当前位置:文档之家› PANEL部分工作原理

PANEL部分工作原理

PANEL部分工作原理
PANEL部分工作原理

第一章 LCD显示器架构

一.LCD构成

LCD主要由以下几个部分构成:

1、主板:用于外部RGB信号的输入处理,并控制PANEL工作。

2、A dapter电源适配器:用于将90~240V的交流电压转变为12V

的直流电源供给显示器工作。

3、I nverter逆变器:用于将主板或Adapter输出的12V的直流电压

转变为PANEL需要的高频的1500~1800V的高压交流电,用

于点亮PANEL的背光灯。

4、P ANEL部分:该部分为液晶显示用模块,它是液晶显示器的核

心部件,其包含液晶板和驱动电路。

二.LCD整机框图

LCD显示器的整体模块图如图1-1。

图1-1 LCD整机框图

在以下各章中,将对构成LCD Monitor的各部分的工作原理进行研究。首先对核心部分Panel的工作原理进行介绍,再对其他各部分电路进行分析。

第二章 PANEL部分工作原理

Panel部分即是液晶显示模块LCM,它是整个液晶显示器的核心部分。它是一种将液晶显示器件、连接件、集成电路、PCB线路板、背光源、结构件配在一起的一体化组件。本章将对液晶显示的基本原理,液晶的驱动以及液晶模块的构成进行简要的介绍。

第一节什么是液晶(Liquid Crystal)

液晶显示器是以液晶为基本材料的组件,由于液晶是介于固态和液态之间,不但具有固态晶体光学特性,又具有液态流动特性,所以液晶可以说是处于一个中间相的物质。而要了解液晶的所产生的光电效应,我们必须先来解释液晶的物理特性,包括它的黏性(visco-sity)与弹性(elasticity)和其极化性(polarizalility)。液晶的黏性和弹性从流体力学的观点来看,可说是一个具有排列性质的液体,依照作用力量的不同方向,会有不同的效果。就好像是将一簇细短木棍扔进流动的河水中,短木棍随着河水流着,起初显得凌乱,过了一会儿,所有短木棍的长轴都自然的变成与河水流动的方向一致,达到排列状态,这表示黏性最低的流动方式,也是流动自由能最低的一个物理模型。

此外,液晶除了有黏性的特性反应外,还具有弹性的表现,它们都是对于外加的力,呈现出方向性的特点。也因此光线射入液晶物质中,必然会按照液晶分子的排列方式传播行进,产生了自然的偏转现象。至于液晶分子中的电子结构,都具备着很强的电子共轭运动能力,所以,当液晶分子受到外加电场的作用,便很容易的被极化产生感应偶极性(induced dipolar),这也是液晶分子之间互相作用力量的来源。而一般电子产品中所用的液晶显示器,就是利用液晶的光电效应,藉由外部的电压控制,再通过液晶分子的光折射特性,以及对光线的偏转能力来获得亮暗差别(或者称为可视光学的对比),进而达到显像的目的。

第二节液晶的电光特性

液晶同固态晶体一样具有特异的光学各向异性。而且这种光学各向异性伴随分子的排列结构不同将呈现不同的光学形态。例如,选择不同的初期分子取向和液晶材料,将分别得到旋光性、双折射性、吸收二色性、光散射性等各种形态的光学特性。一旦使分子取向发生变化,这些光学特性将随之变化,于是在液晶中传输的光就受到调制。由此可见,变更分子的排列状态即可实行光调制。

由于液晶是液体,分子排列结构不象固态晶体那样牢固。另一方面液

晶又具有显著的介电各向异性△ε和自发偶极子P0。一旦给液晶层施加上电压,则在介电各向异性△ε和自发偶极子P0和电场的相互作用下,分子排列状态很容易发生变化。因此利用外加电场即可改变液晶分子取向,产生调制。这种由电场产生的光调制现象叫做液晶的电光效应(electro-optic effect)。它是液晶显示的基础。

这种光学特性可通过表面处理、液晶材料选择、电压及其频率的选择获得。

第三节液晶显示原理

1.液晶的物理特性

液晶的物理特性是:当通电施加上电场时,液晶排列变得有秩序,使光线容易通过;不通电时排列混乱,阻止光线通过。让液晶如闸门般地阻隔或让光线穿透,从技术上说,液晶面板包含了两片相当精致的无钠玻璃薄板,中间夹着一层液晶。当光束通过这层液晶时,液晶本身会一排排站立或扭转呈不规则状,因而阻隔或使光束顺利通过。大多数液晶都属于有机复合物,由长棒状的分子构成。在自然状态下,这些棒状分子的长轴大致平行。但将液晶倒入一个经精良加工的开槽平面,液晶分子长轴会顺着槽排列。所以,假如那些槽非常平行,则各分子也是完全平行的。

2.液晶显示的主要工作模式

由液晶显示的四种基本原理而派生出多种工作模式。主要有:TN模式、STN模式、FLC模和液晶-聚合物模式等。由于液晶显示的众多不同分支,本章只介绍目前应用得最为广泛的TFT-LCD中使用的TN模式。

TN模式是在1971年由Schadt等人发表的,它是在液晶显示中最早获得广泛应用的一种模式。由于它具有电压低,功耗小,寿命长以及易于实现多灰度、全彩色显示等特点,使它始终成为液晶显示的主流工作模式。它是利用液晶材料的旋光性,采用电压调光的工作原理。

TN模式液晶显示器件的基本构成:在涂有透明电极的两块玻璃之间夹有介电各向异性为正的向列相液晶,液晶厚度约为几微米,电极表面做平行取向处理。为使液晶分子成90°扭曲排列,上下基板的取向方向为正交设置,同时,为防止液晶层出现畴区等缺陷,在取向上要设置1°~2°的预倾角,并在液晶中掺入能形成单一右旋或左旋的手性材料。盒子外侧的两片偏振片有两种设置方式:一是起偏器光轴和检偏器光轴分别平行(或垂直)于入射侧和出射侧分子取向方向,呈正交状态,称之为常白方式。另一种是起偏器光轴平行(或垂直)于入射侧分子取向方向,而检偏器的光轴垂直(或平行)于出射侧分子取向,两偏振片光轴呈平行状态。称之为常黑模式。

3. TN型液晶显示(LCD)原理

LCD技术是把液晶灌入两个列有细槽的平面之间。这两个平面上的槽

互相垂直(相交成90度)。也就是说,若一个平面上的分子南北向排列,则另一平面上的分子东西向排列,而位于两个平面之间的分子被强迫进入一种90°扭转的状态。由于光线顺着分子的排列方向传播,所以光线经过液晶时也被扭转90°。但当液晶上加一个电压时,分子便会重新垂直排列,使光线能直射出去,而不发生任何扭转

LCD是依赖极化滤光器(片)和光线本身,自然光线是朝四面八方随机发散的。极化滤光器实际是一系列越来越细的平行线。这些线形成一张网,阻断不与这些线平行的所有光线。极化滤光器的线正好与第一个垂直,所以能完全阻断那些已经极化的光线。只有两个滤光器的线完全平行,或者光线本身已扭转到与第二个极化滤光器相匹配,光线才得以穿透。(如图2-1)

图2-1 光线穿透示意图

LCD正是由这样两个相互垂直的极化滤光器构成,所以在正常情况下应该阻断所有试图穿透的光线。但是,由于两个滤光器之间充满了扭曲液晶,所以在光线穿出第一个滤光器后,会被液晶分子扭转90度,最后从第二个滤光器中穿出。另一方面,若给液晶加一个电压,分子又会重新排列并完全平行,使光线不再扭转,所以正好被第二个滤光器挡住。总之,加电将光线阻断,不加电则使光线射出。(如图2-2)通常显像面积上亮区域都比黑区域大,所以这种方式有利于省电。

图2-2光线阻断示意图

从液晶显示器的结构来看,无论是笔记本电脑还是桌面系统,采用的LCD显示屏都是由不同部分组成的分层结构。LCD由两块玻璃板构成,厚共约1mm,其间由包含有液晶(LC)材料的5μm均匀间隔隔开。因为液晶材料本身并不发光,所以在显示屏两边都设有作为光源的灯管,而在

液晶显示屏背面有一块背光板(或称匀光板)和反光膜,背光板是由荧光

物质组成的在灯管照射下可以再发射光线,其作用主要是提供均匀的背景

光源。背光板发出的光线在穿过第一层偏振过滤层之后进入包含成千上万

水晶液滴的液晶层。液晶层中的水晶液滴都被包含在细小的单元格结构

中,一个或多个单元格构成屏幕上的一个像素。在玻璃板与液晶材料之间

是透明的电极,电极分为行和列,在行与列的交叉点上,通过改变电压进

而改变液晶的旋光状态。液晶材料的作用类似于一个个小的光阀。在液晶

材料的周边是控制电路部分和驱动电路部分。当LCD 中的电极产生电场

时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的扭转折

射,然后经过第二过滤层的过滤,最后在屏幕上显示出来。

4.彩色再现:

目前对于液晶显示而言,主要采用加法混色法来再现彩色。根据三色

学说和颜色混合定律,很容易理解加法混色的工作原理。加法混色(如图

2-3所示)采用红(Red )、绿(Green )、蓝(Blue )三基色,简称RGB 混

色法。混合色的光谱为:

()()()()()[]

λλλλαλb b g g r r T K T K T K I I ?+?+???=0 2-1

()λr T ,()λg T ,()λb T 分别为对应脚注颜色的光谱, r K 、g K 、b K 分别表

示各种颜色强度的系数,α是入射光利用率的系数,()λ0I 表示入射光的

光谱。

图2-3 加法混色三基色透射光谱

彩色液晶显示器一般是通过控制所施加的电压大小,使各K 值在0~1之

间变化,从而控制所显示的颜色。

第四节 液晶显示器件的采光技术

液晶显示器件是被动型显示器件,它本身不会发光,是靠调制外界光实现显示的。外界光是显示器件进行显示的前提条件。因此在液晶显示装配、使用中,要解决采光问题。目前液晶显示的采光技术分为自然光采光技术和外光源设置技术。而外光源设置有背光源,前光源和投影光源三种技术。这里主要介绍TFT-LCD的背光源技术。

背光源采光技术的两大任务是:

1. 使液晶显示器件在有无外界光的环境下都能够使用;

2. 提高背景光亮度,改善显示效果。

液晶显示背光源的特点:

1.亮度均匀一致,能形成均匀的面光源;

2.亮度高,并可调亮度范围;

3.平板、薄型,适于装配;

4.重量轻;

5.光色悦目、基色准确、对液晶显示器件有较好的透过能力;

6.功耗低,效率高;

在目前的TFT-LCD中采用的是冷阴极荧光灯(CCF)为背光源的。这是一种依靠冷阴极气体放电,激发荧光粉而发光的光源。掺有少量水银的稀薄气体在高电压下会产生电离,被电离的气体的二次电子发射,轰击水银蒸气,使水银蒸气被激发,发射出紫外线,紫外线激发涂布于管壁的荧光粉层,使其发光。由于电致发光的荧光粉品种齐全,转化率高,所以这种光源可制成三基色准确、色温高、亮度高的理想光源。冷阴极荧光灯大都作成管型,所以CCF是管型线光源,用作液晶显示背光源时,必须将其变为面光源。要实现线光源到面光源的转变,需要在液晶显示模块后加背光板,这样可以使光源均匀的通过滤色膜产生RGB三基色,通过液晶材料的光调制就可以实现彩色显示效果。

第五节液晶显示器件的驱动

液晶的光学传输特性取决于分子排列状态,改变分子的排列状态就可以改变液晶层光学传输特性,这就是液晶电子学的应用基础。而液晶分子排列的改变可以通过电、磁、热等外部场的作用来实现。我们把这种通过

表2-1

外场作用来改变分子排列状态的过程称为液晶显示器的驱动。液晶显示器常用的驱动方式分为如表2-1所示的几种类型。

目前,在LCD Monitor方面,使用的都是采用TFT(薄膜式晶体管)LCD,它采用的是有源矩阵的驱动方式。因此本节将先对TFT器件进行简要的介绍,再着重介绍有源矩阵的驱动方式。

1.薄膜式有源矩阵液晶显示器介绍

由于普通的矩阵液晶显示器的电光特性对多路、视频活动图象显示是很难满足要求的,因为每个像素都等效于一个无极电容,显示中会产生串扰。为了改善,又会限制驱动的路数。因此在每个像素上设计一个非线性的有源器件,使每个像素可以被独立驱动,从而克服了串扰,解决了大容量多路显示遇到的困难,提高了画面质量,使多路显示画面成为可能。

有源矩阵液晶显示器件根据有源器件的种类可分为如表2-2所列的多种类型。

表2-2 有源液晶显示器件分类

图2-3 TFT有源矩阵驱动LCD的基本结构

以下将对主流的a-siTFT三端有源矩阵液晶显示器件进行介绍。

a-siTFT是一种非晶硅-薄膜晶体管类型的三端有源矩阵液晶显示器件。它制作容易,基板玻璃成本低,导通比大,可靠性高,容易大面积化。因此受到广泛应用。图2-3为其基本结构。

同一般液晶显示器件类似,a-SiTFT液晶显示器件也是在两片玻璃之间封入液晶,而且液晶显示器件就是普通的TN型方式。不过,其玻璃基板则与普通液晶显示器件大不相同,在下玻璃板上要配制上扫描线和寻址线(即行、列线),将其组合成一个个矩阵,在其交点上再制作上TFT有源器件和像素电极,如图2-4所示。

图2-4 TFT有源矩阵液晶显示屏的电极排布

2. TFT-LCD的驱动原理

由于TFT-LCD矩阵结构是由一块带有TFT三端元件阵列和像素电极阵列的基板与另一块带有彩色膜和公共电极的基板,以及由此两基板叠合后夹入的液晶层构成,此外,此方式的扫描线和信号线都设置在同一个三端子元件的基板上。扫描线与该行上所有TFT元件的栅极相连,而信号线与该列上所有的TFT元件的源电极相连。TFT-LCD的等效电路如图2-5所示。在以行顺序驱动方式依次扫描行电极过程中,当某行一旦被选通,则该行上所有的TFT开关元件同时被行脉冲闭合,变成低阻(Ron)导通状态。与行扫同步,各列信号电荷分别通过列电极从保持电路送入与导通元件TFT相连的各相应像素电容,信号电压被记录在像素电容和储存电容上。当行选一结束,TFT开关元件即断开(处于高阻Roff状态),被记录的信号电压将被保持并持续驱动像素液晶,直到下帧扫描到来之前。称此驱动为准静态驱动。由此工作过程可看出,扫描电压只做TFT元件的开关电压之用,而驱动液晶的电压是信号电压通过导通TFT元件对像素电容充电后在像素电极和公共电极之间形成的电位差V LC。V LC大小决定于信号电压

Vs。可见,采用TFT元件作有源矩阵驱动,可实现开关电压和驱动电压分开,从而可达到开关元件的开关特性和液晶像素的电光特性的最佳组合,可获得高像质显示。

a TFT-LCD等效电路

b 单像素TFT工作原理

图2-5 TFT工作原理

第六节 TFT液晶显示器件写入机理

液晶显示器件写入机理,即液晶显示器件是依靠什么方法将人们所需显示的信息用来作用于器件,使器件达到显示的目的。

1.液晶显示器件写入的条件

众所周知,所有液晶显示器件的显示原理是依靠外场(包括电、热、光等)作用于初始排列的液晶分子上。依靠液晶分子的偶极矩和各向异性的特点,使液晶分子的初始排列发生变化,通过液晶器件的外界光被调制,使液晶显示器件发生明、暗、遮、透、变色等效果达到显示目的。但是要想实现某一特性的显示目的,则需要满足以下两个基本条件:

⑴足够强的电(热、光)信号作用于液晶,使其改变其初始排列;

⑵每个电(热、光)信号均可以在一段时内作用于一个或几个像素单元。使像素能够组合成一个视觉信号。由于直流电场将会导致液晶材料的电化学反映和电极劣化、老化,因此只能在像素电极上建立交流电场,而且应该尽可能减少交流电场中的直流成分,实用中应保持直流成分在几十毫伏以下,所施加的交流电场的强弱以其有效值来表示。只有所施加的交流电

场有效值大于液晶显示器件的阀值电压时,该像素才能呈显示状态。由于液晶显示器件有类型、规格、型号的不同,对所施加电压的波形、相位、频率、占空比、有效值都有不同的要求。而对于像素控制方面的要求,则包含有以下两层意思:

首先,由于器件像素电极连线的排布不同,要求外部必须配置相应的硬件,以提供驱动电压波形。

其次,按照一定的指令将若干个显示像素组合成不同的数字、字符、图形或图象。

2.液晶显示器件的写入机理

在满足液晶显示器件写入基本条件下,信息信号作用与不同类型的液晶显示器件的机理也不一样。这里只介绍有源矩阵薄膜晶体管(TFT)液晶显示器件的写入机理。对于其他类型液晶显示器件的写入机理将不做介绍。

TFT-LCD的写入机理:以行扫描信号和列寻址信号控制作用于被写入像素电极上的薄膜晶体管有源电路,使有源电路产生足够大的通断比(Ron/Roff),从而间接控制像素电极间呈TN型的液晶分子排列,达到显示的目的。该写入的特点就是经TFT有源电路间接控制的TN型器件显示像素,可实现高路数多路显示和视频图象显示。

第七节 TFT液晶显示器件的驱动方法

依据液晶显示器件写入机理和显示像素电极的排布方式即可确定对其进行驱动的基本条件。液晶显示器件的种类繁多,驱动的方法也不同。但是无论哪种类型的器件,还是使用什么不同的驱动方法都是以调整施加到像素电极上的电压、相位、频率、峰值、有效值、时序、占空比等一系列参数、特性来建立起一定的驱动条件,实现显示。

主要的驱动有很多,在此仅介绍TFT-LCD所采用的有源矩阵驱动法。

由于有源矩阵液晶显示器件的每个像素点上都有一套有源器件,所以对这种器件的驱动是对每个像素点上的有源器件的驱动。

图2-6为TFT液晶显示驱动的时序图。

从图中可以看出,外电路不能直接将电压施加到液晶像素上,施加在

图2-6 TFT驱动时序波形图

像素上的电压决定于TFT晶体管的特性。当晶体管开、关比达到106Ω以上时,则可以满足液晶功能像素对通断比的要求。

晶体管TFT是这样工作的,当TFT栅极G扫描被选通时,V

G

被接入一

个正高脉冲,此时同步输入选址的源极信号是一个围绕一个中心值为V

C

的永远低于V

G 选通脉冲幅值的选址数据电压V

LD

,TFT晶体管被打开。从源

极到接通液晶像素的漏极之间呈一通路,电压被加到液晶像素电极和补偿电容电极上。这时即使施加电场撤掉,由于电容作用,其像素上施加的电压也将保持相当时间,直至下次选通的到来。若设置的电容值使其像素选通达半帧时间,同时使下半帧寻址信号以V

C

进行反相,则可以实现:

⑴如图2-6所示,使加在像素上的驱动波形呈交流态;

⑵驱动路数与TFT晶体管特性有关,而与液晶电光响应特性无关。这将彻底解决液晶多路驱动难题;

⑶从图中波形还可以看出,这种驱动方式没有半选通波形,因此也就没有交叉效应以及对比度下降等缺陷;

⑷此外,这种驱动也不受液晶电光响应速度的影响,可以显示视频活动图象,没有闪烁也没有拖尾。

第八节液晶显示驱动器原理

液晶显示器驱动器是为液晶显示器件的像素提供电场的器件。由于液晶显示像素上施加的必须是交流电场,因此要求液晶显示驱动器的驱动输出必须是交流驱动;电场电压有效值在液晶像素的阀值电压附近时,液晶将呈现较弱的电光效应,此态将会影响液晶显示器件的显示对比度。因此液晶显示驱动器要能够控制驱动输出的电压幅值,用以实现对比度控制。

液晶显示驱动器通过对其输出到液晶显示器件上的电位信号进行相位、峰值、频率等参数的调制来建立交流电场,以实现显示效果。应用上的液晶显示驱动器有静态驱动器和动态驱动器。点阵式液晶显示器件都是采用动态驱动器。驱动器又有行驱动器和列驱动器之分。

第九节液晶显示驱动系统和液晶显示模块的构成

1. 液晶显示驱动系统

利用多片液晶驱动器组合成一个点阵液晶显示器件的驱动系统。这个系统包括有行驱动器,列驱动器,偏压电路,驱动电源发生器以及温度补偿电路等。

在大规模点阵液晶显示器件的驱动电路中主要的控制时序信号是不变的。行驱动脉冲LCP与列驱动器的锁存脉冲LP是同步的,所以这两个信号是合为一个LP信号的。显示数据的传输方式将根据列驱动器组的数据传输方式而定。常见的有串行数据传输方式和并行数据传输方式。

偏压电路:在动态驱动方式中,偏置电压的设置是非常重要的。根据

所需的偏置电压系数,把液晶驱动电压均分为不同的电压档,这就是偏压生成电路的功能。偏压生成电路实际上是等分电压电路,常用的有两种方式:电阻分压电路和运放分压电路。

温度补偿电路一般是利用电阻、二极管或三极管等元件的温度系数在分压电路中的影响,来补偿液晶材料由于环境温度的影响而使电压阀值电压下降,从而影响显示的对比度。

驱动电源(DC-DC)电路:液晶的驱动是建立一定电压的电场来实现的,为了保证驱动器的控制信号能够与控制系统的信号电平兼容,驱动器的逻辑电源都使用了CMOS芯片的逻辑电源。这个电源也作为液晶的驱动电源的一侧。但凭这个电源使点阵液晶显示器件产生显示效果还是不够的,它需要有更大的驱动电压。为了获得这个电压,驱动器还需要一个液晶驱动电源,通常是向负电压方向增加。若控制系统的电源有合适的负电源则直接使用即可。若没有则可以利用现有的DC-DC变换器从逻辑电源转换成负电源。由于液晶可以等效成一个电容,属电压型驱动,耗电流较小,所以DC-DC变换器所需的工作电流比较小,可以直接使用IC驱动。

2. 液晶显示模块的构成

由于点阵型液晶显示器件的引线众多,而且要将这些引线从玻璃上引到驱动系统的PCB板上,这在工艺上不是普通用户所能掌握的。所以液晶显示器件的制造商们将液晶显示器件产品进一步开发,制作出相应的驱动PCB板和压框,然后用压框和导带或导电橡胶条将液晶显示器件固定在PCB板上。PCB板上含有完整的驱动器系统,电路接口包含了驱动器系统所需要的控制信号和电源。这就叫液晶显示模块(LCM)。

液晶显示模块电路中的控制信号是用来接收控制系统发来的数据信号和操作信号的。这些信号有:

FLM:帧信号; LP:锁存脉冲信号; CP:移位脉冲信号;

M:交流驱动波形; D(i):显示数据。

图2-7为Panel的内部结构框图。

图2-7 LCM内部结构框图

第三章主板部分电路分析

由图3-1可知,主板是由PANEL控制逻辑,亮度控制逻辑,DC to DC转换逻辑,传输TTL电平信号到LCD显示模块电路等组成。

图3-1 主板框图

1、主板上各主要IC芯片描述:

①MCU:8051单片机,其主要作用有:电源控制,OSD控制,频率计

算,RS232通信等。

②GMZAN1:集成ADC、OSD、SCALER,把计算机输入的RGB模拟

视频信号转换为数字信号,并通过差补缩放处理,输出至液晶显示器PANEL时序控制电路。

③LM2596:直流电源变换器,用于将12V输入转变为5V的直流输出。

④AIC1084:也是直流电源变换器,用于将5V输入转变为3.3V的直流

输出。

⑤24LC21:1KB EEPROM,用于存储表示显示设备标志的DDC数据,

其中包含有:设备的基本参数,制造厂商,产品名称,最大行频,可支持的分辨率等等。

⑥24C04:4KB EEPROM,用于存储Auto Config数据,白平衡数据,

POWER KEY状态及POWER ON计数数据等。

2、MCU控制电路

MCU控制接口电路如附图1所示。其中U302为8051系列单片机,其ROM的容量为64K,RAM容量为512Bytes。用于计算频率,探测模式切换,RS232通讯,电源控制,屏幕显示菜单控制等,在软件控制下,MCU由P1.6和P1.7脚分别产生一个Backlight_EN和Panel_EN信号用于点亮PANEL上的背光灯和控制PANEL工作。

①MCU各主要引脚功能定义如下表3-1:

②MCU项目定义:

运行于微控制器上的GMZAN1控制软件,需要完成以下操作:

1)初始化LCD控制板元件至用户定义的开机设定:

a)把工厂缺省寄存器设定存在ROM中;

b)用户设定存在内部EEPROM;

c)用户设定初始化时设为工厂缺省值。

2)自动检测模式切换,在模式切换时对相应的元件编程。

3)如果视频模式是未知的,则显示错误信息。

4)检测输入视频线的正确连接,如果没有检测到有效连

接,则对应输入视频源显示错误信息。其程序响应如下:

a)无连接,显示“无信号,检查输入”信息;

b)错误的输入,显示“不支持的视频模式”信息。

5)响应用户的按键输入。处理器将周期性的调用RTI中断服务子程序,以检查是否按下一个有效的按键,其程序响应如下:

a)在用户输入的基础上显示相应的菜单;

b)根据用户的按键修改寄存器的值;

c)把修改的值存入EEPROM并且写入相应的设备。

6)响应电源键。

a)如果当前是开的,则关闭系统。

b)如果当前是关的,则打开系统。

③MCU接口电路:

微控制器与GMZAN1通过Pin2-Pin5组成的4-bits串行口进行通信;Pin7为数据传输提供控制信号HFS,在HFS为高电平时,允许通信,HFS为低电平时,Pin2-Pin5不输出;Pin6为输出为时钟信号HCLK,它为串行通信提供同步时钟。该串行口工作时Pin5-Pin2用作HDA TA3-HDATA0,在读/写数据的指令下数据的传送顺序为D3-D0,D7-D4,D11-D8;每12位的数据/地址采用3个时钟,而不是用12个时钟进行传输。

微控制器MCU的Pin10为复位脚,其外接电路如图3-2所示:

如电路图,当显示器开机时开始对电容C103充电,在R105上产生压降,A点电位升高,产生一个上升沿的触发信号,使MCU复位,使得微控制器从程序寄存器的00地址开始执行。

微控制器的Pin19为NGA_CON信号输入端,与PC输入直接相连用于判断信

号线是否接好以及输入信号的模式是否是合法的。如果无连接或输入不支持模式将会在屏幕上显示相应的信息。

图3-2 RST信号输入

微控制器MCU的Pin14外部中断INT0与GMZAN1的中断控制器相连,在外部PC输入信号发生改变时,由GMZAN1产生中断信号给MCU,MCU响应该中断,进入输入信号处理子程序,将输入信号转换为与显示器匹配的RGB信号输出。

微控制器MCU的Pin11和Pin13的串行通信口RXD和TXD被用于RS232通信,在工厂模式下调整显示器白平衡时与外部的数据传输用。在调整白平衡时,MCU 通过串行通信口从外部缓冲区读取白平衡调整数据。再通过Pin16和Pin17输出到U300存储。U300为24C04的4KB EEPROM。

8051MCU与U300通信用的Pin16和Pin17被定义为I2C串行总线接口,U300为A T24C系列E2PROM芯片。

I2C总线简介以及与AT24C系列E2PROM的接口:

①I2C总线简介

微控制器与U300的通信采用的是I2C总线。它是由MCU的Pin16和Pin17组成。I2C总线是一种串行数据总线,只有两个信号线,一根是数据线SDA,另一根是时钟线SCL。在I2C总线上传送一个数据字节由8位组成。总线对每次传送数据的字节数没有限制,但是每个字节后必须跟一位应答位。数据传送首先传送最高位(MSB),数据传送的格式按下图3-3进行。

图3-3 I2C总线上的数据传送

首先由主机发送一个启动信号“S”(SDA在SCL高电平时由高电平跳变为低电平),然后由主机发送一个字节的数据。启动信号后的第一个字节数据具有特殊的含义:高七位是从机的地址,第8位是传送的发向:0表示写,1表示读。被寻址的从机设备按传送的方向位设置为对应的工作方式。标准的IIC总线的设备都有一个7位地址,所有连接在IIC总线上的设备都接收启动信号后的第一个字节,并将接收到的地址与自己的地址进行比较,如果地址相符则为主机要寻址的从机,应在第9位答时钟脉冲向SDA线送出低电平作为应答。除了第一个字节是通过呼叫地址或10位从机地址之外,第二个字节开始即数据字节。数据传送完毕,由主机发出停止信号“P”(SDA在SCL高电平期间由低电平跳变为高电平)。

②A T24C系列串行EEPROM

AT24C系列串行E2PROM具有I2C总线接口功能,功耗小,宽电源电压(根据不同型号2.5V~6.0V),工作电流约为3mA,静态电流随电源电压不同为30μA~110μA,其存储容量见表1-2。由于I2C总线可挂接多个串行接口器件,在I2C总线中每个器件应有唯一的器件地址,按I2C总线规则,器件地址为7位数据(即一个I2C总线系统中理论上可挂接128个不同地址的器件),它和1位数据方向位构成一个器件寻址字节,最低位D0为方向位(读/写)。器件寻址字节中的最高4位(D7~D4)为器件型号地址,不同的I2C总线接口器件的型号地址是厂家给定的,如AT24C系列E2PROM 的型号地址皆为1010,器件地址中的低3位为引脚地址A2A1A0,对应器件寻址字节中的D3、D2、D1位,在硬件设计时由连接的引脚电平给定。而对于那些容量大于256K的EEPROM,由于8位的寻址范围不能满足要求需要采用页面寻址,在AT24C 系列中对页面寻址位采取占用器件引脚地址(A2、A1、A0)的办法,凡在系统中引脚地址用作页地址后,该引脚在电路中不得使用,作悬空处理。AT24C系列串行E2PROM的器件地址寻址字节如表3-2所示,表中P0P1P2表示页面寻址位。

表3-2AT24C系列串行E2PROM参数

图3-4为8051单片机与24C04的硬件连接电路图。图中R300,R301,R330为上拉电阻,A0-A2地址引脚接低电平,因此其地址的高7位为1010000。WP端连接MCU的WP,由MCU控制读写。

24C04的读写操作:

对24C04 E2PROM的读写操作完全遵守I2C总线的主收从发和主发从收的规则。

连续写操作连续写操作是对E2PROM连续装载n个字节数据的写入操作,n 随型号不同而不同,一次可装载字节数见表3-2。

SDA线上连续写操作数据状态如图3.5。

图3-5SDA线连续写操作数据状态

图3-4MCU与24C04连接电路图

24C04片内地址在接收到每一个数据字节地址后自动加1,故装载一页以内规定数据字节时,只须输入首地址,若装载字节多于规定的最多字节数,数据地址将“上卷”,前面的数据被覆盖。

连续读操作连续读操作时为了指定首地址,需要两个伪字节写来给定器件地址和片内地址,重复一次启动信号和器件地址(读),就可读出该地址的数据。由于字节写中并未执行写操作,地址没有加1。以后每读取一个字节,地址自动加1。在读操作中接收器接收到最后一个数据字节后不返回肯定应答(保持SDA高电平)随后发停止信号。连续读操作SDA 上数据状态如图3-6。

图3-6连续读操作SDA上数据状态

微控制器的Pin37-Pin43用于与按键及LED小板相连,Pin37用于当MCU工作于节能状态时使相应的橙色LED指示灯点亮;Pin38用于控制MCU正常工作状态下的绿灯;Pin39-Pin43分别与四个按键相连用于用户调整显示器的设置和开/关机。其具体的实现是通过MCU软件来控制的。

8051MCU的Pin8-Pin9在软件的控制下产生BACKLIGHT_EN和PANEL_EN信号。BACKLIGHT_EN信号输出至INVERTER,用来控制其是否工作,是否产生高压交流电点亮PANEL背光灯;PANEL_EN信号输出至PANEL控制其是否工作。只有这两个信号同时有效才能使显示器正常工作。

⒊GMZAN1控制电路

⑴GMZAN1芯片介绍

GMZAN1为SVGA/XGA LCD显示器图形处理器,包括GAMMA 矫正,绿色复合同步信号解码电路,增强OSD功能等。

①特点:

a.内含135MHz 8-bits ADC及预放大电路;

b.自适应对比度增强电路;

c.片内可编程OSD引擎;

d.整和PLL;

e.10-bits可编程GAMMA矫正;

f.支持24位色;

g.1或4个数据位接口。

②信号输入格式:

模拟信号RGB输入可达XGA/85Hz;

支持复合同步绿色信号输入(Sync On Green);

支持复合同步信号模式;

③输出格式

支持8或6-bits的PANEL接口;

单、双象素输出格式;

④自动设置/自动调整

相位、图象自动调整;

自动侦测输入格式;

⑤集成OSD显示芯片

片内内建可用户扩展字符RAM、ROM;

可扩充外部OSD支持;

支持字符与位图显示;

字符显示效果有:闪烁、镶嵌、透明等;

⑵GMZAN1功能描述

图3-7列出了GmZan1的主要功能模块。

附录1为GmZan1的引脚功能描述

图3-7GmZan1框图

①时钟恢复回路

GmZan1有一个内部的时钟恢复回路,这个回路由一个数字时钟合成器和模拟电路PLL组成。它用来产生取样时钟信号,以采集模拟的RGB 数据。这个回路锁定于输入的行同步信号,以从MCU的晶振输出的TCLK 时钟输入产生的RCLK作为参照时钟。时钟恢复回路用来调整源时钟频率(SCLK);在每个行同步信号输入的上升沿产生反馈信号。包括第一个和最后一个行同步信号都可以产生60MHz的频率。在工作电压及温度要求的范围内,可以在1ms之内实现。

当PANEL的时钟信号与源时钟信号(或一半)不同时,有一个象素时钟用来驱动PANEL。它是由一个和时钟恢复回路一样的回路产生的。它们的区别在于:源时钟信号锁定于行同步输入信号,而目的时钟信号锁定于源时钟信号。

②模/数转换器

GmZan1内部集成了3个模/数转换器(ADC),每一色一个(R、G、B)。每个ADC都是8-bits输出,用于将输入的模拟RGB信号转换成8-bits 的数字信号,分别为R0-R7、G0-G7、B0-B7。信号的连接请参照表3-3。

激光器激励原理

激光器激励原理 —固体激光器 1311310黄汉青 1311343张旭日辅导老师:

摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。介绍固体激光器的工作原理及应用,更能够加深对其的了解。本论文先从基本原理和结构介绍固体激光器,接着介绍一些典型的固体激光器,最后介绍其在军事国防、工业技术、医疗美容等三个方面的应用及未来的发展方向。 关键词:固体激光器基本原理基本结构应用 1引用 世界上第一台激光器—红宝石激光器(固体激光器)于1960年7月诞生了,距今已有整整五十年了。在这五十年时间里固体激光的发展与应用研究有了极大的飞跃,并且对人类社会产生了巨大的影响。 固体激光器从其诞生开始至今,一直是备受关注。其输出能量大,峰值功率高,结构紧凑牢固耐用,因此在各方面都得到了广泛的用途,其价值不言而喻。正是由于这些突出的特点,其在工业、国防、医疗、科研等方面得到了广泛的应用,给我们的现实生活带了许多便利。 未来的固体激光器将朝着以下几个方向发展: a)高功率及高能量 b)超短脉冲激光 c)高便携性 d)低成本高质量 现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 2激光与激光器

2.1激光 2.1.1激光(LASER) 激光的英文名——LASER,是英语词组Light Amplification by Stimulated Emission of Radiation(受激辐射的光放大)的缩写[1]。2.1.2产生激光的条件 产生激光有三个必要的条件[2]: 1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构; 2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转; 3)有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提高单色性。 3固体激光器 3.1工作原理和基本结构 在固体激光器中,由泵浦系统辐射的光能,经过聚焦腔,使在固体工作物质中的激活粒子能够有效的吸收光能,让工作物质中形成粒子数反转,通过谐振腔,从而输出激光。 如图1所示,固体激光器的基本结构(有部分结构没有画出)。固体激光器主要由工作物质、泵浦系统、聚光系统、光学谐振腔及冷却与滤光系统等五个部分组成[4]。

电路交换和分组交换(包交换)的基本原理与区别

从传输技术来说,电话网是采用电路交换方式,即电话通信的电路一旦接通后,电话用户就占用了一个信道,无论用户是否在讲话,只要用户不挂断,信道就一直被占用着。一般情况下,通话双方总是一方在讲话、另一方在听,听的一方没有讲话也占用着信道,而且讲话过程中也总会有停顿的时间。因此用电路交换方式时线路利用率很低,至少有50%以上的时间被浪费掉。而因特网的信息传送是采用分组交换方式,所谓分组交换,是把数字化的信息,按一定的长度“分组”、打“包”,每个“包”加上地址标识和控制信息,在网络中以“存储—转发“的方式传送,即遇到电路有空就传送,并不占用固定的电路或信道,因此被称为是“无连接”的方式。这种方式可以在一个信道上提供多条信息通路;此外在因特网上传送信息通常还采用数据压缩技术,被压缩的语音信息分组在到达目的地后再复原、合成为原来的语音信号送到接收端用户。因此,利用因特网传送语音信息要比电话网传送语音的线路利用率提高许多倍,这也是电话费用大大降低的重要原因。 请简述电路交换和分组交换(包交换)的基本原理与区别 电路交换 每部电话都连接到交换机上,而交换机使用交换的方法,让电话用户之间可以很方便地通信。一百多年来,电话交换机虽然经过了多次更新换代,但交换的方式一直都是电路交换。当电话机数量增多,就使用彼此连接起来的交换机来完成全网的交换工作。注意,是这种交换机采用了电路交换的方式,后来的分组交换也是采用了一样的电信网,只是不一样类型的交换机(当然协议也不同)。 从通信资源的分配角度来看,“交换”就是按照某种方式动态地分配传输线路的资源。 在使用电路交换打电话之前,先拨号建立连接:当拨号的信令通过许多交换机到达被叫用户所连接的交换机时,该交换机就向用户的电话机振铃;在被叫用户摘机且摘机信号传送回到主叫用户所连接的交换机后,呼叫即完成,这时从主叫端到被叫端就建立了一条连接。通话过程。通话结束挂机后,挂机信令告诉这些交换机,使交换机释放刚才这条物理通路。这种必须经过“建立连接--通信--释放连接”三个步骤的连网方式称为面向连接的。电路交换必定是面向连接的。 用户到交换机之间的叫用户线,归电话用户专用。交换机之间、许多用户共享的叫中继线,拥有大量的话路,正在通话的用户只占用其中的一个话路,在通话的全部时间里,通话的两个用户始终占用端到端的固定传输带宽。 以电路联接为目的的交换方式是电路交换方式。电话网中就是采用电路交换方式。我们可以打一次电话来体验这种交换方式。打电话时,首先是摘下话机拨号。拨号完毕,交换机就知道了要和谁通话,并为双方建立连接,等一方挂机后,交换机就把双方的线路断开,为双方各自开始一次新的通话做好准备。因此,我们可以体会到,电路交换的动作,就是

望远镜的原理及发展历史

望远镜的原理及发展历史 望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器。利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。又称“千里镜”。望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。望远镜第二个作用是把物镜收集到的比瞳孔直径(最大8毫米)粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。1608年荷兰人汉斯·利伯希发明了第一部望远镜。1609年意大利佛罗伦萨人伽利略·伽利雷发明了40倍双镜望远镜,这是第一部投入科学应用的实用望远镜。 17世纪初的一天,荷兰小镇的一家眼镜店的主人利伯希(Hans Lippershey),为检查磨制出来的透镜质量,把一块凸透镜和一块凹镜排成一条线,通过透镜看过去,发现远处的教堂塔尖好象变大拉近了,于是在无意中发现了望远镜的秘密。1608年他为自己制作的望远镜申请专利,并遵从当局的要求,造了一个双筒望远镜。据说小镇好几十个眼镜匠都声称发明了望远镜。 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。根据望远镜原理一般分为三种。BOSMA博冠望远镜. 一种通过收集电磁波来观察遥远物体的仪器。在日常生活中,望远镜主要指光学望远镜。但是在现代天文学中,天文望远镜包括了射电望远镜,红外望远镜,X射线和伽马射线望远镜。近年来天文望远镜的概念又进一步地延伸到了引力波,宇宙射线和暗物质的领域。或者再经过一个放大目镜进行观察。日常生活中的光学望远镜又称“千里镜”。它主要包括业余天文望远镜,观剧望远镜和军用双筒望远镜。 常用的双筒望远镜还为减小体积和翻转倒像的目的,需要增加棱镜系统,棱镜系统按形式不同可分为别汉棱镜系统(RoofPrism)(也就是斯密特。别汉屋脊棱镜系统)和保罗棱镜系统(PorroPrism)(也称普罗棱镜系统),两种系统的原理及应用是相似的。个人使用的小型手持式望远镜不宜使用过大放大倍率,一般以3~12倍为宜,倍数过大时,成像清晰度就会变差,同时抖动严重,超过12倍的望远镜一般使用三角架等方式加以固定。 与此同时,德国的天文学家开普勒也开始研究望远镜,他在《屈光学》里提出了另一种天文望远镜,这种望远镜由两个凸透镜组成,与伽利略的望远镜不同,比伽利略望远镜视野宽阔。但开普勒没有制造他所介绍的望远镜。沙伊纳于1613年─1617年间首次制作出了这种望远镜,他还遵照开普勒的建议制造了有第三个凸透镜的望远镜,把二个凸透镜做的望远镜的倒像变成了正像。沙伊纳做了8台望远镜,一台一台地观察太阳,无论哪一台都能看到相同形状的太阳黑子。因此,他打消了不少人认为黑子可能是透镜上的尘埃引起的错觉,证明了黑子确实是观察到的真实存在。在观察太阳时沙伊纳装上特殊遮光玻璃,伽利略则没有

放大电路的组成及工作原理

2、4 放大电路的组成及工作原理 参考教材:《模拟电子技术基础》孙小子张企民主编西安:西安电子科技大学出版社 一、教学目标及要求 1、通过本次课的教学,使学生了解晶体管组成的基本放大电路的三种类型,掌 握放大电路的组成元器件及各元器件的作用,理解放大电路的工作原理。 2、通过本节课的学习,培养学生定性分析学习意识,使学生掌握理论结合生活 实际的分析能力。 二、教学重点 1、共发射极放大电路的组成元器件及各元器件作用; 2、共发射极放大电路的工作原理。 三、教学难点 1、共发射极放大电路的组成元器件及各元器件作用; 2、共发射极放大电路的工作原理。 四、教学方法及学时 1、讲授法 2、1个学时 五、教学过程 (一)导入新课 同学们,上节课我们已经学习了晶体管内部载流子运动的特性以及由此引起的晶体管的一些外部特性,比如说晶体管的输入输出特性等,在这里,我要强调一下,我们需要把更多的注意力放在关注晶体管的外部特性上,而没有必要细究内部载流子的特点。由晶体管的输出特性,我们知道,当晶体管的外部工作条件不同时,晶体管可以工作在三个不同的区间。分别为:放大区、截止区、饱与区,其中放大区就是我们日常生活中较为常用的一种工作区间。大家就是否还记得,晶体管工作在放大区时所需要的外部条件就是什么不(发射结正偏,集电结反偏)?这节课,我们将要进入一个晶体管工作在放大区时,在实际生活中应用的新内容学习。 2、4放大器的组成及工作原理 一、放大的概念 放大: 利用一定的外部工具,使原物体的形状或大小等一系列属性按一定的比例扩大的过程。日常生活中,利用扩音机放大声音,就是电子学中最常见的放大。其原理框图为: 声音声音 扩音器原理框图 由此例子,我们知道,放大器大致可以分为:输入信号、放大电路、直流电源、输出信号等四部分,它主要用于放大小信号,其输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。对放大电路的基本要求:一就是信号不失真,二就是要放大。 二、基本放大电路的组成

望远镜的工作原理

望远镜的工作原理 望远镜是如何工作的 1.1 光线的聚集和图像的形成 光学望远镜是利用了两种现象: 光线的反射,由镜面产生(图1)和光线的折射,由透镜产生(图2) 图1:光线通过平面反射 折射是光线从一种介质传播到另一种介质时产生的光线弯曲。它遵守Snell定律: n1sinθi=n2sinθr (1) 这里的n是折射率,是光线所穿过的材料的特征属性: n=1.0000 理想的真空 n=1.0002 空气 n=1.5 玻璃 n实际上是光线在真空中的速度与光线在介质中的速度的比值。图2是一个n2> n1的例子。 图2:光线在两种介质的边界发生折射 图3将告诉你如何制作一个透镜。标定的距离 f 是透镜的焦距,一个位于“无限远”处的物体将成像在透镜后面距离为 f 的地方。我们在第2节中将会知道,望远镜是一些光学元件的组合。许多设计都包含折射和反射光学元件,但是为了简化后面的介绍,我们举例的望远镜只包含透镜。实际上,就我们的目的而言,反射和折射是等效的,从某种意义上说,一个人在原则上可以建造一个只使用透

镜的系统或是只使用反射镜的系统,而这两者在光学上来说是不可分辨的。当我们拿一个透镜收集来自遥远天体的光线从而得到图像的时候,就已经建造了基本的天文折射望远镜。 图3:透镜的折射 1.2 成像的大小依赖焦距的长短 注意我们到现在为止描述的折射望远镜是没有目镜的,因此它将不允许一个人直接看到它已经产生的图像,因为人类的视觉系统不适用于已经汇聚了的光线。虽然如此,我们简单的仪器实际上是个望远镜。如果想看到像是如何形成和在哪里形成的,你可以拿一片白色的纸或者一张照相底片放在焦点上。图4显示的就是两颗在天空中角距为θ的星,和它们正在被观察的样子。 图4:焦平面 由于相似三角形中θ是不改变的,所以星在图像上的分离大小与它们在天空中角距是成正比的。 图5:角距离转化为线距离 同时,从图5中可以看出: tanθ=d/fobj (2) 这里d是所成图像中星星们之间的线距离,fobj是透镜的焦距。现在,(物理学家们总爱耍一些这样的小把戏),因为这些星必然都很远,θ是如此之小, tan θ≈θ。这样, θ=d/fobj ==》1/fobj=θ/d

CO2激光器原理及应用

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 1引言 (2) 2激光 (2) 2.1激光产生的三个条件 (3) 2.2激光的特点 (3) 2.3激光器 (3) 3 CO2激光器的原理 (5) 3.1 CO2激光器的基本结构 (5) 3.2 CO2激光器基本工作原理 (7) 3.3 CO2激光器的优缺点 (8) 4 CO2激光器的应用 (9) 4.1军事上的应用 (9) 4.2医疗上的应用 (10) 4.3工业上的应用 (12) 5 CO2激光器的研究现状与发展前景 (14) 5.1 CO2激光器的研究现状 (14) 5.2 CO2激光器的发展前景 (15) 6 结束语 (17) 参考文献 (19) 致谢 (20)

摘要:本文从引言出发介绍了CO2激光技术的基本情况,简单介绍了激光和激光器的一些特点,重点介绍了气体激光器中的CO2激光器的相关应用,目前CO2激光器是用最广泛的激光器之一,它有着一些非常突出的高功率、高质量等优点。论文首先介绍了应用型CO2激光器的基本结构和工作原理,着重介绍了应用型CO2激光器在军事、医疗和工业三个主要领域的应用,最后介绍应用型CO2激光器的研究前景和现状。通过这些介绍使得人们能够加深对CO2激光器的了解和认识。 关键词: CO2激光器;基本原理;基本结构;应用; Abstract: This departure from the introduction of CO2 laser technology, introduced the basic situation, briefly introduced some of the characteristics of laser and laser to highlight the CO 2gas laser in laser-related applications, the current CO 2 laser was one of the most extensive laser, it had some very prominent high-power, high quality and so on. Paper introduced the application of CO 2 laser-type basic structure and working principle, focusing on the application type CO 2 laser in the military, medical and industrial application of the three main areas, Finally, applied research prospects for CO 2 laser and status. Through these presentations allowed people to deepen their knowledge and understanding of CO s lasers. Keywords:CO2Laser Basic Principle Basic Structure Application

运算放大器的工作原理

运算放大器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括 一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正回

显微镜和望远镜的工作原理

xx 光学显微镜是为了使肉眼看不清楚的标本影像,人们设想经过一种装置,使肉眼能够观察到该标本组织形态和其间的结构。这种设想的装置就被后人创造问世了。当前广泛应用在各种微小物体的观察、测定、分析、分类、鉴定等。在波长范围上也不限於可见光波段(4000~7000)而且(>2000)到红外(1~2u)以及用眼睛观察、显微、摄影和一般辐射检测器放大。 显微镜的分类是根据照明方法,有透射型与反射(落射)型二种。透射型显微镜是应用透射照明通过透明物体的打光方法。反射型显微镜是以物镜上方打光到(落射照明)不透明的物体上。另一种分类方法,系根据观察方法的差异,分为明视野显微镜、暗视野显微镜、相位差显微镜、偏光显微镜、干涉相位差显微镜、萤光显微镜等。每种显微镜一般又各有透射型和反射型二种。在这些显微镜中,特别是明视野显微镜是构成所有显微镜中组成最基本的基础。通过这种显微镜观察的物体,穿过透过(吸收)率、反射率,因场所不同而各不相同,这种物体被称为随照明光强度(振幅)变化振幅物体,无色透明物体只有在照明相位改变时,才能被肉眼观察到,由於明视野显微镜不能改变相位,所以对透明不染色标本不能被观察到。 倍率、数值孔径与视场数 显微镜的综合倍率是物镜倍率G1与目镜倍率G2的乘积,G=G1×G2。G1是1~100倍,G2是5~20的范围。 数值孔径(NumericalAperture)N. A.是决定物镜的分辨率、焦深、图像亮度的基本数据,如图所示,当物镜焦点对好后,物镜前透镜最边缘处的倾斜光线与显微镜光轴所交角成α,此即该物镜的半孔径角设标本数据空间的折射率为n,则N. A.=n×sinα。 n通常在空气中为1,在物镜与标本间浸入水、甘油、油脂时,该标本折射率,即随浸液不同而异。这种物镜称为浸液系物镜;如是空气时,称为乾燥系物镜。

显微镜基础知识

显微镜基础知识 第一章:显微镜简史 随着科学技术的进步,人们越来越需要观察微观世界,显微镜正是这样的设备,它突破了人类的视觉极限,使之延伸到肉眼无法看清的细微结构。 显微镜是从十五世纪开始发展起来。从简单的放大镜的基础上设计出来的单透镜显微镜,到1847年德国蔡司研制的结构复杂的复式显微镜,以及相差,荧光,偏光,显微观察方式的出现,使之更广范地应用于金属材料,生物学,化工等领域。 第二章显微镜的基本光学原理 一.折射和折射率 光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现像,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。 二.透镜的性能 透镜是组成显微镜光学系统的最基本的光学元件,物镜、目镜及聚光镜等部件均由单个和多个透镜组成。依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。 当一束平行于光轴的光线通过凸透镜后相交于一点,这个点称“焦点”,通过交点并垂直光轴的平面,称“焦平面”。焦点有两个,在物方空间的焦点,称“物方焦点”,该处的焦平面,称“物方焦平面”;反之,在像方空间的焦点,称“像方焦点”,该处的焦平面,称“像方焦平面”。 光线通过凹透镜后,成正立虚像,而凸透镜则成正立实像。实像可在屏幕上显现出来,而虚像不能。 三.影响成像的关键因素—像差 由于客观条件,任何光学系统都不能生成理论上理想的像,各种像差的存在影响了成像质量。下面分别简要介绍各种像差。 1.色差(Chromatic aberration) 色差是透镜成像的一个严重缺陷,发生在多色光为光源的情况下,单色光不产生色

常用激光器简介

几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。例如大气和宇宙通讯、相干探测和导航、超外

带你认识望远镜的结构与原理

带你认识望远镜的结构与原理 望远镜基本构造 一般来说,常规的双筒望远镜有以下几个部分组成:目镜,物镜,中间的棱镜,两个镜筒的连接部分,以及聚焦系统。根据不同的尺寸大小,放大倍率,和用途以及个人喜好,双筒望远镜又可细分为好几种类型(详见双筒望远镜类型一表)。下图是常规双筒望远镜的基本构造图:

望远镜常见问题解答 1.望远镜上的两个数字代表什么?

望远镜上的两个数字分别代表望远镜的放大倍率和物镜口径。例如10x42的双筒望远镜,代表该望远镜的放大倍率是10x,物镜口径是42mm。10x的倍率表示透过望远镜看到的物体被放大了10倍,即100米处的物体看起来是在10米处。 2.望远镜的放大倍率越大越好吗? 不是,放大倍数越大,表示远处的目标在视场中显得更大,但同时意味着实际的视场会变得更小,也就是说进入望远镜的光通量会减少,也就是说你看到的目标会变得黯淡审视模糊。同时,放大倍率过大,会造成晃动不易于手持,也会引起眼睛疲劳,不利于观察。 3.双筒望远镜能否选择变倍的? 可以选择,但最好可变倍数不要太大。变倍望远镜很方便、适合多种用途,是牺牲如下指标为代价的:价格稍高;结构复杂,容易损坏;视角一般偏小;镜片多,分辨能力稍差;逆光表现不如固定倍数,反差会低一点。 4.双筒望远镜和单筒望远镜到底哪一个好? 如同字面所示,双筒望远镜有左右对称的镜头,便于人用双眼观察。而单筒望远镜是用单眼观察。不过,我们并不能武断地认为双筒望远镜更好。一般来讲单筒望远镜的倍率比双筒望远镜高,可以将远处的物体放得更大。而双筒望远镜虽然比单筒望远镜的倍率低,但由于可以用双眼观察,可以得到立体感。同时由于倍率较低,可以用手

光学显微镜的原理及构造

光学显微镜的原理及构造显微镜是人类认识物质微观世界的重要工具,是现代科学研究工作不可缺少的仪器之一。显微镜自1666年问世以来已有300多年的历史了,其间随着科学技术不断发展,显微镜的品种不断增加,结构和性能逐步得到完善和提高。 根据不同的使用用途,光学显微镜可分为普通光学显微镜、暗视野显微镜、相差显微镜、荧光显微镜、倒置显微镜、体视显微镜、偏光显微镜等10多种。目前,世界上许多国家都可以生产光学显微镜,牌名、种类繁杂,其中德国、日本等国制造的显微镜品质、数量占优势,但价格昂贵。 对于现代的光学显微镜,包括各种简单的常规检验用显微镜、万能研究以及万能照相显微镜等,首先要认识其构造及各部件的功能,同时要掌握正确的调试、使用和保养方法,才能在实际应用中面对各种要求时以不同的显微镜检方法,充分发挥显微镜应有的功能,提高常规检验工作效率. 光学显微镜的原理和构造 随着科学技术的发展,显微镜检方法由最传统的明视野、暗视野发展出了相差法、偏光方法;荧光方法也由透射光激发进展为落射光激发,使荧光效率大为提高;微分干涉相衬方法基于偏光方法,而巧妙地利用了微分干涉棱镜,使之能应用于医学与生物学的样品,又能应用于金相样品的分析与检验。 下面以德国ZEISS公司生产的Axioplan万能研究用显微镜,简单介绍万能显微镜的基本组成部件。 1. 显微镜主机体(stand) 显微镜的主机体设计成金字塔形,而底座的截面呈T字形,使显微镜的整体相当稳固。显微镜的光学部件和机构调节部件、光源的灯室、显微照相装置、电源变压稳压器等,都可安装在主机体上或主机体内。 2. 显微镜的底座(base) 底座和主机体通常组成一个稳固的整体。底座内通常装有透射光照明光路系统(聚光、集光和反光)部件,光源的滤光片组,粗/微调焦机构,光源的视场光阑也安装在底座上。 3. 透射光光源(tranilluminator) 透射光光源由灯室(lamp housing)、灯座(lamp socket)、卤素灯(halogen lamp)、集光与聚光系统(lamp collector and lamp condenser)及其调整装置组成。 4. 透射光光源与反射光光源的转换开关(toggle switch) 这是新一代AXIO系列显微镜特有的装置,透射光和反射光可通用。当具有透/反两用的配置时,利用这一转换开关能方便而又迅速的使透射光 和反射光互相转换。在纯透射光的配置中,这一开关就改为电源开关。

2020年常用激光器简介

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,

电路交换和分组交换的区别及优缺点(知识浅析)

从多方面比较电路交换、报文交换和分组交换的主要优缺点。 答:一、电路交换的优点: 1.在通话的全部时间内用户独占分配的传输线路,采用的静态分配策略 2.通信双方建立的通路中任何一点出现故障,就需要重新拨号建立连接才可以继续通话 3.计算机网络中传输的数据往往是突发式的,并且通信时线路上的很多时候都是空闲的,会造成资源的浪费。另外,由于各异的计算机和终端的传输数据的速率不相同,采用电路交换就很难相互通信。 电路交换的缺点: 1、虽然信息传输的时延较小,但是电路的接续时间较长 电路资源被通信双方独占,整个电路利用率低 3、有呼损,即可能出现由于对方用户终端设备忙或交换网负载过重而呼叫不通 二、报文交换的优点: 1、报文交换是以报文为单位的存储转发原理,根据目的地址的不同转发到不同线路上发送 2、在报文交换的过程中,没有电路接续的过程,来自不同用户的报文可以在一条线路上以报文为单位进行多路复用,线路可以以它的最高传输能力工作,大大提高线路的利用率

3、无须预约传输带宽,动态逐段利用传输带宽对突发式数据通信效率高,通信迅速。 报文交换的缺点: 1、信息通过交换机的时延大,并且时延的变化也大 2、交换机要有能力对报文进行存储。其中有的报文可能很长,要求交换机要有较强的处理能力和存储容量。 3、报文交换不运用于即时交互式数据通信 三、分组交换的优点: 1、 优点所采用的手段 高效在分组传输的过程中动态分配传输带宽,对通信链路是逐段占用 灵活为每一个分组独力地选择转发路由 迅速以分组为为传送单位,可以不先建立连接就能向其他主机发送分组 可靠保证可靠性的网络协议,分布式多路由的分组交换网,使网络有很好的生存性 分组交换的缺点: 1、分组在各路由器存储转发时需要排队,这就会造成一定的时延。此外还无法确保通信时端到端所需要的带宽。

望远镜的基本原理

望远镜的基本原理 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。一般分为三种。 一、折射望远镜 折射望远镜是用透镜作物镜的望远镜。分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。两种望远镜的成像原理如图1所示。 图1 伽利略望远镜是物镜是凸透镜而目镜是凹透镜的望远镜。光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。其优点是镜筒短而能成正像,但它的视野比较小。把两个放大倍

数不高的伽利略望远镜并列一起、中间用一个螺栓钮可以同时调节其清晰程度的装置,称为“观剧镜”;因携带方便,常用以观看表演等。伽利略发明的望远镜在人类认识自然的历史中占有重要地位。其优点是结构简单,能直接成正像。 开普勒望远镜由两个凸透镜构成。由于两者之间有一个实像,可方便的安装分划板,并且各种性能优良,所以目前军用望远镜,小型天文望远镜等专业级的望远镜都采用此种结构。但这种结构成像是倒立的,所以要在中间增加正像系统。正像系统分为两类:棱镜正像系统和透镜正像系统。我们常见的前宽后窄的典型双筒望远镜既采用了双直角棱镜正像系统。这种系统的优点是在正像的同时将光轴两次折叠,从而大大减小了望远镜的体积和重量。透镜正像系统采用一组复杂的透镜来将像倒转,成本较高。 因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。其中以双透镜物镜应用最普遍。它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱,如图2所示。 图2

显微镜的原理和

显微镜的原理和使用方法

显微镜的原理和使用方法-装片的制作 显微镜的结构和使用 (2)显微镜的成像 ①光源(天然光或人工光源)→反光镜→光圈→物体→物镜(凸透镜)→在镜筒内形成物体放大的实像→目镜→把经物镜形成放大的实像进一步放大 ②显微镜放大倍数=物镜放大倍数×目镜放大倍数 (3)高倍显微镜的使用 ①用低倍显微镜观察 取镜与安放: a. 右手握镜臂,左手托镜座。

b. 显微镜放在实验台的前方稍偏左。 对光: a. 转动转换器,使低倍物镜对准通光孔。 b. 选一较大的光圈对准通光孔,左眼注视目境,转动反光镜,使光线通过通光孔反射到镜筒内,通过目镜,可能看到自亮的视野。 低倍镜观察: a. 把所要观察的玻片标本放在载物台上,用压片夹压住,标本要正对通光孔的中心。 b. 转动粗准焦螺旋,使镜筒缓缓下降,直到物镜接近玻片标本为止(此时实验者的眼睛应当看物镜镜头与标本之间,以免物镜与标本相撞)。

c. 左眼看目镜内,同时反向缓缓转动粗准焦螺旋,使镜筒上升,直到看到物像为止,再稍稍转动细准焦螺旋,使看到的物像更加清晰。 ②高倍镜观察 a. 移动装片,在低倍镜下使需要放大观察的部分移动到视野中央。 b. 转动转换器,移走低倍物镜,转换为高倍物镜。 c. 调节光圈,使视野亮度适宜。 d. 缓缓调节细准焦螺旋,使物像清晰 ③注意事项 a. 使用显微镜一定要严格按照取镜→安放→对光→压片→观察的程序进行。 b. 下降镜筒时,一定要用双眼从侧面注视物镜,使之接近装片,但又要防止镜头触及装片。否则会压碎装片和损坏物镜(l0x物镜的工作距离为0. 5-1 cm)。 c. 有必要使用高倍物镜时,必须先在低倍物镜下将目标移到视野的中心,然后换用高倍物镜。因为在低倍物镜下看到的物像放大倍数小,但看到的标本实际面积大,容易找到目标;与低倍物镜相比,高倍物镜下看到的物像人,同样的视野面积看到的标本的实际面积小,在装片不动的情况下,高倍物镜看到的只是低倍物镜视野的中心部分。

-放大电路的组成及工作原理

2.4 放大电路的组成及工作原理 参考教材:《模拟电子技术基础》孙小子张企民主编西安:西安电子科技大学出版社 一、教学目标及要求 1、通过本次课的教学,使学生了解晶体管组成的基本放大电路的三种类型, 掌握放大电路的组成元器件及各元器件的作用,理解放大电路的工作原理。 2、通过本节课的学习,培养学生定性分析学习意识,使学生掌握理论结合生 活实际的分析能力。 二、教学重点 1、共发射极放大电路的组成元器件及各元器件作用; 2、共发射极放大电路的工作原理。 三、教学难点 1、共发射极放大电路的组成元器件及各元器件作用; 2、共发射极放大电路的工作原理。 四、教学方法及学时 1、讲授法 2、1个学时 五、教学过程 (一)导入新课 同学们,上节课我们已经学习了晶体管内部载流子运动的特性以及由此引起的晶体管的一些外部特性,比如说晶体管的输入输出特性等,在这里,我要强调一下,我们需要把更多的注意力放在关注晶体管的外部特性上,而没有必要细究内部载流子的特点。由晶体管的输出特性,我们知道,当晶体管的外部工作条件不同时,晶体管可以工作在三个不同的区间。分别为:放大区、截止区、饱和区,其中放大区是我们日常生活中较为常用的一种工作区间。大家是否还记得,晶体管工作在放大区时所需要的外部条件是什么吗(发射结正偏,集电结反偏)?这节课,我们将要进入一个晶体管工作在放大区时,在实际生活中应用的新内容学习。 2.4放大器的组成及工作原理 一、放大的概念 放大:利用一定的外部工具,使原物体的形状或大小等一系列属性按一定的比例扩大的过程。日常生活中,利用扩音机放大声音,是电子学中最常见的放大。其原理框图为: 声音声音 扩音器原理框图 由此例子,我们知道,放大器大致可以分为:输入信号、放大电路、直流电源、输出信号等四部分,它主要用于放大小信号,其输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。对放大电路的基本要求:一是信号不失真,二是要放大。

透射电子显微镜的原理

透射电子显微镜的原理 XXX (大庆师范学院物理与电气信息工程学院 2008级物理学 200801071293 黑龙江大庆163712) 摘要:透射电子显微镜在成像原理上与光学显微镜类似。它们的根本不同点在于光学显微镜以可见光作照明束,透射电子显微镜则以电子为照明束。在光学显微镜中将可见光聚焦成像的玻璃透镜,在电子显微镜中相应的为磁透镜。由于电子波长极短,同时与物质作用遵从布拉格(Bragg)方程,产生衍射现象,使得透射电镜自身在具有高的像分辨本领的同时兼有结构分析的功能。 关键词:第一聚光镜;第二聚光镜;聚光镜阑;物镜光阑;选择区光阑;中间镜 作者简介:XXX(1988-),黑龙江省绥化市绥棱县,物理与电气信息工程学院学生。 0引言: 工业多相催化剂是极其复杂的物理化学体系。长期以来,工业催化剂的制备很大程度上依赖于经验和技艺,而难以从原子分子水平的科学原理方面给出令人信服的形成机制。为开发更高活性、选择性和稳定性的新型工业催化剂,通过各种表征技术对催化剂制备中的过程产物及最终产品进行表征是一个关键性的基础工作。在当前各种现代表征手段中,透射电子显微镜尤其是高分辨透射电子显微镜,可以在材料的纳米、微米区域进行物相的形貌观察、成分测定和结构分析,可以提供与多相催化的本质有关的大量信息,指导新型工业催化剂的开发。 为什么透射电子显微镜有如此高的分辨率那?本文阐述了透射电子显微镜的工作原理。 1透射电子显微镜的定义/组成 1.1定义 在一个高真空系统中,由电子枪发射电子束, 穿过被研究的样品,经电子透镜聚焦放大,在荧光 屏上显示出高度放大的物像,还可作摄片记录的一 类最常见的电子显微镜称为透射电子显微镜。[1] 1.2组成 透射电子显微镜由照明系统、成像系统、记录 系统、真空系统和电器系统组成。(如图1) 2透射电子显微镜的照明系统 照明系统的作用是提供亮度高、相干性好、束 流稳定的照明电子束。它主要由发射并使电子加速 的电子枪和会聚电子束的聚光镜组成。

激光的原理及激光器分类

激光器的原理及分类 一、基础原理 量子理论认为,所有物质都是由各种微观”粒子”组成,如分子,原子,质子,中子,电子等。在微观世界里,各种粒子都有其固有的能级结构。当一个粒子从高能级掉到低能级时,根据能量守恒定律,它要把两个能级相差部分的能量释放出来,通常这个能量以光和热两种形式释放出来。 二、自发辐射、受激辐射 1、自发辐射 普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。激发的过程是一个“受激吸收”过程。但是处在高能级(E2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E1)跃迁,跃迁时将产生光(电磁波)辐射。辐射光子能量=E2-E1。过程各自独立、互补关联,所有辐射的光在发射方向上是无规律的

射向四面八方,并且频率不同、偏振状态和相位不同。 2、受激辐射 在原子中也存在这样一些特定高能级,一旦电子被激发到这个高能级之上,却由于不满足跃迁的条件,发生跃迁的几率很低,电子能够在高能级上的时间很长,就所谓的亚稳定状态。但在能在外界光场的照射下发生往下跃迁,并且向下跃迁时释放出一个与射入光场相同的光子,在同一个方向、有同一个波长。这就是受激辐射,激光正是利用这一原理激发出来。 二、粒子数反转 通过受激辐射出来的光子,不仅可以引起其他粒子受激辐射,也可以引起受激吸收。只有在处于高能级的原子数量大于处于低能级原子数时,所产生的受激辐射才能大于受激吸收。但是在自然条件下,原子都是都处于稳定的基态,只能通过技术手段将大量的原子都调整到高能级的状态,才能有多余的辐射向外产生。这个技术叫粒子数反转。

电路交换和分组交换

电路交换和分组交换.txt爱情是彩色气球,无论颜色如何严厉,经不起针尖轻轻一刺。一流的爱人,既能让女人爱一辈子,又能一辈子爱一个女人!电路交换和分组交换 电路交换技术很少用于数据业务网络,主要是因为其资源利用效率和可靠性低。分组交换技术通过统计复用方式,提高了资源利用效率。而且当出现线路故障时,分组交换技术可通过重新选路重传,提高了可靠性。但是现实情况是:许多线路资源由于缺少交换能力而未被使用,使用的线路资源利用率往往不到百分之十,路由器平均一年的宕机时间不到5秒,发生故障的概率很小。因此上述原因对于当今选择交换技术没有意义。 而另一个方面,分组交换是非面向连接的,对于一些实时性业务有着先天的缺陷,虽然有资源预留等一系列缓解之道,但并不足以解决根本问题。因此这些业务的QoS问题较为复杂。而电路交换技术是面向连接的,很适合用于实时业务,其QoS问题要简单得多。同时,与分组交换技术相比,电路交换技术实现简单且价格低廉,易于用硬件高速实现。且由于其不需要缓冲区,而光缓冲技术似乎还比较遥远,因此它更易于与光技术融合。当然,电路交换技术的用户与WDM之间的流量粒度不匹配问题也有待进一步解决。如果抛开现有的设施,从头组网的话,相信大家选择电路交换技术的可能性要大得多。这里可以举出一个例子对电路交换技术和分组交换技术做一个比较。假设一个服务器通过一条1Mbit/s的链路与100个用户连接,其结果如表1所示。 表1 1Mbit/s链路与100个用户连接结果表: 电路交换分组交换 带宽 1Mbit/s 10Kbit/s 平均时延 50s 100s 最大时延 100s 100s 电路交换 每部电话都连接到交换机上,而交换机使用交换的方法,让电话用户之间可以很方便地通信。一百多年来,电话交换机虽然经过了多次更新换代,但交换的方式一直都是电路交换。当电话机数量增多,就使用彼此连接起来的交换机来完成全网的交换工作。注意,是这种交换机采用了电路交换的方式,后来的分组交换也是采用了一样的电信网,只是不一样类型的交换机(当然协议也不同)。 从通信资源的分配角度来看,“交换”就是按照某种方式动态地分配传输线路的资源。 在使用电路交换打电话之前,先拨号建立连接:当拨号的信令通过许多交换机到达被叫用户所连接的交换机时,该交换机就向用户的电话机振铃;在被叫用户摘机且摘机信号传送回到主叫用户所连接的交换机后,呼叫即完成,这时从主叫端到被叫端就建立了一条连接。通话过程。通话结束挂机后,挂机信令告诉这些交换机,使交换机释放刚才这条物理通路。这种必须经过“建立连接--通信--释放连接”三个步骤的连网方式称为面向连接的。电路交换必定是面向连接的。 用户到交换机之间的叫用户线,归电话用户专用。交换机之间、许多用户共享的叫中继线,

相关主题
文本预览
相关文档 最新文档