当前位置:文档之家› 粗硫酸镍生产工艺的改进

粗硫酸镍生产工艺的改进

粗硫酸镍生产工艺的改进
粗硫酸镍生产工艺的改进

SMO254材料在硫酸镍生产工艺中的应用

SMO254材料在硫酸镍生产工艺中的应用 [摘要]针对硫酸镍生产中板式换热器板片腐蚀严重的问题,通过对板式换热器几种材质板片耐腐蚀性能的分析与试验,选用SM0254材料取代原C一276材料,延长了板式换热器的板片寿命,降低了生产成本。 [关键词]板式换热器;板片;硫酸镍;浓缩;温度;腐蚀;腐蚀率;使用寿命 板式换热器存在的问题: 大冶有色金属有限公司稀贵金属厂从铜冶炼系统的电积后液中回收硫酸镍,主要工艺为铜电积后液在蒸发反应釜中加热浓缩,提高溶液中镍的浓度,同时硫酸浓度从14%上升到35%左右,然后使用冷冻机降温,结晶生产出硫酸镍产品。为了提高浓缩工序的生产效率,采用了负压蒸发方式,即使用真空泵降低反应釜内的气压,气压越低,溶液沸腾所需要的温度就越低,进而加快了蒸发浓缩进程。由于蒸发产生的气体会降低反应釜内负压,所以使用板式大冶有色金属有限公司稀贵金属厂从铜冶炼系统的电积后液中回收硫酸镍,主要工艺为铜电积后液在蒸发反应釜中加热浓缩,提高溶液中镍的浓度,同时硫酸浓度从14%上升到35%左右,然后使用冷冻机降温,结晶生产出硫酸镍产品。为了提高浓缩工序的生产效率,采用了负压蒸发方式,即使用真空泵降低反应釜内的气压,气压越低,溶液沸腾所需要的温度就越低,进而加快了蒸发浓缩进程。由于蒸发产生的气体会降低反应釜内负压,所以使用板式属厂原有3台板式换热器,型号为BR0.8B一1.0—47一E,2007年4月硫酸镍系统扩能改造,增加了同型号的板式换热器4台。该型号的板式换热器换热总面积为47 m2,单片换热面积为0.8m2,设计压力为1.0 MPa,设计温度为150℃,板片材质为C一276,板片厚度为0.6 mm,板片进口直径为200 mm。 生产中浓缩工序的负压一般仅为一0.06 MPa,蒸发效率不高,不能满足生产要求。2007年1月对3台板式换热器进行解体检修,发现每台换热器板片的进气孔腐蚀严重,此乃造成系统负压泄漏的主要原因;同时导致冷却水与冷凝水混合,已经无法满足生产工艺的要求,遂于20o7年1月对所有板片进行了更换。生产运行至2007年4月,浓缩工艺过程又陆续出现负压不稳定、生产产量下降的情况。遂对原3台板式换热器进行了逐一的解体检查,发现存在与2007年1月同样的问题:板片的进气口全部被腐蚀,必须将板片进行整体更换,而从2007年1月至4月二次更换板片的周期仅为4个月。同样的问题出现在2007年9月起新系统扩建投入使用的4 、5 、6 、7 板式换热器上,这4台板式换热器投用后,陆续出现负压不稳定、冷却水量大幅增加的现象,判断为板式换热器板片出现问题。2007年9月20日在对4 板式换热器的解体检查中发现,所有C一276材质的板片进气孔已全部被腐蚀,不得不进行板片的更换,否则生产将无法进行。从2007年4月投入使用到9月所有板片全部被腐蚀,其间扣除因限电等原因造成的停产时间,新投入使用的4台板式换热器板片使用寿命亦仅为4个月,与前3台的使用寿命基本相同。板式换热器板片的设计使用寿命为2年,而实际使用寿命远远低于设计值,故现场对C一276这种材质的板片是否适合预浓缩生产工艺的工况条件产生了质疑。 2 板式换热器板片材质及其应用工况分析角色设置2008(2) BR0.8B一1.0—47一E板式换热器的板片为波纹板片,波纹板片由0.6~1 mm厚度的金属板一次压制而成,其波纹形式有平直波纹或人字波纹,设置波纹可以增加板片的有效传热面积,使流体通过时形成湍流,强化传热作用。每块板片作为一个传热面,板上设有4个分配液体的孔,孔及板片四周粘有密封垫片,使板片之间形成两组独立平行的通道,冷热两种介质在各自固定的通道内流动,达到最佳的换热效果。2.1 C一276材料及其应用工况分析BR0.8B一1.0—47一E板式换热器的板片原使用C一276材料,C一276材料为哈氏合金,其主要化学成分见表1。从表1可以看出,

生产工艺改进方案(优.选)

生产工艺改进方案 【导语】生产就是人们的基础,没有生产力,社会就运转不下了,本人为你收集了生产工艺改进方案,供您参考和借鉴。 在流程图、精益生产远景图的指导下,流程上的各个独立的改善项目被赋予了新的意义,使员工十分明确实施该项目的意义,持续改进生产流程的方法主要有以下7种:如果产品质量从产品的设计方案开始,一直到整个产品从流水线上制造出来,其中每一个环节的质量都能做到百分百的保证,那么质量检测和返工的现象自然而然就成了多余之举。因此,必须把“出错保护”的思想贯穿到整个生产过程,也就是说,从产品的设计开始,质量问题就已经考虑进去,保证每一种产品只能严格地按照正确的方式加工和安装,从而避免生产流程中可能发生的错误。消除返工现象主要是要减少废品产生,严密注视产生废品的各种现象(比如设备、工作人员、物料和操作方法等),找出根源,然后彻底解决。 生产布局不合理是造成零件往返搬动的根源,在按工艺专业化形式组织的车间里,零件往往需要在几个车间中搬来搬去,使得生产线路长,生产周期长,并且占用很多在制品库存,导致生产成本很高。通过改变这种不合理的布局,把生产产品所要求的设备按照加工顺序安排,并且做到尽可能

的紧凑,这样有利于缩短运输路线,消除零件不必要的搬动及不合理的物料挪动,节约生产时间。 在精益生产企业里,库存被认为是最大的浪费,因为库存会掩盖许多生产中的问题,还会滋长工人的惰性,更糟糕的是要占用大量的资金,所以把库存当作解决生产和销售之急的做法犹如饮鸩止渴。 减少库存的有力措施是变“批量生产、排队供应”为“单件生产流程”。在单件生产流程中,基本上只有一个生产件在各道工序之间流动,整个生产过程随单件生产流程的进行而永远保持流动。 理想的情况是,在相邻工序之间没有在制品库存。当然实际上是不可能的,在某些情况下,考虑到相邻两道工序的交接时间,还必须保留一定数量的在制品库存,精益生产中消灭库存的理念和方法与准时生产JIT的理念和方法类似。 从生产管理的角度上讲,平衡的生产计划最能发挥生产系统的效能,要合理安排工作计划和工作人员,避免一道工序的工作荷载一会儿过高,一会儿又过低。 在不间断的连续生产流程里,还必须平衡生产单元内每一道工序,要求完成每一项操作花费大致相同的时间,使每项操作或一组操作与生产线的单件产品生产时间相匹配。单件产品生产时间是满足用户需求所需的生产时间,也可以认为是满足市场的节拍或韵律。在严格的按照Tacttime组织

硫酸镍分离除杂工艺概述

镍溶液除杂工艺研究进展 周晴 摘要:针对目前的硫酸镍、氯化镍等镍盐产品标准对镍盐中杂质含量提出了更严格的要求。以及公司现有工艺对产品中的Cu,Fe,Zn,Ca,Mg,Mn处理不够理想,现介绍国内外镍溶些液中出除去这些杂质的方法和研究现状,并指出今后的发展趋势。 关键词:硫酸镍除杂沉淀溶剂萃取 2009年,新的硫酸镍和氯化镍产品标准[1]相继颁布。硫酸镍新标准取消了原I类产品合格品等级,对镍、钴、铁、铜、铅、钙、镁及水不溶物的含量进行了调整,增加了钠、锰、镉、汞、铬的指标,删除了硝酸盐、铵沉淀物、氨、氯化物4项指标。电镀用氯化镍新标准对镍、钴、锌、铁、铜、铅、镉、砷和水不溶物指标也进行了调整,增设了汞、锰2项指标。新的标准增加了对杂质种类的要求,对杂质含量要求也更加严格,如电镀用硫酸镍,新增了对钠的含量要求,对钙镁的含量也明确给出了限值。因而对镍溶液除杂工艺也提出了更高要求。结合镍溶液中常见金属杂质离子的情况,概括了从镍溶液(主要是硫酸镍溶液)中去除杂质离子的方法,并分析了今后的发展趋势。 一、溶剂萃取法除杂工艺 溶剂萃取法,作为有色金属分离、提取的一种重要的手段和方法,它具有操作连续化、杂质分离完全、产品质量稳定、金属回收率高、传质速度快、对环境的污染小等优点,是较为理想的净化手段,目前,在有色金属的生产过程中正日益受到人们的重视,其应用领域也正在日益扩大。因此在硫酸镍的生产工艺上溶剂萃取法也得到了广泛的应用。 硫酸镍除杂常用萃取剂有:P204,P507,除铜萃取剂,Lix84I,N902等 现主要以P204和P507的作用机理及分离效果做个论述 1.1 P204萃取剂简介 P204 的代表产品二-(2- 乙基已基)磷酸是一种烷基磷酸萃取剂,其分子式简式为HR2PO4,它相当于国外的D2EHPA。P2O4 从20 世纪70 年代开始广泛应用于稀土分离和有色金属冶金中的分离提取,它对钴和铁以及其他杂质元素有着优良的萃取能力,用得较多的是从硫酸溶液中分离铁、铜、锌。 1.2 P204萃取过程机理 因为P204 是一种酸性萃取剂,它萃取金属的反应方程式可表示如下: Men++nHL = MeLn+nH+ 上式中Me 表示金属离子,n 表示其价数。反应方程式的萃取平衡常数K 与萃取本身的性质、萃取温度、稀释剂等因素有关,它的分配系数D 可用下式表示: lgD = lgK+2lg[HL]+2pH 式中,L 代表有机离子。从上述看出,分配系数D 是pH 的函数,即P204萃取过程的分配系数

蒸气间接加热浓缩生产粗硫酸镍工艺应用

蒸气间接加热浓缩生产粗硫酸镍工艺应用 余智艳 (南昌有色冶金设计研究院,南昌市,330002) (摘要)介绍蒸气间接加热浓缩法生产粗硫酸镍工艺在铜电解液净化过程中的应用对该工艺的工艺原理、操作参数的确定、所用设备特点及配置要求作了论述。 〔关键词〕蒸气间接加热浓缩法粗硫酸镍工艺 近年来,为了充分利用铜资源,满足市场需要,以废杂铜为原料生产电铜的铜电解厂日益增加。由于受资金、原料等客观条件的限制,这些铜冶炼厂的规模一般为1~2万t/a。而以杂铜为原料产出的阳极板含镍较高有的高达0.3%以上,这些镍必须在电解液净化过程中脱除。因此迫切需要一种适合中小型铜冶炼厂、设备简单、投资省的脱镍工艺。而蒸气间接加热浓缩生产粗硫酸镍工艺正满足了这一需要本人曾在几个工程的设计中运用该工艺现就其工艺原理、操作参数、设备选择及配置等方面做一些分析和论述。 1、概述 镍是铜阳极板中的主要杂质之一,在电解过程中若电解液中的镍离子浓度超过15g/L,对电铜质量将产生不良影响,必须在电解液的净化过程中除去,以保证电解的正常生产。 电解液中镍的脱除方法主要有结晶法、萃取法、离子交换法等。而国内主要采用结晶法生产粗硫酸镍,如一些老冶炼厂采用的直火浓缩法和冷冻结晶法、80年代贵溪冶炼厂从日本引进的电热浓缩法等。直

火浓缩法因具有设备简单、镍直收率高等优点,曾一度在小型铜冶炼厂广泛采用,但由于其燃烧与蒸发设备不密闭、酸挥发多、能耗大、环境污染严重、操作环境恶劣、劳动强度大,在日益重视环境保护及强调劳动安全卫生的今天已不再推荐使用。冷冻结晶法由于需要设备多、占地面积大、脱镍率低等因素一直未得到广泛采用。而电热浓缩法由于自动化程度高、环保效果好、脱镍率高等优点正被越来越多的工厂所采用,但因所需设备复杂、投资大且生产粗硫酸镍成本高,使其在中小型铜冶炼厂的使用受到限制。所以,蒸气间接加热浓缩法(在某一压强下,采用蒸气间接加热使溶液蒸发的方法)则受到中小型铜冶炼厂的普遍青睐。它既解决了操作条件恶劣、劳动强度大等问题,又利于环境保护,且设备简单、投资省,对资金有限的中小型铜冶炼厂是较为适宜的。 2、蒸气间接加热浓缩法的工艺原理及操作参数的确定 2.1蒸气间接加热浓缩法的工艺原理 电解液净化系统生产粗硫酸镍的溶液一般为二次脱铜终液,其成份主要为H2SO4和NiSO4。根据硫酸盐结晶理论,溶液中的硫酸浓度与硫酸盐溶解度在不同温度下存在一定的平衡关系,即溶液中硫酸盐溶解度会随其酸度、温度的变化而改变;同时溶液在不同的酸度、不同的压强下,其沸点也不同,它们之间也存在一定的平衡关系。图1为溶液中硫酸镍的饱和浓度与酸度在不同温度下的关系曲线。图2为溶液的沸点与酸度在不同压强下的关系曲线。

生产工艺过程的可靠性控制与改进

可靠性控制和改进 产品设计完成后,只是有了内在的可靠性,但在生产制造过程中,若无适当的质量控制或可靠性措施,就会引起可靠性退化现象。因此,必须加强以可靠性控制和改进为主要内容的可靠性管理。 一、生产工艺过程的可靠性控制 一般说来,生产工艺由主产制造加工方法、设备、工序、作业标准(规程)、检测方法等要素构成。同一种产品往往可采用各种不同的工艺制造,不同的工艺其构成要素的参数表述不同,对产品可靠性影响的作用也会有所不同。生产工艺对可靠性指标的作用与影响如下图所示。 显然,优良的工艺方法是生产过程中可靠性增长的保证。众所周知,产品在生产与使用过程中又常会有许多随机事件发生,

这就使直接辨识或定量表示生产工艺对可靠性指标的影响有相当困难,但我们可以把工艺引起的故障原因分析归类(见下图)。 从上图可以看出:由工艺引起的故障原因除了1.1与1.3外,其余都是生产过程中可靠性退化的原因。因此,可以归纳出在生产工艺方面实行可靠性控制的两大任务。 ①通过完善工艺结构,改进工艺方法,制定与实施作业标准等措施,保障生产过程中减少乃至消除可靠性退化。 ②通过工艺方面的可靠性分析、评审,找出影响可靠性的各种隐患,反馈给设计部门更正,改进设计质量,以提高产品的内在可靠性。 二、设备的工艺可靠性控制

设备的工艺可靠性是指在规定范围和时间内,设备保持满足工艺过程中与其有关的质量指标数值的性质。它是引起产品可靠性退化的重要因素。 依据设备在生产工艺过程中接受的任务不同,一般分为生产设备、检测设备和运输设备等,现分别简教其可靠性控制内容与要求。 1.生产设备的工艺可靠性控制 生产设备的工艺可靠性与其本身的完善程度、自动化水平、工作原理与控制方式等情况有密切联系。 用来减轻工人劳动强度或弥补人类工作能力的生产设备,因其使用效果取决于工人的技术熟练程度(如手工操作的电焊机),则其工艺可靠性控制要由操作工人素质(如技术水平、工作责任心等)来保证。为此,要重视和强化生产操作工人的质量意识教育和业务技能培训,制订与坚决实施先进合理的作业标准,通过人的控制,完成工艺任务的设备装置工艺可靠性。因加工结果与设备装置的调整及工艺参数密切相关,故应明确规定需控制的工艺参数值,严密监控工艺流程或工序,以保证工艺参数值稳定,从而保证这些设备装置的工艺可靠性。 自动控制的生产设备,则应重视和保证传感器、计算机程序等硬、软件的可靠性,以保证设备的工艺可靠性。

深部调驱生产和工艺技术改进与完善

深部调驱生产和工艺技术改进与完善 根据大洼油田的油藏特点和水井吸水剖面情况,应用整体深部调驱技术来控制油井含水上升速度,提高二次开发试验区油层动用程度。在特定参数条件下采用合理的施工工艺将调驱剂注入目的层中,利用化学剂在油层条件下发生反应形成堵塞物,从而在纵向上改善吸水剖面,有效地限制高渗透层吸水,提高注水压力,启动新层吸水,在平面上改变后续注入水的渗流方向,扩大波及体积,提高水驱效率。通过现场生产和工艺技术改进与完善,提高调驱应用效果,通过效果分析,调驱对应油井含水稳定,油井液面降低,增油效果明显。本方法能较好地解决大洼油田含水上升、水驱效率低、采出程度低的问题。 标签:深部调驱;工艺技术;改进与完善 1 前言 我国陆上油田80%以上是靠注水开发,长期注水开发引发油藏纵向和平面上的非均质性问题,从而降低了水驱波及体积和驱油效率。凝胶深部调驱技术是近年发展起来的用于注水井深部处理以改善井组水驱开发效果的一项提高采收率新技术。在复杂小断块油田实施凝胶调驱技术并将其作为三次采油的重大措施,可取得明显的增油降耗效果。 2 地质概况和方案部署 2.1地质概况和开发现状 洼清5块构造上位于辽河盆地中央凸起南部倾末带大洼断层西侧。探明含油面积为 2.72km2,石油地质储量758.7×104t,可采储量195×104t,标定采收率25.7%。主力含油层系为东营组。 2.2 存在问题 2.2.1注水利用率低,提高注水波及体积难度大 大部分注入水沿着高渗带推进,被油井采出,形成了注入水的大量无效循环,水驱效果变差,提高注水波及体积的难度很大。 2.2.2 主力层水淹严重 平面上主要受沉积相影响,注入水沿分流河道的主流线快速推进,使得主流线部位的油井水淹严重。纵向上d2I4水淹最严重,该段累积注入量达186×104m3。强水淹面积占总面积的80%以上。 2.2.3 吸水状况不均衡

香兰素生产工艺及其改进

香兰素生产工艺及其改进 始有溴蒸气从液面下逸出的瞬闻),就应及时 停止通溴,并分次少量地补加粉末状碳酸锂进 行中和调整至pH3.0~5.0范围内,直至通溴 操作结束为止. 加完碳酸镪后,将料绩由6O℃逐渐升温至 80℃,调节并控制料液的pH值为5.0(可先用 精密试纸粗测,再取样液用甲基红试液检查剐 呈黄色即可)无变化后,即达合成反应的终 点.停止通溴和搅拌,关上蒸汽. 取样液进行杂质检查.如果溶液中尚存有 过量的溴素(当用pH试纸测定时,其尾部呈 血红色条纹状),应补加尿素进行处理J如含有 溴酸盐成分(当往样液的试管中加入稀硫酸 时,样液呈黄色),则应加入少量硫脲进行还 原处理若料液中所含有的硫酸根超过标准, 就需将溶液升温歪沸,并调节溶液的pH值至 4.0左右,加入适量的氢氧化钡进行处理,并 搅拌半小时,静置4h后取样再复查硫酸根是否 合格如溶液中的硫酸根消失,然而钡盐出

现,就应再将溶液加入少许硫酸锂饱和溶渡并‘ 升温至沸,以赊尽钡离子.最后,还要复查该 溶液的pH值是否仍为5.0,否则应予以调整. 将上述已经净化合格的溴化镪溶液,在快 速搅拌下加入少量的粉状活性炭进行脱色处理,然后进至过滤工序.将所收集的滤液用泵 打入浓缩罐进行浓缩.在浓缩过程中,要随着 罐内液位的下降,补加滤液若干次.同时,在 浓缩过程中,会有一些混浊物析出,这是溶液 中含有的溶解度较小的碳酸锂在浓缩时析出的缘故此时,应将其除去(采用捞晶的方法). 当浓缩至溴化锂浓溶液的液温升至为190~ l9℃肘,即达到终点(在这以前1h停止补加 滤液)趁热放料进行过滤,以除尽”水不溶 物”杂质等.滤缓经冷却,搅拌,结晶,离心 分离,得一木合溴他锂.由于溴他锂(LiBr? HO)投易潮解,困此应立即密封包装,并置 故于干燥的库房内. 4.产品质量 外观,纯自色立方晶体或均匀状粉末 含量:>98.6(L2LiBr?H±O计)

冷冻鱼糜生产工艺的改进

冷冻鱼糜生产工艺的改进汪之和 摘要鱼糜生产旧工艺中漂洗槽的连续漂洗和回旋筛的预脱水将会流失掉大量的水溶性蛋白质和固形物,新工艺采用管道化一次漂洗的方法,并用倾析式离心机代替传统工艺中回旋筛进行预脱水,使固形物的回收率提高了17%左右,从而使鱼糜的产量提高了10%之多,而鱼糜制品的凝胶强度与二次漂洗鱼糜基本相同,比三次漂洗略低,白度则比三次漂洗鱼糜略低。 从六十年代初日本开始工业化生产冷冻鱼糜以来,冷冻鱼糜技术和生产设备的开发研究基本上是同步进行的[1]。三十多年来,虽然其生产工艺未发生重大的变化,然而在生产方法和使用的设备上还是有了不少的改进和完善,具体表现为对采肉方法、漂洗形式和脱水设备等进行了开发研究。根据漂洗和脱水这两个工艺过程中所使用设备的工作原理改用由一次管道式槽和许多U型管道组成的漂洗装置,再用倾析式离心机使鱼肉和水初步分离,达到预脱水的目的。采用这一工艺后,漂洗水中固形物的损失就比较少,从而提高了鱼糜的产量,也降低了企业的生产成本。 1 材料与方法

实验材料使用马鲛鱼为原料,采用去头去内脏后部分,清水洗净,再按下面两种不同的工艺进行处理。 传统工艺:采肉一次漂洗回旋筛脱水二次漂洗回旋筛脱水三次漂洗回旋筛脱水精滤螺旋压榨机压榨脱水。 新工艺:采肉线型混合器漂洗管道式滞留室漂洗倾析式离心机预脱水精滤螺旋压榨机压榨脱水。 测定方法 固形物含量的测定称取一定量的鱼糜,采用直接干燥法进行测定。 凝胶强度的测定将各种鱼糜解冻,加入%食盐,擂溃 30min,灌肠后于90℃加热40min使之凝胶化,将样品切成直径、高度的圆柱体,于NRM-1002A食品流变仪上测定。 白度的测定用ZBD型白度仪测定,将工作白度标准板放在试样座上进行白度校正,然后将样品放在试样室测定。 2 结果与讨论 漂洗工艺的特点将马鲛鱼用二种不同的工艺处理,比较在不同工艺阶段对漂洗液中固形物回收率的影响,见表1。 由表1可见,在传统工艺中,鱼糜经三次漂洗后固形物损失

PTA生产技术及工艺流程

PTA生产技术及工艺流程简述 【作者:千木】 目前世界PTA生产厂家采用的技术虽有差异,但归纳起来,大致可分为以下两类: (1)精PTA工艺 此工艺采用催化氧化法将对二甲苯(PX)氧化成粗TA,再以加氢还原法除去杂质,将CTA精制成PTA。这种工艺在PTA生产中居主导地位,代表性的生产厂商有:英国石油(BP)、杜邦(Dupont)、三井油化(MPC)、道化学-因卡(Dow-INCA)、三菱化学(MCC)和因特奎萨(Interquisa)等。 (2)优质聚合级对苯二甲酸(QTA、EPTA)工艺 此工艺采用催化氧化法将PX氧化成粗TA,再用进一步深度氧化方法将粗TA精制成聚合级TA。此工艺路线的代表生产厂商有三菱化学(MCC)、伊斯特曼(Eastman)、杜邦(Dupont)、东丽(Toray)等。生产能力约占PTA总产能的16%。 两种工艺路线差异在于精制方法不同,产品质量也有所差异。即两种产品所含杂质总量相当,但杂质种类不一样。PTA产品中所含PT酸较高(200ppm左右),4-CBA较低(25ppm左右),而QTA(或EPTA)产品中所含杂质与PTA相反,4-CBA 较高(250ppm左右),PT酸较低(25ppm以下)。两种工艺路线的产品用途基本相同,均用于聚酯生产,最终产品长短丝、瓶片的质量差异不大。目前,钴-锰-溴三元复合体系是PX氧化的最佳催化剂,其中钴是最贵的,所以目前该方面的一直进行降低氧化催化剂能耗的研究。PTA生产过程中所用TA加氢反应催化剂为Pd/C,目前研究的主要问题是如何延长催化剂的使用寿命。 工业化的精对苯二甲酸制备工艺很多,但随着生产工艺的不断发展,对二甲苯高温氧化法成为制备精对苯二甲酸的最主要的生产工艺,这种工艺在对苯二甲酸的制备工艺中占有绝对优势。对二甲苯高温氧化工艺是在高温、高压下进行的,副反应较多;而且由于温度高、压力大对设备本身的要求就高。因此工艺改进主要就集中在降低氧化反应温度和降低氧化反应的压力两个方面。目前,拥有这一专利技术的公司主要有美国Amoco公司、英国ICI公司和日本三井油化公司,我国曾在不同时期引进过这三家公司的专利技术。近年,我国对苯二甲酸的工艺也取得了很大的进展。 (1)对二甲苯(PX)高温氧化法。对二甲苯高温氧化法由氧化、精制和辅助系统组成。该工艺以对二甲苯为原料,经空气催化氧化、加氢精制、结晶分离等工序制成。催化氧化是对二甲苯在催化剂存在下,于190-230℃,压力 1.27- 2.45MPa的条件下,用空气氧化得到粗对苯二甲酸。加氢精制是将对二甲苯氧化过程中尚未反应完全的4-羟基苯甲醛(4-BCA)转化为可溶于水的甲基苯甲酸,然后除去。加氢精制反应要在较高压力(约6.8MPa)和较高温度(约280℃)的条件下进行。对苯二甲酸加氢产物再经结晶分离和干燥,就得到可用于纤维生产的精对苯二甲酸。 对二甲苯高温氧化法流程简单,反应迅速,收率可达90%以上。 (2)高温氧化工艺改进。Amoco公司对高温氧化法工艺进行了改进,使氧化反应温度降至193-200℃的范围,反应压力也相应降到1.45MPa。改进后每吨PTA的PX消耗量减少14kg。三井油化公司在Amoco高温氧化工艺的基础上,开发了三井Amoco工艺。该工艺提高了催化剂中钴/锰比和溶剂比,同时为保持溶剂浓度稳定,氧化反应器顶部增加分离塔,除去反应体系中的水。这种工艺可将氧化反应温度降至185-195℃,反应压力降至0.9-1.1MPa,相应副反应减少,同时母液循环比相应提高,催化剂可循环使用,减少了催化剂的用量。 (3)温和反应条件的对苯二甲酸工艺。高温氧化工艺需要高温、高压,很多公司尝试开发反应条件温和的对苯二甲酸工艺,这些工艺中比较成功的有三菱公司开发的QTA工艺, 日本丸善公司开发的MTA工艺以及鲜京公司开发的SPTA 工艺。 MTA工艺适当地加大催化剂的锰/钴比、溶剂比和氧化空气用量,氧化后的产品再实行补充氧化,并添加少量三聚乙醛,强化氧化反应设备,使中间产物转化为最终产物。通过充分氧化使得工艺不需要再进行加氢还原精制。这种工艺反应条件温和,但反应时间较长,原料PX、催化剂和乙酸的消耗较高,并且产品中杂质对羧基甲醛的含量较高,产品只能用于制备纤维级聚酯。 QTA工艺采用高活性催化剂进行对二甲苯氧化。催化剂以铈替代高温氧化工艺中的锰,同时附加镧催化荆,并采用了无机溴化物。对二甲苯氧化反应条件较温和,反应过程中还要对中间产品进行补充氧化。该工艺对二甲苯、催化剂

自动线生产工艺的改善措施及方案

关于自动线生产工艺存在的问题及改善措施方案深圳市福盈混凝土有限公司龙岗分公司实验室总工宁靖 一、自动线生产工艺存在的问题描述 1、在正常情况下,水泥的初凝时间2个小时30分钟左右,那么混凝土的初凝时间也就是2个小时以上甚至3个小时30分钟。若刻意地违背这个规律来缩短初凝时间或终凝时间,可以做得到,但是对混凝土的耐久性造成很大的影响,也就是对管片的质量造成很大的影响。 2、目前,我们的自动线生产线距离太短,没有静养期,是不符合标准设计的。(1)、根据《混凝土管片质量控制》标准要求: 静养期最佳时间在2个半小时以上甚至6个小时。 (2)、同时根据《盾构管片生产与质量控制080102》标准要求: 采用蒸汽养护时,管片混凝土静养期的时间不宜少于2个小时,升温速度不宜超过15度/小时,降温速度不宜超过10度/小时,最高温度不宜超过60度,出模时管片温度与环境温度差不得超过20度。如图所示: 3、混凝土的凝结时间显得长,特别是冬天,混凝土的凝结时间都在2小时以上甚至3个小时30分钟,由于我们的生产线距离太短,只能要求1.5小时就要达到初凝,我们实验室也找了好几个外加剂厂,实验了他们的外加剂,结果都在2小时以上,后来又咨询了相关专家,他们说凝结时间太短对混凝土的耐久性有一定的影响,不要追求太短的凝结时间,考虑一下其他方面改进一下(在不影响混凝土强度的情况下)。 4、生产线短,凝结时间长,我们为了完成生产任务,就把没有进行静养期(即没有达到初凝时间)的混凝土管片推到蒸养室里面,造成混凝土中没有参加水化反应的自由水几乎全部赶出表面去,使得混凝土内部留下一个一个大大小小密密麻麻的空洞,也就是我们通常所说的产生大量的气泡,其结果是出窑后的管片表面有很多气泡和孔洞。同时管片表面外观非常难看,监理也几次进行了书面批评。 综述上述自动线生产工艺存在的问题描述,特此建议:必须增加静养期场地。

氟他胺生产工艺改进

龙源期刊网 https://www.doczj.com/doc/b68094551.html, 氟他胺生产工艺改进 作者:黄东王昉 来源:《中国医药科学》2013年第06期 [摘要] 目的研究氟他胺硝化工序在不同的温度条件下,产品质量及收率的影响。方法采取冷冻盐水的方法来减低氟他胺硝化反应的温度。结果氟他胺硝化物收率由55%提高到70%。结论采取冷冻盐水的方法来减低氟他胺硝化反应的温度可提高氟他胺的收率。 [关键词] 氟他胺;氟他胺硝化物;收率 [中图分类号] R927.2 [文献标识码] A [文章编号] 2095-0616(2013)06-40-03 氟他胺为非甾体类抗雄激素药物[1],除抗雄激素作用外,本品无任何激素的作用[2]。其代谢产物小羟基氟他胺是其主要活性形式,能在靶组织内与雄激素受体结合,阻断二氢睾丸素(雄激素的活性形式)与雄激素受体结合,抑制靶组织摄取睾丸素,从而起到抗雄激素作用[3]。但此作用可反馈性地引起FSH和LH释放增加,使睾丸酮的血浆浓度上升。当本品与促 性腺激素释放激素(GnRH)如亮脯利特(leuprolide)一起使用时,可完全阻断雄激素而且防止代偿性增加[4]。 氟他胺硝化反应是氟他胺生产过程中非常关键的一步。硝化反应不完全不仅收率低而且杂质含量也高,会影响成品的品质。对企业来说会严重增加生产成本,生产效率低下,不利于企业市场竞争。 1 仪器与试药 1.1 仪器设备 搪玻璃反应釜(1000L,淄博搪都化工设备有限公司)、离心机(LXD自动连续卸料、湖州核汇机械有限公司),2BEA系列水环式真空泵(太仓化工防腐设备公司)、 1.2 试药 间氨基三氟甲苯(青岛寒冰化工有限公司,110510,99.5%);三乙胺(上海茜亿物资有限公司,110801,99.2%);甲苯(昆山诚信化工,110703,99.5%);浓硫酸(南京化学试 剂厂,20110712,98.5%);浓硝酸(江苏银珠化工,20110901,99.0%);生活饮用水(淮 安市自来水厂)。 2 方法与结果 2.1 产品信息

工艺改进方案

某厂生产工艺的调整与改进 https://www.doczj.com/doc/b68094551.html,日期: 2008-08-30 阅读: 882 字体:大中小双击鼠标滚屏 摘自《面粉通讯》08年第4期 张厚明甘肃兰州 某面粉厂2006年6月新建一条120t/d的等级粉生产线,由于其工艺与原粮、产品品种结构不大适应,故生产效益不大理想。该厂针对工艺中存在的问题,按照加工原粮的实际以及市场对产品的需求,对清理和制粉工艺进行了局部调整和改进,取得了较明显的技术经济效益。 1生产车间基本情况 1.1车间各楼层设备布置概况 该车间设计能力为处理小麦120t/d,厂房为5层框架结构。麦间采用机械提升,2-4层设有9个毛麦仓和3个润麦仓。1楼为配麦器、出仓绞龙、下脚打包;2楼装有头道,2道毛麦筛和净麦筛;3楼装有1台2道打麦机和1台刷麦机和除尘风网;4楼装有1台碟片滚筒精选机和1台毛麦打麦机;5楼为2台重力分级去石机以及麦仓顶部进仓绞龙、电脑控制混合着水机、除尘设备等。粉间与麦间之间为3段式楼梯。粉间1楼为磨粉机电机传动系统与副产品打包;2楼为磨粉机与成品打包间;3楼为清粉机、打麸机与管网分配层;4楼为高方筛层;5层为撞击松粉机、关风器、脉冲除尘器等风运管网。 1.2清理工艺 清理工艺采用3筛2打1刷2去石1精选1次着水润麦等10道工序。未设置初清,毛麦入机后直接进人头道清理筛,然后人毛麦仓,车间灰尘较大。清理流程为:原粮-头道毛麦筛(自振报动筛)- 毛麦仓- 配麦器- 头道去石机- 碟片滚筒精选机- 头道打麦机- 二道清理筛(自衡振动筛)- 电脑控制混合着水机- 润麦仓- 二道去石机- 二道打麦机- 刷麦机- 三道麦筛(平面回转筛)- 磁选机- 净麦柜- 入磨。清理工艺流程见图1。 1.3制粉工艺 制粉工艺为5B8M2S2T4P2D4(4B、lm分粗细)M、S、T磨均采用光辊。主要制粉设备有:FMFQ型磨粉机12台,其中800x2的2台,600x2的5台,500x2的5台,磨辊接触总长1420 em;FQFD型清粉机3台,其中49x2x3,49xlx3,60x2x3各1台,FFPD45x1打麸机4台,FSFG6x24C型高方筛4台;采用一组气力输送风网,7-1.5离心风机1台配55kW和TBLM-1型104筒脉冲除尘器1台以及相关的附属辅助设备。制粉工艺流程见图2。 2调整与改进的主要内容 2.1清理工艺方面 1)改混合着水润麦为分别着水润麦。该厂加工的小麦均系当地与周边地区产的白皮、红皮软质春小麦,生长期短、皮薄、面筋含量低。为解决面粉筋力过低问题,厂方从陕西省购人大量的高硬质红皮冬小麦进行搭配加工。面筋质‘23%的软质小麦与面筋质36%-38%的硬质小麦,分别从不同的毛麦仓出仓混合搭配,然后经着水机着水后进润麦仓。由于原工艺不能分别润麦,高筋小麦着水量大、润麦时间长,而低筋小麦着水量小、润麦时间短,生产过程中着水量与润麦时间依照高筋硬质麦,产量、出率受到影响。如着水量与润麦时间依照低筋软质麦,就形成“干磨面”,粉色暗、质量差。为解决粮质差异过大不宜混合着水润麦

硫酸镍制备工艺

硫酸镍制备工艺(总7页)本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

浅谈硫酸镍的制备工艺 摘要:硫酸镍广泛应用在电镀、电池、印染、医药等行业,硫酸镍的制备方法有化学法和电化学法,化学法工艺成熟,历史悠久。本文将对电解法制备硫酸镍工艺,工业硫酸镍除钴工艺,湿法制取硫酸镍工艺这三种常见的硫酸镍工艺展开论述。 关键词:硫酸镍工艺 1电解法制备硫酸镍工艺 工艺简介 硫酸镍在印染、医药、催化、电池等方面具有重要用途。硫酸镍的制备有多种方法,其中以含有硝酸和硫酸的混酸来氧化溶解金属镍是制备高级硫酸镍的主要方法川,该工艺设备生产能力较大,但设备复杂且腐蚀严重、原材料利用率低、有污染环境的氮氧化物气体放出、工作环境恶劣、工艺流程长。随着环保意识的提高。近年来人们陆续地研究了用电解的方法尤其是用交流电解的方法制备一些镍盐川。电解法制备硫酸镍工艺中,电流效率是制约设备能力和生产成本的主要因素。探讨各工艺因素对电流效率的影响,以筛选适宜的工艺参数,是电解法制备硫酸镍工艺研究的重要内容。本文从硫酸浓度、电解持续时间两个方面来探讨电解法制备硫酸镍过程中的电流效率变化规律。 工艺流程 电解法制备固体硫酸镍可以用如下工艺流程,如图1所示。 图1 电解法制备固体硫酸镍流程

工艺总结 电解法是一种无污染、金属镍利用率高、产品纯度高的硫酸镍生产工艺。生产1吨硫酸镍耗电800-1000kwh,与酸溶法相比,设备相应简化,减少了引人杂质的几率和数量,使产品纯度得到提高,所使用原料和数量也大幅减少,缩短了工艺流程,镍的利用率也从83%-90%提高到95%-98%,所以,对以电解镍为原料,产品纯度要求较高,及电力价格相对较低的地区,电解法工艺是一种效益较好的硫酸镍生产工艺。 在实际电解法生产硫酸镍的过程中,建议采用如下工艺参数进行控制:硫酸浓度:直流电2-3mol/l;交流电4-5mol/l;电流密度:.:0 a/d㎡;槽电压:;溶液温度:低于40℃;为保证电解液中硫酸浓度的稳定,电解过程中应不断向电解液中补加浓酸;电解持续时间视电解液总量,以使电液相对密度达到³为宜,这样可以获得即能顺利过滤的较浓的硫酸镍溶液。 2 工业硫酸镍除钴工艺 工艺简介 工业硫酸镍在新能源和表面处理行业应用广泛,尤其随着表面处理行业的发展,硫酸镍逐渐应用到机械制造、电子工业、航空航天、装饰材料等领域,对其质量要求也越来越高。目前一些化学工厂生产的硫酸镍产品中含有少量钴,达不到精密表面处理行业的要求;另外按目前市场价格,金属钴是金属镍的四倍多,所以从工业硫酸镍中回收钴十分必要。传统的除钴方法是用naclo等强氧

产品生产工艺过程的可靠性控制与改进

产品生产工艺过程的可靠性控制与改进 产品设计完成后,只是有了内在的可靠性,但在生产制造过程中,若无适当的质量控制或可靠性措施,就会引起可靠性退化现象。因此,必须加强以可靠性控制和改进为主要内容的可靠性管理。 一、生产工艺过程的可靠性控制 一般说来,生产工艺由主产制造加工方法、设备、工序、作业标准(规程)、检测方法等要素构成。同一种产品往往可采用各种不同的工艺制造,不同的工艺其构成要素的参数表述不同,对产品可靠性影响的作用也会有所不同。生产工艺对可靠性指标的作用与影响如下图所示。 显然,优良的工艺方法是生产过程中可靠性增长的保证。众所周知,产品在生产与使用过程中又常会有许多随机事件发生,这就使直接辨识或定量表示生产工艺对可靠性指标的影响有相当困难,但我们可以把工艺引起的故障原因分析归类(见下图)。

从上图可以看出:由工艺引起的故障原因除了1.1与1.3外,其余都是生产过程中可靠性退化的原因。因此,可以归纳出在生产工艺方面实行可靠性控制的两大任务。 ①通过完善工艺结构,改进工艺方法,制定与实施作业标准等措施,保障生产过程中减少乃至消除可靠性退化。 ②通过工艺方面的可靠性分析、评审,找出影响可靠性的各种隐患,反馈给设计部门更正,改进设计质量,以提高产品的内在可靠性。 二、设备的工艺可靠性控制 设备的工艺可靠性是指在规定范围和时间内,设备保持满足工艺过程中与其有关的质量指标数值的性质。它是引起产品可靠性退化的重要因素。

依据设备在生产工艺过程中接受的任务不同,一般分为生产设备、检测设备和运输设备等,现分别简教其可靠性控制内容与要求。 1.生产设备的工艺可靠性控制 生产设备的工艺可靠性与其本身的完善程度、自动化水平、工作原理与控制方式等情况有密切联系。 用来减轻工人劳动强度或弥补人类工作能力的生产设备,因其使用效果取决于工人的技术熟练程度(如手工操作的电焊机),则其工艺可靠性控制要由操作工人素质(如技术水平、工作责任心等)来保证。为此,要重视和强化生产操作工人的质量意识教育和业务技能培训,制订与坚决实施先进合理的作业标准,通过人的控制,完成工艺任务的设备装置工艺可靠性。因加工结果与设备装置的调整及工艺参数密切相关,故应明确规定需控制的工艺参数值,严密监控工艺流程或工序,以保证工艺参数值稳定,从而保证这些设备装置的工艺可靠性。 自动控制的生产设备,则应重视和保证传感器、计算机程序等硬、软件的可靠性,以保证设备的工艺可靠性。 2.检测设备的工艺可靠性控制 检测设备用于测量生产过程中工艺参数或检验产品(半成品)的质量状况。前者直接影响工艺过程的可靠性;后者虽本身不直接影响工艺过程的可靠性,但检测不正确既会影响对上道工序工艺可靠性作出正确评估,又影响下道工序的工艺可靠性。因此,必须按ISO10012《计

乙炔生产工艺的改进与优化

乙炔生产工艺的改进与优化 摘要:目前,生产乙炔的工艺较多,电石法乙炔生产工艺是我国主要的乙炔生产方法。本文首先介绍了不同的乙炔生产工艺方法,指出了这些生产工艺的优点和缺点,其次,分析了我 国电石法乙炔生产工艺的发展现状,最后,提出了乙炔生产工艺的改进和优化策略。为实现 乙炔工艺的可持续发展奠定一定的理论基础。 关键词:乙炔生产工艺改进和优化 一.乙炔的生产工艺分类 按照原料的不同,乙炔的生产工艺可以分为电石法和烃类裂解法。前者是以电石为原料,通 过水解反应生产乙炔,在国外,电石法乙炔生产工艺因其污染较为严重已被淘汰,而在国内 该方法为主要的乙炔生产工艺。 电石法生产乙炔的工艺可以分为两个步骤:首先是生成电石(碳化钙),其次是电石与水发 生化学反应,生成乙炔,其反应式为: 副反应为: 由以上公式可知,电石法生产乙炔时会产生大量的热能,为了避免爆炸事故的发生,在用该 方法生产乙炔时要注意将反应热排除。根据排除反应热方式的不同,可以将电石法工艺分为 干法和湿法两种工艺。 (1)湿法工艺是利用水来降低反应产生的热量,即将电石加入水中。其优点是生产的乙炔 较为纯净,安全性高且操作简单,缺点是:①用水量较大。②部分乙炔会因为溶于水中而 造成大量浪费。③生产的乙炔中携带有大量的水,还需要进行脱水。④所需要的设备占地 面积较大。⑤石灰乳中携带大量水分,不利于其回收利用。 (2)干法工艺则是利用水分蒸发吸热而降低生产乙炔时产生的热量,即将水加入电石中。 需要注意的是该方法需要不断搅拌反应器内的材料,防止局部过热而造成乙炔的聚合和分解。干法工艺的优点是:①工艺所需要的设备占地面积相对较小。②乙炔损耗较少。③石灰乳 中含水量低,回收利用较为容易。缺点是:①生产的乙炔杂质较多。②操作程序与前者相 比较为繁杂。③反应温度高。 二.我国电石法乙炔生产工艺的发展现状 电石法乙炔生产工艺是我国主要的乙炔生产方法,而且该方法符合我国能源的特点,因此, 该方法将在我国将长期存在。目前,电石法乙炔生产工艺大多以湿法为主,干法工艺较为少见。20世纪80年代,干法工艺也被引进我国,但是由于效果差强人意而又改为湿法工艺为主要 生产乙炔的方法。而且,两种方法都有各自的优缺点。另外,电石法乙炔生产工艺会排放大 量的电石炉气,近几年国内开展了对电石炉气的回收利用研究。少数生产厂家利用电石炉气 做燃料,大部分都是简单处理后排入大气中。 三.乙炔生产工艺的改进与优化策略 3.1电石破碎系统的改进 首先通过延长破碎机加料口的长度,减少卡料现象的发生;其次,加厚破碎机的密封面,加强其固定方式,减少跑料、漏料以及粉尘的发生;最后加强破碎机的保养工作,定期清理检修机器,排除安全隐患,减少事故发生,延长机器使用寿命。 3.2生产过程中采用计算控制优化技术

印刷厂生产设备及工艺改进提高生产能力的改进建议

生产设备及工艺改进提高生产能力的改进建议 (生产工艺改进报告建议) 主题:各分厂现有设备更有效益地提高产量及质量节约成本产能(以各工序生常规24纸箱 一、浙江厂 现有对开印刷机一台:产能8万石/班,二班16万。每月产能:16x26日=416万因生产订单及交货期情况每月最急下单前三周,之后10至20号空闲,真正生产日期20天左右即是印刷月产二班约:16万x20天=320万不足以应付24纸箱及A12纸箱量还未计近区云和及宿迁的PET纸箱及利乐包的订单量. 印机产能不足。 配套工艺: 1:自动过油机自动机6500石/小时每班7万两班14万手动机:4000石/小时每班4万两班8万每天日夜班二台机总产能平均:20-22万月产:550万因生产订单交货期惯性因素每月最急下单后前三周.之后10至20号空闲,真正生产日期20天左右即是过油月产二班约:420万,因印刷产能少,不需开足二台机及二班. 过油机产能有剩余. 2: 自动裱坑机产能车速4800石/小时 每班每台5万两台10万/班每天日夜班二台机三班总产能平均:15万月产量:390-400万 开足四班月产能:520万同样因交货期问题生产期月产能:15万x20天=300万刚和印刷产量接近. 产能偏少. 改进提高产量: 24纸箱排2个纸度约:1070x842mm排2个裱落纸方向和单个842MM一样产能车速4000石/小时每天11小时3800X2X11=8.5万个/班一台机2台机17万/班三班25.5万个三班每天增加产能10.5万.月产:663万开足四班每天产能可高达34万个.按20天挑期计算二台机开一班也能达340万..三个班次可生产高达510万.开足26天三个班次663万 在不需增加设备及人手情况下排2个裱坑每月20天生产期计产能三班510万比现产能300万可增加210万产能.

松香生产工艺改进方法

松香生产工艺改进方法 摘要:用热熔松香与经熔化为液状的马来酸酐直接起Diels-Alder反应,缩短了生产反应时间,降低了生产成本,所得产品色泽浅,质量稳定。 关键词:松香;马来松香;工艺流程;加成反应 中图分类号: TQ351.47 文献标识码: B 文章编号: 1005-3433(2001)06-0038-03 1 概述 随着科学技术的发展,松香的用途不断扩大。但是,由于松香中枞酸型树脂酸具有共轭双键,因而存在溶剂中结晶倾向性大、易在空气中自动氧化饱和、软化点低、发脆等缺点,限制了它在许多工业部门更广泛的应用,为了消除松香的这些缺点,对松香进行改性,本文所述马来松香就是改性产品之一。以往生产上主要以间歇法为主,用固体松香加热熔化后再加入马来酸酐进行反应,反应时间长导致产品颜色较深,生产能耗大,下面介绍将其生产工艺改造为连续法生产,对工艺条件进行探讨并简化的过程。 2 松香与马来酸酐的反应机理 首先,我们依据生成马来松香的反应机理来探讨工艺条件。马来松香是松香中的左旋海松酸以其二个环内的共轭双键结构与顺丁烯二酸酐(即马来酸酐)起Diels-Alder反应后所得的产物。松香中的树脂酸,除左旋海松酸外,都不直接与马来酸酐发生加成反应,但当枞酸、新枞酸,长叶松酸在加热条件下异构为左旋海松酸后才能与马来酸酐起加成反应。当马来酸酐加到含有微量左旋海松酸的平衡混合物中,即可发生双烯加成反应,并使平衡混合物不断向生成微量左旋海松酸同马来酸酐反应的方向移动,从而获得大量的马来海松酸酐加合物即马来松香,反应式如下[1]: 从马来松香的分子结构中可以看到,因为增加了分子的官能团,使它比其他普通松香有较高的软化点、酸价、皂化价等,从而扩大了其用途,提高了其使用

相关主题
文本预览
相关文档 最新文档