当前位置:文档之家› 纳米水离子技术

纳米水离子技术

纳米水离子技术
纳米水离子技术

净化知识

纳米水离子技术是带电离子进化技术中的一种,主要用于空气除菌,优点是带电离子能够除菌,吸附在粉尘表面能够帮助过滤网吸附细微粉尘颗粒,而且能够起到加湿空气、风干循环长效使用的作用。

产生纳米水离子的装置十精密,由针状电极与对极板组成一对放电电极,针状电极由吸热冷却器降温从而凝聚空气中的水分,在高压放电的作用下,将这些水分逐步分裂成水雾,最终形成纳米尺寸带负电的水微粒,直径大约在5-20nm之间,这就是纳米水离子。

相比传统的负离子发生器生成的空气离子,纳米水离子最大的区别是由水形成的负离子水微粒,相比之下含水量就要多出1000倍,所以更保湿更水润;普通负离子由于是空气离子,容易与氮气和氧气发生作用,在生成后的几秒后就会消失,纳米水离子是水微粒组成的,在空气中存在的时间是一般负离子的6倍,在空气循环系统的帮助下,覆盖的范围更大,这就确保纳米水离子在家庭环境中可以大范围产生效果。

同时,纳米水离子的体积很小,直径只有5-20nm,比起直径在6000nm水蒸气中的水滴,可以轻松的深入纤维的内部;纳米水离子含有氢氧基(OH-)离子,PH值在5左右,呈弱酸性,这与人的皮肤头发的PH值相近,比普通的水更有亲和力。

纳米水离子装置每秒钟可以产生4800亿个纳米水离子,能充分满足人体每天130亿个负离子的需要,由于其包含的氢氧基(OH-)可以将接触到的细菌中的氢(H)抽出,因此纳米水离子可以抑制及去除很多细菌、病毒和过敏源。

目前空气过滤器中最普遍被使用的技术是通过HEPA(高效空气微粒滤网)进行物理过滤,HEPA通常由化学纤维或玻璃

纤维材质组成,常见的hepa滤网由多层折叠的纤维膜构成,展开后的面积相当于折叠时的数十倍。

HEPA对直径为0.3微米(PM0.3)以上的微粒滤除效率高达99.97%以上,是烟雾、尘埃微粒以及细菌等污染物最有效的过滤媒介。且HEPA发展相对成熟,是国际上公认最好的高效过滤材料,所以其被空气净化器主流品牌普遍采用。但HEPA对有害化学气体则无能为力,同时其在使用期间也需要定期更换、维护。

相对于HEPA技术滤网对苯、甲醛等有害化学气体滤除效果欠佳的情况,大部分品牌的空气净化器还采用了基于活性炭技术的滤网,活性炭滤网通常采用格状结构,格子内装有活性炭颗粒,特殊的构造加上活性炭的特性,使得此种滤网具有风阻系数小、比表面积大、吸附能力强等优点。

活性炭是以煤、木材和果壳等原料,经炭化、活化和后处理而得。由于炭粒的表面积很大,所以能充分接触、吸附有害化学气体。但活性炭只能暂时吸附一定数量的污染物,当温度、风速等升高到一定程度时,其所吸附的污染物就有可能游离出来造成二次污染。所以使用期间也要定期更换,避免其吸附饱和。

除了上述两种空气净化器常用的物理过滤技术外,其它较主流的还有静电集尘和光触媒技术,其中静电集尘技术是利用高压直流电场将含尘气体进行电离,其中的尘粒与负离子结合并带上负电荷后,会在阳极表面放电、沉积,从而达到过滤灰尘、净化空气的目的。

实现静电集尘技术的结构较为简单,可过滤较大量的含尘

气体,且无需更换滤网的成本优势也很明显。但其净化效率相对于HEPA方式略差,设计不当时也容易产生臭氧污染,对于有害气体污染也基本没有效果。

而光触媒技术的原理是将纳米金属氧化物材料涂布于基材表面,在紫外线的作用下产生强烈催化降解作用,从而有效将细菌等释放出的毒素分解处理,同时还具备除臭、抗污等功能。但光触媒技术必须的紫外线光源,如设计防护不当对人体是有伤害的。

其它市场上空气净化器hepa过滤网应用的技术还有活性氧、负离子、分子络合等技术,但没有哪种空气净化方式是万能的,所以应在选择前考虑实际使用环境,如室内烟尘污染较重,就应选择采用HEPA或静电集尘技术的产品,而对于刚装修的室内环境,就需要选择带有活性炭技术的空气净化器产品。

目前空气过滤器中最普遍被使用的技术是通过HEPA(高效空气微粒滤网)进行物理过滤,HEPA通常由化学纤维或玻璃纤维材质组成,常见的hepa滤网由多层折叠的纤维膜构成,展开后的面积相当于折叠时的数十倍。

HEPA对直径为0.3微米(PM0.3)以上的微粒滤除效率高达99.97%以上,是烟雾、尘埃微粒以及细菌等污染物最有效的过滤媒介。且HEPA发展相对成熟,是国际上公认最好的高效过滤材料,所以其被空气净化器主流品牌普遍采用。但HEPA对有害化学气体则无能为力,同时其在使用期间也需要定期更换、维护。

相对于HEPA技术滤网对苯、甲醛等有害化学气体滤除效果欠佳的情况,大部分品牌的空气净化器还采用了基于活性炭

技术的滤网,活性炭滤网通常采用格状结构,格子内装有活性炭颗粒,特殊的构造加上活性炭的特性,使得此种滤网具有风阻系数小、比表面积大、吸附能力强等优点。

活性炭是以煤、木材和果壳等原料,经炭化、活化和后处理而得。由于炭粒的表面积很大,所以能充分接触、吸附有害化学气体。但活性炭只能暂时吸附一定数量的污染物,当温度、风速等升高到一定程度时,其所吸附的污染物就有可能游离出来造成二次污染。所以使用期间也要定期更换,避免其吸附饱和。

除了上述两种空气净化器常用的物理过滤技术外,其它较主流的还有静电集尘和光触媒技术,其中静电集尘技术是利用高压直流电场将含尘气体进行电离,其中的尘粒与负离子结合并带上负电荷后,会在阳极表面放电、沉积,从而达到过滤灰尘、净化空气的目的。

实现静电集尘技术的结构较为简单,可过滤较大量的含尘气体,且无需更换滤网的成本优势也很明显。但其净化效率相对于HEPA方式略差,设计不当时也容易产生臭氧污染,对于有害气体污染也基本没有效果。

而光触媒技术的原理是将纳米金属氧化物材料涂布于基材表面,在紫外线的作用下产生强烈催化降解作用,从而有效将细菌等释放出的毒素分解处理,同时还具备除臭、抗污等功能。但光触媒技术必须的紫外线光源,如设计防护不当对人体是有伤害的。

其它市场上空气净化器hepa过滤网应用的技术还有活性氧、负离子、分子络合等技术,但没有哪种空气净化方式是万

能的,所以应在选择前考虑实际使用环境,如室内烟尘污染较重,就应选择采用HEPA或静电集尘技术的产品,而对于刚装修的室内环境,就需要选择带有活性炭技术的空气净化器产品。

目前空气过滤器中最普遍被使用的技术是通过HEPA(高效空气微粒滤网)进行物理过滤,HEPA通常由化学纤维或玻璃纤维材质组成,常见的hepa滤网由多层折叠的纤维膜构成,展开后的面积相当于折叠时的数十倍。

HEPA对直径为0.3微米(PM0.3)以上的微粒滤除效率高达99.97%以上,是烟雾、尘埃微粒以及细菌等污染物最有效的过滤媒介。且HEPA发展相对成熟,是国际上公认最好的高效过滤材料,所以其被空气净化器主流品牌普遍采用。但HEPA对有害化学气体则无能为力,同时其在使用期间也需要定期更换、维护。

相对于HEPA技术滤网对苯、甲醛等有害化学气体滤除效果欠佳的情况,大部分品牌的空气净化器还采用了基于活性炭技术的滤网,活性炭滤网通常采用格状结构,格子内装有活性炭颗粒,特殊的构造加上活性炭的特性,使得此种滤网具有风阻系数小、比表面积大、吸附能力强等优点。

活性炭是以煤、木材和果壳等原料,经炭化、活化和后处理而得。由于炭粒的表面积很大,所以能充分接触、吸附有害化学气体。但活性炭只能暂时吸附一定数量的污染物,当温度、风速等升高到一定程度时,其所吸附的污染物就有可能游离出来造成二次污染。所以使用期间也要定期更换,避免其吸附饱和。

除了上述两种空气净化器常用的物理过滤技术外,其它较

主流的还有静电集尘和光触媒技术,其中静电集尘技术是利用高压直流电场将含尘气体进行电离,其中的尘粒与负离子结合并带上负电荷后,会在阳极表面放电、沉积,从而达到过滤灰尘、净化空气的目的。

更多文章https://www.doczj.com/doc/b97346569.html,/ hepa滤网编辑:lwhewk

实现静电集尘技术的结构较为简单,可过滤较大量的含尘气体,且无需更换滤网的成本优势也很明显。但其净化效率相对于HEPA方式略差,设计不当时也容易产生臭氧污染,对于有害气体污染也基本没有效果。

而光触媒技术的原理是将纳米金属氧化物材料涂布于基材表面,在紫外线的作用下产生强烈催化降解作用,从而有效将细菌等释放出的毒素分解处理,同时还具备除臭、抗污等功能。但光触媒技术必须的紫外线光源,如设计防护不当对人体是有伤害的。

其它市场上空气净化器hepa过滤网应用的技术还有活性氧、负离子、分子络合等技术,但没有哪种空气净化方式是万能的,所以应在选择前考虑实际使用环境,如室内烟尘污染较重,就应选择采用HEPA或静电集尘技术的产品,而对于刚装修的室内环境,就需要选择带有活性炭技术的空气净化器产品。

目前空气过滤器中最普遍被使用的技术是通过HEPA(高效空气微粒滤网)进行物理过滤,HEPA通常由化学纤维或玻璃纤维材质组成,常见的hepa滤网由多层折叠的纤维膜构成,展开后的面积相当于折叠时的数十倍。

HEPA对直径为0.3微米(PM0.3)以上的微粒滤除效率高达99.97%以上,是烟雾、尘埃微粒以及细菌等污染物最有效的过

滤媒介。且HEPA发展相对成熟,是国际上公认最好的高效过滤材料,所以其被空气净化器主流品牌普遍采用。但HEPA对有害化学气体则无能为力,同时其在使用期间也需要定期更换、维护。

相对于HEPA技术滤网对苯、甲醛等有害化学气体滤除效果欠佳的情况,大部分品牌的空气净化器还采用了基于活性炭技术的滤网,活性炭滤网通常采用格状结构,格子内装有活性炭颗粒,特殊的构造加上活性炭的特性,使得此种滤网具有风阻系数小、比表面积大、吸附能力强等优点。

活性炭是以煤、木材和果壳等原料,经炭化、活化和后处理而得。由于炭粒的表面积很大,所以能充分接触、吸附有害化学气体。但活性炭只能暂时吸附一定数量的污染物,当温度、风速等升高到一定程度时,其所吸附的污染物就有可能游离出来造成二次污染。所以使用期间也要定期更换,避免其吸附饱和。

除了上述两种空气净化器常用的物理过滤技术外,其它较主流的还有静电集尘和光触媒技术,其中静电集尘技术是利用高压直流电场将含尘气体进行电离,其中的尘粒与负离子结合并带上负电荷后,会在阳极表面放电、沉积,从而达到过滤灰尘、净化空气的目的。

实现静电集尘技术的结构较为简单,可过滤较大量的含尘气体,且无需更换滤网的成本优势也很明显。但其净化效率相对于HEPA方式略差,设计不当时也容易产生臭氧污染,对于有害气体污染也基本没有效果。

而光触媒技术的原理是将纳米金属氧化物材料涂布于基材

表面,在紫外线的作用下产生强烈催化降解作用,从而有效将细菌等释放出的毒素分解处理,同时还具备除臭、抗污等功能。但光触媒技术必须的紫外线光源,如设计防护不当对人体是有伤害的。

其它市场上空气净化器hepa过滤网应用的技术还有活性氧、负离子、分子络合等技术,但没有哪种空气净化方式是万能的,所以应在选择前考虑实际使用环境,如室内烟尘污染较重,就应选择采用HEPA或静电集尘技术的产品,而对于刚装修的室内环境,就需要选择带有活性炭技术的空气净化器产品。

目前空气过滤器中最普遍被使用的技术是通过HEPA(高效空气微粒滤网)进行物理过滤,HEPA通常由化学纤维或玻璃纤维材质组成,常见的hepa滤网由多层折叠的纤维膜构成,展开后的面积相当于折叠时的数十倍。

HEPA对直径为0.3微米(PM0.3)以上的微粒滤除效率高达99.97%以上,是烟雾、尘埃微粒以及细菌等污染物最有效的过滤媒介。且HEPA发展相对成熟,是国际上公认最好的高效过滤材料,所以其被空气净化器主流品牌普遍采用。但HEPA对有害化学气体则无能为力,同时其在使用期间也需要定期更换、维护。

相对于HEPA技术滤网对苯、甲醛等有害化学气体滤除效果欠佳的情况,大部分品牌的空气净化器还采用了基于活性炭技术的滤网,活性炭滤网通常采用格状结构,格子内装有活性炭颗粒,特殊的构造加上活性炭的特性,使得此种滤网具有风阻系数小、比表面积大、吸附能力强等优点。

活性炭是以煤、木材和果壳等原料,经炭化、活化和后处

理而得。由于炭粒的表面积很大,所以能充分接触、吸附有害化学气体。但活性炭只能暂时吸附一定数量的污染物,当温度、风速等升高到一定程度时,其所吸附的污染物就有可能游离出来造成二次污染。所以使用期间也要定期更换,避免其吸附饱和。

除了上述两种空气净化器常用的物理过滤技术外,其它较主流的还有静电集尘和光触媒技术,其中静电集尘技术是利用高压直流电场将含尘气体进行电离,其中的尘粒与负离子结合并带上负电荷后,会在阳极表面放电、沉积,从而达到过滤灰尘、净化空气的目的。

实现静电集尘技术的结构较为简单,可过滤较大量的含尘气体,且无需更换滤网的成本优势也很明显。但其净化效率相对于HEPA方式略差,设计不当时也容易产生臭氧污染,对于有害气体污染也基本没有效果。

而光触媒技术的原理是将纳米金属氧化物材料涂布于基材表面,在紫外线的作用下产生强烈催化降解作用,从而有效将细菌等释放出的毒素分解处理,同时还具备除臭、抗污等功能。但光触媒技术必须的紫外线光源,如设计防护不当对人体是有伤害的。

其它市场上空气净化器hepa过滤网应用的技术还有活性氧、负离子、分子络合等技术,但没有哪种空气净化方式是万能的,所以应在选择前考虑实际使用环境,如室内烟尘污染较重,就应选择采用HEPA或静电集尘技术的产品,而对于刚装修的室内环境,就需要选择带有活性炭技术的空气净化器产品。

目前空气过滤器中最普遍被使用的技术是通过HEPA(高

效空气微粒滤网)进行物理过滤,HEPA通常由化学纤维或玻璃纤维材质组成,常见的hepa滤网由多层折叠的纤维膜构成,展开后的面积相当于折叠时的数十倍。

HEPA对直径为0.3微米(PM0.3)以上的微粒滤除效率高达99.97%以上,是烟雾、尘埃微粒以及细菌等污染物最有效的过滤媒介。且HEPA发展相对成熟,是国际上公认最好的高效过滤材料,所以其被空气净化器主流品牌普遍采用。但HEPA对有害化学气体则无能为力,同时其在使用期间也需要定期更换、维护。

相对于HEPA技术滤网对苯、甲醛等有害化学气体滤除效果欠佳的情况,大部分品牌的空气净化器还采用了基于活性炭技术的滤网,活性炭滤网通常采用格状结构,格子内装有活性炭颗粒,特殊的构造加上活性炭的特性,使得此种滤网具有风阻系数小、比表面积大、吸附能力强等优点。

活性炭是以煤、木材和果壳等原料,经炭化、活化和后处理而得。由于炭粒的表面积很大,所以能充分接触、吸附有害化学气体。但活性炭只能暂时吸附一定数量的污染物,当温度、风速等升高到一定程度时,其所吸附的污染物就有可能游离出来造成二次污染。所以使用期间也要定期更换,避免其吸附饱和。

除了上述两种空气净化器常用的物理过滤技术外,其它较主流的还有静电集尘和光触媒技术,其中静电集尘技术是利用高压直流电场将含尘气体进行电离,其中的尘粒与负离子结合并带上负电荷后,会在阳极表面放电、沉积,从而达到过滤灰尘、净化空气的目的。

实现静电集尘技术的结构较为简单,可过滤较大量的含尘气体,且无需更换滤网的成本优势也很明显。但其净化效率相对于HEPA方式略差,设计不当时也容易产生臭氧污染,对于有害气体污染也基本没有效果。

而光触媒技术的原理是将纳米金属氧化物材料涂布于基材表面,在紫外线的作用下产生强烈催化降解作用,从而有效将细菌等释放出的毒素分解处理,同时还具备除臭、抗污等功能。但光触媒技术必须的紫外线光源,如设计防护不当对人体是有伤害的。

其它市场上空气净化器hepa过滤网应用的技术还有活性氧、负离子、分子络合等技术,但没有哪种空气净化方式是万能的,所以应在选择前考虑实际使用环境,如室内烟尘污染较重,就应选择采用HEPA或静电集尘技术的产品,而对于刚装修的室内环境,就需要选择带有活性炭技术的空气净化器产品。

目前空气过滤器中最普遍被使用的技术是通过HEPA(高效空气微粒滤网)进行物理过滤,HEPA通常由化学纤维或玻璃纤维材质组成,常见的hepa滤网由多层折叠的纤维膜构成,展开后的面积相当于折叠时的数十倍。

HEPA对直径为0.3微米(PM0.3)以上的微粒滤除效率高达99.97%以上,是烟雾、尘埃微粒以及细菌等污染物最有效的过滤媒介。且HEPA发展相对成熟,是国际上公认最好的高效过滤材料,所以其被空气净化器主流品牌普遍采用。但HEPA对有害化学气体则无能为力,同时其在使用期间也需要定期更换、维护。

相对于HEPA技术滤网对苯、甲醛等有害化学气体滤除效

果欠佳的情况,大部分品牌的空气净化器还采用了基于活性炭技术的滤网,活性炭滤网通常采用格状结构,格子内装有活性炭颗粒,特殊的构造加上活性炭的特性,使得此种滤网具有风阻系数小、比表面积大、吸附能力强等优点。

活性炭是以煤、木材和果壳等原料,经炭化、活化和后处理而得。由于炭粒的表面积很大,所以能充分接触、吸附有害化学气体。但活性炭只能暂时吸附一定数量的污染物,当温度、风速等升高到一定程度时,其所吸附的污染物就有可能游离出来造成二次污染。所以使用期间也要定期更换,避免其吸附饱和。

除了上述两种空气净化器常用的物理过滤技术外,其它较主流的还有静电集尘和光触媒技术,其中静电集尘技术是利用高压直流电场将含尘气体进行电离,其中的尘粒与负离子结合并带上负电荷后,会在阳极表面放电、沉积,从而达到过滤灰尘、净化空气的目的。

实现静电集尘技术的结构较为简单,可过滤较大量的含尘气体,且无需更换滤网的成本优势也很明显。但其净化效率相对于HEPA方式略差,设计不当时也容易产生臭氧污染,对于有害气体污染也基本没有效果。

而光触媒技术的原理是将纳米金属氧化物材料涂布于基材表面,在紫外线的作用下产生强烈催化降解作用,从而有效将细菌等释放出的毒素分解处理,同时还具备除臭、抗污等功能。但光触媒技术必须的紫外线光源,如设计防护不当对人体是有伤害的。

其它市场上空气净化器hepa过滤网应用的技术还有活性

氧、负离子、分子络合等技术,但没有哪种空气净化方式是万能的,所以应在选择前考虑实际使用环境,如室内烟尘污染较重,就应选择采用HEPA或静电集尘技术的产品,而对于刚装修的室内环境,就需要选择带有活性炭技术的空气净化器产品。

目前空气过滤器中最普遍被使用的技术是通过HEPA(高效空气微粒滤网)进行物理过滤,HEPA通常由化学纤维或玻璃纤维材质组成,常见的hepa滤网由多层折叠的纤维膜构成,展开后的面积相当于折叠时的数十倍。

HEPA对直径为0.3微米(PM0.3)以上的微粒滤除效率高达99.97%以上,是烟雾、尘埃微粒以及细菌等污染物最有效的过滤媒介。且HEPA发展相对成熟,是国际上公认最好的高效过滤材料,所以其被空气净化器主流品牌普遍采用。但HEPA对有害化学气体则无能为力,同时其在使用期间也需要定期更换、维护。

相对于HEPA技术滤网对苯、甲醛等有害化学气体滤除效果欠佳的情况,大部分品牌的空气净化器还采用了基于活性炭技术的滤网,活性炭滤网通常采用格状结构,格子内装有活性炭颗粒,特殊的构造加上活性炭的特性,使得此种滤网具有风阻系数小、比表面积大、吸附能力强等优点。

活性炭是以煤、木材和果壳等原料,经炭化、活化和后处理而得。由于炭粒的表面积很大,所以能充分接触、吸附有害化学气体。但活性炭只能暂时吸附一定数量的污染物,当温度、风速等升高到一定程度时,其所吸附的污染物就有可能游离出来造成二次污染。所以使用期间也要定期更换,避免其吸附饱和。

除了上述两种空气净化器常用的物理过滤技术外,其它较主流的还有静电集尘和光触媒技术,其中静电集尘技术是利用高压直流电场将含尘气体进行电离,其中的尘粒与负离子结合并带上负电荷后,会在阳极表面放电、沉积,从而达到过滤灰尘、净化空气的目的。

实现静电集尘技术的结构较为简单,可过滤较大量的含尘气体,且无需更换滤网的成本优势也很明显。但其净化效率相对于HEPA方式略差,设计不当时也容易产生臭氧污染,对于有害气体污染也基本没有效果。

而光触媒技术的原理是将纳米金属氧化物材料涂布于基材表面,在紫外线的作用下产生强烈催化降解作用,从而有效将细菌等释放出的毒素分解处理,同时还具备除臭、抗污等功能。但光触媒技术必须的紫外线光源,如设计防护不当对人体是有伤害的。

其它市场上空气净化器hepa过滤网应用的技术还有活性氧、负离子、分子络合等技术,但没有哪种空气净化方式是万能的,所以应在选择前考虑实际使用环境,如室内烟尘污染较重,就应选择采用HEPA或静电集尘技术的产品,而对于刚装修的室内环境,就需要选择带有活性炭技术的空气净化器产品。

目前空气过滤器中最普遍被使用的技术是通过HEPA(高效空气微粒滤网)进行物理过滤,HEPA通常由化学纤维或玻璃纤维材质组成,常见的hepa滤网由多层折叠的纤维膜构成,展开后的面积相当于折叠时的数十倍。

HEPA对直径为0.3微米(PM0.3)以上的微粒滤除效率高达99.97%以上,是烟雾、尘埃微粒以及细菌等污染物最有效的过

滤媒介。且HEPA发展相对成熟,是国际上公认最好的高效过滤材料,所以其被空气净化器主流品牌普遍采用。但HEPA对有害化学气体则无能为力,同时其在使用期间也需要定期更换、维护。

相对于HEPA技术滤网对苯、甲醛等有害化学气体滤除效果欠佳的情况,大部分品牌的空气净化器还采用了基于活性炭技术的滤网,活性炭滤网通常采用格状结构,格子内装有活性炭颗粒,特殊的构造加上活性炭的特性,使得此种滤网具有风阻系数小、比表面积大、吸附能力强等优点。

活性炭是以煤、木材和果壳等原料,经炭化、活化和后处理而得。由于炭粒的表面积很大,所以能充分接触、吸附有害化学气体。但活性炭只能暂时吸附一定数量的污染物,当温度、风速等升高到一定程度时,其所吸附的污染物就有可能游离出来造成二次污染。所以使用期间也要定期更换,避免其吸附饱和。

除了上述两种空气净化器常用的物理过滤技术外,其它较主流的还有静电集尘和光触媒技术,其中静电集尘技术是利用高压直流电场将含尘气体进行电离,其中的尘粒与负离子结合并带上负电荷后,会在阳极表面放电、沉积,从而达到过滤灰尘、净化空气的目的。

实现静电集尘技术的结构较为简单,可过滤较大量的含尘气体,且无需更换滤网的成本优势也很明显。但其净化效率相对于HEPA方式略差,设计不当时也容易产生臭氧污染,对于有害气体污染也基本没有效果。

而光触媒技术的原理是将纳米金属氧化物材料涂布于基材

表面,在紫外线的作用下产生强烈催化降解作用,从而有效将细菌等释放出的毒素分解处理,同时还具备除臭、抗污等功能。但光触媒技术必须的紫外线光源,如设计防护不当对人体是有伤害的。

其它市场上空气净化器hepa过滤网应用的技术还有活性氧、负离子、分子络合等技术,但没有哪种空气净化方式是万能的,所以应在选择前考虑实际使用环境,如室内烟尘污染较重,就应选择采用HEPA或静电集尘技术的产品,而对于刚装修的室内环境,就需要选择带有活性炭技术的空气净化器产品。

水污染对环境的影响

水污染对环境的影响 有人说,地球的颜色是绿色的,她孕育着生命,预示着人类的诞生和未来。我说,她是生命的摇篮,人类的母亲,她把全部的爱无私地奉献给人类的子子孙孙。她的确很大,幅员辽阔,但不是无边无际;她的确很美,山青水秀,但不是青春永远;她的确很富,资源广博,但不是取之不尽,用之不竭。 水是怎样被污染的呢?原因主要有两种:一是自然的,一是人为的。由于雨水对各种矿石的溶解作用,火山爆发和干旱地区的风蚀作用所产生的大量灰尘落入水体而引起的水污染,这属于自然污染。向水体排放大量未经处理的工业废水、生活污水和各种废弃物,造成水质恶化,这属于人为污染。而人们通常所说的水污染主要是指后一种,而且也是最主要的。 一般来说,水自身有自净能力。水的自净能力包括稀释扩散、沉淀堆积、氧化还原以及水中微生物对有机物的分解等。大体可以分四段:第一为污染段,由于大量污染物混入,河流水质恶化,水中溶解氧极少,除了细菌以外,其它生物较少,特别是几乎不存在自氧性生物;第二是分解段,分解有机质的生物逐渐繁殖,生物分解活动激烈,大量消耗溶解氧,鱼类难以生存,出现藻类和需氧较低的原生生物等,而在生化需氧量逐渐降低后,水中溶解氧又逐渐增加;第三为恢复段,藻类、鱼类和其它大型生物重新又活泼起来,水质逐渐变清;第四为清水段,溶解氧接近饱和,水质清洁,自净过程到此完成。

人类生产活动造成的水体污染中。工业引起的水体污染最严重。如工业废水,它含污染物多,成分复杂,不仅在水中不易净化,而且处理也比较困难。 工业废水,是工业污染引起水体污染的最重要的原因。它占工业排出的污染物的大部分。工业废水所含的污染物因工厂种类不同而千差万别,即使是同类工厂,生产过程不同,其所含污染物的质和量也不一样。工业除了排出的废水直接注入水体引起污染外,固体废物和废气也会污染水体。农业污染首先是由于耕作或开荒使土地表面疏松,在土壤和地形还未稳定时降雨,大量泥沙流入水中,增加水中的悬浮物。 还有一个重要原因是近年来农药、化肥的使用量日益增多,而使用的农药和化肥只有少量附着或被吸收,其余绝大部分残留在土壤和漂浮在大气中,通过降雨,经过地表径流的冲刷进入地表水和渗入地表水形成污染。 城市污染源是因城市人口集中,城市生活污水、垃圾和废气引起水体污染造成的。城市污染源对水体的污染主要是生活污水,它是人们日常生活中产生的各种污水的混合液,其中包括厨房、洗涤房、浴室和厕所排出的污水。 污染的水对人体的影响有很多不利的因素:人体中70%—80%是水分,因此长期饮用不良的水质,而导致体质不佳抵抗力自然减弱,则百病发生乃必然,再者长期累积之污染物到达身体无法承受时,再

去离子水质量标准

去离子水质量标准 【性状】本品为无色的澄明液体;无臭,无味。 【检查】 酸碱度取本品10ml,加甲基红指示液2滴,不得显红色;另取10ml,加溴麝香草酚蓝指示液5滴,不得显蓝色。 氯化物、硫酸盐与钙盐取本品,分置三支试管中,每管各50ml。第一管中加硝酸5滴与硝酸银试液1ml,第二管中加氯化钡试液2ml,第三管中加草酸铵试液2ml,均不得发生浑浊。 硝酸盐取本品5ml置试管中,于冰浴中冷却,加10%氯化钾溶液0.4ml与0.1%二苯胺硫酸溶液0.1ml,摇匀,缓缓滴加硫酸5ml,摇匀,将试管于50℃水浴中放置15分钟,溶液产生的蓝色与标准硝酸盐溶液{取硝酸钾0.163g加水溶解并稀释至100ml,摇匀,精密量取1ml,加水稀释成100ml,再精密量取10ml,加水稀释成100ml,摇匀,即得(每1ml相当于1μgNO2)}0.3ml,加无硝酸盐水4.7ml,用同一方法处理后的颜色比较,不得更深(0.000006%)。 亚硝酸盐取本品10ml,置纳氏管中,加对氨基苯磺酰胺的稀盐酸溶液(1→100)1ml及盐酸萘乙二胺溶液(0.1→100)1ml产生的粉红色,与标准亚硝酸盐溶液[取亚硝酸钠0.750g(按干燥品计算)加水溶解,稀释至100ml摇匀,精密量取1ml,加水稀释成100ml,摇匀,再精密量取1ml,加水稀释成50ml,摇匀,即得(每1ml 相当于1μgNO2)]0.2ml,加无亚硝酸盐水9.8ml,用同一方法处理后的颜色比较,不得更深(0.000002%)。 氨取本品50ml,加碱性碘化汞钾试液2ml,放置15分钟;如显色,与氯化铵溶液(取氯化铵31.5mg,加无氨水适量使溶解并稀释成1000ml)1.5ml,加无氨水48ml与碱性碘化汞钾试液2ml制成的对照液比较,不得更深(0.00003%)。 二氧化碳取本品25ml,置50ml具塞量筒中,加氢氧化钙试液25ml,密塞振摇;放置,1小时内不得发生浑浊。 易氧化物取本品100ml,加稀硫酸10ml,煮沸后,加高锰酸钾滴定液 (0.02mol/L)0.10ml,再煮沸10分钟,粉红色不得完全消失。

分会场十三微纳米光子学

分会场十三:微纳米光子学 主席:吴一辉(中国科学院长春光学精密机械与物理研究所) 李铁(中国科学院上海微系统与信息技术研究所) 特邀报告1:半导体太赫兹光频梳 黎华,中国科学院上海微系统与信息技术研究所,博士生导师,研究 员。2009年博士毕业于中国科学院上海微系统与信息技术研究所, 然后分别在德国慕尼黑工业大学、日本东京大学、法国巴黎七大材料 与量子现象实验室开展博士后研究工作,2015年回国工作,2016年 获得中国科学院“百人计划”A类择优支持。主要研究方向为太赫兹 量子级联激光器及其光频梳、锁模激光器、太赫兹成像及高分辨光谱 技术等。在Advanced Science、Optica、Applied Physics Letters、Optics Express等期刊上发表50余篇论文,曾获“2015中国中国电子学会优秀科技工作者”,“上海市自然科学二等奖”(排名第三)、德国“洪堡”学者奖学金、日本JSPS奖学金等。担任科技部973计划课题负责人、国家自然科学基金面上项目(2项)负责人、KJW 项目(2项)负责人等。 报告摘要: 太赫兹(THz)波(频率范围:0.1-10 THz; 1 THz=1012 Hz)位于红外光和微波之间,在国防安全、生物医疗、空间等领域具有潜在应用。由于缺乏高效THz辐射源和探测器,THz波还没有被完全认知,所以其被称为THz间隙(“terahertz gap”)。在1-5 THz 频率范围内,基于半导体电泵浦的光子学器件THz量子级联激光器(quantum cascade laser, QCL)在输出功率和效率方面比电子学和差频器件高,是关键的THz辐射源器件。本报告主要介绍我们在高性能THz核心器件以及半导体光频梳方面的研究进展。在高性能核心器件方面,我们突破分子束外延生长和半导体工艺技术,研制出高功率(1.2 W)、低发散角(2.4°)、宽频率范围THz QCL器件并实现THz高速探测和多色成像。基于高性能半导体THz QCL器件,成功实现THz QCL光频梳以及双光梳。克服传统THz光谱仪在测量时间和光谱分辨率方面的缺陷,开发出基于THz QCL双光梳的紧凑型高分辨实时光谱检测系统,为将来实现新一代THz光谱仪奠定基础。

浅谈纳米技术的研究与应用

浅谈纳米技术的研究与应用 1.引言 当集成电路代替电子管和半导体晶体管的初期,1959年美国诺贝尔奖获得者查理·费曼(Richard Phillips Feynman),在美国加州理工学院召开的美国物理年会上预言:“如果人们能够在原子/分子的尺度上来加工材料,制造装置,将会有许多激动人心的新发现,人们将会打开一个崭新的世界。”这在当时只是一个美好的梦想。 如今,这个预言和梦想终于实现了。费曼所预言的材料就是现在的纳米。 今天,不少科学家又在预言,纳米科技将在新世纪里得到惊人的发展,纳米科技将给人类的科学技术和生活带来革命性的变化。科学家认为,纳米时代的到来不会很久,它在未来的应用将远远超过计算机,并成为未来信息时代的核心。 我国著名科学家钱学森早在1991年就指出:“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命,从而将是21世纪的又一次产业革命。” 英国理论物理学家斯蒂芬·霍金是继爱因斯坦之后最杰出的物理学家。他预测:“未来一千年人类有可能对DNA基因重新设计。而生化纳米材料则是设计DNA基因所必须具备的医药材料基础。” 近年来,科学家勾画了一幅若干年后的蓝图:纳米电子学将使量子元件代替微电子备件,巨型计算机可装入口袋;通过纳米化,易碎的陶瓷可以变成韧性的;世界还将出现1μm以下的机器甚至机器人;纳米技术还能给药物的传输提供新的方式和途径,对基因进行定点等。 海内外科技界广泛认为,纳米材料和技术的大规模应用可望在10年内实现。现阶段纳米材料和技术正向新材料、微电子、计算机、医学、航天航空、环境、能源、生物技术和农业等诸多领域渗透,并已得到不同程度的应用。 1998年8月20日,《美国商业周刊》发表文章指出,21世纪有三个领域可能取得重大突破:生命科学和生物技术;纳米材料和纳米技术;从外星球获得能源。并指出这是人类跨入21世纪所面临的新的挑战和机遇。诺贝尔奖获得者罗雷尔也曾说过:“70年代重视微米的国家如今都成为发达国家,现在重视纳米技术的国家很可能成为21世纪先进国家。” 1974年,Taniguchi最早使用纳米技术(Nanotechnology)一词描述精细机械加工。1977年美国麻省理工学院的德雷克斯勒也提倡纳米科技的研究。但当时多数主流科学家对此持怀疑态度。1982年发明了扫描隧道显微镜(STM),以空前的分辨率揭示了一个“可见的”原子、分子世界。到80年代末,STM已不仅是一个可观察的手段,而且已成为可以排布原子的工具。STM与AFM(原子力显微镜)

浅谈纳米技术及其应用

浅谈纳米技术及其应用 1 概述 1.1 引言 纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。纳米技术兴起于20世纪80年代,随着它的逐步发展和完善,人类将必然在认识和改造自然方面进入一个前所未有的新阶段。 1.2 纳米技术的发展 最早提出纳米尺度上科学和技术问题的是著名物理学家、诺贝尔奖获得者理查德·费曼教授[1]。1959年他在一次题为《在底部还有很大空间》的演讲中提出:物理学的规律不排除用单个原子制造物品的可能。也就是说,人类能够用最小的机器制造更小的机器。直至达到分子或原子状态,最后可以直接按意愿操纵原子并制造产品。这正是关于纳米技术最早的构想。 20世纪70年代,科学家开始从不同角度提出有关纳米技术的构想。美国康奈尔大学Granqvist和Buhrman[2]利用气相凝集的手段制备出纳米颗粒,提出了纳米晶体材料的概念,成为纳米材料的创始者。之后,麻省理工学院教授德雷克斯勒[3]积极提倡纳米科技的研究并成立了纳米科技研究小组。 纳米科技的迅速发展是在20世纪80年代末、90年代初。1981年发明了可以直接观察和操纵微观粒子的重要仪器——扫描隧道显微镜(STM)、原子力显微镜(AFM),为纳米科技的发展起到了积极的促进作用。1984年德国学者格莱特[4]把粒径6nm的金属粉末压成纳米块,经研究其内部结构,指出了它界面奇异结构和特异功能。1987年,美国实验室用同样的方法制备了纳米TiO 多晶体。 2

水污染与人体健康论文

青岛农业大学 学生课程论文 课程名称:环境污染与人体健康 上课时间:2012 – 2013 学年第2 学期专业班级: 姓名(学号): 2013 年 6 月 1 日

0% 20% 40%60%80%100%城市水域城镇水源 水污染对人类健康的影响 摘要:随着科学的发展、时代的进步、人口的迅猛增长,人类赖以生存和发展的环境受到污染,生态环境受到破坏,生态系统也会随之遭到破坏,环境问题已从地域性走向全球性,人类必须爱护地球,共同关心和解决全球性的环境问题。因为我们“只有一个地球”。 关键字:水污染 污染源 节约用水 循环用水 提高利用率 在这里,我就水污染对人类健康的影响展开以下论述: 1、有关污水的数字: 据调查,我国有65.4%的人常年在饮用不符合饮用标准的水。其中大约有 7 亿人饮用大肠菌群超标的水,1.6亿人饮用含有有机污染物严重的水,3500万人饮用硝酸盐超标的水。据京、津、沪、渝等8城市的病因调查,水源污染使这些城市市区发病率高于郊区3倍以上。据环境部门监测,全国城镇每天至少有1亿吨污水未经处理直接排入水体。全国七大水系中一半以上河段水质受到污染,全国1/3的水体不适于鱼类生存,1/4的水体不适于灌溉,90%的城市水域污染严重,50%的城镇水源不符合饮用水标准,40%的水源已不能饮用,南方城市总缺水量的60%—70%是由于水源污染造成的① 。如下表图: 有关部门要求②,到2002年,全国要新增城市污水处理能力2000万吨/日。集中处理率达25%。据测算,仅处理厂的配套管网投资将达850亿元,至2010年,城市集中污水处理率将达40%。预计将新增城市污水处理厂1000余座③。 2、水质三大污染源 : 水污染主要由人类活动产生的污染物而造成的,它包括工业污染源,农业污染源和生活污染源三大部分。 工业废水为水域的重要污染源,具有量大、面广、成分复杂、毒性大、不易净化、难处理等特点。据1998年中国水资源公报资料显示:这一年,全国废水排放总量共539亿吨(不包括火直电流冷却水),其中,工业废水排放量409亿吨,占69%。实际上,排污水量远远超过这个数,因为许多乡镇企业工业污水排放量难以统计④。 农业污染源包括牲畜粪便、农药、化肥等。农药污水中,一是有机质、植物营养物及病原微生物含量高,二是农药、化肥含量高。我国目前没开展农业面上的监测,据有关资料显示,在1亿公顷耕地和220万公顷草原上,每年使用农药110.49万吨。我国是世界上水土流失最严惩的国家之一,每年表土流失量约50亿吨,致使大量农药、化肥随表土流入江、河、湖、库,随之流失的氮、磷、钾

统编版语文四年级下册7.《纳米技术就在我们身边》教学设计

7.纳米技术就在我们身边 【课文简析】 《纳米技术就在我们身边》是中国科学院院士刘忠范的作品。刘忠范曾任中国微米纳米学会常务理事,第二届亚洲纳米科技大会执行主席等,他的团队主要从事纳米碳材料、纳米化学等研究,是国际上具有代表性的纳米碳材料研究团队之一。因为对纳米技术有着非常精深的研究,所以这样一篇纳米技术的文章在刘院士笔下写得深入浅出,既清楚地介绍了纳米技术以及它的应用,又极具可读性,一点儿也不枯燥。 《纳米技术就在我们身边》是一篇科普类型的说明文。这篇课文科技含量极高,学生了解甚微。作者首先从纳米说起,介绍了什么是纳米和纳米技术。紧接着,作者通过举例子、列数字、作比较等说明方法,清楚地告诉读者,纳米技术就在我们身边,纳米技术可以让人类更加健康,纳米技术将给人类生活带来深刻的变化。全文篇幅不长,却让读者一下子就对纳米技术有了比较清晰的了解。教师在教学过程中还要注意结合本单元阅读要素“阅读时能提出不懂的问题,并试着解决”,引导学生学会借助资料,同时联系上下文、结合生活经验来解决问题的方法,去解决问题。 【学情分析】 在学习四年级上册第二单元的时候,学生就已经学习了“提问”的方法。如:根据课文内容提问、根据课文写法提问、根据生活提问。因此,四年级的学生已掌握了一定的“提问方法”,并具备一定的“提出问题”的能力,在学习本课时着重培养学生运用学过的“提问方法”进行提问,并尝试解决。让学生掌握解决问题的方法。并且,学生对于不曾接触过的事物有着旺盛的好奇心,要学会利用学生的好奇心激发他们学习这篇科技含量极高的课文的学习兴趣。 【学习目标】 1.会认“乒、乓、拥”等12个生字,会写“纳、拥、箱”等15个生字,掌握多音字“率”。能够把“碳纳米管天梯”等科技术语读正确。 2.在读课文的过程中能够提住不懂的问题,并在交流中梳理问题,尝试着结合课文内容、查找资料解答问题。 3.初步学习列数字、作比较、举例子等说明方法,并尝试着运用。 4.了解纳米相关知识,以及纳米技术在生活中的应用。通过学习,激发学生热爱科学的情感和学习科学的兴趣,培养正确的科学观点。 【学习重、难点】 学习重点: 1.会认“乒、乓、拥”等12个生字,会写“纳、拥、箱”等15个生字,掌握多音字“率”。能够把“碳纳米管天梯”等科技术语读正确。 2.了解纳米相关知识,以及纳米技术在生活中的应用。通过学习,激发学生热爱科学的

纳米材料与锂电池

纳米材料与锂电池 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

摘要 传统的锂离子电池的负极材料是石墨,在可逆容量,循环寿命方面存在一些问题。二相比于块体材料,纳米材料具有许多优异的性能,纳米材料的制备、性能和应用别广泛研究,其中纳米材料在锂电池方面具应用前景。采用纳米材料取代传统块体材料,可以改善锂电池的性能。因此,本论文我们开展了氧化铁纳米材料在锂电池领域的应用调研。 本调研工作如下: 1) 目前锂离子电池的工作原理、负极材料研究情况,分析它们的优缺点。 2) 氧化铁纳米材料作为锂离子电池的负极时相对与其他负极材料的优越性,了解 氧化铁纳米材料在国内外的最新研究状况,在锂离子电池领域的应用情况。分析氧化铁纳米材料各种合成方法,制备工艺参数,对于氧化铁纳米材料电化学性能的影响,进而对锂离子电池影响。 3) 通过调研工作分析氧化铁纳米材料作为锂离子电池的负极材料目前所存在的问题及可能解决方法。比如从氧化铁纳米材料的结构稳定性、纳米材料的形貌尺寸方面及导电性能等方面着手。 关键词:氧化铁纳米材料,锂离子电池,负极材料。 根据中文摘要修改英文,和最后的总结 Abstract In the 90s of the last century, nano materials, nano composite materials, with its unique performance in lithium ion battery anode material application have great development, the traditional lithium ion battery anode material is graphite, but due to its in the reversible capacity, cycle life performance without nano material as anode materials for lithium ion batteries is superior, so nano material in lithium ion battery anode and by more and more people's attention, for example, the research of iron oxide nano materials because of its high capacity, high safety, high stability, abundant resources, cheap price, etc, by the people's attention.

水污染对人体健康危害

水污染对人体健康危害 1 引言 20世纪生物科学技术的发展,特别是70年代DNA 重组技术的成功,为维护人体健康带来了 无限光明. 而基因组学的发展让人们畅想未来人类免受疾病的危害. 但人类基因组学技术的进步, 并未为疾病控制带来本质上的变化,因为对于大多数疾病而言,基因与环境等多种因素共同影响 疾病的发生. 科学家认为基因对人类疾病的影响可能只占到<10%. 例如美国Brigham and Women′s Hospital 的Nina Paynter 等对影响心脏病101种基因进行研究,历经12年跟踪调查 19000名妇女后发现这些基因标记难以预测心脏病的发作情况,英国伦敦皇家学院的Jeremy Nicholson 针对其工作提出自己见解,认为“仅知道基因风险因素绝对是无济于事的”. 导致人 体健康风险的主要因素则是环境暴露(environmental exposure),但是目前对于基因组研究的投 入力度要远远大于研究环境如何影响人体健康的投入. 鉴于环境对人体健康影响的重要性,越来越多的人们开始关注这一研究领域. 近年来,人体 暴露于外在污染物的研究得到了空前重视,一些新技术和方法逐渐引入到该领域中,同时一些新 的概念也逐渐为人们所认识. Christopher Paul Wild 于2005年提出了暴露组(exposome)的概念, 大大地拓展了人体暴露科学的内涵和外延. 自从这一概念提出以来,得到了广泛关注,相关报道 亦日趋增多. 在Google Scholar 和Web of Science 中分别收录了1190条和115篇相关文献, 且呈现逐年增多的趋势(图 1). 近年来美国和欧洲均建立了各种研究中心并开展了相关的研究项 目,例如美国成立了暴露生物学中心(Center for Exposure Biology)和人类暴露组中心(Human Exposome Center),其目的在于开展人类暴露组项目(Human Exposome Project ,HEP). 图1 2005—2014年关于暴露组文献数量趋势 同时欧盟亦开展了生命早期暴露组项目的研究(Human EarlyLife Exposome ,HELIX). 这些 项目的实施意味着欧美等国家已全面开展了暴露组研究. 我国对于该方面的研究鲜有报道,在该 方面研究中仅有一项得到国家自然科学基金资助(数据来源于https://www.doczj.com/doc/b97346569.html, 收录,搜索关键词为 “暴露组”). 近期国家自然科学基金委发布的“十二五”第3批重大项目申请指南中已将“环 境与遗传因素及其交互作用对慢性非传染性疾病影响的队列研究”作为一个重要课题. 由此可见, 我国已开始重视暴露组的研究. 本文将主要从暴露组概念的内涵和发展、研究方法、具体技术以 及未来的展望方面介绍这一新概念,并以此更多地关注环境因素引起的健康问题 .

CJT51-2018(45.4)城镇污水水质标准检验方法总镉的测定方法验证

方法验证报告 方法名称:城镇污水水质标准检验方法总镉的测定CJ/T 51-2018(45.4)石墨炉原子吸收分光光度法 验证人员:日期: 报告编制:日期: 审核人员:日期: 批准人员:日期:

城镇污水水质标准检验方法总镉的测定 石墨炉原子吸收分光光度法方法验证报告 1、验证目的 方法变更:城镇污水水质标准检验方法总镉的测定石墨炉原子吸收分光光度法CJ/T 51-2018(45.4)代替CJ/T 51-2004(22.4)。 2、变更内容 标准号变更,更改了试剂和材料的要求(由去离子水更改为无酚蒸馏水,部分试剂浓度结果的单位由g/L更改为g/ml),新增了标准曲线的消解操作,删除了CJ/T 51-2004(22.4)中的22.4.6.2.4试份的准备步骤,更改了标准内容的顺序。 3、适用范围 本标准规定了采用石墨炉原子吸收分光光度法测定城镇污水中镉的含量。 4、方法原理 方法基于样品经基体改进后,所含镉离子在石墨管内,生成难挥发的化合物,高温蒸发离解为原子蒸气,并吸收镉空心阴极灯发射的共振线,其吸收强度在一定范围内与镉浓度成正比,根据测得的吸收值与标准系列比较进行定量。 5、仪器设备、人员能力及实验场地 5.1、仪器设备 表5.1.1、仪器设备情况一览表 5.2、人员能力 参与本方法验证实验的人员皆经受过本公司或其他专家的关于此方法的学

习培训,并考核通过。人员情况见表5.2.1 表5.2.1、人员信息一览表 5.3、实验场地 本次方法验证实验的测定在无机前处理室前处理,在仪器一室分析,实验场所均不受其他实验环境影响,且实验温湿度均能满足实验要求。 5.4、标准物质 表5.4.1、标准溶液/样品一览表 6、样品 应用聚乙烯瓶采样,采样瓶使用前先用洗涤剂洗涤,再用5%硝酸浸泡,最后用水冲洗洁净。采样后应立即用浓硝酸调节pH值小于2。 7、分析步骤 7.1、测定 测定步骤如下: a.消解:取适量样品(50ml~100ml,根据样品情况而定),移入250ml高型烧杯中,加5ml浓硝酸,在电热板上缓慢加热,保持微沸状态,蒸发到尽可能小的体积(大约10ml,但不得出现沉淀和析出盐分),再加入5ml浓硝酸,盖上玻璃表面皿,加热样品使之发生缓慢回流,继续加热,必要时再加入浓硝酸直至消化完全,此时溶液呈清澈浅色,最后加入1ml~2ml浓硝酸,微微加热以后溶

纳米技术的应用与前景

纳米技术的应用与前景 纳米技术作为一种高新科技,我认为其本质不亚于当年的电子与半导体科技,有着我们未所发掘到潜能与实用价值,在这个世代,各种技术的发展迅速,随着纳米技术的进一步发展,可以作为一种催化剂,促使各行各业的迅猛发展。 纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”,其具体定义见词条“纳米科技”。 纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域: 1、纳米技术在新材料中的应用 2、纳米技术在微电子、电力等领域中的应用 3、纳米技术在制造业中的应用 4、纳米技术在生物、医药学中的应用 5、纳米技术在化学、环境监测中的应用 6、纳米技术在能源、交通等领域的应用 尽管从理论到实践是一个相当困难的过程,但纳米技术已经证明,可以利用扫描隧道电子显微镜等工具移动原子个体,使它们形成在自然界中永远不可能存在的排列方式,如IBM 公司的标志图案、比例为百亿分之一的世界地图、或一把琴弦只有50纳米粗的亚显微吉他。纳米材料的应用有着诱人的技术潜力,它的应用范围包括从制造工业、航天工业到医学领域等。美国全国科学基金会曾发表声明说:“当我们进入21世纪时,纳米技术将对世界人民的健康、财富和安全产生重大的影响,至少如同20世纪的抗生素、集成电路和人造聚合物那样。”科学家们预计,纳米技术在新世纪中的应用前景广阔,已经涵盖了材料、测量、机械、电子、光学、化学、生物等众多领域,信息技术与纳米技术的关系已密不可分。 从纳米科技发展的历史来看,人们早在1861年建立所谓肢体化学时即开始了对纳米肢体的研究。但真正对纳米进行独立的研究,则是1959年,这一年,著名美国物理学家、诺贝尔奖金获得者德·费曼在美国物理学年会上作了一次报告。他在报告中认为,能够用宏观的机器来制造比其体积小的机器,而这较小的机器又可制作更小的机器,这样一步步达到分子程度。费曼还幻想在原子和分子水平上操纵和控制物质。 在70年代末,美国MIT(麻省理工大学)的W.R.Cannon等人发明了激光气相法合成数十纳米尺寸的硅基陶瓷粉末。80年代初,德国物理学家H.Gleiter等人用气体冷凝发制备了具有清洁表面的纳米颗粒,并在超真空条件下原位压制了多晶纳米固体。现在看来,这些研究都属于纳米材料的初步探索。 科学家预言,尺寸为分子般大小、厚度只有一根头发丝的几百万分之一的纳米机械装置将在今后数年内投入使用。学术实验室和工业实验室的研究人员在开发分子马达、自组装材料等纳米机械部件方面取得了飞速进展。纳米机器具有可以操纵分子的微型“手指”和指挥这些手指如何工作、如何寻找所需原材料的微型电脑。这种手指完全可以由碳纳米管制成,碳纳米管是1991年发现的一种类似头发的碳分子,其强度是钢的100倍,直径只有头发的五万分之一。美国康奈尔大学的研究人员利用有机物和无机物组件开发出一个分子大小的马达,一些人称之为纳米技术领域的“T型发动机”。 纳米科技中具有主导或牵头作用的是纳米电子学,因为它是微电子学发展的下一代。纳米电子学是来自电子工业,是纳米技术发展的一个主要动力。纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理

纳米储锂材料和锂离子电池.

纳米储锂材料和锂离子电池 3 黄学杰 李泓王庆刘伟峰师丽红陈立泉 (中国科学院物理研究所纳米物理与器件实验室北京 100080 摘要简单综述了锂离子电池的基本原理和发展现状 , 对中国科学院物理研究所固体离子学课题组在纳米储锂材料方面的研究进展做了介绍 . 用 HRTE M 等手段研究了纳米 SnO 、纳米 S i 以及纳米 SnSb 合金在 Li 入脱嵌过程中结构的变化 . 着重介绍了一种具有纳米微孔的球形硬碳材料和纳米 SnSb 合金钉扎的复合负极材料 , 在高功率密度和高能量密度锂离子电池方面具有广阔应用前景 . 关键词锂离子电池 , 纳米材料 , 负极 NAN O 2SCA LE D MATERIA LS FOR M AN D LITHIU M ION H UANG Xue 2Jie LI H ong W SHI Li 2H ong CHE N Li 2Quan (Nano scaled Physics &Device , Institute , Academy o f Sciences , Beijing 100080, China Abstract aspects of lithium ion batteries are briefly introduced. Then we summarize the research on nano 2for lithium storage in the Laboratory for S olid S tate I onics , where the structural ev o 2lution of nano 2SnO , nano 2S i particles and nano 2SnSb alloy during lithium insertion Πextraction has been studied by high resolution transm ission electron m icroscope. In addition , the electrochem ical properties of hard carbon spherules (HCS and nano 2SnSb alloy pinned HCS com posites are described. The large lithium storage capacity and cyclic ca 2pability of these materials make them

水体污染与人体健康

水体污染与人体健康 学号:2010姓名: 摘要:造成水体水质、水中生物群落以及水体底泥质量恶化的各种有害物质(或能 量)都可叫做水体污染物。人若饮用或接触大量受污染的水,就会给身体带来一定 的危害。水污染比大气污染、垃圾污染后果更严重,水一旦污染了,就很难治好。 因此,要把治理水污染作为城市建设的头等大事来抓。本文以生物性污染、物理性 污染和化学性污染三类水体污染物来介绍水体污染及其与人体健康之间的关系。 关键词:环境,水污染的原因,人体健康水污染;污染物;;影响;危害 引言 水体污染是指一定量的污水、废水、各种废弃物等污染物质进入水域,超出了水体的自净和纳污能力,从而导致水体及其底泥的物理、化学性质和生物群落组成发生不良变化,破坏了水中固有的生态系统,破坏了水体的功能,从而降低水体使用价值的现象。造成水体污染的因素是多方面的:向水体排放未经过妥善处理的城市生活污水和工业废水;施用的化肥、农药及城市地面的污染物,被雨水冲刷,随地面径流进入水体;随大气扩散的有毒物质通过重力沉降或降水过程而进入水体等。 人必需每天饮水,通过水来完成人体内的新陈代谢、营养的吸收和分配、体温的调节、废物排泄等生命活动。同时,水也是进行正常的生活活动,如个人卫生、沐浴、洗涤等等方面所必不可少的物质。除了空气,人每天活动接触最多的物质便是水。因此,水体污染对人民的健康有着极大的危害。 造成水污染的途径有很多种,从广义上讲水污染的种类可分为两大类,即自然污染和人为污染。自然污染一般是指由于水资源分布的环境中某些物质的含量较高并且极易进入水体,从而造成水体无法满足人类的某种需要.通常情况下这种污染与人类活动的影响没有关系或者美系较小。而人为污染系指由于人类在生产生活过程中产生的大量污染物进入水体后造成水质状况恶化,水体的使用功能下降或失去使用功能,这种擂染比较普遍。’ 水是重要的环境要素之一,也是人体的重要组织成分。成年人体内含水量约占体重的65%,每人每日生理需水量约2—3L。人体的一切生理活动。如体温调节、营养输送、废物排泄等都需要水来完成。水污染对人体健康的影响主要有以下几个方面:①引起急性和慢性中毒。水体受化学有毒物质污染后.通过饮水或食物链便可能造成中毒,如甲基汞中毒(水俣病)、镉中毒(痛痛病)、砷中毒、铬中毒、氰化物中毒、农药中毒、多氯联苯中毒等。铅、钡、氟也可对人体造成危害。这些急性中毒和慢性中毒是水污染对人体健康盎害的主要方面。②致癌作用。某些有致癌作用的化学物质,如砷、铬、镰、镀、苯、胺、苯并(a)芘和其它的多环芳烃、卤代烃污染水体后,可以在悬浮物、底泥和水生生物体内蓄积。长期饮用含有这类物质的水或食用体蓄积有这类物质的生物就可能诱发癌症。 ③发生以水为媒介的传染病。④问接影响。水体污染后.常可引起水的感 官性状恶化。如某些污染物在一般浓度下,对人的健康虽无直接危害,但可使水发生异臭、异昧、异色,呈现泡沫和油膜等,妨碍水体的正常利用。铜、锌、镍等物质在一定浓度下能抑制微生物的生长和繁殖。从而影响水中有机物的分解

纳米粉体材料行业分析报告行业基本情况.doc

报告概要 行业评级:纳米粉体新材料行业推荐 行业内重点公司推荐:广东羚光 行业分析师:袁熠 执业证编号:S123011470019 电话:(021)64318677 Email:YuanYi@https://www.doczj.com/doc/b97346569.html, 纳米粉体材料行业分析报告 一、行业基本情况 1、行业主管部门及监管体制 公司属于金属制品制造业,行业主管部门是国家发展与改革委员会、工业和信息化部及其各地分支机构,主要负责产业政策的制定并监督、检查其执行情况;研究制定行业发展规划,指导行业结构调整、行业体制改革、技术进步和技术改造等工作。 中国微米纳米技术学会(CHINESE SOCIETY OF MICRO-NANO TECH-NOLOGY ,英文缩写为CSMNT )是全国范围纳米行业的自律性管理 组织,其主要筹办各种学术活动,包括组织各种学术会、展览会、战略研讨会、 国际交流等等,为我国微米纳米技术的计划与规划、关键技术联合攻关、技术交流、人才培养、科学普及发挥重要作用,为国内外各界微米纳米技术研究人员和 单位的交流、科研成果的转化和产业化提供交流平台。 江苏省新材料产业协会是江苏省内的新材料行业自律性组织,协会由全省新材料产业领域的企事业单位、大专院校、科研机构以及其他相关经济组织自愿组成,是实行行业服务和自律管理的全省性、行业性、非盈利性的社会组织。主要 开展新材料产业全面调查,研究发展趋势,参与制定新材料产业规划和产品技术、质量行业标准,构建综合服务平台,促进产业体制和技术创新,促进新材料企业

持续发展,为江苏省新材料产业发展提供助力。 目前,国家发展与改革委员会、工业和信息化部对行业的管理仅限于宏观管理、政策性引导,行业协会进行指导性管理,公司自主从事业务发展、内部管理 和生产经营。纳米材料行业市场化程度较高,主要表现在市场主体和交易方式上, 政策壁垒已经完全消除,企业可以自由进入,产品价格由市场供求关系决定,国家不干预企业产品定价,行业运作已经充分市场化。 2、行业主管法律法规 (1)主要法律法规 行业相关法规: 序号法律法规名称发布单位 1 《中华人民共和国产品质量法》全国人大 2 《中华人民共和国标准化法》全国人大 3 《中华人民共和国计量法》全国人大 4 《中华人民共和国计量法实施细则》国家计量局 (2)国家标准 国家质检总局与国家标准委联合发布的与纳米材料有关的国家标准,主要有:序号行业标准名称编号 1 纳米材料术语GB/T 19619-2004 2 纳米粉末粒度分布的测定X 射线小角散射法GB/T 13221-2004 3 气体吸附BET 法测定固态物质比表面积GB/T19587-2004 4 纳米镍粉GB/T 19588-2004 5 纳米氧化锌GB/T 19589-2004 6 超微细碳酸钙GB/T 19590-2004 7 纳米二氧化钛GB/T 19591-2004 3、行业主要产业政策 公司处于前沿技术细分行业,公司产品主要运用于片式元件(电容器、电感器和电阻器)、新能源等领域,公司产品的应用领域符合国家的产业政策,属于 国家鼓励发展行业,影响本行业发展的法律法规及政策主要有: 2016 年6 月江苏省政府发布的《江苏省国民经济和社会发展“十三五”规划

纳米技术在医学领域的应用和重要影响

纳米技术在医学领域的应用 和重要影响 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

纳米技术在医学领域的应用和重要影响 摘要:纳米技术与生物医学的结合, 为医学界提供了全新的思路和便利, 纳米材料在医学领域的应用取得了显著效果。随着纳米材料在生物医学领域更广泛的应用, 临床医疗将变得节奏更快、效率更高, 诊断、检查更准确, 治疗更有效, 人们的生命安全将得到更大的保障。 关键词:纳米材料,纳米技术,生物医学,应用,重要影响 “纳米(nm)”是一种度量长度的单位,一个纳米是百万分之一毫米,也就是十亿分之一米,大约相当于45个原子串起来的长度。根据2011年10月18日欧盟委员会通过的纳米材料的定义,纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1nm-100nm之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。简单来说就是,一种由具有尺寸在100nm以下的微小结构的固体颗粒组成的材料。纳米技术是指一种在单个原子与分子层次上对物质的数量、种类和结构形态等进行精确的识别、观测和控制的技术,并在纳米尺度(1—100nm)内研究物质的特性和相互作用来达到创制新物质的高新技术。这项技术是在20世纪80年代末、90年代初才逐步发展起来的前沿、交叉性新兴学科,它具有创造新生产工艺、新物质和新产品的巨大潜能和前景,它将在21世纪掀起一场新的产业革命。 科技快速发展的今天, 科学技术的各个领域相互融合、渗透,其中纳米科技的发展促进了高新技术一体化的进程, 引起了科技界的高度重视。我国著名科学家钱学森曾经预言“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命, 从而将是21世纪的又一次产业革命”。纳米技术的发展正越来越成为世界各国科技界所关注的焦点,谁能在这一领域取得领先,谁就能占据21世纪科学的制高点。 美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域迅猛发展。随着纳米技术在癌症诊断和生物分子追踪的应用,医学纳米技术已经被列为美国优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断,2004年,美国国立卫生研究院所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、

纳米结构材料在锂离子电池中的应用进展(一)

纳米结构材料在锂离子电池中的应用进展(一) 锂离子电池是现代材料电化学学科的一个巨大的成功。相关的科学与技术连篇累牍地见诸于先前的评论和专着中,有兴趣的读者可以从中得到更多的细节1]。锂离子电池由锂离子插层负极材料(一般为石墨)、锂离子插层正极材料(一般为锂的氧化物如LiCoO2)及将两者分离开的锂离子传导电解液(如溶有锂盐LiPF6的碳酸乙二酯-碳酸二乙酯有机溶液)等材料构成。虽然这类电池已被成功地商业化,但现有的电极和电解液材料已达到了性能的极限。在消费电子,以及清洁能源存储和混合电动交通工具的使用中,新一代可充电锂电池的研制迫切需要材料技术的进一步突破。其中已在开发中的一种途径是纳米材料在锂离子电池中的应用。一、电极锂离子电池纳米电极存在一些潜在的优缺点。优点:(i)更好地释放锂嵌入和脱嵌过程中的应力,提高循环寿命;(ii)可发生在块体材料中不可能出现的反应;(iii)更高的电极/电解液接触面积提高了充/放电速率;(iv)短的电子输运路径(允许在低电导或高功率下使用);(v)短的锂离子传输路径(允许在低锂离子传导介质或高功率下使用)。缺点:(i)高比表面积带来的不可预期的电极/电解液反应增加,导致自放电现象,差的循环性能及寿命;(ii)劣等的颗粒包装技术使其体积能量密度很低,除非开发出一种特殊的压缩工艺,否则会限制它的应用;(iii)电极合成过程可能会更加复杂。认识了这些优缺点,人们已经加大在负极材料及最近展开的正极材料的研发力度。二、负极储锂金属存在的问题储锂金属可部分重复地、在低电压(相对于锂)下进行储锂反应,它提供了比传统石墨大得多的比容量。例如,锂硅合金,饱和状态下的分子式为Li4.4Si,理论上可以达到4200mAh/g 的比容量,而金属锂为3600mAh/g,石墨只有372mAh/g。但是,锂的嵌入再加上相变会导致体积发生巨大的变化,产生的应力致使金属电极断裂破碎,电阻增大,存储电荷的能力骤降。尽管在合金化反应中结构的变化是很正常的,但人们依然努力去降低这一效应以保持电极的完整性。活泼/惰性纳米复合(active/inactivecomposite)概念该方法包含了两种材料的混合,一种与锂反应,另一种作为惰性的局域缓冲。在这种复合材料中,活泼相纳米级金属团簇被包裹在惰性非晶相基体中,在嵌锂过程中很好地消除了产生的内应力,从而提高了合金化反应的可逆性。将这一概念应用到不同的体系中,结果显示这些电极极大地提高了锂电池的循环性能。1999年ouMao等2]发现机械合金化得到的Sn基复合材料Sn-Fe-C存在Sn2Fe 和SnFe3C两相,前一相中的Sn可以与Li发生反应因而被称为活泼相,而后一相却几乎不发生嵌锂反应因而被称为惰性相。在两相的协调作用下,循环80次容量几无降低。Si-C纳米复合材料亦有类似功能3,4],2004年Novak,P等5]在日本召开的锂电池会议中宣布其Si-C 纳米复合材料电极循环100次后比容量仍高达1000mAh/g,因而受到了非常的注目。纳米形貌特征对循环性能的贡献2005年3月份,AdvancedMaterials发表了对TiO2-B纳米管或纳米线的研究成果(B表示TiO2的类型而非硼元素)6]。这种材料可由简单的水相合成途径大量合成,直径在40-60nm之间,长度可达数微米。多晶TiO2-B纳米管是一种优秀的锂嵌入载体,插锂电位在1.5-1.6V,形成Li0.91TiO2-B(305mAh/g),具有优异的可逆循环容量(循环100次后容量几无降低)。有意思的是,它的比容量要优于同种相的直径跟纳米线直径相仿的纳米粒子。2003年Green,M等7]发现表面纳米柱磁电极因尺寸限制改变了颗粒的形变行为,减少了断裂的产生,同样显示了优异的可逆容量(循环50次后大部分柱状结构仍保持原样)。人们研究发现纳米碳管的充放电容量可以超过石墨嵌锂化合物理论容量的一倍以上。Z.H.Yang8]发现用化学气相沉积法制备的纳米碳管容量可达700mAh/g,Frackowia9]用Co/硅胶为催化剂在900℃下催化分解乙炔气体得到的纳米碳管的首次嵌锂容量达到952mAh/g。但同时也发现与其它碳材料相比,纳米碳管作为负极材料不仅存在电位滞后,而且存在明显的双电层效应。颗粒度的降低拓宽了人们对电极材料的选择范围纳米尺寸研究上的突破可能会迅速地改变人们对无机材料的化学/电化学反应原有的认识,原以为不满足传统锂插层标准而被否决的材料现在却值得重新思考了。这来自于2003年Larcher,D等所做的关于宏观&纳

相关主题
文本预览
相关文档 最新文档