当前位置:文档之家› 14.3 干燥速率与干 燥过程计算

14.3 干燥速率与干 燥过程计算

14.3 干燥速率与干 燥过程计算
14.3 干燥速率与干 燥过程计算

14.3 干燥速率与干燥过程计算

14.3.1 物料在定态空气条件下的干燥速率

(1)干燥动力学实验

物料的干燥速率即水分汽化速率A N 可用单位时间、单位面积(气固接触界面)被汽化的水量表示,

即τ

Ad dX

G N c A -=

式中 c G ——试样中绝对干燥物料的质量,kg ;

A ——试样暴露于气流中的表面积,m 2;

X ——物料的自由含水量,*X X X t -=,kg 水/kg 干料。

干燥曲线或干燥速率曲线是恒定的空气条件(指一定的速率、温度、湿度)下获得的。对指定的物料,空气的温度、湿度不同,速率曲线的位置也不同,如图14-13所示

(2)恒速干燥阶段BC (3)降速干燥阶段CD

在降速阶段干燥速率的变化规律与物料性质及其内部结构有关。降速的原因大致有如下四个。

① 实际汽化表面减少; ② 汽化面的内移; ③ 平衡蒸汽压下降;

④ 固体内部水分的扩散极慢。 (4)临界含水量

固体物料在恒速干燥终了时的含水量为临界含水量,而从中扣除平衡含水量后则称 临界自由含水量C X

(5)干燥操作对物料性状的影响 14.3.2 间歇干燥过程的计算 14.3.2.1 恒速阶段的干燥时间1τ

如物料在干燥之前的自由含水量1X 大于临界含水量c X ,则干燥必先有一恒速阶段。忽略物料的预热阶段,恒速阶段的干燥时间1τ由τ

Ad dX

G N c A -=

积分求出。

??-=C 11A

d d X X c N X

A G ττ 因干燥速率A N 为一常数,

A

c

c N X X A G -?

=

11τ 速率A N 由实验决定,也可按传质或传热速率式估算,即

)()(w w

w H A t t r H H k N -=

-=α

w H 为湿球温度w t 下的气体的饱和湿度。

传质系数H k 的测量技术不如给热系数测量那样成熟与准确,在干燥计算中常用经验的给热系数进行

计算。气流与物料的接触方式对给热系数影响很大,以下是几种典型接触方式的给热系数经验式。

(1)空气平行于物料表面流动(图14-16a )

8.00143.0G =αkW/m 2·℃

式中G 为气体的质量流速,kg/(m 2·s )。

上式的试验条件为14.8~68.0=G kg/(m 2·s ),气温150~45=t ℃。 (2)空气自上而下或自下而上穿过颗粒堆积层(图14-16b )

41.0p 59

.00189.0d G =α

???? ??>350μG d p 41

.0p

49

.00118.0d G =α ???

?

??<350μG d p

式中 G ——气体质量流速,kg/(m2·s );

p d ——具有与实际颗粒相同表面的球的直径,m ;

μ—— 气体粘度,Pa ·s 。

(3)单一球形颗粒悬浮于气流中(图14-16c )

3/12

/1p p Pr Re 65.02+=λ

αd μ

ρ

u d p p Re =

式中 u ——气体与颗粒的相对运动速度; ρ、μ、Pr ——气体的密度、粘度和普朗特数。

14.3.2.2 降速阶段的干燥时间2τ 当c X X <时,X ↓,A N ↓,此阶段称为降速干燥阶段,物料从c X 减至2X (*2X X >)所需时

间2τ为

?

?

-==2

c

2

A

c

2d d X X N X

A

G τττ 若有X N ~A 的干燥数据可用数值积分法或图解积分法求2τ,或假定在降速段A N 与物料的自由含水量*

X X -成正比,即采用临界点C 与平衡水分点E 所连结的直线CE (图中红色虚线)来代替降速段干燥速率曲线CDE ,即)(*A X X K N x -=,式中X K ——比例系数,kg/(m 2·s ·X ?),即CE 直线斜率,

*

c c A,X X

X N K -=

)()(w H w w

,H H k t t N C A -=-=

γα

则 ??-=

--=C

2

2

*X c *X c 2d d X X X X X X X

AK G X X X AK G c

τ *

2*

c X c 2ln X

X X X AK G --=τ 当0*

=X 时此式还原为教材式(14-30)。

将)(*

c c C A ,X X K N -=代入1τ的表达式(14-20)得

*

c c

1X c 1X

X X X AK G --=

τ )ln (*

2*

c *c c 1X c 21X

X X X X X X X AK G --+--=+=τττ *

2*

*

c c 121ln X

X X X X X X X c ----=

ττ

解题指南P 367例17-9

例17-9 某干燥过程干燥介质温度为363K ,湿球温度307K ,物料初始干基含水率为0.45,当干燥了2.5h 后,物料干基含水率为0.15,已知物料临界含水率、平衡含水率分别为0.2、0.04,试求:(1)将物料

干燥至1.02='X 需要多少干燥时间;(2)将物料干燥至1.02

='X 且干燥时间仍维持在2.5h ,将空气温度提高到373K (湿球温度为310K ),其他条件包括空气流速保持不变,能否达到要求。

附:恒速段的传热速率方程:2

w 5.0Re ???

? ??=T

T C Nu ,C 为常数,T 、w T 单位为K 。 解:(1)根据题意,这是一个恒定干燥条件下干燥时间的计算问题。

∵c 2

X X <';∴干燥过程包括恒速段与降速段,相应的干燥时间包括恒速干燥时间和降速干燥时间,在恒定干燥条件下,干燥时间可用下式计算:

???

?

????--+--=+=***X X X X X X X X AK G

x

C

2c c c 121ln θθθ 式中1X 、c X 、*X 均已知,x

C

AK G 未知,但可以通过题给条件,干燥至15.02=X 时,干燥时间为2.5h 求得:

∵c 2X X <;∴??????--+--=

04.015.004.02.0ln 04.02.02

.045.05.2x

C

AK G ?29.1=x

C AK G 当物料干燥至1.02='X ,干燥仍由恒速和降速两阶段组成,由于干燥操作条件不变,即

x

C

AK G 值不变,所以干燥时间'

θ为:

h 28.304.01.004.02.0ln 04.02.02

.045.029.1ln 2c c c 1=??????--+--?=???

?????-'-+--='*

**X X X X X X X X AK G

x

C

θ (2)由(1)小题可知,物料干燥至1.02

='X 时,所需干燥时间大于2.5h ,为缩短干燥时间,可以提高湿空气的温度;因为湿空气温度提高,1X 、c X 、*X 等其他条件不变,那么影响干燥时间的参数只有x K

∵*

*-=-=

X X u X X u K x c c 其中()w w c

T T r u -=α

从上式可以看出,干燥介质温度提高,使得干燥速率提高从而缩短干燥时间;

又∵2

w

5.0Re ???? ??=T

T

C Nu ;∴()()()w 2

w

w w c T T T T T T Nu T T u K x -???

? ??∝-∝-∝∝α 假设湿空气温度提高后的降速段斜率用'

x K 表示,所以有:

()

()

???

?????-???

?

??????????'-'???

?

??'

'=w 2

w

w 2

w

'T T T T T T T T K K x x w w 2

w

w 2

T T T T T T T T -'-'???

? ??'?

?

?

??'=3073533103733103073533732

2--??? ????? ??=5.1= ∴h 19.25.128.3=÷='=

'θθx

x

K K h 5.2<,即把空气温度提高到373K 可以满足要求。

14.3.3 连续干燥过程的一般特性

有并流、逆流、错流流程及其他复杂的流程 (1)连续干燥过程的特点

以并流连续干燥为例,P341图14-20

注意:连续干燥降速段)(*

x A X X K N -≠

(2)连续干燥过程的数学描述

为定态过程,设备中的湿空气与物料状态沿流动途径不断变化,但流经干燥器任一确定部位的空气和物料状态不随时间而变,故应采用欧拉考虑法,在垂直于气流运动方向上取一设备微元V d 作为考察对象。 干燥过程是气、固两相的热、质同时传递过程,所以对过程设备进行数学描述时,必须列出物料衡算式、热量衡算式、气固相际传热及传质速率方程式,气固相界面参数还与物料内部的导热和扩散情况有关,其确定将变得十分复杂。固此还必须同时列出物料内部的传热、传质速率方程式。物料内部的传热、传质与物料的内部结构、水分与固体的结合方式、物料层得厚度等众多因素有关,要定量地写出这两个特征方程式是非常困难的。干燥问题之所以至今得不到较圆满的解决,原因之一就在于物料内部的传递过程难以弄清。

以下首先对干燥过程作物料和热量衡算,然后对干燥过程作出简化,列出传热、传质速率方程,计算设备容积。

14.3.4 干燥过程的物料衡算与热量衡算

P 342图14-21,物料、热量衡算是确定空气用量分析干燥过程的热效率以及计算干燥容积的基础。 (1)物料衡算

)()(1221c H H V X X G W -=-=

01H H = (空气在预热器中加热,H 不变)

有时物料的含水量习惯上以湿基含水量w 表示,w 与干基含水量的关系为

1111w w X -=

,2

2

21w w X -=,)1()1(2211w G w G G c -=-= 2

2

1

1211w w w G G G W --=-=,或)(21c X X G W -=,c G 、1X 、2X 用上式求。 0

221H H W

H H W V -=

-= 0H 已知,W 可求出,求V 关键在于确定出干燥器空气湿度2H ,必须用后面的干燥器热量衡算结合才能确定2H 。

实际空气(新鲜空气)质量流量)1()/kg ('0H V s V +=湿空气 空气必须用风机输送,风机的风量''V (m 3湿空气/s )

p

t H V VvH V 3

.101273273)244.1773.0(''?++==

上式中t 、H 是风机所在位置空气t 、H ,风机在装在预热器前,预热器后,甚至干燥器后。

(2)预热器的热量衡算

)()(01pH 01p 1t t Vc I I V Q -=-= 11112500)88.101.1(H t H I ++= 00002500)88.101.1(H t H I ++=

01H H =,01p p H H c c =

(3)干燥器的热量衡算

l c Q M C G VI Q c G VI ++=++22p c 2D 11pm 1θθ

X c c c l p ps pm +=

(4)物料衡算与热量衡算的联立求解

在设计型问题中,c G 、1θ、1X 、2X 是干燥任务规定的,而01H H =由空气初始状态决定,l Q 可按传热公式求或取p )10.0~05.0(Q Q =。2θ是干燥后期气固两相及物料内部热、质传递的必然结果,不

能任意选择,应在一定条件下由实验测出或按经验判断确定(如式(14-32)确定2θ)。气体进入干燥器的温度1t 可以选定。这样,干燥过程的物料和热量衡算常遇到以下两种情况:

①选择气体出干燥器的状态(如2t 及2?),求V 及D Q ;

②选定D Q (如许多干燥器0D =Q ,即不补充热量)及气体出干燥器状态的一个参数(2H 、2?、2t 中的一个),求出V 及另一个气体出口参数(如2H )。

第①种情况出口空气状态已确定,热衡及物衡简便。在第②种情况下,由于出口气状态参数之一是未知数,联立物衡和热衡方程式的计算比较繁琐,因而常对过程作出简化,以便于初步估算。

(5)理想干燥器过程的物料和热量衡算

若物料中的水分都在恒速段(表面汽化段)除取物料的升温很小21θθ≈,0≈l Q ,0D =Q ,此时干燥器内气体传给固体的热量全部用于汽化水分,这部分热量(潜热)又由汽化后的水汽带回气相,由热量衡算式(14-38)可知21I I =,气体在干燥器中的状态变化为等焓过程,这种简化的干燥过程称为理想干燥过程(或等焓干燥、绝热干燥过程)。计算方法有以下几种:

①图解法(已知2t 或2?均可用)

2H H W

V -=

,)(01pH p 1

t t Vc Q -=

②解析法(已知2t 时用)

12I I =

1112222500)88.101.1(2500)88.101.1(H t H H t H ++=++

上式中只有一个未知数2H 可求出,然后再求V ,p Q

③数值法(已知2?时用,可计算求出2H )

(6)实际干燥过程的物料和热量衡算

等焓(理想、绝热)干燥过程,空气再干燥器状态变化沿着等焓线BC 变化至C 点(C 点的确定前面已讨论)。

若干燥器不补充热量0D =Q 或补充的l Q c c G Q +-<)(1pm 2pm c D 12θθ,则空气在干燥器中状态变化沿BE 线变化至D ,12I I <,若规定2t 相同,则D 点<2H C 点2H ,V ↑。

若l Q c c Gc Q +->)(1pm 2pm D 12θθ,则空气在干燥器中状态变化沿BE 线变化E ,12I I >,若2t 相同,则E 点22H C H 点>,V ↓。

实际干燥过程气体出干燥器的状态由物料衡算式(14-33)和热量衡算式(14-38)联立求解决定,即

2H H W

V -=

l Q c G VI Q c G VI ++=++2pm c 2D 1pm c 121θθ

22222500)88.101.1(H t H I ++=

联立解出2H 及V 。 14.3.5 干燥过程的热效率

沿等H 线

沿等I 线

A (0t ,0H )

B (1t ,01H H =)

至C (2t ,或2?)

确定c 后H 2可查出

(1)空气在干燥器中放出热量的分析

D 1pm c 2pm c 2112)(Q Q c G c G I I V l -+-=-θθ 101pH 111112500)88.101.1(H r t c H t H I +=++=

22222500)88.101.1(H t H I ++=

因为 12H V W

H += 所以 ???

??++?????

???? ??++=1021288.101.1H V W r t H V W I

()02102pH 88.11r t V

W

H r t c +++= ()()()02pV 21pH 211r t c W t t Vc I I V +--=-

()11pL ps 11pm θθX c c G c G c c +=

()()1

pL 12pm 1pL 21c 1pm21

1pL 2pL 2pL ps c θθθθθWc c G c X X G c G X c X c X c c G c c +=-+=+-+=

()1pL 12pm2c 11pm c 2pm2c θθθθθW c c G c G c G --=-

所以 ()()

()D 12pm21pL 2pV 021pH 1Q Q c G c t c r W t t Vc l c -+-+-+=-θθθ

空气在预热器中所获得的热量p Q 为

()()()02pH 21pH 01pH p 111t t Vc t t Vc t t Vc Q -+-=-=

l Q Q Q Q Q Q +++=+321D p

(2)干燥器的热效率η

干燥过程中热量的有效利用程度是决定过程经济性的重要方面。由上式可知空气在预热器及干燥器中加入的热量()

D p Q Q +消耗于四个方面,其中1Q 直接用于干燥的目的,2Q 是为了达到规定的含水量利用

经济性可用如下定义的热效率η来表示

D

p 2

1Q Q Q Q ++=

η

1<η,η↑表示干燥过程热利用程度越高,经济性越好。若0D =Q ,0=l Q (等焓、理想、绝热干燥),

()()0

12

102pH 21pH D p 2111t t t t t t Vc t t Vc Q Q Q Q --=

--=++=

η (3)提高η的措施

① 降低废气的温度2t 。2t ↓,η↑,但干燥速率A N ↓,τ↑,设备容器V ↑。另一方面2t 不能过低以至接近饱和状态,这样,气流易在设备及管道出口处散热而析出水滴,将使已干燥的产品返潮。且易造成管路的堵塞和设备材料的腐蚀。通常为安全起见,

+=w ,12t t (50~20℃)

判别干燥产品能否返潮可用下述方法: S V p p <不会返潮,S V p p >会返潮

② 提高空气的预热温度1t 。1t ↑,1I ↑,V ↓,()01p I I V Q -=,对一定p Q ,1I ↑,V ↓,废气带走的热量3Q ↓,η↑。但1t ↑除受热源能位的限制外还应以物料不致在高温下受热破坏为限。对不能经受高温的物料,采用中间加热的方式,即在干燥器内设置一个或多个中间加热器,此法往往可以避免进入

干燥器的空气要预热到很高的温度(保证产品的质量),由于空气温度比不设中间加热器的干燥器内空气温度低,热损失l Q ↓,η↑。

③ 减少干燥过程的各项热损失

a. 做好干燥设备和管道的保温工作,l Q ↓,()

D p Q Q +↓,η↑。最佳保温层厚度。

b. 防止干燥系统的渗透。干燥系统如有热风漏出或有冷风漏入,均使干燥器热效率η↓,为防止系统渗漏,一个比较适合的方法就是送风机在干燥系统之前,而吸风机在系统之末,经合理选用与调整两个风机的工作点,以使在操作时保持干燥器正好处于零压状态,这样就可以避免因冷风漏入或热风漏出所造成的η↓。

④采用部分废气循环操作

定义:循环比:混合气中绝干空气质量

循环废气中绝干空气质=

-=

m m V V V φ 循环量:V V V -=m R ,φ-=1m

V V

混合前后总物料衡算:m m )(V V V V =-+

水分衡算:m m 2m 0)(H V H V V VH =-+

2m

m 0m m H V V V H V V

H -+=

20)1(H H φφ+-= 焓衡算:20m )1(I I I φφ+-=

混合气温度:m m

m m 88.101.12500H H I t +-=

预热后空气温度:m

m

2

m m 1188.101.1250088.101.12500H H I H H I t +-=+-= 若空气始态(A 点)与终态(C 点)相同,无废气循环需加热到'1t (B ’点),有废气循环只需将混合气加热到1t (B 点),因此有废气循环时空气在干燥器内平均温度低,l Q ↓,η↑;平均t 低对易受热分解的物料干燥有利(这种物料的干燥要求空气在整个干燥器中温度变化不大的情况下进行);有废气循环时空气在干燥器内的平均湿度大,对易发生翘曲或干裂的物料干燥有利(这种物料宜采用湿度较高的空气干燥)t ↓、H ↑使干燥推动力减小,但由于循环,空气流量↑(m V V →),u ↑,α↑,H k ↓会补偿推动力减小;缺点:风机送风量↑,风机能耗↑。

始、终态相同时,有废气循环与无废气循环时绝干空气消耗量V 及预热器加热量p Q 有无改变。

方法一:0

2H H W

V -=

,)(01p I I V Q -=(若为等焓干燥21I I =)

方法二:m

2m )1()1(H H W

V V --=-=φφ

)(m 1m p I I V Q -=(若为等焓干燥21I I =)

两种解的结果一定相等,但方法简便,空气始、终态不变有无循环V 、p Q 不变(此时混合气只需预热到1t (B 点);若混合器也预热到无废气循环时的'1t ,则出口状态变为C ’,V 、p Q 均变;若始、终态不变,改为先预热后混合,p Q 与先混合后预热时相同,但新鲜空气要预热到'1t (B ’点)与废气混合后为B 点进入干燥器,需要能位较高的热源,故一般说来,先混合后预热更为经济合理。 14.3.6连续干燥过程设备容积的计算方法

(1)理想干燥过程

理想:水分全部在恒速段除去,物料升温很小21θθ≈,0≈l Q ,0D =Q 。

m

21pH m )(t a t t Vc t a Q

V ?-=

?=αα 式中

α——对流给热系数,w/m 2?℃

a ——单位体积设备的气固传热面积,m 2/m 3

a α——体积给热系数,w/m 3?℃

2

2112211m ln

)()(θθθθ-----=?t t t t t

(2)实际干燥过程

111111V V V V ++=

各段i Q ,i t ,m ?,不同

实验八干燥实验

实验八 干燥实验 一、实验目的 1. 了解洞道式循环干燥器的基本流程、工作原理和操作技术。 2. 掌握恒定条件下物料干燥速率曲线的测定方法。 3. 测定湿物料的临界含水量X C ,加深对其概念及影响因素的理解。 4. 熟悉恒速阶段传质系数K H 、物料与空气之间的对流传热系数α的测定方法。 二、实验内容 1. 在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其 影响因素。 2. 测定恒速阶段物料与空气之间的对流传热系数α和传质系数K H 。 三、基本原理 干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。干燥 操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的 机理。由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。概括起来 说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚 度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。目 前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大 多采用实验的方法。 干燥实验的目的是用来测定干燥曲线和干燥速率曲线。为简化实验的影响因素,干燥 实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料, 且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不 变。 本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。测定单位时间内湿物料的质量 变化,实验进行到物料质量基本恒定为止。物料的含水量常用相对与物料总量的水分含量, 即以湿物料为基准的水分含量,用ω来表示。但因干燥时物料总量在变化,所以采用以干 基料为基准的含水量X 表示更为方便。ω与X 的关系为: X =-ωω 1 (8—1) 式中: X —干基含水量 kg 水/kg 绝干料; ω—湿基含水量 kg 水/kg 湿物料。 物料的绝干质量G C 是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。 干燥曲线即物料的干基含水量X 与干燥时间τ的关系曲线,它说明物料在干燥过程中,干 基含水量随干燥时间变化的关系。物料的干燥曲线的具体形状因物料性质及干燥条件而 变,但是曲线的一般形状,如图(8—1)所示,开始的一小段为持续时间很短、斜率较 小的直线段AB 段;随后为持续时间长、斜率较大的直线BC ;段以后的一段为曲线

洞道干燥实验说明书

洞道干燥实验装置使用说明书 洞道干燥实验装置使用说明书 一、实验装置主要用途及功能 化工原理实验教学:干燥动力学曲线的测定、水-空气系统传热系数测定; 科学研究:本装置还可用于各类非热敏性物料的结合水、非结合水与平衡水含量的实验测定,以及气流干燥过程的热力学特性与热、质同时传递过程的实验研究;由下图可知,本实验装置主要由风机、电加热器、温度控制器、干燥室、风管等设备所组成。空气由风机鼓入电加热器,加热升温后经列管换热器再进入干燥室对物料进行干燥,循环风量由干燥室中的热球风速仪测量。离开干燥室的尾气,经碟阀再返回风机进口循环使用。循环空气温度可通过温度控制器自动调节,以保持在恒定干燥条件下进行实验。空气湿度可由相对湿度计间接获取(读取室温和相对湿度,计算后获得湿度),也可由干燥室前后的干、湿球温度计间接测定(查表读取)。加热空气流量可由碟阀开度来调节。 本实验的湿物料采用特制的无胶纤维纸板,所以有较强的吸水性。操作时将纸板直接放在干燥室内的电子天平托架上进行干燥,电子天平可连续显示湿纸板的重量。因而通过电子天平可直接读取湿纸板任一时刻干燥后的结果,计算出纸板在一定的时间间隔内的失重,即为纸板在这一段时间内所蒸发的水分量。 二、实验装置的主要技术性能指标 1、该装置主要由干燥器、列管换热器、离心风机、热球风速仪、电子天平、电加热器、液体流量计、温控仪表、开关、指示灯等组成。 2、装置整体外形尺寸:长×宽×高1700 mm×500 mm×1200mm。 3、装置总配电要求:AC220V,3.5kw,16A。 4、水分干燥速率:0.005-0.020gcm-2 min-1。 5、气流干燥室断面尺寸:宽×高140×200mm。 6、列管换热器(列管总外表面积0.20m2,19-φ18×1.5mm,长度400/500mm)。 7、转子流量计:水量LZB-10(16-160)L/h。 8、循环风及风量测量: ●离心风机:2800rpm,风量550 m3/h,风压120mmH2O,效率66%,轴功率0.37kw。 ●风量可调范围0-300 m3/h;风速:主管0-10m/s,箱内0-6m/s

流化床干燥实验——流化床和洞道干燥----实验报告

流化床和洞道干燥综合实验 一、实验目的 1. 了解流化床、洞道干燥装置的基本结构、工艺流程和操作方法。 2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。 3. 掌握根据实验干燥曲线求取干燥速率曲线以及恒速阶段干燥速率、临界含水量、平 衡含水量的实验分析方法。 4. 实验研究干燥条件对于干燥过程特性的影响。 二、基本原理 在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数,通常地,其干燥特性数据需要通过实验测定而取得。 按干燥过程中空气状态参数是否变化,可将干燥过程分为恒定干燥条件操作和非恒定干燥条件操作两大类。若用大量空气干燥少量物料,则可以认为湿空气在干燥过程中温度、湿度均不变,再加上气流速度以及气流与物料的接触方式不变,则称这种操作为恒定干燥条件下的干燥操作。 2.1. 干燥速率的定义 干燥速率定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量,即: -c G dX dw U A d A d τ τ = =kg/(m 2/s) 式中,U -干燥速率,又称干燥通量,kg/(m 2 s ); A -干燥表面积,m 2 ; W -汽化的湿分量,kg ; τ -干燥时间,s ; Gc -绝干物料的质量,kg ; X -物料湿含量,kg 湿分/kg 干物料,负号表示X 随干燥时间的增加而减少。 2.2. 干燥速率的测定方法

(1)将电子天平开启,待用。 (2)将快速水分测定仪开启,待用。 (3)将0.5~1kg 的红豆(如取0.5~1kg 的绿豆/花生放入60~70℃的热水中泡30min ,取出,并用干毛巾吸干表面水分,待用。 (4)开启风机,调节风量至40~60m 3 /h ,打开加热器加热。待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,每过4min 取出四颗红豆的物料,同时读取床层温度。将取出的湿物料在快速水分测定仪中测定,得初始质量G i 和终了质量G ic ,则物料中瞬间含水率为: i ic i ic G -G X = G 计算出每一时刻的瞬间含水量X i ,然后将X i 对干燥时间i τ作图,如图1,即为干燥曲线。 图1恒定干燥条件下的干燥曲线 上述干燥曲线还可以变换得到干燥速率曲线。由已测得的干燥曲线求出不同i dX 下的斜率 i i dX d τ,再由式11-1计算得到干燥速率U ,将U 对X 作图,就是干燥速率曲线,如图2 所示。

化工原理干燥实验报告

北京化工大学 学生实验报告 院(部):化学工程学院 姓名:王敬尧学号: 2010016068 专业:化学工程与工艺班级:化工1012班 同组人员:雷雄飞、雍维 课程名称:化工原理实验 实验名称:流化床干燥实验 实验日期: 2013.6.4 北京化工大学

干燥实验 一、摘要 本实验在了解沸腾流化床干燥器的基本流程及操作方法的基础上,通过沸腾流化床干燥器的实验装置测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线。 干燥实验中通过计算含水率、平均含水率、干燥速率来测定干燥速率曲线和含水量、床层温度与时间的关系曲线;流化床实验中通过计算标准状况下空气体积、使用状态下空气体积、空气流速来测定流化床压降与气速曲线。 二、实验目的 1、了解流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度时间变化的关系曲线。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶 段的传质系数k H及降速阶段的比例系数K X。 三、实验原理 1、流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线(如图)。 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处的流速即被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。C点处的流速被称为起始流

化工原理干燥实验报告.doc

化工原理干燥实验报告 一、摘要 本实验在了解沸腾流化床干燥器的基本流程及操作方法的基础上,通过沸腾流化床干燥器的实验装置测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线。 干燥实验中通过计算含水率、平均含水率、干燥速率来测定干燥速率曲线和含水量、床层温度与时间的关系曲线;流化床实验中通过计算标准状况下空气体积、使用状态下空气体积、空气流速来测定流化床压降与气速曲线。 二、实验目的 1、了解流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度时间变化的关系曲线。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数kH及降速阶段的比例系数KX。 三、实验原理 1、流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得

到流化床床层压降与气速的关系曲线(如图)。 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处的流速即被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。C点处的流速被称为起始流化速度(umf)。 在生产操作过程中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2、干燥特性曲线 将湿物料置于一定的干燥条件下,测定被那干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(见下图)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速

干燥实验报告

北京化工大学 实验报告 课程名称:干燥实验实验日期:2012-5 班级:化工0906 姓名:郭智博 同组人:常成维尉博然黄金祖学号:200911175 干燥实验 一、摘要 本实验在了解沸腾流化床干燥器的基本流程及操作方法的基础上,通过沸腾流化床干燥器的实验装置测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线。 干燥实验中通过计算含水率、平均含水率、干燥速率来测定干燥速率曲线和含水量、床层温度与时间的关系曲线;流化床实验中通过计算标准状况下空气体积、使用状态下空气体积、空气流速来测定流化床压降与气速曲线。 二、实验目的 1、了解流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度时间变化的关系曲线。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶 段的传质系数k H及降速阶段的比例系数K X。 三、实验原理 1、流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线(如图)。 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从

床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处的流速即被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。C点处的流速被称为起始流化速度(u mf)。 在生产操作过程中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2、干燥特性曲线 将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(见下图)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图,即为干燥速率曲线(见下下图)。干燥过程可分以下三个阶段。

常压洞道干燥实验

实验八常压洞道干燥实验 一. 实验目的 1.学习干燥曲线和干燥速率曲线,加深对干燥操作过程及其机理的理解。 2.学习干、湿球温度湿度计的使用方法。 3.通过实物了解干燥操作中废气循环的流程和概念。 4.实验研究恒速干燥速率,临界湿含量,平衡湿含量随其影响因素的变化规律。 二、实验流程 三. 实验方法及步骤 (一)实验前的准备工作 1. 将被干燥物料试样进行充分的浸泡。图1 实验装置流程图 1.中压风机; 2.孔板流量计; 3. 空气进口温度计; 4.重量传感器; 5.被干燥物料; 6.加热器; 7.干球温度计; 8.湿球温度计;9.洞道干燥器;10.废气排出阀;11.废气循环阀;12.新鲜空气进气阀;13.干球温度显示控制仪表; 14.湿球温度显示仪表;15.进口温度显示仪表;16.流量压差显示仪表;17.重量显示仪表;18.压力变送器。

2. 向湿球温度湿度计的附加蓄水池内,补充适量的水,使池内水面上升至适当位置。 3. 将被干燥物料的空支架安装在洞道内。 4. 调节新空气入口阀到全开的位置。 (二) 装置的实验操作方法 1. 按下电源开关的绿色按键,在按风机开关按钮,开动风机。 2. 调节三个蝶阀到适当的位置,将空气流量调至指定读数。 3. 在温度显示控制仪表上,改变到参数的设定,按下加热开关,让电热器通电。 4. 干燥器的流量和干球温度恒定达5分钟之后并且数字显示仪显示的数字不在增长,即 可开始实验。此时,读取数字显示仪的读数作为试样支撑架的重量(G D)。 5. 将被干燥物料试样取出,控去浮挂在其表面上的水份(使用呢子物料时,最好用力挤 去所含的水分,以免干燥时间过长。将支架从干燥器内取出,再将支架插入试样 内直至尽头)。 6. 将支架连同试样放入洞道内,并安插在其支撑杆上。注意不能用力过大。 7. 立即按下秒表开始计时,并记录显示仪表的显示值。然后每隔一段时间记录数据一次 ( 记录总重量和时间),直至减少同样时间重量的减少是恒速阶段所用时间的8倍时,即可结束实验。

北京化工大学-干燥实验报告

e北京化工大学 实验报告 课程名称:化工原理实验实验日期:2012.5.9 班级:化工0903班姓名:徐晗 同组人:高秋,高雯璐,梁海涛装置型号:FFRS-Ⅱ型 流化干燥实验 一、摘要 本实验通过空气加热装置测定了空气的干、湿球温度,通过孔板流量计测定了空气的流量,并采用湿小麦为研究对象,对其进行干燥,分别记录了物料温度、床层压降、孔板压降等参数,测定了小麦的干燥曲线、干燥速率曲线,以及流化床干燥器中小麦的流化曲线。实验中通过Excel作图并进行了实验结果分析。 关键词:流化床干燥含水量床层压降速率曲线 二、实验目的 1. 了解流化床干燥器的基本流程及操作方法。 2.掌握流化床流化曲线的测定方法、测定流化床床层压降与气速的关系曲线。 3.测定物料含水量及床层温度随时间变化的关系曲线。 4.掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数k H及降速阶段的比例系数K x。 三、实验原理 1.流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线。如图1所示。 图1 流化曲线 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加

(进入BC阶段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处得流速被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而使沿CA’变化。C点处的流速被称为起始流化速度(u mf)。 在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2.干燥特性曲线 将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(如图2所示)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图,即为干燥速率曲线(如图3所示)。干燥过程可分为以下三个阶段。 图2 物料含水量、物料温度与时间的关系 图3 干燥速率曲线 (1)物料预热阶段(AB段) 在开始干燥前,有一较短的预热阶段,空气中部分热量用来加热物料,物料含水量随时

洞道干燥计算机实验

洞道干燥实验装置说明书 天津大学化工基础实验中心2013.06 一、实验目的 1.练习并掌握干燥曲线和干燥速率曲线的测定方法。 2.练习并掌握物料含水量的测定方法。 3.通过实验加深对物料临界含水量Xc 概念及其影响因素的理解。 4.练习并掌握恒速干燥阶段物料与空气之间对流传热系数的测定方法。 5.学会用误差分析方法对实验结果进行误差估算。 二、实验内容 1.在固定空气流量和空气温度条件下,测绘某种物料的干燥曲线、干燥速率曲线和该物料的临界含水量。 2.测定恒速干燥阶段该物料与空气之间的对流传热系数。 三、实验原理 当湿物料与干燥介质接触时,物料表面的水分开始气化,并向周围介质传递。根据介质传递特点,干燥过程可分为两个阶段。 第一阶段为恒速干燥阶段。干燥过程开始时,由于整个物料湿含量较大,其物料内部水分能迅速到达物料表面。此时干燥速率由物料表面水分的气化速率所控制,故此阶段称为表面气化控制阶段。这个阶段中,干燥介质传给物料的热量全部用于水分的气化,物料表面温度维持恒定(等于热空气湿球温度),物料表面的水蒸汽分压也维持恒定,干燥速率恒定不变,故称为恒速干燥阶段。 第二阶段为降速干燥阶段。当物料干燥其水分达到临界湿含量后,便进入降速干燥阶段。此时物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速率,干燥速率由水分在物料内部的传递速率所控制。称为内部迁移控制阶段。随着物料湿含量逐渐减少,物料内部水分的迁移速率逐降低,干燥速率不断下降,故称为降速干燥阶段。 恒速段干燥速率和临界含水量的影响因素主要有:固体物料的种类和性质、固体物料层的厚度或颗粒大小、空气的温度、湿度和流速以及空气与固体物料间的相对运动方式等。 恒速段干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据。本实验在恒定干燥条件下对帆布物料进行干燥,测绘干燥曲线和干燥速率曲线,目的是掌握恒速段干燥速率和临界含水量的测定方法及其影响因素。 1.干燥速率测定 τ τ??≈ = S W Sd dW U ' ' (1) 式中:U —干燥速率,kg /(m 2 ·h ); S —干燥面积,m 2 ,(实验室现场提供); τ?—时间间隔,h ; 'W ?—τ?时间间隔内干燥气化的水分量,kg 。 2.物料干基含水量 ' ' 'Gc Gc G X -= (2) 式中:X —物料干基含水量,kg 水/ kg 绝干物料; 'G —固体湿物料的量,kg ; 'Gc —绝干物料量,kg 。 3. 恒速干燥阶段对流传热系数的测定 tw w tw r t t Sd r dQ Sd dW Uc )('' -= ==αττ w tw t t r Uc -?=α (3) 式中:α—恒速干燥阶段物料表面与空气之间的对流传热系数,W/(m 2 ·℃); Uc —恒速干燥阶段的干燥速率,kg/(m 2 ·s ); w t —干燥器内空气的湿球温度,℃; t —干燥器内空气的干球温度,℃; tw r —w t ℃下水的气化热,J/ kg 。 4.干燥器内空气实际体积流量的计算 由节流式流量计的流量公式和理想气体的状态方程式可推导出:

干燥速率曲线的测定

一、实验目的 1、熟悉厢式干燥器的构造和操作; 2、测定在恒定干燥条件(即热空气温度、湿度、流速不变,物料与气流的接触方式不变)下的湿物料干燥曲线和干燥速率曲线; 3、定该物料的临界湿含量X 0; 4、掌握有关测量和控制仪器的使用方法。 二、实验原理 当湿物料与干燥介质相接触时,物料表面的水分开始气化,并向周围介质传递。根据干燥过程中不同期间的特点,干燥过程可分为两个阶段。 第一个阶段为恒速干燥阶段。在过程开始时,由于整个物料的湿含量较大,其内部的水分能迅速地达到物料表面。因此,干燥速率为物料表面上水分的气化速率所控制,故此阶段亦称为表面气化控制阶段。在此阶段,干燥介质传给物料的热量全部用于水分的气化,物料表面的温度维持恒定(等于热空气湿球温度),物料表面处的水蒸汽分压也维持恒定,故干燥速率恒定不变。 第二个阶段为降速干燥阶段,当物料被干燥达到临界湿含量后,便进入降速干燥阶段。此时,物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速率,干燥速率为水分在物料内部的传递速率所控制。故此阶段亦称为内部迁移控制阶段。随着物料湿含量逐渐减少,物料内部水分的迁移速率也逐渐减少,故干燥速率不断下降。 恒速段的干燥速率和临界含水量的影响因素主要有:固体物料的种类和性质;固体物料层的厚度或颗粒大小;空气的温度、湿度和流速;空气与固体物料间的相对运动方式。 恒速段的干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据。本实验在恒定干燥条件下对帆布物料进行干燥,测定干燥曲线和干燥速率曲线,目的是掌握恒速段干燥速率和临界含水量的测定方法及其影响因素。 1、干燥速率的测定 τ τ??≈= S W Sd dW U ' ' (7-1) 式中:U —干燥速率,kg/(m 2·h); S —干燥面积,m 2,(实验室现场提供); τ?—时间间隔,h ; 'W ?—τ?时间间隔内干燥气化的水分量,kg 。 2、物料干基含水量

干燥特性曲线实验报告

洞道干燥特性曲线测定实验 一、实验目的 1. 了解洞道干燥装置和流化床干燥装置的基本结构、工艺流程和操作方法。 2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。 3. 掌握根据实验干燥曲线求干燥速率曲线、恒速阶段干燥速率、临界含水量、平衡含水量的实验分析方法。 4. 实验研究干燥条件对于干燥过程特性的影响。 二、基本原理 在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数。由于实际生产中被干燥物料的性质千变万化,因此对于大多数具体的被干燥物料而言,其干燥特性数据常常需要通过实验测定而取得。 1. 干燥速率的定义 干燥速率定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量,即: C G dX dW U Ad Ad ττ= =- kg/(m2s) (11-1) 式中,U -干燥速率,又称干燥通量,kg/(m2s );A -干燥表面积,m2;W -汽化的湿分量,kg ; τ -干燥时间,s ;Gc -绝干物料的质量,kg ;X -物料湿含量,kg 湿分/kg 干物料 2. 干燥速率的测定方法 (1)将电子天平开启,待用。将快速水分测定仪开启,待用。 (2)将0.5~1kg 的湿物料(如取0.5~1kg 的黄豆放入60~70℃的热水中泡30min ,取出,并用干毛巾吸干表面水分,待用。 (3)开启风机,调节风量至40~60m3/h ,打开加热器加热。待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,每过4min 取出10克左右的物料,同时读取床层温度。将取出的湿物料在快速水分测定仪中测定,得初始质量i G 和终了质量iC G 。则物料中瞬间含水率 iC iC i i G G G X -= 。 计算出每一时刻的瞬间含水率i X ,然后将i X 对干燥时间i τ作图,如图11-1,即为干燥曲线。

实验5、干燥实验讲解

实验洞道干燥实验 一、实验目的 1、了解气流常压干燥设备的基本流程和工作原理; 2、掌握物料干燥速率曲线的测定方法; 3、了解操作条件改变对不同的干燥阶段所产生的影响。 二、实验原理 干燥是最常见的有效除湿的方法之一,干燥速率受众多因素的影响,主要与物料及其含水性质、干燥介质的性质、流速和干燥介质与湿物料接触方式等因素有关,一般由实验测定。 三、实验装置 图1 实验装置流程图 1.中压风机; 2.孔板流量计; 3. 空气进口温度计; 4.重量传感器; 5.被干燥物料; 6.加热器; 7.干球温度计;8.湿球温度计;9.洞道干燥器;10.废气排出阀;11.废气循环阀; 12.新鲜空气进气阀;13.干球温度显示控制仪表;14.湿球温度显示仪表; 15.进口温度显示仪表;16.流量压差显示仪表;17.重量显示仪表;18.压力变送器。

四、实验步骤 (一)实验前的准备工作 1. 将被干燥物料试样进行充分的浸泡。 2. 向湿球温度湿度计的附加蓄水池内,补充适量的水,使池内水面上升至 适当位置。 3. 将被干燥物料的空支架安装在洞道内。 4. 调节新空气入口阀到全开的位置。 (二) 装置的实验操作方法 1. 按下电源开关的绿色按键,在按风机开关按钮,开动风机。 2. 调节三个蝶阀到适当的位置,将空气流量调至所需读数。 3. 在温度显示控制仪表上,利用(<,>,︿)键调节实验所需温度值,sv窗 口显示,此时pv窗口所显示的即为干燥器的干球温度值,按下加热开关,让电热器通电。 4. 干燥器的流量和干球温度恒定达5分钟之后,即可开始实验。此时,读 )。 取数字显示仪的读数作为试样支撑架的重量(G D 5. 将被干燥物料试样从水盆内取出,控去浮挂在其表面上的水份(使用呢子 物料时,最好用力挤去所含的水分,以免干燥时间过长。将支架从干燥 器内取出,再将支架插入试样内直至尽头)。 6. 将支架连同试样放入洞道内,并安插在其支撑杆上。注意:不能用力过大, 使传感器受损。 7. 立即按下秒表开始计时,并记录显示仪表的显示值。然后每隔一段时间 记录数据一次( 记录总重量和时间 ),直至减少同样时间重量的减少是恒速阶段所用时间的8倍时,即可结束实验。 注意: 最后若发现时间已过去很长,但减少的重量还达不到所要求的克数,则可立即记录数据。 注意:放入物料后不要在点击〈读取操作条件〉,那样会使实验程序进入错误状态,无法正常数据的采集和处理。

洞道干燥实验

洞道干燥实验 一、实验目的 1、学习干燥曲线和干燥速率曲线及临界湿含量的实验测定方法,加深对干燥操作过程及其机理的理解; 2、学习干、湿球温度计的使用方法,学习被干燥物料与热空气之间对流传热系数的测定方法; 3、通过实物了解干燥操作中废气循环的流程和概念; 二、实验原理 当湿物料与干燥介质相接触时,物料表面的水分开始气化,并向周围介质传递。根据干燥过程中不同期间的特点,干燥过程分为两个阶段。 第一阶段为恒速干燥阶段。在过程开始时,由于整个物料的湿含量较大,其内部的水分能迅速地达到物料表面。因此,干燥速率为物料表面上水分的气化速率所控制,故此阶段也称为表面气化控制阶段。在此阶段,干燥介质传给物料的热量全部用于水分的气化,物料表面的温度维持恒定(等于热空气湿球温度),物料表面处的水蒸气分压也维持恒定,故干燥速率恒定不变。 第二阶段为降速干燥阶段,当物料被干燥达到临界湿含量后,便进入降速阶段。此时,物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速率,干燥速率为水分在物料内部的传递速率所控制,故此阶段亦称为内部迁移控制阶段。水着湿含量逐渐减少,物料内部水分的迁移速率也逐渐减小,故干燥速率不断下降。恒速段的干燥速率和临界含水量的影响因素主要有:固体物料的种类和性质;固体物料层的厚度或颗粒大小;空气的温度、湿度和流速;空气与固体物料间的相对运动方式。 恒速阶段的干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据,本实验在恒定干燥条件下对浸透水的帆布进行干燥,测定干燥曲线和干燥速率曲线,目的是掌握恒速段干燥速率和临界含水量的测定方法及其影响因素。 1、干燥速率的测定 ττ??-=-=X S G d dX S G U C C 式中:U — 干燥速率(kg/m 2.s ) S — 干燥面积(m 2) Δτ— 时间间隔(s ) G C — 绝干物料量(kg ) ΔX — 时间间隔内干燥气化的干基含水量 2、被干燥物料的重量G D T G G G -= 式中:G T — 被干燥物料和支撑架的总质量(kg ) G D — 式样支撑架的质量(kg ) 3、物料的干基含水量X C C G G G X -= 4、恒速阶段的对流传热系数α

洞道干燥计算机实验

洞道干燥实验装置说明书 天津大学化工基础实验中心 2013.06

一、实验目的 1.练习并掌握干燥曲线和干燥速率曲线的测定方法。 2.练习并掌握物料含水量的测定方法。 3.通过实验加深对物料临界含水量Xc概念及其影响因素的理解。 4.练习并掌握恒速干燥阶段物料与空气之间对流传热系数的测定方法。 5.学会用误差分析方法对实验结果进行误差估算。 二、实验内容 1.在固定空气流量和空气温度条件下,测绘某种物料的干燥曲线、干燥速率曲线和该物料的临界含水量。 2.测定恒速干燥阶段该物料与空气之间的对流传热系数。 三、实验原理 当湿物料与干燥介质接触时,物料表面的水分开始气化,并向周围介质传递。根据介质传递特点,干燥过程可分为两个阶段。 第一阶段为恒速干燥阶段。干燥过程开始时,由于整个物料湿含量较大,其物料内部水分能迅速到达物料表面。此时干燥速率由物料表面水分的气化速率所控制,故此阶段称为表面气化控制阶段。这个阶段中,干燥介质传给物料的热量全部用于水分的气化,物料表面温度维持恒定(等于热空气湿球温度),物料表面的水蒸汽分压也维持恒定,干燥速率恒定不变,故称为恒速干燥阶段。 第二阶段为降速干燥阶段。当物料干燥其水分达到临界湿含量后,便进入降速干燥阶段。此时物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速率,干燥速率由水分在物料内部的传递速率所控制。称为内部迁移控制阶段。随着物料湿含量逐渐减少,物料内部水分的迁移速率逐降低,干燥速率不断下降,故称为降速干燥阶段。 恒速段干燥速率和临界含水量的影响因素主要有:固体物料的种类和性质、固体物料层的厚度或颗粒大小、空气的温度、湿度和流速以及空气与固体物料间的相对运动方式等。 恒速段干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据。本实验在恒定干燥条件下对帆布物料进行干燥,测绘干燥曲线和干燥速率曲线,目的是掌握恒速段干燥速率和临界含水量的测定方法及其影响因素。

干燥速率曲线测定实验

实验7 干燥速率曲线测定实验 一、实验目的 ⒈ 了解洞道干燥器的结构,练习操作。 ⒉ 在恒定空气温度和流量条件下,测定物料的干燥曲线和干燥速率曲线。 ⒊ 加深对物料临界含水量Xc 的概念及其影响因素的理解。 ⒋ 测定恒速干燥阶段物料与空气之间对流传热系数。 二、实验原理 当湿物料与干燥介质相接触时,物料表面的水分开始气化,并向周围介质传递。根据干燥过程中不同期间的特点,干燥过程可分为两个阶段。 第一个阶段为恒速干燥阶段。在过程开始时,由于整个物料的湿含量较大,其内部的水分能迅速地达到物料表面。因此,干燥速率为物料表面上水分的气化速率所控制,故此阶段亦称为表面气化控制阶段。在此阶段,干燥介质传给物料的热量全部用于水分的气化,物料表面的温度维持恒定(等于热空气湿球温度),物料表面处的水蒸汽分压也维持恒定,故干燥速率恒定不变。 第二个阶段为降速干燥阶段,当物料被干燥达到临界湿含量后,便进入降速干燥阶段。此时,物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速率,干燥速率为水分在物料内部的传递速率所控制。故此阶段亦称为内部迁移控制阶段。随着物料湿含量逐渐减少,物料内部水分的迁移速率也逐渐减少,故干燥速率不断下降。 恒速段的干燥速率和临界含水量的影响因素主要有:固体物料的种类和性质;固体物料层的厚度或颗粒大小;空气的温度、湿度和流速;空气与固体物料间的相对运动方式。 恒速段的干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据。本实验在恒定干燥条件下对帆布物料进行干燥,测定干燥曲线和干燥速率曲线,目的是掌握恒速段干燥速率和临界含水量的测定方法及其影响因素。 ⒈ 干燥速率的测定 τ τ??≈ =S W Sd dW U ' ' (7-1) 式中:U —干燥速率,kg /(m 2 ·h ); S —干燥面积,m 2 ,(实验室现场提供); τ?—时间间隔,h; 'W ?—τ?时间间隔内干燥气化的水分量,kg 。 ⒉ 物料干基含水量 ' ' 'Gc Gc G X -= (7-2) 式中:X —物料干基含水量,kg 水/ kg 绝干物料;

洞道干燥实验数据及处理 禁止盗版

实验数据记录及数据处理结果示例 (干燥面积A=0.117?0.084?2=0.02m 2 ,绝干物料Gc=0.0257kg) 干基含水量X= Gc Gc 绝干物料质量 绝干物料质量 总物料质量 - 干燥速率u= 累计时间 干燥面积总失水量?A w 1 数据记录处理及结果: 序号 累计时间/min 失水量w 1/kg ?10-3 总失水 量w 2/kg ? 10-3 总物料质量/kg ?10-3 干基含水量X/kg 水/kg 干料 干燥速率u/kg/(m 2.s )?10-3 1 0 0.0 0.0 70.2 0.52278 0.00000 2 1 0.7 0.7 69.5 0.50759 0.75922 3 2 0.7 1.4 68.8 0.49241 0.75922 4 3 0.6 2.0 68.2 0.47939 0.65076 5 4 0.5 2.5 67.7 0.46855 0.54230 6 5 0.8 3.3 66.9 0.45119 0.86768 7 6 0.6 3.9 66.3 0.43818 0.65076 8 7 0.9 4.8 65.4 0.41866 0.97614 9 8 0.7 5.5 64.7 0.40347 0.75922 10 9 0.7 6.2 64.0 0.38829 0.75922 11 10 0.7 6.9 63.3 0.37310 0.75922 12 11 0.7 7.6 62.6 0.35792 0.75922 13 12 0.6 8.2 62.0 0.34490 0.65076 14 13 0.7 8.9 61.3 0.32972 0.75922 15 14 0.6 9.5 60.7 0.31670 0.65076 16 15 0.5 10.0 60.2 0.30586 0.54230 17 16 0.6 10.6 59.6 0.29284 0.65076 18 17 0.5 11.1 59.1 0.28200 0.54230 19 18 0.6 11.7 58.5 0.26898 0.65076 20 19 0.4 12.1 58.1 0.26030 0.43384 21 20 0.4 12.5 57.7 0.25163 0.43384 22 21 0.4 12.9 57.3 0.24295 0.43384 23 22 0.5 13.4 56.8 0.23210 0.54230 24 23 0.3 13.7 56.5 0.22560 0.32538 25 24 0.4 14.1 56.1 0.21692 0.43384 26 25 0.4 14.5 55.7 0.20824 0.43384 27 26 0.3 14.8 55.4 0.20174 0.32538 28 27 0.4 15.2 55.0 0.19306 0.43384 29 28 0.3 15.5 54.7 0.18655 0.32538 30 29 0.3 15.8 54.4 0.18004 0.32538

洞道干燥实验数据处理

洞道干燥实验 1. 调试实验的数据见表2, 表中符号的意义如下: S ─干燥面积, [m 2] G C ─绝干物料量, [g] R ─空气流量计的读数, [kPa] T o ─干燥器进口空气温度, [℃] t ─试样放置处的干球温度, [℃] t w ─试样放置处的湿球温度, [℃] G D ─试样支撑架的重量, [g] G T ─被干燥物料和支撑架的"总重量", [g] G ─被干燥物料的重量, [g] T ─累计的干燥时间, [S] X ─物料的干基含水量, [kg 水/kg 绝干物料] X AV ─两次记录之间的被干燥物料的平均含水量, [kg 水/kg 绝干物料] U ─干燥速率, [kg 水/(s ·m 2)] 2. 数据的计算举例 以表2所示的实验的第i 和i +1组数据为例 (1) 公式: 被干燥物料的重量 G: D i T i G G G -=, ,[g] (1) D 1i T 1i G G G -=++, ,[g] (2) 被干燥物料的干基含水量 X: c c i i G G G X -= , [kg 水/kg 绝干物料] (3) c c 1i 1i G G G X -= ++ ,[kg 水/kg 绝干物料] (4) 两次记录之间的平均含水量 X AV 2 X X X 1 i i AV ++= ,[kg 水/kg 绝干物料] (5) 两次记录之间的平均干燥速率 I 1i i 1i 3C 3C T T X X S 10G dT dX S 10G U --? ?-=??-=++-- ,[kg 水/(s ·m 2)] (6) 干燥曲线X ─T 曲线,用X 、T 数据进行标绘,见图 2。

干燥实验数据计算实例

计算实例: 空气物理性质的确定: 流量计处空气温度t o =35.1(℃),查表得空气密度ρ=1.11(Kg/m 3 ) 湿球温度t w =38.6(℃),t w ℃下水的气化热 (kJ/ kg) γtw =2590。 以第二组数据为例 1、计算干基含水量X=(总重量G T -框架重量G D -绝干物料量G C )/绝干物料量G C =(149.4-88.5-24.48)/24.48=1.4877(kg/kg ) 2、计算平均含水量 X A V =两次记录之间的平均含水量=(1.4306+1.4877)/2 =1.4592(kg 水/kg 绝干物料) 3、计算干燥速率U=-(绝干物料量GC/干燥面积S )*(△X/△T ) =-(24.48*0.001/0.0232))*(1.4306-1.4877)/(3*60) =0.0003352 [kg/(s ·m 2)] 4、绘制干燥曲线(X —T 曲线)和干燥速率曲线(U —X AV 曲线) 5、计算恒速干燥阶段物料与空气之间对流传热系数α[W/m 2℃] w tw t t r Uc -=1000**α Uc —恒速干燥阶段的干燥速率,kg/(m 2?s )=0.0003352 γtw —t w ℃下水的气化热,kJ/ kg 。查表P351,t c -t=374-38.6=335.4℃.查表得,γ tw =2590 α=3.352*0.0001*2590*1000/(70-38.6)=27.65 6、计算干燥器内空气实际体积流量V t (m 3/ s) 。1.3527370273*0258.027327300++=++?=t t V V t t 其中: =0.0287 V t0—t 0℃时空气的流量,m 3/ s ;12 .1560*2*001256.0*65.02000=????=ρP A C V t =0.0258 t 0—流量计处空气的温度,t 0=35.1℃;t —干燥器内空气的温度,t =70℃; C 0—流量计流量系数,C 0=0.65; A 0—流量计孔节孔面积,m 2。001256.004.0*4 14.342200===d A π d 0—孔板孔径,d 0=0.04 m 。ΔP —流量计压差,ΔP =560 Pa 。 ρ— t 0时空气密度kg/m 3,ρ=1.12。 7、计算干燥器内空气流速U (m/s )。 U=V t /A=0.0287/0.030=0.9567(m/s )。 其中:A —洞道截面积(m 2) A =0.15*0.20=0.030 (m 2)

12洞道干燥实验

洞道干燥实验(基本型) 一、实验目的: 1.了解常压干燥设备的构造,基本流程和操作; 2.测定物料干燥速率曲线及传质系数; 3.研究气流速度对干燥速率曲线的影响;(选作) 4.研究气流温度对干燥速率曲线的影响。(选作) 二、实验原理及说明: 1、干燥曲线 干燥曲线即物料的干基含水量x与干燥时间θ的关系曲线。它说明物料在干燥过程中,干基含水量随干燥时间的变化关系: x=F(θ) (1)典型的干燥曲线如图3-11所示。 实验过程中,在衡定的干燥条件下,测定物料总质量随时间的变化,直到物料的质量恒定为止。此时物料与空气间达到平衡状态,物料中所含水分即为该空气条件下的平衡水分。然后将物料的绝干质量,则物料的瞬间干基含水量为:

影响干燥速率的因素很多,它与物料性质和干燥介质(空气)的情况有关。在干燥条件下不变的情况下,对同类物料,当厚度和形状一定时,速率Na 是物料干基含水量的函数。Na = f(X) (5) 3、传质系数(恒速干燥阶段) 干燥时在恒速干燥阶段,物料表面与空气之间的传热速率和传质速率可分别以下面两式表示: ()w t t Ad dQ -=αθ (6) ()H H K Ad dw w H -=θ (7) Q ——由空气传给物料的热量(KJ ) α——对流传热系数(Kw/m 2 ℃) t 、t w ——空气的干、湿球温度(℃) K H ——以湿度差为推动力的传质系数(kg/m 2s △H ) H w 、H ——与t 、t w 相对应的空气的湿度(kg/kg 干空气) 当物料一定,干燥条件恒定时,α,K H 的值也保持恒定。在恒速干燥阶段物料表面保持足够润湿,干燥速率由表面水分汽化速率所控制。若忽略以辐射及传导方式传递给物料的热量,则物料表面水分汽化所需要的潜热全部由空气以对流的方式供给,此时物料表面温度即空气的湿球温度t w ,水分汽化所需热量等于空气传入的热量,即: Q w w d d r =? r w —t w 时水的 汽化潜热(KJ/Kg ) (8) 因此有: θ θd A dQ d A d r w w ?=?? 即: ()()w w h w t t H H K r -=-α (9) H H t t r K w w w H --? = α (10) 对于水—空气干燥传质系统,当被测气流的温度不太高,流速>5m/s 时,上式(10)又可简化为: 09 .1α = H K (11) K H 的计算: (1)查H 、H w : 由干湿球温度t 、t w ,根据湿焓图或计算出相应的H ,H w ; (2)计算流量计处的空气性质: 因为从流量计到干燥室虽然空气的温度、相对湿度发生变化,但其湿度未变。因此,我们可以利用干燥室处的H 来计算流量计处的物性。已知测得孔板流量计前气温是t L ,则: 流量计处湿空气的比体积:v H =(2.83×10-3+4.56×10-3H)(t+273) [kg 水/m 3干气] 流量计处湿空气的密度是:ρ=(1+H )/v H [kg/m 3湿气] (3)计算流量计处的质量流量m[kg/s]: 测得孔板流量计的压差计读数为ΔP [Pa]:

相关主题
文本预览
相关文档 最新文档