当前位置:文档之家› 牵引变电所电气主接线的设计

牵引变电所电气主接线的设计

牵引变电所电气主接线的设计
牵引变电所电气主接线的设计

电力牵引供电系统课程设计

专 业:电气工程及其自动化 班 级: 电气091 姓 名: 学 号: 指导教师:

兰州交通大学自动化与电气工程学院

年 月 日

1 题目:牵引变电所电气主接线的设计

指导教师评语

平时(30)

报告(30)

修改(40)

总成绩

1.1选题背景

某牵引变电所位于大型编组站内,向两条复线电气化铁路干线的三个方向馈电区段供电,已知列车正常情况的计算容量为12000kV A(三相变压器),并以10kV 电压给车站电力照明机务段等地区负荷供电,容量计算为3850kV A。各电压侧馈出线数目及负荷情况如下:

25kV回路(1路备):两方向年货运量与供电距离分别为Q1L1=33×60Mt.Km; Q2L2=31×25Mt.Km,K R=0.2,△q=100KWh/Kt.Km。

10kV回路(2路备):供电电源由系统区域变电所以双回路110KV输送线供电。

本变电所是终端变电所,送电线距离10kM。

主变压器为三相接线,要求:画出变电所的电气主接线。(包括变压器容量计算;各种方案主接线的技术经济性比较。)

1.2 题目分析

这类牵引变电所的电源线路,按保证牵引符合供电的需求一般有两回,主要向牵引负荷和地区负荷供电,桥型结线的中间牵引变电所还有穿越功率通过母线,并向邻近牵引变电所或地区变电所供电。由题意知,本牵引变电所担负着重要的牵引负荷供电任务(一级负荷)、馈线数目多、影响范围广,应保证安全可靠持续性的供电。10千伏地区负荷主要为编组站自动化驼峰、信号自动闭塞、照明及其自动装置等一部分为一级负荷、其他包括机务段在内的自用电和地区三相负载等均为二级负荷,也应满足有足够安全可靠供电的要求。本变电所为终端变电所,一次侧无通过功率。

2方案论证

三相牵引变压器的计算容量是由牵引供电计算求出的。本变电所考虑为固定备用方式,按故障检修时的需要,应设两台牵引用主变压器,地区电力负荷因有一级负荷,为保证变压器检修时不致断电,也应设两台。

因没有校核容量,只考虑计算容量来选择变压器,牵引变压器计算容量为12000kV A,故选择容量为12500kV A的变压器,而地区变压器选择6300kV A变压器。

根据原始资料和各种负荷对供电可靠性要求,主变压器容量与台数的选择,可能有以下两种方案:

方案A:2×12500kV A牵引变压器+2×6300kV A地区变压器,一次侧同时接于110kV母线,(110千伏变压器最小容量为6300kV A)。

方案B:2×16000kV A的三绕组变压器,因10千伏侧地区负荷与总容量比值超

过15%,采用电压为110/25/10.5kV A,结线为

0//

Y??两台三绕组变压器同时为牵引负荷与地区电力负荷供电。各绕组容量比为100:100:50。

3主接线设计

3.1电气主接线基本要求

电气主接线应满足可靠性、经济性和灵活性三项基本要求:

(1)灵活性:主接线的灵活性主要表现在正常运行或故障情况下都能迅速改变接线方式。满足调度正常操作灵活的要求,满足输电线路、变压器、开关设备停电检修或设备更换方便灵活的要求,满足接线过渡的灵活性,满足处理事故的灵活性等。

(2)可靠性:根据变电所的性质和在系统中的地位和作用不同,对变电所的主接线可靠性提出不同的要求。主接线的可靠性是接线方式和一次、二次设备可靠性的综合。对主接线可以作定量计算,但需要各种设备的可靠性指标、各级线路、母线故障率等原始数据。通常采用定性分析来比较各种接线的可靠性。

(3)经济性:经济性是在满足接线可靠性、灵活性要求的前提下,尽可能地减少与接线方式有关的投资。

3.2电气主接线设计依据

(1) 变电所的分期和最终建设规模:变电所根据十几年电力系统发展规划进行设计。一般装设两台主变压器;当技术经济比较合理时,330—500kV枢纽变电所也可装设3—4台主变压器;终端或分支变电所如只有一个电源时,可只装设一台主变压器。

(2) 变电所在电力系统中的地位和作用:电力系统中的变电所有系统枢纽变电所、地区重要变电所和一般变电所三种类型。一般系统枢纽变电所汇集多个大电源,进行系统功率交换和以中压供电,电压为330—500kV;地区重要变电所,电压为220—330kV;一般变电所多为终端和分支变电所,电压为110kV,但也有220kV。

(3) 负荷大小和重要性:对于一级负荷必须有两个独立电源供电,且当任何一个电源失去后,能保证对全部一级负荷不间断供电。对于二级负荷一般要有两个独立电源供电,且当任何一个电源失去后,能保证全部或大部分二级负荷的供电。

(4) 系统备用容量大小:装有两台及以上主变压器的变电所,其中一台事故断开,其余主变压器的容量应保证该所70%的全部负荷,在计及过负荷能力后的允许时间内,应保证一级和二级负荷。系统备用容量的大小将会影响运行方式的变化。例如:检修母线或断路器时,是否允许线路、变压器停运;故障时允许切除的线路、变压器的数量等。设计主接线时应充分考虑这个因素。

4主接线的拟定

按110kV进线和终端变电所的地位,考虑变压器数量,以及各种电压级馈线

数目、可靠供电的需要程度选择结线方式。

(1) 对于上述方案A,因有四台变压器,考虑110kV母线检修不致全部停电,采用单母线用断路器分段的结线方式,如图2-1,每段母线连接一台牵引变压器和地区变压器。由于牵引馈线断路器数量多,且检修频繁,牵引负荷母线采用带旁路母线放入单母线分段(隔离开关分段)结线方式,10kV地区负荷母线同样采用断路器分段的单母线结线系统。自用电变压器分别接于10kV两段母线上(两台)。

(2) 对于方案B,共用两台三绕组主变压器、两回路110kV进线,线路太长,但应有线路继电保护设备,故以采用节省断路器数量的内桥结线较为经济合理,如图2-2。牵引负荷母线结线和10千伏母线结线与方案A的结线相同。

图2-1方案A主接线110kV

3B 6300kVA

1B

1000kVA

4B

6300kVA

2B

1000kVA 10kV25kV

图2-2 方案B 主接线

5 技术经济性比较

5.1电压不对称系数计算

发生地因地区负荷占比例较大,且有部分为一级负荷,应保证必要的电压质量,主要应检验电压不对称系数。然后进行两种方案的经济比较。各方案计算结果如表3-1所示。

表3-1 各主接线方案技术参数计算结果

方案

单位(kV )

百分值

1a E &

1b E &

1c E &

()

11a E & ()

12a E & u

K

A )

89.5(6.61?

-j e

?

5

.2360.58j e

?

2

.1180.62j e

)

73.3(5.60?

-j e

)

8.68(54.2?

-j e

002.4

B

)

06.5(4.62?

-j e

?

4

.2362.60j e

?

4

.1170.62j e

)

75.3(7.61?

-j e

)

2.69(57.1?

-j e

054.2

从上述比较可知,在保证电压质量方面,方案A 和方案B 的u K 1值在允许范围以内。

5.2 变压器与配电装置的一次投资与折旧维修费

方案A :2×12500+2×6300kV A 变压器四台,多增加110kV 断路器四组,按SW3-110少油断路器计算,共需(以万元计)

110kV

1B

2B

2*16000kVA

10kV 25kV

2×80+2×50+4×(11+1.9+2×0.95)=274.8(万元)

其中,每组断路器包括断路器及机构1台、电流互感器1台,及两侧隔离开关2台,分别为11万元、1.9万元和2×0.95万元。

方案B :2×16000kV A 三绕组变压器2台,另增加变压器前面和跨条隔离开关(110kV )4组共需(以万元计)

2×96+4×0.95=195.8(万元)

A 方案110kV 配电间隔数增加,其占地费不计,每年折旧维修费,按取一次投资的8%计算则:

方案A :pa C =274.8×0.08=21.98(万元) 方案B :pb C =195.8×0.08=15.66(万元)

5.3 各方案的电能损耗

(1) 方案A 采用2×SF1-QY-12500/110型和2×S7-6300/110型三相变压器,其参数为:

牵引变压器:c P ?=12.5千瓦,m P ?=63千瓦,000I =1.3,00d U =10.5; 地区变压器:c P ?=11.6千瓦,m P ?=41千瓦,000I =1.1,0

0d U =10.5。

按已知条件,可求牵引负荷的最大功率损耗时间为:

h)

(30008.012500100

)253100603300(2.1≈???+??=

q τ

由于地区负荷m a x T =4500小时,?cos =0.9,用插入法得:

d τ(地区负荷)=2750(h)

牵引变压器和地区变压器的年能量损耗Q A ?和d A ?分别:

30003)100125005.101.063(218760)100125003.11.05.12(222

3

1

22

????+?+??

?+?=?∑e x Q I I

A

代入数据得:

h)

kw (6.6887456.241985446760?=+=?Q A

牵引用电按每度0.16元计,则年电能损耗费:

eq C =688745.6?0.16=11.02(万元)

2750)63003850()10063005.101.041(218760)10063001.11.05.11(22

????++??

?+?=?d A

经计算可得:

h)

kw (3.3750947.522006.322893?=+=?d A

工业用电按每度0.10元计则每年能损耗电费:

ed C =375094.3?

0.10+3.75(万元)

(2) 方案B 采用2×SFS7-16000/110型三项三绕组变压器,其参数为:各绕组容量比100:100:50;c P ?=28kW ,0

00

I =1.1,m P ?=106kW ,各绕组短路电压

001d U =10.5,002d U =6.5,003d U =0。则年电能损耗为:

)]0100

5.61005.10(1.021)(1062121[8760)100160001.11.028(222

222211332

3

22221221+?+???+

?++???+???+?=?e e e e e e e e S S S S S S S S S S S S S A τττττ

代入数值,得:

1098549A ?

=h)(kW ?

综合用户取平均电价为0.12元/度,则年电能损耗费为:

ab C =1098549?

0.12=13.18(万元) 年运行费用为年折旧维修费与年电能损耗费之和。 方案A :

A C =pa C +ea C =21.98+14.77=36.75(万元/年)

方案B :

B C =pb C +eb C =15.66+13.18=28.84(万元/年)

经济比较表以方案B 为基数,则方案A 增数为如表3-2所示:

表3-2 经济比较表

方案 项目

方案A 多出 方案B 一次投资(万元) 274.8-195.8=79 0 年运行费(万元)

36.75-28.84=7.91

由技术经济全面比较表明,在保证同样可靠性的前提下,方案B 对地区负荷供电电压质量较好,且投资和年运营费用都较低,又节省占地面积,故推荐方案B 。

6 总结

经过这次课程设计,我学到很多平常忽略的东西,同时也温习了很多必要的知识。部分知识已经变得生疏,此时才明白平时对知识积累和温习的重要性。这次的课程设计的知识仅从书本上学是远远不够的,多次在图书馆、电子阅览室等地多方面查询资料,经过不懈努力终于完成了课程设计,完成了方案A 和方案B 主接线图的设计见图6-1和图6-2。

另外,经过这次设计,不仅巩固了以前所学过的知识,而且学到了很多课本

上所没学到过的知识,培养了我独立思考问题的能力以及处理问题的能力。通过这次课程设计使我懂得了理论联系实际的重要性,只有把所学的理论知识与实践相结合起来,从理论中得出结论,从而提高自己的实际动手能力。这毕竟第一次做的,可以说得是困难重重,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固,通过这次课程设计之后,一定把以前所学过的知识重新温故,为将来面对工作时能够更快地进入状态打下良好的基础。

图6-1 方案A 主接线图 图6-2 方案B 主接线图

参 考 文 献

110kV 110kV

27.5kV

A1B1A2B2

A B C N

10kV

钢轨

钢轨

110

/100001--QY SF 110

/100001--QY SF 110

/63007-SF 110

/63007-SF 110kV

SFS7-16000/110SFS7-16000/110

钢轨钢轨

27.5kV

A B C

110kV

[1]李彦哲,胡彦奎.电气化轨道供电系统与设计[M].兰州:兰州大学出版社,2004.

[2]贺威俊,高仕斌.电力牵引供变电技术[M].成都:西南交通大学出版社,2002.

[3]铁道部电气化工程局电气化勘测设计院. 电气化铁道设计手册:牵引供电系统[S].

牵引变电所的设计

第1章概论 1.1 课题研究的目的意义 牵引变电所是电气化铁路牵引供电系统的心脏,它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及在电气上是如何连接的,高压侧有几回进线、几台牵引变压器,有几回接触网馈电线。通过电气主接线可以了解牵引变电所等设施的规模大小、设备情况。 1.2 电气化铁路的国内外现状 变电所是对电能的电压和电流进行变换、集中和分配的场所。在电能是社会生产和生活质量中最为重要的能源和动力的今天,变电所的作用是很重要的当前我国进行的输变电建设和城乡电网的建设与改造,对未来电力工业发展有着重要的作用。因此,产品技术要先进,产品质量要过硬,应达到30~40年后也能适用的水平;而且产品必须要国产化。现阶段我过主要是使用常规变电所。常规变电所即采用传统模式进行设计、建造和管理的变电所,一般为有人值班或驻所值班,有稳定的值班队伍。继电保护为电磁型,电器就地控制,不具备四遥、远方操作功能,需要一支训练有素的运行与检修队伍和一整套相应的管理机构、制度进行管理,以满足安全运行的要求。这种模式有许多不足之处。我国的近期目标是既要充分利用原有设备,又要能够适应微机远动自动化系统;既要实现无人值班,又要满足安全经济运行的要求。 国外的变电所研究已经远远超过我国,他们在变电站的运行管理模式上, 已经能做到无人值守。 1.3 牵引变电所 1.3.1 电力牵引的电流制 电力牵引按牵引网供电电流的种类可分为三种电流制,即直流制、低频单相交流制和工频单相交流制。 (1) 直流制 即牵引网供电电流为直流的电力牵引电流制。电力系统将三相交流电送到牵引变

牵引变电所接线方式

1WL 2WL 1WL 2WL 9QS 10QS 1QS 2QS 1QS 2QS 1QF 2QF 5QS 3QF 6QS 3QS 4QS 3QS 5QS 4QS 7QS 3QF 6QS 8QS T-1 T-2 T-1 T-2 1QF 2QF (a ) (b ) 图2-2 桥式接线 (a) 内桥带外跨 条接线 ;(b ) 外桥接线 两回 进线 (电源引入线)分别经断路器接入两台主变压器,若在两条电源引入线之间用带断路器的横向母线(汇流母线)将它们连接起来,即构成桥式接线。带断路器的横向母线通常称为连接桥。当桥式接线的两回电源引入线接入电力系统的环形电网中时,断路器经常处于闭合状态以便系统功率穿越。 根据连接桥的所在的位置不同,桥式接线又分为外桥式接线和内桥式接线。 (1)内桥带外跨条接线 如图2-2(a)所示,连接桥若设置在靠变压器侧,则构成了内桥式接线。为了提高内桥接线的供电的可靠性和运行的灵活性,一般在进线断路器外侧再设置一条带隔离开关的横向母线(称为外跨条)。内桥带外跨条接线在两条电源进线回路上均有断路器,任一电源线路故障不影响向牵引变电所的供电。 主接线正常运行时,如电源1WL 供电,2WL 备用;主变压器T-1运行,T-2备用。此时,除隔离开关9QS 、10QS 、8QS 断开,其他开关均闭合,使系统功率从桥断路器通过,如图2-2(a)中的箭头所指的方向所示。电源1WL 经1QS 、1QF 、3QS 、7QS 将电能传递给T-1,另一回电路冷备用。电源1WL 经1QS 、1QF 、3QS 、5QS 、3QF 、6QF 、4QS 、2QF 、2QS 将电能传递给周边变电所,完成系统功率穿越。 内桥带外跨条式主接线在两条电源进线上均设有断路器,如断路器1QF 、2QF 。若电源1WL 故障,需要退出检修时,反映该故障的继电器保护装置动作,断路器1QF 断开,电源1WL 退出运行,同时,电源2WL 测的电源断开点自动闭合,2WL 投入运行。若只是一般的倒换电源1WL ,只需断开1QF ,闭合电源2WL 测的

牵引变电所继电保护设计继电保护课程设计

课程名称:继电保护原理与运行 设计题目:牵引变电所继电保护设计 院系:电气工程系 专业:电气工程及其自动化 年级: 姓名: 指导教师: 西南交通大学峨眉校区 2012年4月1日

课程设计任务书 专业铁道电气化姓名学号 开题日期:2009年2月23日完成日期:2009年 4 月10 日题目牵引变电所继电保护设计 一、设计的目的 通过该设计,初步掌握变电所继电保护的设计步骤和方法,熟悉有关规程和设计手册的使用方法以及继电保护标准图的绘制等。 二、设计的内容及要求 (1)牵引变电所继电保护方案的讨论 (2)短路计算 (3)整定计算 (4)绘制标准图 (5)讨论说明 (6)整理成册 三、指导教师评语 四、成绩 指导教师陈丽华(签章) 2009 年 4 月10 日

继电保护设计任务书 (第2组) 一、设计目的 通过该设计,初步掌握变电站继电保护的设计步骤和方法,熟悉有关规程和设计手册的使用方法以及继电保护标准图的绘制等。 二、设计的主要内容 1、牵引变电所继电保护方案的讨论。 2、短路计算。 3、整定计算。 4、绘制标准图。 5、讨论说明。 6、整理成册。 三、原始资料 1、供电方式:复线单边 2、电气主接线:110KV侧—双T接线 27.5KV侧—单母线分段 3、变电所参数 项目电源类别主电源备用电源 系统阻抗 最大运行方式0.494 0.361 最小运行方式0.527 0.517 牵引变 容量(KV A)2×15000 LH变比(Y/Δ)30/120 牵引馈线 名称左右最大负荷电流(A)447 530 馈线长度(KM)16.13 23.67 单位阻抗(Ω/KM)0.7475 LH变比120 母线最低工作电压(KV)25

牵引变电所电气主接线的设计

指导教师评语修改(40) 年月

1题目:牵引变电所电气主接线的设计 1.1选题背景 某牵引变电所位于大型编组站内,向两条复线电气化铁路干线的三个方向馈电区段供电,已知列车正常情况的计算容量为12000kV A(三相变压器),并以10kV 电压给车站电力照明机务段等地区负荷供电,容量计算为3850kV A。各电压侧馈出线数目及负荷情况如下: R 10kV回路(2路备):供电电源由系统区域变电所以双回路110KV输送线供电。算;各种方案主接线的技术经济性比较。) 这类牵引变电所的电源线路,按保证牵引符合供电的需求一般有两回,主要向牵引负荷和地区负荷供电,桥型结线的中间牵引变电所还有穿越功率通过母线,并向邻近牵引变电所或地区变电所供电。由题意知,本牵引变电所担负着重要的牵引负荷供电任务(一级负荷)、馈线数目多、影响范围广,应保证安全可靠持续性的供电。10千伏地区负荷主要为编组站自动化驼峰、信号自动闭塞、照明及其自动装置等一部分为一级负荷、其他包括机务段在内的自用电和地区三相负载等均为二级负荷,也应满足有足够安全可靠供电的要求。本变电所为终端变电所,一次侧无通过功率。 2方案论证 因没有校核容量,只考虑计算容量来选择变压器,牵引变压器计算容量为12000kV A,故选择容量为12500kV A的变压器,而地区变压器选择6300kV A变压器。 根据原始资料和各种负荷对供电可靠性要求,主变压器容量与台数的选择,可能有以下两种方案:

110kV母线,(110千伏变压器最小容量为6300kV A)。 过15%,采用电压为110/25/10.5kV A,结线为Y//两台三绕组变压器同时3主接线设计 (2)可靠性:根据变电所的性质和在系统中的地位和作用不同,对变电所的主接线可靠性提出不同的要求。主接线的可靠性是接线方式和一次、二次设备可靠性的综合。对主接线可以作定量计算,但需要各种设备的可靠性指标、各级线路、母线故障率等原始数据。通常采用定性分析来比较各种接线的可靠性。 (3)经济性:经济性是在满足接线可靠性、灵活性要求的前提下,尽可能地减少与接线方式有关的投资。 (2)变电所在电力系统中的地位和作用:电力系统中的变电所有系统枢纽变电所、地区重要变电所和一般变电所三种类型。一般系统枢纽变电所汇集多个大电源,进行系统功率交换和以中压供电,电压为330—500kV;地区重要变电所,电压为220—330kV;一般变电所多为终端和分支变电所,电压为110kV,但也有220kV。 (3)负荷大小和重要性:对于一级负荷必须有两个独立电源供电,且当任何一个电源失去后,能保证对全部一级负荷不间断供电。对于二级负荷一般要有两个独立电源供电,且当任何一个电源失去后,能保证全部或大部分二级负荷的供电。 (4)系统备用容量大小:装有两台及以上主变压器的变电所,其中一台事故断

牵引变电所电气主接线设计教学教材

课程设计报告书 所属课程名称供变电技术课程设计 题目牵引变电所电气主接线设计分院 专业班级 学号 20 0210470 学生姓名 指导教师 20 年月日

课程设计任务书 专业电气工程及其自动化班级姓名 一、课程设计(论文)题目牵引变电所电气主接线设计 二、课程设计(论文)工作:自20年月日起至年月 1 日止。 三、课程设计(论文)的目的及内容要求: 1.设计课题:牵引变电所电气主接线设计 2.设计目的: ①通过该设计,使学生初步掌握交流电气化铁道牵引变电所电气主接线的设计步骤和方法; ②熟悉有关设计规范和设计手册的使用; ③基本掌握变电所主接线图的绘制方法; ④锻炼学生综合运用所学知识的能力,为今后进行工程设计奠定良好的基础。 3.设计要求:

①按给定供电系统和给定条件,确定牵引变电所电气主接线。 ②选择牵引变电所电气主接线中的主要设备。如:母线、绝缘子、隔离开关、熔断器、断路器、互感器等。选择时应优先考虑采用国内经鉴定的新产品、新技术。 ③提交详细的课程设计说明书和牵引变电所电气主接线图。 学生签名:( ) 20年月日

课程设计(论文)评阅意见 评阅人职称 20 年月日

目录 第一章牵引变电所主接线设计原则及要求 (6) 1.1 概述 (6) 1.2 电气主接线基本要求 (6) 1.3电气主接线设计应遵循的主要原则与步骤 (7) 第二章牵引变电所电气主接线图设计说明 (8) 第三章短路计算 (9) 3.1短路点的选取 (9) 3.2短路计算 (9) 第四章设备及选型 (12) 4.1硬母线的选取 (12) 4.2支柱绝缘子和穿墙导管的选取 (14) 4.3高压断路器的选取 (16) 4.4高压熔断器的选取 (17) 4.5隔离开关的选取 (18) 4.6电压互感器的选取 (19) 4.7电流互感器的选取 (20) 4.8避雷器的选取 (21) 第五章参考文献 (22)

电气主接线设计

摘要 电气主接线(main electrical connection scheme)按牵引变电所和铁路变、配电所(或发电所)接受(输送)电能和分溜配电能的要求,表征其主要电气设备相互之间连接关系的总电路。通常以单线图表示。电气主接线中表示的主要电气设备有电力变压器、发电机、断路器、隔离开关、电压互感器、电流互感器、避雷器、母线、接地装置以及p带旁路母线接线、桥型接线和双T接线(或T 形)分支接线等。电气主接线包括从电源进线侧到各级负荷电压侧的全部一次接线,有时还包括各类变、配电所(或发电所)的自用电部分、后者常称作自用电接线。电气主接线反应了牵引变电所和铁路变、配电所(发电所)的基本结构和功能。 关键词:电气主接线;方式;原则;展望与未来

第一部分,电气主接线 电气主接线是变电站电气部分的主体,是电力系统中电能传递通道的重要组成部分之一;其连接方式的确定对电力系统整体以及变电站本身的供电可靠性、运行灵活性、检修方便与否和经济合理性起着决定性作用,同时也对变电站电气设备的选择、配电装置的配置、继电保护和控制方式的拟定有着很大的影响。因此,正确处理好各方面的关系,全面分析相关影响因素,综合评价各项技术,合理确定主接线方案是十分重要的。本论文研究的电气主接线,主要针对高压配电网中110kv变电站高压电气主接线的设计。随着城市电网和农村电网的三年改造结束,目前220kv及以上电压级的骨干网架已基本形成,110kv变电站的地位大多数已变成了中间变电站和终端变电站,直接与用户相关联,是实现电能传递的关键环节,首先从探讨变电站电气主接线方式的分析原则入手,对常用110kv 中间变电站主接线方式进行分析:单母接线方式、内桥加跨条接线方式以及四角形接线方式。并且进行综合比较、评价,最后讨论了110kv变电站电气主接线方式的现状与展望。 一、研究的意义 电气主接线是变电站电气部分主体,是电力系统中电能传递通道的重要组成部分之一;其连接方式的确定对电力系统整体以及变电站本身的供电可靠性、运行灵活性、检修方便与否和经济合理性起着决定性的作用,同时也对变电站电气设备的选择、配电装置的布置、继电保护和控制方式的拟定有着很大的影响。因此,正确处理好各方面的关系,全面分析相关影响因素,综合评价各项技术,合理确定主接线方案是十分必要的。 本论文研究的电气主接线,主要针对高压配电网中110kv变电站高压电气主接线的设计。随着城市电网和农村电网的三年改造结束,目前220kv及以上电压级的骨干网架已基本形成,110kv变电站的地位大多数已变成了中间变电站和终端变电站,直接与用户关联,是实现电能传递的关键环节。其中,中间变电站规模基本统一为110kv两路进线或四路进线、主变压器建设两台或三台、 110kv/35kv/10kv三级电压或110kv/110kv两级电压的变电站;终端变电站规模大多为110kv两路进线、主变压器建设两台或三台、110kv/35kv/10kv三级电压或110kv/10kv两级电压的变电站。

某水电站电气主接线设计毕业设计(论文)word格式

前言 电力系统是由发电厂、变电站、线路和用户组成。变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用。为满足生产需要,变电站中安装有各种电气设备,并依照相应的技术要求连接起来。把变压器、断路器等按预期生产流程连成的电路,称为电气主接线。电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。用规定的设备文字和图形符号并按工作顺序排列,详细地表示电气设备或成套装置的全部基本组成和连接关系的单线接线图,称为主接线电路图。 一、主接线的设计原则和要求 主接线代表了变电站电气部分主体结构,是电力系统接线的主要组成部分,是变电站电气设计的首要部分。它表明了变压器、线路和断路器等电气设备的数量和连接方式及可能的运行方式,从而完成变电、输配电的任务。它的设计,直接关系着全所电气设备的选择、配电装置的布置、继电保护和自动装置的确定,关系着电力系统的安全、稳定、灵活和经济运行。由于电能生产的特点是发电、变电、输电和用电是在同一时刻完成的,所以主接线设计的好坏,也影响到工农业生产和人民生活。因此,主接线的设计是一个综合性的问题。必须在满足国家有关技术经济政策的前提下,正确处理好各方面的关系,全面分析有关影响因素,力争使其技术先进、经济合理、安全可靠。 Ⅰ. 电气主接线的设计原则 电气主接线的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。 1.接线方式:对于变电站的电气接线,当能满足运行要求时,其高压侧应尽可能采用断路器较少或不用断路器的接线,如线路—变压器组或桥形接线等。若能满足继电保护要求时,也可采用线路分支接线。在110-220KV 配电装置中,当出线为2 回时,一般采用桥形接线;当出线不超过4 回时,一般采用分段单母线接线。在枢纽变电站中,当110-220KV 出线在4 回及以上时,一般采用双母接线。在大容量变电站中,为了限制6-10KV 出线上的短路电流,一般可采用下列措施:

电气化铁路牵引变电所的主接线与变压器设计

电气化铁路牵引变电所的主接线与变压器设计 牵引变电所是电气化铁路牵引供电系统的心脏,它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及在电气上是如何连接的,高压侧有几回进线、几台牵引变压器,有几回接触网馈电线。通过电气主接线可以了解牵引变电所等设施的规模大小、设备情况。 标签:牵引变电所;铁路;牵引变压器 1 牵引变电所主结线的选择 牵引变电气主接线是变电所设计的首要部分,也是构成电力系统的重要环节。主接线的确定与电力系统整体及变电所本身运行的可靠性,灵活性和经济性是密切相关的,而且对电气设备的选择,配电装置布置,继电保护和控制方式的拟定有较大影响。因此必须合理的确定主接线。 电气主结线应满足的基本要求 ①首先保证电力牵引负荷,运输用动力,信号负荷安全,可靠供电的需要和电能质量。 ②具有必要的运行灵活性,使检修维护安全方便。 ③应有较好的经济性,力求减小投资和运行费用。 ④应力求接线简捷明了,并有发展和扩建的余地。 1.1 高压侧电气主结线的基本形式 1.1.1 单母线接线 如图1-1所示,单母线接线的的特点是整个的配电装置只有一组母线,每个电源线和引出线都经过开关电器接到同一组母线上。同一回路中串接的隔离开关和断路器,在运行操作时,必须严格遵守以下操作顺序:对馈线送电时必须先和1QS和2QS在投入1QF;如欲停止对其供电必须先断开1QF然后断开1QS和2QS。 单母线结线的特点是:(1)结线简单、设备少、配电装置费用低、经济性好并能满足一定的可靠性。(2)每回路断路器切断负荷电流和故障电流。检修任一回路及其断路器时,仅该回路停电,其他回路不受影响。(3)检修母线和与母线相连的隔离开关时,将造成全部停电。母线发生故障时,将是全部电源断开,待修复后才能恢复供电。

110kv牵引变电所设计

课程设计报告 课程电气化铁道供电系统与设计 题目牵引变电所B主接线及变压器容量计算学院电气工程学院 年级专业电气工程及其自动化 班级学号 学生姓名 指导教师

目录 1 概述 (1) 2 设计方案简述 (2) 3 牵引变压器容量计算 (2) 3.1牵引变压器容量的计算 (2) 3.1.1牵引变压器计算容量 (2) 3.1.2牵引变压器过负荷能力校验 (3) 3.2牵引变压器功率损耗计算 (3) 3.3牵引变电所电压不平衡度计算 (4) 3.3.1计算电网最小运行方式下的负序电抗 X(-) (4) s 3.3.2计算牵引变电所在紧密运行工况下注入110kV电网的负序电流 (4) 3.3.3构造归算到110kV的等值负序网络 (4) 3.3.4牵引变电所110kV母线电压不平衡度计算及校验 (4) 4 导线选择 (5) 4.1软母线选择 (5) 4.1.1室外110kV进线侧的母线选择 (6) 4.1.2室外27.5kV侧的母线选型及校验 (7) 4.1.3室外10kV馈线侧的母线选型及校验。 (7) 5 主接线选择 (8) 总结 (9) 附录一牵引变压器主要技术数据表 (10) 附录二牵引变电所B主接线图 (11) 参考文献 (12)

1 概述 包含有A、B两牵引变电所的供电系统示意图如图1-1所示: L3 L2 L1 B A S Y S T E M 1 S Y S T E M 2 图1-1牵引供电系统示意图 表1-1 设计基本数据 图1-1牵引变电所中的两台牵引变压器为一台工作,另一台备用。 电力系统1、2均为火电厂。其中,电力系统容量分别为250MV A和200MVA。选取基准容量 j S为200MV A,在最大运行方式下,电力系统1、2的综合电抗标幺值分别为0.13和0.15;在最小运行方式下,电力系统的综合标幺值分别为0.15和0.17。 对每个牵引变电所而言,110kV线路为一主一备。图1-1中, 1 L、2L、3L长度为25km、 40km、20km.线路平均正序电抗 1 X为0.4Ω/km,平均零序电抗0X为1.2Ω/km。

牵引变电所电气主接线设计

精品文档 课程设计报告书 所属课程名称供变电技术课程设计 题目牵引变电所电气主接线设计分院 专业班级 学号 20 0210470 学生姓名 指导教师 20 年月日

课程设计任务书 专业电气工程及其自动化班级姓名 一、课程设计(论文)题目牵引变电所电气主接线设计 二、课程设计(论文)工作:自20年月日起至年月 1 日止。 三、课程设计(论文)的目的及内容要求: 1.设计课题:牵引变电所电气主接线设计 2.设计目的: ①通过该设计,使学生初步掌握交流电气化铁道牵引变电所电气主接线的设计步骤和方法; ②熟悉有关设计规范和设计手册的使用; ③基本掌握变电所主接线图的绘制方法; ④锻炼学生综合运用所学知识的能力,为今后进行工程设计奠定良好的基础。 3.设计要求:

①按给定供电系统和给定条件,确定牵引变电所电气主接线。 ②选择牵引变电所电气主接线中的主要设备。如:母线、绝缘子、隔离开关、熔断器、断路器、互感器等。选择时应优先考虑采用国内经鉴定的新产品、新技术。 ③提交详细的课程设计说明书和牵引变电所电气主接线图。 学生签名: ( ) 20 年月日

课程设计(论文)评阅意见 评阅人职称 20 年月日

目录 第一章牵引变电所主接线设计原则及要求 (6) 1.1 概述 (6) 1.2 电气主接线基本要求 (6) 1.3 电气主接线设计应遵循的主要原则与步骤 (7) 第二章牵引变电所电气主接线图设计说明 (8) 第三章短路计算 (9) 3.1短路点的选取 (9) 3.2短路计算 (9) 第四章设备及选型 (12) 4.1硬母线的选取 (12) 4.2支柱绝缘子和穿墙导管的选取 (14) 4.3高压断路器的选取 (16) 4.4高压熔断器的选取 (17) 4.5隔离开关的选取 (18) 4.6电压互感器的选取 (19) 4.7电流互感器的选取 (20) 4.8避雷器的选取 (21) 第五章参考文献 (22)

电气主接线设计原则和设计程序

电气主接线设计原则和设计程序 4.5.1电气主接线的设计原则 电气主接线的设计是发电厂或变电站电气设计的主体。它与电力系统、电厂动能参数、基本原始资料以及电厂运行可靠性、经济性的要求等密切相关,并对电气设备选择和布置、继电保护和控制方式等都有较大的影响。因此,主接线设计,必须结合电力系统和发电厂或变电站的具体情况,全面分析有关影响因素,正确处理它们之间的关系,经过技术、经济比较,合理地选择主接线方案。 电气主接线设计的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。 在工程设计中,经上级主管部门批准的设计任务书或委托书是必不可少的。它将根据国家经济发展及电力负荷增长率的规划,给出所设计电厂(变电站)的容量、机组台数、电压等级、出线回路数、主要负荷要求、电力系统参数和对电厂(变电站)的具体要求,以及设计的内容和范围。这些原始资料是设计的依据,必须进行详细的分析和研究,从而可以初步拟定一些主接线方案。国家方针政策、技术规范和标准是根据国家实际状况,结合电力工业的技术特点而制定的准则,设计时必须严格遵循。设计的主接线应满足供电可靠、灵活、经济、留有扩建和发展的余地。设计时,在进行论证分析阶段,更应合理地统一供电可靠性与经济性的关系,以便于使设计的主接线具有先进性和可行性。 4.5.2 电气主接线的设计程序 电气主接线的设计伴随着发电厂或变电站的整体设计进行,即按照工程基本建设程序,历经可行性研究阶段、初步设计阶段、技术设计阶段和施工设计阶段等四个阶段。在各阶段中随要求、任务的不同,其深度、广度也有所差异,但总的设计思路、方法和步骤基本相同。 电气主接线的设计步骤和内容如下: 1.对原始资料分析 (1)工程情况,包括发电厂类型(凝汽式火电厂,热电厂,或者堤坝式、引

牵引变电所设计的课程设计

电力牵引供电系统课程设计评语: 考勤(10) 守纪 (10) 设计过程 (40) 设计报告 (30) 小组答辩 (10) 总成绩 (100) 专业: 班级: 姓名: 学号: 指导教师:

目录 1 设计原始题目 (1) 1.1具体题目 (1) 1.2要完成的内容 (2) 2 设计课题的计算与分析 (2) 2.1计算的意义 (2) 2.2详细计算 (2) 2.2.1 牵引变压器容量计算 (2) 2.2.2 牵引变压器过负荷能力校验 (3) 2.2.3 牵引变压器功率损耗计算 (3) 2.2.4 牵引变压器在短时最大负荷下的电压损失 (3) 2.2.5 牵引变电所电压不平衡度 (3) 2.2.6 牵引变电所主接线设计 (4) 3 小结 (5) 参考文献 (6) 附录 (7)

1 设计原始题目 1.1 具体题目 《供变电工程课程设计指导书》的牵引变电所B。包含有A、B两牵引变电所的供电系统示意图如图1所示。设计基本数据如表1所示。 SYSTEM2SYSTEM1 L1L2L3 B A 图1 牵引供电系统示意图 表1设计基本数据 项目B牵引变电所 左臂负荷全日有效值(A)320 右臂负荷全日有效值(A)290 左臂短时最大负荷(A)410 右臂短时最大负荷(A)360 牵引负荷功率因数0.85(感性) 10kV地区负荷容量(kVA)2*1200 10kV地区负荷功率因数0.83(感性) 牵引变压器接线型式YN,d11 牵引变压器110kV接线型式简单(双T)接线 左供电臂27.5kV馈线数目 2 右供电臂27.5kV馈线数目 2 10kV地区负荷馈线数2回路工作,一回路备用 预计中期牵引负荷增长40%

高速铁路牵引变电所电气主接线的设计课程设计

高速铁路牵引变电所电气主接线的设计 摘要:牵引变电所是电气化铁路牵引供电系统的心脏,它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及在电气上是如何连接的,高压侧有几回进线、几台牵引变压器,有几回接触网馈电线。通过电气主接线可以了解牵引变电所等设施的规模大小、设备情况。 1.2 电气化铁路的国内外现状 变电所是对电能的电压和电流进行变换、集中和分配的场所。在电能是社会生产和生活质量中最为重要的能源和动力的今天,变电所的作用是很重要的当前我国进行的输变电建设和城乡电网的建设与改造,对未来电力工业发展有着重要的作用。因此,产品技术要先进,产品质量要过硬,应达到30~40年后也能适用的水平;而且产品必须要国产化。现阶段我过主要是使用常规变电所。常规变电所即采用传统模式进行设计、建造和管理的变电所,一般为有人值班或驻所值班,有稳定的值班队伍。继电保护为电磁型,电器就地控制,不具备四遥、远方操作功能,需要一支训练有素的运行与检修队伍和一整套相应的管理机构、制度进行管理,以满足安全运行的要求。这种模式有许多不足之处。我国的近期目标是既要充分利用原有设备,又要能够适应微机远动自动化系统;既要实现无人值班,又要满足安全经济运行的要求。 国外的变电所研究已经远远超过我国,他们在变电站的运行管理模式上, 已经能做到无人值守。 1.3 牵引变电所 1.3.1 电力牵引的电流制 电力牵引按牵引网供电电流的种类可分为三种电流制,即直流制、低频单相交流制和工频单相交流制。 (1) 直流制 即牵引网供电电流为直流的电力牵引电流制。电力系统将三相交流电送到牵引变电所一次侧,经过牵引变电所降压并整流变成直流电,再通过牵引网供给电力机车使用。直流制发展最早,目前有些国家的电气化铁路仍在应用。我国仅工矿、城市电车和地下铁道采用。牵引网电压有1200V,1500V,3000V和600V,750V等,后两种分别用于城市电车、地下铁道。直流制存在

继电保护课程设计——牵引变电所牵引馈线保护设计

继电保护课程设计报告 题目:牵引变电所牵引馈线保护设计班级 姓名 学号 指导教师 设计时间2011年3月19日

牵引变电所牵引馈线保护设计线 一、设计题目及要求 1.1设计的题目 某牵引变电所甲采用直接供电方式向复线区段供电,牵引变压器类型为110/27.5kV,三相平衡接线,两供电臂电流归算到27.5kV侧电流如下表所示。线路阻抗0.6Ω/km 1.2、设计要求 (1)能根据提网络以及已知条件,按照部颁继电保护和自动装置整定计算的规范进行设计; (2)通过学习应熟悉电力系统继电保护设计与配置的一般规定; (3)正确理解继电保护整定计算的基本任务; (4)掌握整定计算的步骤,熟悉主保护、后备保护和辅助保护在电力系统中的应用; (5)对继电保护基本要求之间,能分别地进行综合考虑; (6)掌握整定计算对系统运行方式的选择以及短路类型、短路点的确定;(7)掌握整定系数的分析与应用,掌握整定计算配合的原则。 二、馈线保护原理、配置及整定计算 2.1 馈线保护原理 2.1.1自适应阻抗保护 阻抗保护是反应故障点至保护安装地点之间的阻抗(或距离)。在牵引供电系统中,阻抗保护通常采用多边形特性,如图1所示。根据牵引负荷的特点,为了提高阻抗保护的躲负荷能力,在阻抗保护中增加自适应判据,即根据电流中的谐波含量自动调节阻抗保护的动作范围。

图1 阻抗保护动作特性 自适应阻抗保护的动作判据如下: 02≤≤-h h X tg R ?或 ZD h R R ≤≤0 或 ZD h X X ≤≤0和 ZD L h h h R ctg X R ctg X +≤≤??1 (1) 在式(1)中,RZD 为电阻整定值;XZD 为电抗整定值;1?为躲涌流偏移角; 2?为容性阻抗偏移角;L ?为线路阻抗角。h R 、h X 分别为考虑谐波抑制后的测 量电阻和测量电抗,其计算公式如下: R K K R h h h )1(∑+= X K K X h h h )1(∑+= (2) 在式(2)中,∑h K 为综合谐波含量,等于1 532/)(I I I I ++;I1、I2、I3、 I5分别为基波、二次、三次、五次谐波分量; h K 为谐波抑制加权系数; 2.1.2 电流速断保护 电流速断保护的原理框图如图2所示。 图2 电流速断保护原理框图 I 1≥I N1 信号

牵引变电所的设计原则及其要求

目录 第1章牵引变电所设计基础 (1) 1.1 概述 (1) 1.2 电气主接线设计的基本要求 (1) 1.3 电气主接线的设计依据 (2) 1.4 主变压器型式、台数及容量的选择 (3) 第2章 F所牵引变电所电气主接线图设计说明 (3) 第3章短路计算 (4) 第4章高压电气设备选择及校验 (5) 4.1 高压电气设备选择的原则 (5) 4.2 高压电气设备的选择方法及校验 (7) 4.2.1 高压断路器和隔离开关的选择 (11) 4.2.2 高压熔断器的选择和校验 (13) 4.2.3 电流互感器的选择和校验 (14) 4.2.4 电压互感器 (14) 4.2.5 支柱绝缘子及穿墙套管的选择和校验 (15) 4.2.6 母线的选择和校验 (16) 4.2.7 限流电抗器选择 (16) 4.2.8 避雷器的选择 (17) 后记 (19) 参考资料 (20) 附图 (21)

第1章牵引变电所设计原则及要求 1.1概述 变电所电气主接线设计是依据变电所的最高电压等级和变电所的性质,选择出一种与变电所在系统中的地位和作用相适应的接线方式。变电所的电气主接线是电力系统接线的重要组成部分,它表明变电所内的变压器、各电压等级的线路、无功补偿设备以最优化的接线方式与电力系统连接,同时也表明在变电所内各种电气设备之间的连接方式。一个变电所的电气主接线包括高压侧、中压侧、低压侧以及变压器的接线。因各侧所接的系统情况不同,进出线回路数不同,其接线方式也不同。电气主结线的基本结线形式有但母线结线,双母线结线,桥形结线和简单分支结线。牵引负荷侧电气结线特点主要有:1.每路馈线设有备用断路器的单母线结线;2.具有公共备用断路器的结线;3.但母线分段带旁路母线结线。 1.2 电气主接线基本要求 电气主接线应满足可靠性、经济性和灵活性三项基本要求: 1、灵活性 主接线的灵活性主要表现在正常运行或故障情况下都能迅速改变接线方式,具体情况如下: ①满足调度正常操作灵活的要求,调度员根据系统正常运行的需要,能方便、 灵活地切除或投入线路、变压器或无功补偿装置,使电力系统处于最经济、最安全的运行状态。 ②满足输电线路、变压器、开关设备停电检修或设备更换方便灵活的要求。 设备停电检修引起的操作,包括本站内的设备检修和系统相关的厂、站设备检修引起的站内的操作是否方便灵活。 ③满足接线过渡的灵活性。一般变电站都是分期建设的,从初期接线到最终 接线的形成,中间要经过多次扩建。主接线设计要考虑接线过渡过程中停电范围最少,停电时间最短,一次、二次设备接线的改动最少,设备的搬迁最少或不进行设备搬迁。 ④满足处理事故的灵活性。变电所内部或系统发生故障后,能迅速地隔离故 障部分,尽快恢复供电操作的方便和灵活性,保障电网的安全稳定。

斯科特牵引变电所课程设计

牵引供电课程设计 目录 第1章课题设计任务要求 (1) 1.1 设计任务 (1) 1.2 设计的基本要求 (1) 1.3 设计的基本依据 (1) 第2章设计方案分析和确定 (1) 2.1方案主接线的拟定 (1) 2.2年运量和供电距离的分析 (2) 2.3变压器与配电装置的一次投资和和折旧维修 (3) 2.4供电方式的优缺点 (3) 第3章变压器台数和容量的选择 (3) 3.1牵引变压器备用方式的选择 (3) 3.2牵引变压器台数和容量的选择 (4) 第4章主接线设计 (7) 4.1电源侧主接线 (7) 4.2牵引变压器接线 (7) 4.3牵引侧主接线 (8) 4.4倒闸操作 (9) 第5章牵引变电所的短路计算 (9) 5.1短路计算的目的 (9) 5.2短路点的选取 (9) 5.3短路计算 (9) 第6章电气设备的选择 (11) 6.1室外110kV进线侧母线的选择 (11) 6.2室外27.5kV进线侧母线的选择 (12) 6.3高压断路器的选择 (12) 6.4隔离开关的选择 (13) 6.5电压互感器的选取 (14) 6.6电流互感器的选取 (14) 第7章电压水平的改善 (15) 7.1 接触网功率因数低的主要原因 (15) 7.2 串联电容补偿 (15) 第8章继电保护 (16) 8.1继电保护的任务 (16) 8.2继电保护基本要求 (16) 8.3继电保护的拟用 (16) 第9章防雷保护装置 (17) 第10章总结 (17) 参考文献 (18)

第1章 课题设计任务要求 1.1 设计任务 SCOTT 接线牵引变电所电气主接线设计,对双线路供电经过本次设计,对所学的专业知识得到相当的运用和实践,这将使自己所学的理论知识提升到一定的运用层次,为以后完成实际设计奠定扎实的基本功和基本技能,最终达到学以致用的目的。 1.2 设计的基本要求 (1)确定该牵引变电所高压侧的电气主接线的形式,并分析其正常运行方式下的运行方式。 (2)确定牵引变压器的容量、台数及接线形式。 (3)确定牵引负荷侧电气主接线的形式。 (4)对变电所进行短路计算,并进行电气设备的选择。 (5)设置合适的过电压保护装置、防雷装置以及提高接触网功率因数的装置。 (6)用CAD 画出整个牵引变电所的电气主接线图。 1.3 设计的基本依据 某牵引变电所位于大型编组站内,向两条复线电气化铁路干线的两个方向供电区段供电,已知列车正常情况的计算容量为27000 kVA ,并以10kV 电压给车站电力照明机务段等地区负荷供电,容量计算为2700 kVA ,各电压侧馈出数目及负荷情况如下: 25kV 回路(1路备):两方向年货运量与供电距离分别为 m 503011k Mt L Q ??=,m 304022k Mt L Q ??=,m 10120k Mt kW h q ?=?。10kV 共4回路(2路备)。 供电电源由系统区域变电所以双回路110kV 输送线供电。本变电所位于电气化铁路的首端,送点距离30km ,电力系统容量为3000MVA ,选取基准容量为100MVA ,在最大运行方式下,电力系统的电抗标幺值为0.23;在最小运行方式下,电力系统的标幺值为0.25.主变压器为SCOTT 接线。 第2章 设计方案分析和确定 2.1 方案主接线的拟定 按110 kV 进线和终端变电所的地位,考虑变压器数量,以及各种电压等级馈线

电气主接线设计论文

电气主接线设计论文

第一章设计要求及任务 1.1目的要求 通过本设计,进一步熟悉变电站的相关知识。并且,随着国内经济的发展和相关科学技术的进步,国家电网的规划日渐成熟,与此同时带来一个关键性问题:越来越多的相关工作人员对变电站,尤其是对输电技术低端110/35/10Kv 降压变电站电气设计部分概念模糊,难以掌握其设计步骤。本次设计依据110kv 变电站设计要求,针对主电路部分给出较为详细的设计步骤,以填补现阶段该方面的知识空白。 1.2课程设计使用的原始资料(数据)及设计要求 1.2.1原始资料 (二)变电站环境条件 气象条件: (1)最热月平均最高温度35℃; (2)土壤中0.7~1 米深处一年中最热月平均温度为20℃; (3)年雷暴日为31天; (4)土壤冻结深度为0.75米; (5)夏季主导风向为南风。 地质及水文条件: 根据工程地质勘探资料获悉,厂区地质为耕地,地势平坦,地层为砂质粘土为主,地质条件较好,地下水位为2.8~5.3 米,抵制压力为20吨/平方米。(三)变电站负荷情况 负荷分布如下表:

工业和民业用户同时系数均取0.75。 1.2.2设计要求 该110 kV 变电站地处城市郊区,通过两条110 kV 架空线与系统相连,其中一回距离本站50km ,另一回距离变电站35km ,线路阻抗为0.4Ω/km 。变电站分别用35kV 和10kV 向工业和民用负荷供电,35kV 和10kV 线路的功率因数都为 cos =0.8。站用电为160kVA 。供电系统在最大运行方式下三相短路容量为2200 MVA ,最小运行方式下三相短路容量为1750MVA 。电业部门要求110kV 配出线路定时限过流保护装置的整定时间为2秒,变电站不应大于1.5秒。 1.2.3成果形式 (1)设计说明书一份。(2)电气主接线图一张。(A3图样) 负荷类别 与变电站的距离(km ) 负荷(MW ) 工业负荷 预制板厂 5 8.8 纺织厂 9 11.7 拖拉机厂 7 9.2 电缆厂 6 20.6 民用负荷 民用1 5 2.2 民用2 4 1.1 民用3 5 1.2 民用4 3 3.1 民用5 2 5.1 民用6 3 3.2 民用7 4 0.6 民用8 5 1.5 民用9 2 0.8

牵引变电所课程设计心得【模版】

1 题目 某牵引变电所甲采用直接供电方式向复线区段供电,牵引变压器类型为110/27.5kV,三相V,v接线,两供电臂电流归算到27.5kV侧电流如下表所示。 牵引变电所供电臂端子平均电流有效电流短路电流穿越电流 长度 A A A A km 21.9 β 238 318 917 206 丙24.7 α 184 266 1052 217 2 题目分析及解决方案框架确定 三相V,v结线牵引变电所中装设两台三相V,v结线牵引变压器,一台运行,一台固定备用。设计过程中,求解变压器的容量来选取变压器的型号。110kV侧主接线时采用单母线分段接线。馈线断路器50%备用接线。 3设计过程 3.1 牵引变电所110kV侧主接线设计 依据该牵引变电所负荷等级,要求两路电源进线,因有系统功率穿越,属通过式变电所,110kV侧采用图1所示的单母线分段接线[1]。 图1单母线分段接线

3.2 牵引变电所馈线侧主接线设计 馈线断路器50%备用的接线:馈线断路器50%备用的接线如图2所示。此种接线用于单线区段、牵引母线同相的场合和复线区段。这种接线每两条馈线设一台备用断路器,通过隔离开关的转换,备用断路器可代替其中任一台断路器工作。牵引母线用两台隔离开关分段是为了便于两段母线轮流检修[2]。 A 相母线 B 相母线 左臂上行左臂下行右臂上行右臂下行 图2 馈线断路器50%备用 3.3 三相V ,v 直接供电方式变压器接线 图3 三相V,v 变压器直接供电方式接线 3.4 牵引变压器容量计算 (1) 三相V,v 接线牵引变压器绕组的有效电流 VX1X1I I =318A

浅析电气主接线设计

浅析电气主接线设计 发表时间:2014-12-15T09:44:30.280Z 来源:《科学与技术》2014年第10期下供稿作者:苏楠[导读] 明确电力负荷的等级根据对供电可靠性的要求及中断供电在政治、经济上所造成的损失或影响的程度,电力负荷分为三级。 贵阳铝镁设计研究院有限公司苏楠摘要:概述了电气主接线的基本概念,介绍了电气主接线的设计原则、基本要求和基本形式,论述了技术经济比较所涉及的内容。关键词:主接线,原则,要求,形式,技术经济比较1.引言电气主接线是发电厂、变电所电气设计中的重要组成部分,也是电力系统中电能传递的重要环节。电气主接线是指在电力系统中,把发电机、变压器、断路器和隔离开关等高压电气设备按照一定的要求和顺序连接,为满足电能输送及分配的要求而设计的,实现发电、变电、输配电任务的电路。 2.电气主接线设计的原则电气主接线设计的原则是以设计任务书为依据,以国家政策、电力行业的技术规范、标准为准绳,按照负荷性质、容量、地区供电条件,根据工程实际情况和发展规划,确定技术经济合理的设计方案。为此,在进行电气主接线设计时,应遵循的原则如下。 2.1 明确电力负荷的等级根据对供电可靠性的要求及中断供电在政治、经济上所造成的损失或影响的程度,电力负荷分为三级。每一级负荷对供电可靠性的要求不同,则变压器容量、台数以及出线回路数等配置就不一致。因此,首先要明确电力负荷的等级,确认电力负荷在电力系统中的作用和地位,才能初步确定主接线的设计方案。 2.2 考虑近期和远期的发展关系电气主接线设计应考虑近期和远期的发展关系,做到远近期结合,以近期为主,适当考虑发展的可能,按照负荷的性质、用电容量、地区供电条件,合理确定电气主接线形式、电源进线的数量和出线回路数。 2.3 主变压器容量的选择如果主变压器的容量选择过大、台数过多,则会增加建设资金、占地面积、运行费用和检修工作量,不能充分发挥供电设备的经济效益;如果主变压器的容量选择过小、台数过少,则不具备可扩展性,无法满足今后的发展需要,影响供电的灵活性和可靠性。因此,主变压器容量的选择除依据负荷计算外,还取决于主变压器的运行方式、负荷的增长速度等因素,其容量可按投运后5~10 年的预期负荷选择,并适当考虑到远期10~20 年的负荷发展。 2.4 主变压器的运行方式根据负荷等级对供电可靠性和灵活性的要求,存在多种主变压器的运行方式可供选择,例如:当配置一台主变压器时,该台主变压器独立运行,则应满足全部负荷的用电需求,并且留有15~25%的裕量;当配置两台及以上主变压器时,每台主变压器独立运行且互为备用,当断开一台时,其余主变压器的容量应能保证一、二级负荷的全部用电需求。 2.5 合理确定电压等级电压等级与用电负荷的大小、电源点至用电负荷的距离、用电设备的电压等级、用电负荷的分布情况以及地方电网可能供给的电压等因素有关,需经过多方案技术经济比较后,与电力部门共同协商确定。 3.电气主接线设计的基本要求3.1 安全性安全性是电气主接线基本要求的第一要素,是整个供电系统的核心。因为只有在保证人身安全和设备安全的前提下,才能确保整个供电系统的正常运行。否则,即使设备再先进也无法正常投入使用。 3.2 可靠性重要负荷的停电往往会给政治、经济上带来巨大的损失和影响,因此,供电可靠性是电气主接线的最基本要求,是满足各级电力负荷持续不间断供电的基本保障。评价电气主接线可靠性的标志如下:(1)一级负荷应由两个电源供电,当一个电源因故障中断供电时,另一个电源不应同时受到损坏,并且对于特别重要的一级负荷还需增设应急电源。二级负荷应由两回线路供电,做到当发生故障时,不致中断供电或中断后能够迅速恢复。(2)母线或断路器故障、母线或隔离开关检修时,应尽量减少停电的回路数和停电时间,并保证对重要负荷的供电。(3)优先选用经过长期实践考验的电气主接线形式,并选择使用可靠性高,性能先进的电气设备。 3.3 灵活性电气主接线系统无论是在正常运行中、发生事故时、需要检修时还是其他运行方式下,都应能灵活地投入和切除某些机组、变压器或线路,满足调度运行的要求,不影响电力系统的正常运行,不中断向用户的供电,达到分配电源和负荷的目的。 3.4 可扩展性根据发展的需要,在进行扩建时,可在预留的空间内进行设备的布置,并且在不影响连续供电或允许停电时间较短的情况下,对于投入的新机组、变压器或线路能够安全快速地与原有系统进行连接组网,满足扩建要求。 3.5 经济性电气主接线系统应在保证运行操作的方便以及满足技术条件的要求下,做到经济合理。一般从以下三个方面考虑:(1)节省投资电气主接线的一次系统应力求简单,尽可能简化二次回路的继电保护系统,以此节省一次和二次设备的投资,并且采取限制短路电流的措施,以便选择分断能力较小的电气设备和截面较小的导体。(2)节约用地同一电压等级下,选择不同的电气主接线方案,其占地面积有很大差别,应在保证技术要求和防火要求的前提下,充分利用地形地质紧凑合理的对主接线进行布置,并且应尽量不占或少占耕地。(3)减少电能损耗首先,根据用电负荷的大小、等级和发展需要,合理选择变压器容量和台数,以实现其经济运行;其次,尽量缩短输电线路,减少线路损耗;最后,通过技术手段提高用电系统的功率因数,加强对电气设备、线路的维护和管理,降低电能损耗。 4.电气主接线的基本形式电气主接线的基本形式分为有汇流母线和无汇流母线两种,其中有汇流母线通常包括单母线接线、单母线分段接线、双母线接线、单母线分段带旁路母线接线、一台半断路器接线等形式;无汇流母线通常包括桥型接线、多边形接线、线路变压器组接线等形式。下面就几种常用的主接线形式分析如下。 4.1 单母线接线

相关主题
文本预览
相关文档 最新文档