小抵抗线(V)、相对距(E/V)和装药集中度(q)等,应采用工程类比或根据爆破漏斗及成缝试验确定.

在无条件试验时可按下表选用. 光面爆破诸参数 4 周边眼参数的选用应遵守下列原则: (1)当断面较小或围岩软弱、破碎或在曲线、折线处开挖成形要求高时,周边眼间距E应取较小值; (2)抵抗线V应大于周边眼间距.软岩在取较小的周边眼间距的同时,抵抗线应适当增大; (3)对于软岩或破碎性围岩,周边眼的相对距E/V应取较小值. 5 爆破开挖一次进尺应根据围岩条件确定.开挖软弱围岩时,应控制在1~2m之内;开挖坚硬完整的围岩时,应根据周边炮眼的外插角及允许超挖量确定. 硬岩隧道全断面开挖,眼深为3~3.5 m的深眼爆破时,单位体积岩石的耗药量可取0.9~2.0kg/m3;采用半断面或台阶法开挖,眼深为1.0~3.0m的浅眼爆破时,单位耗药量可取0.4~0.8kg/m3. 6 炮眼布置应符合下列要求:

光面爆破施工工法

隧道全断面开挖光面爆破工法光面爆破是通过正确选择爆破参数和合理的施工方法,达到爆后壁面平整规则、办公设备线符合设计要求的一种控制爆破技术。隧道全断面开挖光面爆破工法,是应用光面爆破技术,对隧道实施全断面一次开挖的一种施工方法。它与传统的爆破法相比,最显著的优点是能有效地控制周边眼炸药的爆破作用,从而减少对围岩的扰动,保持围岩的稳定,确保施工安全,同时,又能减少超、欠挖,提高工程质量和进度。 一、光面爆破作用原理 光面爆破的破岩机理是一个十分复杂的问题,目前仍在探索之中。尽管在理论上还不甚成熟,但在定性分析方面已有共识。一般认为,炸药起爆时,对岩体产生两种效应:一是药包爆炸气体膨胀做功所起的作用。光面爆破是周边眼同时起爆,各炮眼的冲击波向其四周作径向传播,相邻炮眼的冲击相遇,则产生应力波的叠加,并产生切向拉力,拉力的最大值发生在相邻炮眼中心边线的中点,当岩体的极限抗拉强度小于此拉力时,岩体便被拉裂,在炮眼中心边线上形成裂缝,随后,爆炸气的膨胀使裂缝进一步扩展,形成平整的爆裂面。 二、光面爆破的技术要点 要使光面爆破取得良好效果,一般需掌握以下技术要点: 1、根据围岩特点,合理选定周边眼的间距和最小抵抗线,尽最大努力提高钻眼质量。 2、严格控制周边眼的装药量,尽可能将药量沿眼长均匀分布。 3、周边眼宜使用小直径药卷和低猛度、低爆速的炸药。为满足装结构要求,可借助导爆索(传爆线)来实现空气间隔装药。 4、采用毫秒微差有序起爆。要安排好开挖程序,使光面爆破具

有良好的临空面。 (一)周边眼常用参数的选择 1、周边眼间距E 它是直接控制开挖轮廓面平整度的主要因素。一般情况下E=(12~15)d,其中炮眼直径d=35~45mm。对于节理较发育、层理明显以及开挖轮廓要求较高的地下工程,周边眼间距可适当减小,也可在两炮眼之间增加一个不装药的导向空眼。 2、最小抵抗线W(光面层厚度) W直接影响光面爆破效果和爆碴块度。其取值在(13~22)d围,且W≥E。 3、周边眼密集系数K 一般情况,以K=E/W=0.7~1.0为宜。 4、装药集中度q 采用2号岩石炸药进行光面爆破时,若预留光爆层,q=0.15~0.2kg/m;若全断面一次爆破,则q=0.2~0.3kg/m。如果采用其它炸药,则需进行换算,其换算系数C按下式求得: C=1/2(2#岩石炸药猛度/换算炸药猛度+2#岩石炸药爆力/换算炸药爆力) 选取光面爆破参数可用类比法或查表(见表1),必要时要在与所做工程地质条件相类似的岩层中试验,以求得更准确的爆破参数。

隧道施工爆破方法

隧道施工爆破方法 本隧道长为185m,采用从出口单口掘进,使用大型机械施工,III类围岩地段根据地质情况,采用超短台阶法施工,IV、V类围岩地段采用微台阶法施工,隧道支护按先拱部后边墙的顺序实施,初次支护采用喷锚支护,衬砌全断面整体式衬砌,并采用复合衬砌,在施工过程中加强监控量测,施工工艺详见:隧道总体施工程序图;洞口段、洞身段施工方法图。1、洞口施工 (1)土石方开挖施工,土方采用人工刷坡,装载机挖装,自卸汽车运输。 (2)洞口仰坡、截水沟及排水沟施工 首先施工洞口边仰坡外的截水沟及排水沟,以稳定坡面和防止地面水影响洞口的稳定,边仰坡开挖采用人工、风钻由上而下,坡面进行挂网喷砼加固坡面或防挡措施处理,以达到良好的防护效果。 2、洞内施工 开挖爆破 (1)爆破设计 ①钻孔:钻孔采用风动凿岩机进行钻孔作业。 ②爆破:进行爆破试验并不断修正设计爆破参数,以达到最佳爆破效果。成立爆破作业小组,实行定人、定位、定标准的岗位责任制,确保正常实施,其具体措施如下: A、测量放线: a、隧道中线测桩之间距,直线上不超过20米、曲线上不超过10米,每50米设一水准(BM)点,并在每排炮开钻前准确绘出开挖轮廓线、周边眼、掏槽眼的位置。 b、每次测量放线时,对上次爆破断面进行检查,及时调整爆参数,以达到最佳爆破效果。 B、钻孔作业方法步骤: a、钻孔前,钻工要熟悉炮眼布置图,严格按照钻爆设计实施。 b、定人、定位、对周边眼、掏槽眼由经验丰富的司钻工司钻。 c、严格控制炮眼间距,误差不得大于6cm,方向相互平行,严禁相互交错,硬岩炮眼利用率达90%以上,中硬岩达85%以上,软岩开挖轮廓要圆顺、符合隧道设计轮廓线尺寸的要求。 d、严格控制周边眼钻孔外插角度,相邻两茬炮之间错台不大于10cm。 C、爆破作业的技术要求 a、装药作业要定人、定位、定段别。 b、装药前,所有炮眼必须用高压风吹净尘沫。 c、严格按设计的装药结构和药量装药。 d、严格按钻爆设计的联接网络实施。 (2)光面爆破的施工方法: 根据设计围岩类别不同,采用不同的爆破方案。 A、钻爆方案 a.为减少对围岩的扰动及降低爆破振动的强度,周边眼选用光爆小直径药卷装药,其余炮眼用集中装药。 b、掏槽眼用直眼掏槽,“四眼掏槽”或“六眼掏槽”型; c、其它炮眼采用深孔微差控制爆破,在保证爆破效果的前提下,尽量减少炮眼的炸药用量。 d、选用合理装药不偶合系数,提高光爆效果,不偶合系数选用1.8。 e、超爆器材与起爆网络:利用非电导爆系统起爆,在掏槽眼采用毫秒雷管,其余炮眼采用间隔为100~200ms的等差雷管,其振动速度为毫秒雷管采用振速的60%,并利用雷管自身的误差进行降振。为了将振心5m处的围岩质点振动速度控制在10cm/s,用V=41.52(Q1/3/R)1.67确定最大单段用药量。

隧道光面爆破施工工法

隧道光面爆破施工工法 一、工艺原理 光面爆破是控制开挖轮廓的一种爆破技术,它沿开挖轮廓周边布孔,利用主炮孔爆破后形成的良好临空面,在光爆层中起爆,借以减少光爆孔爆破的夹制作用,降低炸药单耗,减少一次起爆药量,使其获得平滑的开挖廓面,减轻围岩的破坏,减小超欠挖和避免产生冒顶和坍塌。 二、光面爆破技术要点 隧道开挖应根据工程地质条件、开挖断面、开挖方法、掘进循 环进尺、钻眼机具和爆破器材等结合爆破振动要求进行钻爆设计。 施工中应根据爆破效果不断调整爆破参数。 2.1 爆破参数选定 2.1.1 周边眼间距E 周边眼间距直接控制开挖轮廓线平整度的主要因素,一般E= (12~15) d,其中炮眼直径d=35~45cm,对于节理发育,层理明 显的围岩地段,周边眼的间距可适当减小,也可在两个炮眼之间

2.1.2最小抵抗线W(光面层厚度) 最小抵抗线W直接影响光面爆破效果和爆碴块度,周边抵抗线应大于周边眼间距E,软岩取较小的E值时,W值应适当增大。 2.2 周边眼装药结构 2.2.1 软岩周边眼装药结构 一般采用两种形式:一种是较破碎围岩采用空气间隔装药,导爆索传爆。导爆索作为炮眼装药时,按10g/m折算为2号岩石硝铵炸药。另一种是较完整的软弱岩层采用小直径光爆炸药连续装药。

分别如下图所示: 空先间旖柱装药 小直径药卷连嬪装药 222硬岩周边眼装药结构 位位位 位cm 位 除周边眼、中空眼外,其余掏槽、底眼、掘进眼的装药结构均 为连续装药,只是装药长度不同 2.2本隧道钻爆参数 ① 循环进尺的确定:根据实际情况,为减少对围岩的扰动, IV 、V 级围岩根据钢架支护间距确定,本隧道 IV 级围岩2.0m , V 级围岩1.0m ,II 、III 级围岩不大于3.5m 。 ② 钻孔直径选择:采用042mn 钻眼直径,炸药选择2号岩石乳 化炸药 ③ 隧道开挖断面的 大小:由岩石和开挖方法确定。 , 炮泥 药 片

隧道爆破开挖掏槽施工技术

隧道爆破开挖掏槽施工技术 摘要:结合林长高速公路西垴隧道G209 灵宝八道河至卢氏界段改建工程一标的 红土坡1 号隧道、红土坡2 号隧道和石门隧道的施工,介绍了隧道施工爆破中掏 槽技术的重要性,对在隧道施工中经常遇到的各种情况下的爆破施工所选用的掏 槽方式进行了研究分析,以便于在隧道爆破施工时选择参考。 关键词:隧道;爆破;掏槽;施工技术 随着国民经济的不断发展,道路交通工程也在不断的深化和加强,在近些年 来隧道在道路交通工程中所占的比重越来越大,隧道的长度和断面不断在加大, 由原来的单车道隧道、双车道隧道、向三车道或四车道的隧道发展,隧道内设置 了人行洞、车行洞、设备洞室、紧急停车带等,也出现了不的隧道改扩建工程, 隧道的开挖施工主要采用钻爆法,在爆破开挖前掌子面只有一个临空面,为了提 高爆破的效果,则需要增加爆破的临空面,也就是我们再采取爆破手段时采取掏 槽的方式,合理的掏槽方式是加快隧道的开挖进度和降低施工成本的重要手段, 本文结合工程实例,对各种不同的情况下爆破开挖所选用的掏槽技术进行介绍, 总结了不同条件下适宜的掏槽方式。 1 前言掏槽技术是关乎隧道爆破开挖成败的关键技术之一,因为掏槽的深度 直接影响着整个爆破循环的进尺,可以说掏槽有多深进尺就会有多大,也就是说 掏槽的成功与否是形成良好的爆破效果的一个关键因素,在平时进行隧道爆破开 挖时我们十分重视掏槽方式的选择,掏槽眼的形式主要可以分为三大类:斜眼掏槽、直眼掏槽和混合掏槽,掏槽形式的选择与现场的地质条件、爆破断面的大小、形状等有直接的关系,选择合适的掏槽形式是掏槽能否成功的关键所在。 2.一般掏槽方式2.1 斜眼掏槽斜眼掏槽一般有单向掏槽、锥形掏槽和楔形掏 槽三种形式2.1.1 单向掏槽,即掏槽眼沿同一方向倾斜进行的掏槽方式,主要适 用于断面较小的开挖断面,比如小断面隧道或隧道内的人行横洞、综合洞室等的 掏槽爆破,斜眼掏槽的钻孔尽量与断面岩层的节理以大角度相交以达到最好的效果,眼底向断面内岩层较薄弱的一侧倾斜。见图2.1-1 单向掏槽部眼形式。 一般情况下采用垂直楔形掏槽较多,主要是钻孔方便,当遇到水平岩层或是 近水平岩层时或者是中间有水平薄弱带及滑层时则采用水平楔形掏槽。在隧道的 断面较大时可以采用两层或三层掏槽的方式,掏槽眼逐层加深,以达到进尺的目的。 2.2 直眼掏槽直眼掏槽就是掏槽眼垂直于隧道的开挖面进行布设,其中部分 钻眼不装药为空眼,空眼作为一个小的临空面来提高爆破掏槽的效果,直眼掏槽 的炮眼的起爆要依次起爆临近空眼的炮眼,直眼掏槽的形式有:直线形、菱形、 五梅花形、螺旋形等几种形式。 2.2.1 直线形掏槽,直线形直眼掏槽也称为龟裂直眼掏槽,掏槽眼布置在一条 直线上,炮眼采取隔眼儿装药,利用空眼作为一个小的临空面,(见图2.2-1)最终爆破在断面上形成一个条形槽口,从而为崩落眼形成临空面,直线形掏槽的炮 眼间距一般为15-20cm,装药系数一般取0.75-0.9。 2.3 混合掏槽混合掏槽也就是直眼掏槽和斜眼掏槽的混合,这样在一些情况 下可以综合两种掏槽的优点,其首先是在掏槽区域中间采用直眼掏槽,在直眼掏 槽的周围采取斜眼辅助掏槽,一方面可以减少全部直眼掏槽的钻眼工作量,减少

谈光面爆破施工中的技术问题及相应措施

350谈光面爆破施工中的技术问题及相应措施 隋东 广东宏大爆破股份有限公司 摘 要:光面爆破是沿开挖边界布置密集炮孔,采取不耦合装药或装填低威力炸药,在主爆区爆破后起爆,以形成平整轮廓面的爆破施工技术。目前,光面爆破已经被广泛应用到各类掘进施工及边坡防护中,对光面爆破施工中的技术性问题及相关解决措施展进行分析与探究,对提高施工安全性、经济性、可靠性具有重要意义。 关键词:光面爆破;施工技术;控制爆破;措施 1 光面爆破施工中的关键技术问题 光面爆破施工所谓的关键技术与其爆破施工参数的选择有关联。一般地,光面爆破在实际作业中施工参数的确定与现场施工地质环境、炸药的品种、性能以及隧道断面开挖设计轮廓的形状、大小有着十分密切的关系。光面爆破最大的好处在于开挖轮廓内表面呈光滑平顺,基本上以肉眼是观察不到爆破裂纹的,在技术措施上避免了超、欠挖过大的情况发生,且最大化地降低了爆破施工对围岩结构的扰动,确保开挖施工的安全性和作业顺利。 1.1 工作机理 光面爆破施工是沿着设计开挖轮廓线布置一系列间距较小的平行钻孔,完成钻孔和清孔的作业之后即可在这些钻孔中进行不耦合装药,在主爆区爆破后起爆。炸药起爆时,对岩体产生两种效应:一是药包爆破瞬时高温高气压形成的冲击效应;二是爆炸气体膨胀做功所起的作用。光面爆破是周边眼同时起爆,各炮眼的冲击波向其四周作径向传播,相邻炮眼的冲击相遇,则产生应力波的叠加,并产生切向拉力,拉力的最大值发生在相邻炮眼中心连线的中点,当岩体的极限抗拉强度小于此拉力时,岩体便被拉裂,在炮眼中心连线上形成裂缝,随后,爆炸气的膨胀合裂缝进一步扩展,从而形成平整的爆裂面。 1.2 参数选择 光面爆破施工也是一项极为困难的工艺,鉴于此工艺要针对详细爆破参数的选择和确定,就必须要面对无法达到理想爆破效果的情况产生。笔者认为,光面爆破施工参数的关键在确保光面爆破在隧道开挖断面轮廓线形成平整的爆裂面。 (1)钻眼的直径(db)。对于隧道开挖断面一般钻进的炮眼直径宜在35 ~45 mm范围以内; (2)平行钻眼的平均间距。平行钻眼的平均间距和最小抵抗线是两个极为重要的爆破参数。隧道跨度较小时,平行钻眼之间的平均间距应适当调整。隧道开挖断面光面爆破可确定平行钻眼平均间距间距a: a = (12 ~ 20) db 隧道开挖断面的光面爆破可取的平行钻眼平均间距约为600 ~ 700mm,如果实际开挖的表面曲率非常大,那么岩石爆破就会产生一种强劲的作用力,平行钻眼的平均间距宜调整减少至450 ~ 500mm,而导向空眼与装药钻眼之间的间距则不得少于400mm为宜; (3)最小抵抗线(W’)。最小抵抗线和光滑层厚度将直接影响光面爆破的质量效果,除了受影响于平行钻眼的平均间距和周边的装药眼及结构参数,最为主要的影响还是最小抵抗线因素和光滑层厚度。因此,设计合理的光滑层厚度参数将对光面爆破施工具有十分积极的作用。光滑层厚度W’可以用于确定以下公式: W’ = =Q/(Cq ·a·L) 上式中Q 为光面炮眼的装药量; a为炮眼间距; L 为炮眼深度; Cq为爆破系数,相当于单位耗药量,对于f = 4~10的岩层,Cq 值变化范围为0. 2~0. 5 kg/m3。 经验表明,对于大跨度隧道一般采取W’=700– 800mm,拱顶的厚度应该增加部分应与增加的跨度相对应。其他最小抵抗线和岩石性质和地质结构、硬摇滚可取的从500~600mm,软岩在800 ~ 900mm,对于小跨度隧道可以减少到600 ~700毫米; (4)炮眼密集系数m。炮眼密集系数也称炮眼邻近系数,即炮眼间距a与最小抵抗线W’之间的比值(m = a / W’),是光面爆破参数确定中的一个关键值。目前,在工程施工中,光面层厚度的确定,一般情况下,周边眼间距a与光面层厚度W’的比值为 m =a/ W’ = 0. 8 ~ 1. 0 通常,光面爆破应当符合下列技术要求:根据岩石的特点,合理选择炮孔间距和最小抵抗线;严格控制线装药密度;钻孔倾斜误差小于1°;光爆网络宜采用导爆索连接,组成同时起爆或多组接力分段起爆网络于主爆区起爆后起爆。 2 光面爆破施工技术问题的对策 可用于光面爆破开挖的施工方法有两种,一个是全断面法。对于IV级和V级围岩完整性好的可用全断面法,控制延期时间及光爆孔间距,主爆区使用普通爆破设计,光爆孔和辅助孔按照光面爆破技术要求设计。使用毫秒延期电雷管或者非电毫秒延期起爆系统,光爆孔延迟主爆孔(150~200ms)起爆。光爆孔注意减少炸药用量,根据爆破设计控制线装药密度。另一种是保留平滑层方法。这种方法在其保留平滑区域内具有显著的特征,在光爆孔周围可以根据情况调整的爆破参数或修改,优化设计爆破方案即可达到更好的光面爆破效果。(1)影响开挖断面形成裂缝的原因。影响开挖断面产生裂缝的因素比较多,笔者认为在光面爆破施工当中主要存在的问题有:装药量过大、装药结构设计不科学、最小抵抗 (下转第352页)

隧道施工爆破作业安全技术要点(正式)

编订:__________________ 单位:__________________ 时间:__________________ 隧道施工爆破作业安全技术要点(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5808-29 隧道施工爆破作业安全技术要点(正 式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1.洞内爆破必须统一指挥,并由经过专业培训且持有爆破操作合格证的专业人员进行作业。爆破作业和爆破器材管理人员必须穿防静电服装;洞内每天放炮次数应有明确规定,装药与放炮时间不得过久。 2.爆破加工房应设在洞口50m以外的安全地点。严禁在加工房以外的地点改制和加工爆破器材,长隧道施工必须在洞内加工爆破器材时,其加工洞室的设置应符合国家现行的《爆破安全规程》(GB 6722--2003)的有关规定。 3.进行爆破时,所有人员应撤离现场,其安全距离为 (1)独头巷道不少于200m; (2)相邻的上下坑道内不少于l00m;

(3)相邻的平行坑道,横通道及横洞间不少于50m; (4)全断面开挖进行深孔爆破(孔深3~5m)时,不少于500m。 4.装药前应检查爆破工作面附近的支护是否牢固;炮眼内的泥浆,石粉应吹洗干净;刚打好的炮眼,不得立即装药.如果遇有照明不足,流砂未经妥善处理或可能有大量溶洞涌水时,严禁装药爆破。 5.装炮时,应使用木质炮棍装药,严禁火种。为防止点炮时发生照明中断,爆破工应随身携带手电筒,禁止用明火照明。 6.点炮前,无关人员与机具均应撤至安全地点。爆破员实行"一爆三检"制度,放炮员最后离场,班组长清点人数,发出警告5s后方可引爆。7.爆破后必须经过15min通风排烟后,检查人员方可进入工作面,检查有关"盲炮"及可疑现象;有无残余炸药和雷管;顶板两帮有无松动石块、危岩,支护有无损坏与变形在妥善处理并确认无误后,其他施工人员方可进人工作面。

隧道工程爆破施工方案

隧道爆破专项方案 XX沟、XX隧道进口里程分别为D1K770+230~D1K771+008,D1K771+790~D1K772+200,XX沟全隧长778m,XX隧道长410m。 本工程所在地位于XX市XX镇境内,属于XX盆地低山XX区。地地形起伏较大,缓坡地带多为旱地及荒坡,沟槽被垦为良田,植被茂密,居民较多。 S泥岩夹砂岩,岩质XX沟、XX隧道洞身位于XX地貌区,穿越遂宁组J 3 软,岩层产状平缓稳定,节理裂隙不甚发育多为风化裂隙,延伸性较差,地下水较贫乏,预计隧道涌水量较小,地表水及地下水对混凝土结构具侵蚀性。隧道进出口地段埋深较浅,且土层较厚,不良地质为有毒有害气体,有天然气溢出的可能,设计属低瓦斯隧道,施工应加强对有害气体的监测并通风,段内地震动峰值加速度<0.05,地震动反应谱特征周期0.35S。 针对XX沟、XX隧道地质情况,制定以下爆破方案。 一、光面爆破 1、全过程控制光面爆破施工,爆破器材、炮眼钻设符合设计要求,爆破后围岩应稳定(硬岩无剥落、中硬岩基本无剥落、软岩无大的剥落或坍塌),开挖面及开挖轮廓、爆破进尺符合设计要求,爆破出的石块满足装运要求。 2、钻眼深度、角度、钻孔偏斜度、外张量按设计要求。不耦合装药系数、炮眼残留率应符合要求。空中眼、周边眼、导爆索串装药结构、孔口堵塞长度、最小抵抗线、相对距离参数符合要求,控制最佳爆破效果。 3、雷管经检查试爆,电雷管还须专用爆破仪表逐个进行电阻检查。已生铜锈、变形、破损或加强帽歪斜的雷管不得使用。起爆药包在装药时临时制作,制作时不得将雷管直接插入起爆药包内,先用直径与雷管相同的木条或竹管在药包一端插入一个深度为雷管长度1.5倍的小孔,然后放入以接好引线的雷管,并将孔口封好。 4、药量经过计算,一般小炮只准采用松动药包,不得采用抛郑药包。采用裸体药包须经施工负责人许可,不得任意施放。警戒距离,一般小炮

隧道聚能水压爆破施工专业技术

聚能水压爆破施工技术 一、工程概况 该隧道处于陕北东南部黄土残塬区,上部覆盖厚层黄土,由于受到强烈侵蚀作用,黄土塬已破碎不堪,零星分布,地表沟壑纵横,冲沟发育,地质主要为冲积砂质新黄土,冲洪积砂质老黄土、黏质老黄土及砂类土;下部为水平层状砂岩、泥岩等,最大埋深310m。在施工过程中主要存在滑坡、高地应力、游离态有害气体、浅埋、断层等高风险,隧道结构穿越黄土、土石混合断面、水平岩层。施工难度大、安全风险高等诸多不利因素。 二、常规光面爆破技术 1、技术原理 常规光面爆破技术原理是炮眼中的炸药爆炸后,在岩石中传播应力波产生径向压应力和切向拉应力, 由于炮眼相邻互为“空眼”,所以在炮眼连线两侧产生应力集中度很高的拉应力,超过岩石抗拉强度,炮眼之间的岩体形成的初始裂缝要比其他方向厉害的多,除此之外,由于炸药爆炸生成的高压气体膨胀产生的静力作用促使初始裂缝进一步延伸扩大。 2、工艺流程 3、装药结构 常规(或普通、传统)隧道爆破采用连续装药,炮眼间距炮眼中仅装炸药而无回填堵塞,其装药结构如下图所示。

炮眼无回填堵塞装药结构 4、爆破参数 常规爆破设计参数表 周边眼深度3.5m,进尺2.8m,开挖断面面90.98m3,炸药单耗0.98kg/m3。 5、常规爆破存在的问题 1)炮眼间距为40-50cm,布眼过密、打眼过多、打眼作业时间占用时间过长。?2)由于炮孔内充满了空气,应力波部分能量因压缩空气而损失,所以应力波的强度因无回填堵塞而降低,结果削弱了对围岩的破碎。 3)常常出现超挖,增加混凝土衬砌量提高施工成本,隧道爆破开挖出现亏损,超挖是致命的“罪魁祸首”。 4)常规爆破后有害气体浓度高,粉尘大。再加上斜井通风困难,放炮后通风时间需要30-40分钟,机械才能够到达掌子面进行出碴,对工序衔接造成了极大的影响。 三、水压光面爆破技术 1、技术原理 水压光面爆破原理为“往炮眼中一定位置注入一定量的水,并用专用的炮泥回填堵塞炮眼,利用在水中传播的冲击波对水的不可压缩性,使爆炸能量经过水传递到围岩中几乎无损失,同时,水在爆炸气体膨胀作用下产生的“水楔”效应,有利于岩石破碎,炮眼中的水可以起到雾化降尘作用,大大降低粉尘对环境的污染,所以水压爆破成为名副其实“绿色爆破”。 2.工艺流程

光面爆破施工方案

新建铁路太原至中卫(银川)线ZQ-II标 关键工序、特殊过程施工方案 【光面爆破】 编制: 复核: 审核: 中交太中银铁路工程第八项目经理部 二OO六年十二月 光面爆破施工方案

一、工程说明 太中银铁路ZQ-II标八项目管段内共有7座隧道,2座为黄土隧道,其余均为石质 隧道,通过地层主要为砂岩夹泥岩地层,岩层产状水平,节理裂隙发育。地下水主要为基岩裂隙水及第四系孔隙潜水,部分地段地下水为承压水。由于本段围岩所具有的特点决定了隧道开挖成拱性差,开挖支护难度大,进而影响施工进度、施工质量及施工安全,因此对隧道的光面爆破提出了更高的要求。 本段内围岩级别有Ⅱ、Ⅲ、Ⅳ、Ⅴ级,针对不同的围岩级别采用不同的开挖方法,主要有全断面法、台阶法、中隔壁法,本施工方案针对不同的开挖方法、不同的地质情况确定合理的钻爆方案,选择合理的爆破参数和施工工艺,提高光爆效果和效率。 二、隧道光面爆破施工工艺 1、光面爆破施工工艺流程 见图1“光面爆破施工工艺流程图”。 2、光面爆破工艺要求 ⑴钻爆设计 ①设计原则: 根据围岩特点合理选择周边眼间距及周边眼的最小抵抗线,辅助炮眼交错均匀布置,周边炮眼与辅助炮眼眼底在同一垂直面上,掏槽眼加深10~20cm。 严格控制周边眼装药量,间隔装药,使药量沿炮眼全长均匀分布。 选用低密度低爆速、低猛度的炸药;本工程采用岩石销铵炸药和乳化炸药,非电毫秒雷管起爆。采用微差爆破,周边眼采用导爆索起爆,以减小起爆时差。 ②钻爆设计要求 爆破作业由爆破工程师根据地质条件、开挖断面、开挖方法、掘进循环进尺、钻眼机具、爆破器材等进行爆破设计。 合理选择爆破参数,根据围岩情况合理选择中空直眼或斜眼掏槽。爆破后要求炮眼痕迹保存率:硬岩≥80%,中硬岩≥60%,并在开挖轮廓面上均匀分布,两次爆破衔接台阶不大于15cm。 每次爆破后通过爆破效果检查,分析原因,及时修正爆破参数,提高爆破效果,改善技术经济指标。 洞口附近爆破施工严格控制单段装药量,降低震速,确保周边民房及其他构筑物的安全。

相关主题
文本预览
相关文档 最新文档