当前位置:文档之家› 智慧建筑能源管理系统方案-v1.0

智慧建筑能源管理系统方案-v1.0

智慧建筑能源管理系统方案-v1.0
智慧建筑能源管理系统方案-v1.0

智慧建筑能源管理

修订记录

一、概述

随着社会的发展,大型建筑在逐年增加,其能耗也在不断增大,能源与发展的矛盾日益突出。未来几年内写字楼、公寓、饭店、会展中心等大型公共建筑会大幅度增加,而我国约90%以上的大型公共建筑是典型的能耗大户。

建筑行业的能耗消耗种类较为单一,大致分为5类,电能、水能、燃气、集中供热、集中供冷。根据中国建筑能耗信息网提供的资料显示,就电能消耗分析,大型建筑的能耗比重约为空调能耗40%,公共与办公照明能耗47%,一般动力能耗2.9%,其他用电能耗10.1%。而在大型商场中的照明能耗占40%左右,电梯能耗占10%左右,空调系统的能耗则是占到了50%左右。在提倡节能减排的当今,做好节能工作不仅对实现“十二五”建筑节能目标具有重大意义,更是为高耗能建筑进一步节能提供准备条件。

二、能耗现状分析

2.1 能源流失

不同的建筑类型关注能耗的变化所有不同,比如:酒店类型关注客房入住率与能源消耗的变化关系;大型超市关注空调使用率的变化、单位面积能耗值以及

照明范围等多个指标;公司、写字楼关注空调末端使用率、不同功能的照明分类等等。大型商业中心关注不仅关注各类能源消耗的情况,同时对于中央空调、水泵等重点设备的运行和效率也更为关注。

一栋大楼的能源消耗如下图几个方面所显示:

2.2能耗构成比重

2.3能源管理中的问题

A能源数据采集没有完全自动化

能源管理及节能是基于大数据分析,数据的实时、准确采集是系统关键一步,建设一套功能强大,易实施,免布线,工作稳定可靠,易于维护的系统级数据采集、控制mesh网络对智慧能效管理系统至关重要。

B统计分析困难复杂

能源管理及节能是基于大数据分析,各种能耗数据统计分析困难复杂,需要专业的系统支撑;

C能源使用计划及预测困难

D能源管理缺乏系统支撑

E缺乏有效的监控和调度

目前节能一般通过职员的主动性或公司的一些硬性制度来规范,对于一些公共区域,难于实施,缺乏有效的系统从全局来监控和调度。

综合起来,大型建筑普遍面临着环境的日趋舒适,能耗却在快速增加的情况。在目前楼宇自动化系统中,基本可以完成进行各个系统的分散监视、控制和管理。但缺少对各种能耗数据的统计、分析,并且结合建筑的建筑面积、内部的功能区域划分、运转时间等客观数据,对整体的能耗进行统计分析并准确评价建筑的节能效果和发展趋势。

另外,从设备管理角度来看,大型建筑的空调设备不仅仅消耗单一的能源,

对于能源的转化,单纯的设备监测就不能够综合评估设备的运行效率和帮助挖掘节能潜力。

面对上述的这些问题,有必要通过一个专用的能源系统,将大型建筑、商场、学校、公共建筑等各能源数据进行集中统一的分析,并将分析结果整体展现出来。这不同于以往的楼宇自动化或其他的设备运行自动化系统。

三、系统架构

智慧建筑能源管理系统可以获取能源消耗监控点能耗数据,对能源供应、分配和消耗进行监测,实时掌握能源消耗状况,了解能耗结构,计算和分析各种设备能耗标准,监控各个运营环节的能耗异常情况,评估各项节能设备和措施的相关影响,并通过WEB把各种能耗日报报表、各种能耗数据曲线以及整体能耗情况发布给相关管理和运营人员,分享能源信息化带来的成果,完成对企业能源系

统的监控及电力负荷耗能状态的监测和管理。为进一步的节能工程提供坚实的数据支撑。

系统采用分层分布式结构,方便用户的管理和维护工作。系统采用专用的能源监控和管理软件。服务器+工作站模式便于工程部门进行日常维护管理,并且支持局域网或Internet访问。

本着技术上理性应用,系统上务实设计的思路从系统结构、技术措施、设备性能、系统管理、技术支持及维修能力等方面综合评估、选型,确保系统运行的可靠性和稳定性,达到最大最优的效果。

方案采用如下的设计思路,从本方案的提出设计、开发、实施、调整、维护试运行,直到系统的最后运行,可以帮助管理者实时的反映建筑整体能源运行的现状及趋势,从日常耗能的环节本身发现能源问题,通过对建筑内不同功能区域的耗能特点的分析,建立“数据采集- 集中数据- 数据分析处理- 提供各类对比考核方法–帮助完成整个管理流程”的能源管理流程,将建筑物或建筑群内的

变配电、照明、电梯、空调、供热、给排水等能源使用状况及节能管理实行集中监测、管理和分散控制的建筑物管理和控制系统,逐渐提升大型建筑能源利用的综合性能源管理系统。

四、建筑能源管理解决方案

4.1 分类分项计量

数据是能源管理分析的基础,对于每一类建筑,需要采集的数据指标分为建筑基本情况数据和能耗数据采集指标两大类。能源管理系统的分析基础来自于建筑内的各种能耗数据的采集,依据建筑物的不同功能区域和系统设计,针对能源管理系统的分析需要进行选择性的数据采集,采集依据下表中的分类标准。

能耗数据采集指标包括各分类能耗和分项能耗的逐时、逐日、逐月和逐年数据,以及各类相关能耗指标。各分类能耗、分项能耗以及相关能耗指标的具体内容见下表。

除此之外,建筑基本情况数据包括建筑名称、建筑地址、建设年代、建筑层数、建筑功能、建筑总面积、空调面积、采暖面积、建筑空调系统形式等表征建筑规模、建筑功能、建筑用能特点的参数。此类数据通过系统录入或导入获得。

对应于能耗类型,需要按以下能耗类型指标进行分类采集:

对应于电能能耗分项采集:

系统考核的能耗指标

4.1.1 用电能耗采集

可分为配电室总采集部分和区域用电采集部分,通过2部分的电能流向可以

发现电能损耗。在二级区域计量处采用分项计量,如下图:

A .一级总计量配电室进出线(变配电监测)

采集对象:10kV/0.4kV 变配电室所有进出线回路。

采集信号类型:模拟量:I--电流、U--电压、P--有功功率、Q--无功功率、PF--

功率因数、E--电能量。

状态量:断路器状态、故障信号等。

采集方法:通过能源网关+高精度三相电能总表直接采集数据。

能耗指

标 1建筑总能耗量(折算标准煤量) 2分类能耗量 3单位建筑面积能耗量(折算标准煤量) 4单位建筑面积分类能耗量

5单位空调面积能耗量量(折算标准煤量)(只空调相关分类能

耗)

6单位空调面积分类能耗量(只空调相关分类能耗)

7其它指标(功率、流量、压力、温度、效率等)

B.二级区域用电计量

采集对象:建筑内部所有功能区域和动力机房的配电柜/箱、进户配电箱。

采集信号类型:单相电能表、三相电能表。

采集分项类型:照明、插座、换热站用电、空调机房用电、新风盘管用电、室内公共照明、应急照明、室外景观照明、电梯、给排水泵、通风机、信息中心。

采集方法:通过无线mesh网络远程采集系统采集数据。

4.1.2 用水能耗采集

用水能耗采集可分为生活冷水系统、中水系统2部分计量分析,对排水系统和消防系统不进行计量分析。

A.一级总表计量

采集对象:生活冷水给水机房、中水给水机房。

采集信号类型:累计耗水量。

采集方法:通过远传计量系统数据交换,或者通过能源网关直接采集数据。

B.二级区域用水计量

采集对象:所有用水功能区域。

采集信号类型:累计耗水量。

采集分类类型:生活冷水、中水。

采集系统:通过远传计量系统数据交换,或者通过能源采集器直接采集数据。

4.1.3 空调能量采集

对于中央空调的能量进行采集,即空调冷水和空调热水,分别对冷热源入口计量、出口和分区能量计量。

A.一级总表计量

采集对象:能源中心入户主管道(冷水和热水)、换热站换热总出口和分支管道(冷水和热水)

采集信号类型:冷能量、热能量

采集系统:通过远传计量系统数据交换,或者通过能源采集器直接采集数据。

B.二级区域能量计量

采集对象:区域内部分功能区域。

采集信号类型:冷量能量、热量能量。

采集系统:通过远传计量系统数据交换,或者通过能源采集器直接采集数据。

五、系统应用

5.1 系统功能

系统具备实时监控功能和多种的数据分析功能,通过对数据的多维属性定义和分析,反映能源管理系统各子系统(包括电能子系统、用水子系统、空调子系统、重点设备子系统)中的能耗数据。

为用户提供交互式的、面向对象的、方便灵活的、易于掌握的、多样化的组

态工具,多种的编程手段和实用函数,可以灵活方便扩展组态软件的功能。用户能很方便的对图形、曲线、报表、报文进行在线生成、修改。

5.1.1能耗数据采集

系统对水、电、燃气、冷/热源和设备的电能消耗进行实时自动采集计量、保存和归类,代替繁重的人工记录。经过分析计算能耗数据可以以各种形式(表格、坐标曲线、饼图、柱状图等)加以直观地展示。

5.1.2能耗管理

系统按照能耗类型的不同分别进行管理,对其分类分项计量的数据进行统计计算,对实时数据、历史数据进行横向纵向分析对比,并且可以根据底层设备的自动化程度实现远方控制。

A.电能管理+配电监控

对高低压配电室的配电回路进行电能质量监测及配电监控,对二、三级回路进行电力测量,建设监测网络。对用电量进行统计对比,实时监控配电系统。进行模拟电费的计算,优化设备的运行方式,降低维护成本,减少电能消耗成本,提高电气系统运行管理效率。对配电系统运行进行全过程和全方位管理。

B.水能管理

对供给的生活冷水系统、中水系统、热水系统进行系统计量分析,按规范要求对各系统机房用水、设备补水及其他需要计量的用水点等亦应设置表单独计量(本系统不计量排水系统、消防系统水量)。水能计量部位均采用远传水表或超声波流量计,纳入能源控制中心检测范畴。

C.燃气管理

对建筑内部的燃气系统进行计量,计量部位均采用远传流量计或超声波流量计,纳入能源控制中心检测范畴。

5.1.3设备管理

对设备进行重点能耗监测,依据实际运行参数和耗电系数、单位面积电负荷等计算出单位时间的用电负荷,得到设备的负荷变化特征,作为设备诊断和运行效率分析的依据,发现节能空间,从管理方式上实现节能的可能性。

A.空调分析

对入户冷热源,温度、流量进行监测,结合环境温度综合分析,直观展示环境温度曲线、体现空调系统效率,帮助加强空调系统的运行管理,出具节能诊断,改善并促进空调系统优化运行。

B.照明

系统对照明系统进行分项计量,照明分为室内照明、室内公共照明、室外景观照明、应急照明四项。在工作时间段、非工作时间段、景观时间段、应急时间段等多种不同的照明启动时间内,分析计算出各项所占比例、单位面积照明电耗等。帮助查找管理漏洞,发现节能空间。

同时在现有照明系统上加装节能控制设备,对于纯照明负载为例,

直接节能:可达30%以上。

间接节能:智能调控装置高稳定的最佳照明电压,能够延长电光源寿命2~4倍,减少照明运行、维护成本30%~50%。

可实现对灯具的智能化集中调控管理。

C.电梯

系统对建筑内部的电梯实际运行所消耗的电能、运行参数的监测,多角度的分析在建筑内的特定工作时间段(一天内商场内的客流高峰期tm、一周内的客流高峰期twm等)内所耗的电能,相同功能区域内同种类电梯(扶梯和直梯)所耗电能,单位面积电梯电耗、每台电梯运行累计时间、次数等。通过对电梯的设备管理,可以帮助发现节能空间,制定更为优化的电梯运行策略,节约电梯运行成本。

同时可在系统中进行电梯基本信息的管理,如电梯的厂家、层站、载重、速度等有关技术参数,电梯故障信息,维保人员姓名、呼机号码、电话等维护信息。

D.水泵

系统对于建筑内部(以中央空调系统冷冻站、冷水泵和冷却水泵、生活冷热水泵为主)的各类水泵进行耗电量的计量监测、工作效率的综合计算。分别对工作时间内配合水泵在变频运行的同时,根据系统分析的结果在适当的工况点调整运行水泵的数量,使水泵始终保证在高效率区域运行。

同时可在系统中进行水泵基本信息的管理,如水泵的类型、厂家、功率、转速、流量、扬程等有关技术参数信息。

5.1.4能耗综合查询

对能耗进行统计和分析。按时、日、月、年不同时段,或不同区域,或不同的能源类别,或不同类型的耗能设备对能耗数据进行统计。分析能耗总量、单位面积能耗量及人均耗能量,标准煤转换,以及历史趋势,同期对比能源数据等之后,自动生成实时曲线、历史曲线、预测曲线、实时报表、历史报表、日/月报表等资料,为节能管理提供依据,为技术节能提供数据分析,并预测能耗趋势。

5.1.5能耗数据补录

对一些暂时未实现自动化采集的设备,且这些设备无法通过已接入自动化采集设备换算出来的,要求人工补录,以保证数据的完整性和统计数据的准确性。同时对建筑面积、功能区域划分、人员情况、运转时间等客观数据实现录入或导入。

5.1.6能源审计

系统主要按照以下3中评价指标对于企业的能耗情况进行分析,根据企业的发展情况进行半年或一年期的审计工作。

?A单位服务量能耗指标:如每平米照明能耗,或人均生活热水能耗,人均用电,每平米用电;

?B反映系统效率的无量纲指标:如冷水机组COP,冷冻水泵输送系数WTFCH,空调风机输送系数ATF等;

?C反映使用者节能意识和管理水平的不同时段动态指标:如“非工作时段能耗比”,如照明、办公电器等分项能耗的夜间/工作时段比,周末/工作日比等;还包括空调系统的COP或输送系数全年变化特征等。

通过这些指标对企业进行能源审计,帮助发现节能空间并为节能工作提供整改建议。

5.1.7决策支持

提供故障查询、专家节能诊断和节能方案。系统借助能源预测分析算法,结合企业的能耗结构、业务特点,对能源消耗作出预测,以曲线方式直观展现。为企业管理者和决策者提供了能源决策、能源分配和能源平衡的支持。

系统配备了专家建议数据库,可根据用户能耗情况和能耗指标,自动生成专家建议报告,综合反映用户的节能意识和管理水平。

5.2能源监管平台

能源监管平台采用主流的B/S架构,集数据的采集抽取、过滤清洗、业务转换、分析挖掘和直观展现等功能为一体,可实现用户业务分析人员、管理人员和决策人员对能源监管的各种需求,为企业管理者和决策者提供能源决策、分配和平衡的支持。

1)系统实现能源消耗逐日、月、季、年统计、管理和分析的功能,并以曲线、棒图、饼图等方式进行显示。实现各能源总耗占建筑总能耗的百分比;同一

设备不同时间段的能耗对比分析;同一时间段不同设备的能耗对比分析;重点设备能耗按月、季、年时间段的峰谷值对比,建筑总能耗年趋势曲线、棒图(按月统计)。

2)具备数据分析和过滤功能,可以分时、分类、有选择的抽取数据,采用当今最新的数据分析技术,如价值树分析、对标分析、联想分析等,对能耗数据进行过滤,只抽取其中有用的数据。

3)具备自由数据钻取功能,实现对同一问题从不同角度进行全面的分析。

4)软件功能展现通过系统具备专门的Web门户展现和管理平台,支持基本的Web开发功能和嵌入任意的Web页,并集成网络报表、智能图表和仪表盘、自由查询、快速索引和自动报告等专业化的展现方法。

5)能效考核帮助建立企业能耗的考核制度,以能耗总量和各部门、建筑物的单位能耗等统计数据,引入KPI指标计算方法作为能耗考核依据。

6)系统人性化管理,在远程通过Internet直接进行编辑管理,不受地域限制。当

系统出现报警,发邮件或短信通知管理人员,使管理者的决策更加及时准确,提高系统的应用价值。

7)决策与支持:分析运行数据,提出优化方案。电能子系统的决策与支持;用水子系统的决策与支持;空调子系统的决策与支持;重点设备子系统的决策与支持。

5.3 能源监测系统

能源监测系统实现了各类能源数据的分散采集和集中管理,帮助企业提高配电、水循环、热力等系统的自动化管理水平,以减少故障和简化日常维护工作。同时将能耗数据提供给能源监管平台进行统计分析。

5.3.1供配电管理子系统

1)实时监控:对变配电室进行实时监控,实现高低压进出线、母联开关的运行状态、电力参数查询、故障报警等功能。

2)分项计量:客观准确地反应系统能源消耗状况,为制定有效的节能措施提供数据基础。依据用电环节的不同,详细分解出商业用电、动力用电、空调用电等,做到分项计量、综合对比分析的目的。

3)数据采集周期、方式、参数等可由用户在线定义,实时数据采样为秒级,历史EMS 能源管理系统

数据存储要求最小间隔1分钟,分辨率1分钟。

4)第三方通讯:电能子系统提供了与直流屏、变压器、发电机组、应急电源、模拟屏、楼宇自控系统或其它自动化系统的通讯功能。

5)历史数据:系统可根据用户需求,对遥测数据进行实时记录,记录时间超过两年以上。历史数据可以通过曲线方式和数据表格方式直观地显示,用户可方便对选择欲查看回路的历史数据。

6)报警及事件管理:当出现开关事故变位、遥测越限、保护动作或其他报警信号时,系统发出音响提示,并自动弹出报警画面。报警需操作员确认后方可复位。报警系统记录入监控数据库。

7)电能管理:对关键回路的电流和功率变化进行监控,实现故障的及时修正和预测、设备的运行调配管理。

8)系统自诊断和自恢复:能在线诊断系统软件和硬件,发生故障时,能自动在屏幕上显示故障单元、故障部位及故障性质,单个元件的故障不得引起整套装置的误动,也不影响其它装置和监控系统的运行。

5.3.2水能管理子系统

1)分项计量:客观准确地反应系统能源消耗状况,为制定有效的节能措施提供数据基础。依据用水环节的不同,分解出生活冷热水、中水系统,做到分项计量、综合对比分析的目的。

2)数据采集周期、方式、参数等可由用户在线定义,实时数据采样为秒级,历史数据存储要求最小间隔1分钟,分辨率1分钟。

3)历史数据:系统可根据用户需求,对遥测数据进行实时记录,记录时间超过两年以上。历史数据可以通过曲线方式和数据表格方式直观地显示,用户可方便对选择欲查看回路的历史数据。

4)报警及事件管理:当出现用水量越限或其他报警信号时,系统发出音响提示,EMS 能源管理系统

并自动弹出报警画面。报警需操作员确认后方可复位。报警系统记录入监控数据库。

5)系统自诊断和自恢复:能在线诊断系统软件和硬件,发生故障时,能自动在屏幕上显示故障单元、故障部位及故障性质,单个元件的故障不得引起整套装置的误动,也不影响其它装置和监控系统的运行。

5.3.3电能质量

系统嵌入电能质量专用监控软件。对建筑内的电能质量进行全面的监测和分析。

利用全新的现场谐波畸变诊断工具,加快谐波抑制的诊断过程,优化解决方

案的成本,预测已运行系统的技术风险。根据GB/T 14549《电能质量—公用电网谐波》的要求,对各种非线性负荷注入电网的谐波电压和谐波电流加以限制。通过对谐波的监测和分析,确保设备运行的可靠性。

六、无线Mesh自组网网络

6.1无线Mesh自组网网络组成

本智慧建筑能源管理系统采用无线mesh自组网网络,实现以能源网关为中心,以无线能源采集器、无线智能电表为骨干节点,利用无线和有线完美结合;有线部分采用RS485或MBus总线将多台计量表计连接到无线采集器。无线网络部分采用433/470MHz 无线传输网将多台无线能源采集器连接到能源网关。能源网关使用GPRS/CDMA 连接到数据中心。

6.2无线Mesh自组网网络特点

无线Mesh自组网网络适应各种复杂、多变的现场环境,已在各种复杂环境和低功耗组网方案中成功使用;

它拥有如下特质:

网状网络:超稳定mesh网状网络,节点拥有30以上邻居数据及信息,具有自我路由修复能力;

自动组网:无线节点由能源网关发启智能组网,无需现场进行设置,自动增补入网,无需人工干预;

多跳路由:免现场设置,全智能自动路由、中继单网支持1024个节点;

跳频技术:多信道自动跳频通信,解决单频工作时同一频段的干扰,解决各子网间的互相干扰;

网络自维护:新增、减少、更换节点网络自动维护,现场环境发生变化导致网络变化;

响应速度:通讯速率为10000bps 或以上;极高的系统响应速度;支持大数据量的传输;节点特殊数据的主动上传;

6.3支持测量仪表

要求支持下列测量仪表:

电表;

水表;

燃气表;

冷表/热表;

以及其它支持RS485/MBus总线通信接口的测量仪表;

6.4数据采集硬件设备组成

无线能源采集器:

负责将RS485或MBus 通信接口数据发送给“能源网关”,同时接收来自“能源网关”的采集和控制指令。

能源网关:

负责将仪表输出的数据汇总,并且将数据打包,最后发送到数据中心。

6.5数据采集硬件性能参数

测量仪表:采用符合国家相关计量标准要求的仪表,必须具有唯一或可设置地址码,仪表使用RS485 通信接口,传输速率不低于9600BPS;

433/470MHz 无线mesh自组网网络传输距离:不低于150 米(室内),1000 米(室外);

仪表数据最大收集频率:30 秒钟(表头读数传输到能源网关)。

七、系统主要硬件配置

7.1能源网关

能源网关是整个采集系统的枢纽设备,能源网关下行通道利用载波/微功率无线自组网技术与采集器通信,并根据主站的要求获取表计的读数、传输各种系统的控制命令等,上行通道采用GPRS、3G、以太网等方式,与主站系统的前置机相连,接受主站下发的命令,再通过下行通道,发送给燃气表控制单元。

主要的组成部分由:AT91SAM9G25核心模块,电源模块,载波/微功率无线自组网模块,GPRS/CDMA模块,LCD显示模块、外设等接口。

参数设置功能:可通过远程GPRS、CDMA、以太网通道、本地红外、RS232、微功率无线或者LCD设置初始参数:包括集中器通信参数以

及抄表参数等。

储存容量:CPU:ARM9 AT91SAM9G25,LCD:160*160工业级点阵液晶,存储容量满足本技术条件的所有功能要求。标配128MB FLASH存

储单元。

数据采集、处理:支持实时召测功能或根据设定的抄读间隔自动采集各燃气表的气量、月冻结气量、日冻结气量。气量数据保存时带有

时标。

集中器应能根据设置的事件属性,将事件按重要事件和一般事件分类记录。事件包括集中器参数变更、抄表失败、集中器停/上电、时钟超

差等。

数据补抄、报警功能:具有补抄功能,集中器对在规定的抄读间隔时间内未抄到数据的燃气表向主站发送报警信息。

抄表功能:可远程或本地设置和查询抄表方案,如采集周期、抄表时间、采集数据项等。

远程升级功能:支持主站对集中器进行远程在线软件下载升级,

物联网的智慧校园管理系统

物联网的智慧校园管理 系统 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

物联网的教室管理系统在学校,课堂教学环节是学生接受系统教育最重要的一环,做好教学互动环节,是掌握好教学环节的质量,提高教学水平的关键。现行的教学过程中,传统的签到环节、教室使用率均存在诸多问题。签到过程中,使用纸张签到,效率低且存在代签现象,结果不便于教师统计;随着高校的扩招,在校学生越来越多,而相应高校面积却没有扩建。随着高校后勤社会化改革,学生上课条件得到了很大改善,可供学生选择的余地也越来越大,但是如今学生和自习座位现行的教学楼管理系统中存在着许多问题,目前国内大部分的教学楼管理内部还处于原始的人工管理阶段,无论对自习的学生还是对教学楼的管理者都造成了极大地困扰。尤其是在高峰期形成拥挤的现象,极大的耽误了时间。传统的教学方式已经不适应现代化教学的需要,基于物联网技术集智慧教学、人员考勤、视频监控及远程控制于一体的新型现代化智慧教室系统在逐步的推广运用。智慧教室作为一种新型的教育形式和现代化教学手段,给教育行业带来了新的机遇。 目标: 1、教室课程安排。 学生可以通过手机、pad、电脑等设备对各教室使用情况进行查询,引导学生以最短的时间快速进入自己中意的教室,提高教学楼的使用率、提高学生满意度。 绿色:无课,座位使用率在50%以下。

蓝色:有课 黄色:无课,座位使用率在50%以上,70%以下 橙色:无课,座位使用率在70% 以上 学生可以通过手机、PAD、电脑等设备对每个教室本周的课程情况进行查询。 课程安排信息与教务处课程安排同步。需要教务处提供软件借口。 每个教室需要安装传感器进行监测教室中的人数。 如下图,是教室米高处的截面图。虚线位置为传感器安放位置,其中传感器安装在门框上,传感器安装在与传感器成30°角的位置。 (1)如果一个人先经过号传感器,然后接着接着经过了号传感器,则记录为教室进入一人; (2)如果一个人先经过号传感器,然后但是没有经过了号传感器,而是又经过了号传感器,则记录为教室未进入一人; (3)如果一个人先经过号传感器,然后接着经过了号传感器,则记录为教室出去一人;

智慧能源管理系统

智慧能源管理系统 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

智慧能源管理系统 一、建筑能源管理系统................................................... 系统概述............................................................. 法规要求............................................................. 设计依据............................................................. 核心理念............................................................. 优势特点............................................................. 建设目标............................................................. 系统结构............................................................. 能源网络组建......................................................... 二、建立绿色建筑评价体系.............................................. 能源数据采集范围..................................................... 建立用能计量体系 .................................................... 建立绿色建筑评价体系................................................. 三、系统功能详述...................................................... 建筑基础信息配置..................................................... 能耗数据实时监测..................................................... 建筑分类能耗分析..................................................... 建筑分项能耗分析..................................................... 能耗同比、环比分析................................................... 能耗数据分析......................................................... 能耗指标统计......................................................... 能源消耗分析......................................................... 四、界面展示设计...................................................... 界面总览示意图....................................................... 系统分析图........................................................... 实时数据监测......................................................... 设备分项分析饼图..................................................... 空调能耗分析图....................................................... 能耗分户计量图.......................................................

智慧建筑能源管理系统方案-最新版本

智慧建筑能源管理 系 统 方 案

修订记录 日期版本描述作者2015-04-25 1.0 初稿完成

一、概述 随着社会的发展,大型建筑在逐年增加,其能耗也在不断增大,能源与发展的矛盾日益突出。未来几年内写字楼、公寓、饭店、会展中心等大型公共建筑会大幅度增加,而我国约90%以上的大型公共建筑是典型的能耗大户。 建筑行业的能耗消耗种类较为单一,大致分为5类,电能、水能、燃气、集中供热、集中供冷。根据中国建筑能耗信息网提供的资料显示,就电能消耗分析,大型建筑的能耗比重约为空调能耗40%,公共与办公照明能耗47%,一般动力能耗2.9%,其他用电能耗10.1%。而在大型商场中的照明能耗占40%左右,电梯能耗占10%左右,空调系统的能耗则是占到了50%左右。在提倡节能减排的当今,做好节能工作不仅对实现“十二五”建筑节能目标具有重大意义,更是为高耗能建筑进一步节能提供准备条件。

二、能耗现状分析 2.1 能源流失 不同的建筑类型关注能耗的变化所有不同,比如:酒店类型关注客房入住率 与能源消耗的变化关系;大型超市关注空调使用率的变化、单位面积能耗值以及照明范围等多个指标;公司、写字楼关注空调末端使用率、不同功能的照明分类等等。大型商业中心关注不仅关注各类能源消耗的情况,同时对于中央空调、水泵等重点设备的运行和效率也更为关注。 一栋大楼的能源消耗如下图几个方面所显示: 1浪费: 未使用房间的空调 未使用房间的照明 水龙头未关 7设计工程: 建筑节能设计不合理 节能系统未启用 使用高耗能设备 6能量转变效率 电-光 电-热 电-动力 热-电气设备 2设备机器效率 锅炉、空调 水泵、鼓风机电梯 主要的能源流失 5热流: 从配管、通风管道的热量损失 配管、通风管道阻力损失 3运行及保障管理不完备:过大容量运行 设备陈旧 4未充分利用自然条件: 固定窗 没有有效利用外部空气制冷的空调设备 窗口周围边的照明控制

智慧校园整体解决方案

智慧校园整体解决方案 1背景概述 教育信息化是衡量一个国家和地区教育发展水平的重要标志,实现教育现代化、创新教学模式、提高教育质量,迫切需要大力推进教育信息化。当前和今后一个时期,要大力推进“三通两平台”建设,即宽带网络校校通、优质资源班班通、网络学习空间人人通,建设教育资源公共服务平台、教育管理公共服务平台。力争实现四个新突破,即教育信息化基础设施建设新突破、优质数字教育资源共建共享新突破、信息技术与教育教学深度融合新突破、教育信息化科学发展机制新突破。 2.方案简介 三通两平台解决方案是通过建设统一标准的公共服务平台,将贯穿在教育日常工作中的学生、教师、资产和管理等基础数据,按规范格式统一保存在数据中心,在技术支撑服务平台基础上,统一建设各类教育信息化应用,实现标准化、规范化的统一数据管理,便于各级教育主管部门进行数据管理和统计分析。 三通两平台解决方案融合云计算理念进行架构设计,主要分为基础设施层、平台服务层、软件服务层、客户端服务层。基于先进、灵活、开放的云计算基础架构,将各类基础数据存储于云端,并有效整合和管理各类教育信息化应用,形成从管理、教学、办公到研究、在线学习等标准、统一的“三通两平台”体系,实现宽带网络校校通、优质资源班班通、网络学习空间人人通和教育管理公共服务平台、教育资源公共服务平台建设,为各级教育机构提供高带宽、大容量的教育网络服务,全面、准确、及时的基础数据服务及高效、便捷、实用的教育教学应用服务,实现各基层教育机构间的信息互通、信息共享和交换,确保教育系统内信息、学生信息、人事信息、资产信息等数据的高度准确和统一,减少重复录入,降低维护成本,实现区域范围内均衡的教育信息化建设。

能耗管理系统设计施工方案

能耗管理系统设计施工方案 1、电的能耗计量:针对各楼栋、各区域、各楼层各用电回路电能耗数据进行实时监测,根据每个配电箱的电力回路的不同用途进行分项计量,根据电力远传仪表的数量和位置设置相应的电表数据采集器,然后通过采集器将所有电力回路能耗数据上传到本地能耗监测管理平台,实现建筑电能分项能耗数据动态监测和远程传输。 2、水的能耗计量:根据设计院给水系统设计,在建筑进水总管和每层楼有表具的总管上安装数字式远传水表。通过水表数据采集器将水能耗数据上传到本地能耗监测管理平台。 3、系统架构:网络传输分两层架构。网络控制层采用TCP/IP 协议,数据采集器支持双服务器上传,将相关数据上传至本地能耗管理平台。现场层数据采集器需要支持RS485、M-BUS、LONWORKS 等接口,支持各类标准的MODBUS、DLT-645 等各类标准国家协议。 4、系统要求:本项目能源管理平台设置在管理中心。现场采集器通过网络和上一级能耗监测平台的联网,同时本地服务器软件进行网络进行同步数据采集和分析,完成相关的能耗分析功能。采集器通过485协议将对应的数据采集。现场采集器必须按照建设部《国家机关办公建筑及大型公共建筑分项能耗数据采集传输导则》和《国家机关办公建筑及大型公共建筑分项能耗数据采集技术导则》进行数据采集和传输,技术规程要求必须上传的能耗数据必须从采集器直接上传省市平台。 对整个建筑的水、电等用能情况进行实时信息采集,并实现显示、分析、处理、维护及优化管理的目的。从而实现以下功能:实现建筑能耗实时监测,确切掌握各能耗总量及动态变化; 对建筑各能耗进行系统诊断,指导合理用能; 协助管理方建立节能长效机制; 对采用的节能新技术进行后评估; 在系统基础上实现分项用能定额管理制度;

建筑物节能管理系统

建筑物节能分析管理系统 建筑能耗是指民用建筑(包括居住建筑和公共建筑以及服务业)使用过程中的能耗,主要包括采暖、空调、通风、热水供应、照明、炊事、家用电器、办公设备、电梯等方面的能耗。其中采暖空调通风能耗约占2/3 左右。 海博能认为,当前造成我国建筑能耗过高的情况大致分为以下几种: (1)建筑设计上不节能,直接导致建筑物能耗需求过高; (2)采暖、通风与空调系统容量选择不合理,造成“大马拉小车”; (3)各能耗系统相互独立,未对能源综合利用作出合理规划,导致能量浪费; (4)设备运行管理不正确,导致能耗过高; (5)设备长时间使用后没有进行正确维护或更换低效率设备,造成能效低下。 从上面可以看出,建筑节能是一项涵盖建筑设计、设备选型、能源规划、运行管理和系统维护的复杂的系统工程。 XX公司建筑节能全面解决方案是建立在建筑节能物分析管理系统基础上的建筑节能综合解决方案,它以仿真预测模型为基础,采用系统工程的理论和方法,实现建筑节能分析、设计、改造和管理的一体化全面技术解决方案,是当前最先进、最有效的建筑节能全面解决方案。 建筑节能分析管理信息系统将建筑设计、设备工艺、自动控制、能源规划、系统优化和信息技术有效集成,在决策、设计、施工组织管理、运行维护及管理、优化及节能改造等各个环节为客户提供全程服务,从而从根本上降低建筑物的设计能耗和运行能耗。 3.2.1 节能设计 节能设计包括建筑物节能设计、设备选型和能源规划三个部分。其目的是为用户降低能耗需求,提高能源综合利用率。 3.2.1.1 建筑物节能设计 BEAMS系统通过对建筑物围护结构模型、设备模型以及当地历史气象信息进行仿真和综合分析,得到建筑物的设计日冷、热负荷,并根据《公共建筑设计节能标准》对建筑物维护结构(墙体材料、外墙保温、外遮阳、内遮阳、玻璃幕墙等)进行优化,使之设计日的冷、热负荷降到最低,从根本上解决建筑物能耗过高的问题。 3.2.1.2 设备选型 以仿真分析为基础的设备选型是解决当前建筑中普遍存在的“大马拉小车”现象的唯一手段,只有在精确预测建筑物负荷的情况下才能真正做到“车马相配”。同时,在设备选型的过程中必须遵循以下原则: (1)满足建筑物的最大冷、热负荷需求,并按规定留出余量; (2)在考虑综合成本及建筑物实际情况的前提下尽量避免运行过程中的“大马拉小车”的情况; (3)兼顾空调主机维护保养计划,避免主机连续运行时间过长,影响主机寿命。 3.2.1.3 能源规划 能源规划是提高能源综合利用率的重要手段。海博能公司根据当前建筑物的用能情况制定了一整套包括热回收、有源能量回馈、太阳能、风能、地热能、沼气等在内的综合能源利用规

园区建筑能源管理系统能耗分析节能方案

我们的园区建筑也是能耗大户,高效的能源管理是园区运营和服务的重要支撑,包括水、电、气等能源的大量消耗也占据了园区成本的较大比例,而其中也有一部分能源消耗是被浪费的,并不产生效益,对这部分浪费的资源需要加以管理。源中瑞源管理系统则是对园区的能源使用情况进行的全面监测,统计园区建筑各区域中各类能源的用量、高峰低谷值、一般规律、异常使用等等数据,并在系统内进行分区域分类别分析,给出管理人员对园区能源高效、绿色使用的管理和优化信息。 园区能源管理系统,大型公建能源管理系统,面向园区建筑能源消耗为主的能源用户进行能源管理ruiecjo微加;包括能源消耗情况的可视化、能源设备实时监测、能源计划管理、能源分析预测、优化节能方案等; 通过使用源中瑞138.2311.8291园区能源管理系统的应用,能够对园区内各区域各类能源的使用情况进行阶段性的统计分析,发现不同类型的能源使用的规律,并结合实际的业务发生情况,发现园区能源利用的不合理之处和异常状况,从而制定能源管理的优化方案,避免不必要的能源浪费,降低能源消耗、节约运营成本,进而减少园区的综合运营成本,源中瑞能源管理系统产品技术特点 1、远程监测,实现站点无人值守: 对于具备自动化条件变电站、水泵站、机房、煤气站、加压

站、气柜、空压站等可实现无人值守,由能源管理系统对无人值守站点进行远程实时动态数据监测。 2、支持C/S、B/S结构: 系统支持采用B/S(浏览器/服务器)结构和C/S(客户端/服务器)结构相结合模式。 3、支持多种系统: 系统采用分层分布式跨平台设计,全面支持HP、IBM、X86等各种硬件平台和UNIX、Linux、Windows各种操作系统。4、数据库稳定可靠: 支持多重冗余和负载均衡功能,可以把不同的数据应用进程分布到不同的服务器上,使得每个服务器都能运行在负载比较均衡的状态下。支持灾难恢复、数据同步功能,实现数据库稳定可靠运行。 5、智能通讯网关: 采用新一代嵌入式技术,构筑分布式的数据采集系统,实现能源介质参数连续、稳定、可靠采集传输。 6、模块化结构、扩展性强: 系统采用模块化设计,支持ODBC、OPC、API、DDE等标准数据变换方式,支持多种关系型数据,包括Oracle、SQLServer 等。 7、支持互联网、移动终端: 支持手机、平板等移动终端进行登录浏览访问。

智慧能源管理系统审批稿

智慧能源管理系统 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

智慧能源管理系统

一、建筑能源管理系统 系统概述 绿色建筑是指最大限度地节约资源、保护环境和减少污染,为人们提供健康、适用和高效的使用空间,与自然和谐共处的。建筑能源管理系统以绿色建筑为核心,在保障高舒适的同时,坚持以“低碳、高效”为原则,打造低能耗、高舒适的绿色建筑。 关键的核心产品采用非常先进的绿色建筑的能源管理技术,实时监测各弱电子系统的运行状态,并将数据汇集到中心数据库,系统自动分析各设备的能耗、能效情况并给出合理建议,从而进一步对设备进行优化,以实现整个弱电系统信息资源的合理共享与分配,确保建筑内所有设备处于高效、节能的最佳运行状态。侧重于系统整体的节能运行,其运行管理模式及系统控制策略易于理解和应用。 法规要求 为能耗统计、能源审计、能效公示、用能定额和超定额加价等制度的建立准备条件,促使办公建筑和大型公共建筑提高节能运行管理水平,住房和城乡建设部在2008 年6 月正式颁布了一套国家机关办公建筑及大型公共建筑能耗监测系统技术导则,共包括5 个导则 ◆《分项能耗数据采集技术导则》 ◆《分项能耗数据传输技术导则》 ◆《楼宇分项计量设计安装技术导则》 ◆《数据中心建设与维护技术导则》 ◆《系统建设、验收与运行管理规范》 设计依据 《绿色建筑评价标准》 《公共建筑节能改造技术规范》JGJ 176-2009 《智能建筑设计标准》GBT50314-2006 《中央空调水系统节能控制装置技术规范》GBT26759-2011 《民用建筑电气设计规范》JGJT 16-2008 《综合布线工程设计规范》GB50311-2007_ 《电子计算机机房设计规范》GB50174-93 《电子设备雷击保护守则》GB7450-87

智慧能源管理系统

智慧能源管理系统 一、建筑能源管理系统................................................... 系统概述............................................................. 法规要求............................................................. 设计依据............................................................. 核心理念............................................................. 优势特点............................................................. 建设目标............................................................. 系统结构............................................................. 能源网络组建......................................................... 二、建立绿色建筑评价体系.............................................. 能源数据采集范围..................................................... 建立用能计量体系 .................................................... 建立绿色建筑评价体系................................................. 三、系统功能详述...................................................... 建筑基础信息配置..................................................... 能耗数据实时监测..................................................... 建筑分类能耗分析..................................................... 建筑分项能耗分析..................................................... 能耗同比、环比分析................................................... 能耗数据分析......................................................... 能耗指标统计......................................................... 能源消耗分析......................................................... 四、界面展示设计...................................................... 界面总览示意图....................................................... 系统分析图........................................................... 实时数据监测......................................................... 设备分项分析饼图..................................................... 空调能耗分析图....................................................... 能耗分户计量图.......................................................

智慧能源管理解决方案

力控科技智慧能源管理解决方案 1概述 能源紧缺和环境恶化已经成为全球面临的最大问题,在中国,持续高速的经济增长的同时也引发了能源供应危机及环境严重污染等问题。节能减排、低碳环保不再只是一个社会的热点话题,更是我们未来的必经之路。认真贯彻落实党的十八大精神,实现“十三五”规划任务,要求加快推进节能降耗,加快实施清洁生产,加快资源循环利用,向节约、清洁、低碳、高效生产方式转变,实施节约与开发并举、把节约放在首位的能源发展战略。 要实现能源的智慧管理不仅要考虑提高能源利用效率,改进能源生产系统和开发可再生能源等能源问题,还要可以将IT云计算、物联网等新技术应用到管理平台中,最终建设能源互联网,推广可再生能源应用以及完成能源智慧调峰等。要实现智慧能源管理需建设一套能管理和保证中心高效运转的信息管理系统——能源管控平台,实现能源管理自动化,推动能源管理的标准化、系统化、智能化。 ●实现能源的在线平衡调节; ●实现动力能源设备的集中监控; ●规范能源设备的运行管理; ●完善能源数据的核算体系; ●实现计量仪表的实时管理; ●实现能耗数据分析; ●进行能源预测预警分析; ●节能评价辅助决策支持。 能源管控平台管理内容包含企业能源使用的管理和能源成本的管理。 ●能源使用的管理 ?企业用能状况和能源流程;

?能源使用的安全性、可靠性和可用性; ?能源使用的效率; ?能源排放; ?能源使用意识; ●能源成本的管理 ?能源使用和主要耗能设备台账; ?企业能源成本统计核算; ?产品综合能耗和产值能耗指标计算分析; ?能源成本分摊和账单管理; 2系统整体拓扑结构介绍。 2.1集团集团级管控平台系统架构 集团级能源管控平台产品采用力控“工业采集网关+pSpace+能耗分析平台”的产品部署方案。以下属企业能源平台、及智慧城市相关平台为基础,关联企业综合办公平台及智

建筑能源管理系统

建筑能源管理系统 一、能源管理系统的概念 能源管理系统英文简称EMS。建筑能源管理系统(BEMS),家庭能源管理系统(HEMS)。建筑能源管理系统就是将建筑物或者建筑群内的变配电、照明、电梯、空调、供热、给排水等能源使用状况,实行集中监视、管理和分散控制的管理与控制系统,是实现建筑能耗在线监测和动态分析功能的硬件系统和软件系统的统称。它由各计量装置、数据采集器和能耗数据管理软件系统组成。基本上,通过实时的在线监控和分析管理实现以下效果:1)对设备能耗情况进行监视,提高整体管理水平;2)找出低效率运转的设备;3)找出能源消耗异常;4)降低峰值用电水平。BEMS的最终目的是降低能源消耗,节省费用。家庭能源管理系统:为削减家庭的功耗电量,首先需要减少各个家电产品的耗电量。要提高核心部件的效率,利用传感器等来优化运行等。接着,还要实现整个家庭的优化。它将住宅内的家电产品等能耗设备网络化,并通过对其的控制来削减能源消耗量。对于消费者来说,具有可在无损生活舒适性的前提下减少光热费支出。 二、能源管理系统的领先企业及各大企业能源管理系统的代理概况 达希能源借助其上海建筑科学研究院科、同济大学、上海电力大学等机构的科研、学术、专业背景,在2010年推出了BEMCloud建筑能源管理云服务平台,该系统能提供强大的功能组态、界面组态功能,并拥有地理信息、综合凭条、能耗监测、节能量分析、、用能诊断、能源审计、信息发布、报警管理、设备管理、专家系统等四十多个子系统模块,该系统平台其强大的子系统功能适用于任何行业用户,用于定位用户能源系统中的高能耗症结,并为其提供有效的改进建议。 研华推出了BEMS楼宇能源管理系统,对建筑的水、电、气消耗情况进行数据搜集,计算出优化用电建议,并配合Web-enabledDDC控制器,进行时序控制,执行优化动作,体现出高度的智能性和自动化水平。 江森智控推出了Metasys5.0升级版本通过能源管理软件提高了可持续性。任何楼宇管理人员或服务专家都能够轻松配置、监控和诊断Metasys站点信息。定

智慧能源管理系统

智慧能源管理系统 一、建筑能源管理系统 (2) 1.1系统概述 (2) 1.2法规要求 (2) 1.3设计依据 (2) 1.4核心理念 (4) 1.5优势特点 (5) 1.6建设目标 (5) 1.7系统结构 (6) 1.8能源网络组建 (7) 二、建立绿色建筑评价体系 (9) 2.1能源数据采集范围 (9) 2.2建立用能计量体系 (12) 2.3建立绿色建筑评价体系 (12) 三、系统功能详述 (13) 3.1建筑基础信息配置 (13) 3.2能耗数据实时监测 (13) 3.3建筑分类能耗分析 (13) 3.4建筑分项能耗分析 (14) 3.5能耗同比、环比分析 (14) 3.6能耗数据分析 (15) 3.7能耗指标统计 (15) 3.8能源消耗分析 (15) 四、界面展示设计 (16) 4.1界面总览示意图 (17) 4.2系统分析图 (18) 4.3实时数据监测 (18) 4.4设备分项分析饼图 (19) 4.5空调能耗分析图 (20) 4.6能耗分户计量图 (20) 4.7管理诊断示意图 (21) 五、用户收益 (21)

一、建筑能源管理系统 1.1系统概述 绿色建筑是指最大限度地节约资源、保护环境和减少污染,为人们提供健康、适用和高效的使用空间,与自然和谐共处的建筑。建筑能源管理系统以绿色建筑为核心,在保障高舒适的同时,坚持以“低碳、高效”为原则,打造低能耗、高舒适的绿色建筑。 关键的核心产品采用非常先进的绿色建筑的能源管理技术,实时监测各弱电子系统的运行状态,并将数据汇集到中心数据库,系统自动分析各设备的能耗、能效情况并给出合理建议,从而进一步对设备进行优化,以实现整个弱电系统信息资源的合理共享与分配,确保建筑内所有设备处于高效、节能的最佳运行状态。侧重于系统整体的节能运行,其运行管理模式及系统控制策略易于理解和应用。 1.2法规要求 为能耗统计、能源审计、能效公示、用能定额和超定额加价等制度的建立准备条件, 促使办公建筑和大型公共建筑提高节能运行管理水平,住房和城乡建设部在2008 年6月正式 颁布了一套国家机关办公建筑及大型公共建筑能耗监测系统技术导则,共包括5个导则 ◆《分项能耗数据采集技术导则》 ◆《分项能耗数据传输技术导则》 ◆《楼宇分项计量设计安装技术导则》 ◆《数据中心建设与维护技术导则》 ◆《系统建设、验收与运行管理规范》 1.3设计依据 《绿色建筑评价标准》 《公共建筑节能改造技术规范》JGJ 176-2009 《智能建筑设计标准》GBT50314-2006 《中央空调水系统节能控制装置技术规范》GBT26759-2011 《民用建筑电气设计规范》JGJT 16-2008 《综合布线工程设计规范》GB50311-2007_ 《电子计算机机房设计规范》GB50174-93

智慧能源管理解决方案

智慧能源管理解决方案 一、背景概述 能源是经济增长的动力源,同时也是影响城市环境与可持续发展的一个制约因素。 ●能源作为经济系统的基础要素,促进了国民经济的发展; ●能源要素高投入和经济高速发展可能带来巨大的资源环境压 力; ●经济增长为能源发展和环境保护提供前提,能源特别是新能源 与可再生能源的大规模开发和利用要依靠经济的有力支持。 因此,能源、环境和发展已成为世界各国共同关注的议题,“低碳经济”的理念应运而生。所谓低碳经济(Low-Carbon Economy),是在可持续发展理念指导下,通过技术创新、制度创新、产业转型、新能源开发等多种手段,尽可能地减少煤炭、石油等高碳能源消耗,减少温室气体排放,达到经济社会发展与生态环境保护双赢的一种经济发展形态。 “低碳经济”是实现全球减排目标、促进经济复苏和可持续发展的重要推动力量,已成为世界潮流,它将引领全球生产模式、生活方式、价值观念和国家权益的深刻变革。 在我国,能源问题受到中国政府的高度关注,发展低碳经济、建设资源节约型、环境友好型社会已成为中国的战略选择。2010年

3月,政府工作报告对2010年我国环境保护和节能减排方面工作提出了要求和指示:打好节能减排攻坚战和持久战。一要以工业、交通、建筑为重点,大力推进节能,提高能源效率;二要加强环境保护;三要积极发展循环经济和节能环保产业;四要积极应对气候变化。2010年4月,温家宝总理在国家能源委员会第一次全体会议中强调,要抓好以下几项重点工作:一要加强能源发展战略研究,谋划长远发展大计;二要加快能源调整优化结构,大力培育新能源产业;下大力气落实2020年非化石能源消费比重提高到15%的目标;三要积极应对气候变化,打好节能减排攻坚战,要实现2020年单位国内生产总值二氧化碳减排40%-45%的目标;四要提高能源科技创新能力,支撑现代能源体系建设;五要继续实施“走出去”战略,深化能源国际务实合作;六要推进能源体制机制创新,加强能源法制建设。 在低碳经济和节能减排政策背景下,很多国际大都市如英国伦敦、日本横滨等都以建设发展“低碳城市”为荣,关注和重视在经济发展过程中的代价最小化以及人与自然的和谐相处。上海、保定两市也成为了世界自然基金会(WWF)“中国低碳城市发展项目”的试点城市。根据WWF提出的“CIRCLE”原则,低碳城市建设应遵循:紧凑型城市遏制城市膨胀(Compact)、个人行动倡导负责任的消费(Individual)、减少资源消耗潜在的影响(Reduce)、减少能源消耗的碳足迹(Carbon)、保持土地的生态和碳汇功能(Land)、提高能效和发展循环经济(Efficiency)。可见,能源管理是城市低碳化的关键,“低碳城市”离不开城市能源管理平台的有效支撑。

智慧校园智能化系统配置表

xxxxxx项目 智能化系统配置表序号智能化系统 1通信接入系统 2语音通讯 3综合布线系统 4信息网络系 统 系统形式 由当地通信运营商提供电话通信设备 及光纤接入,通过语音光纤引至楼层 弱电间通信设备,供用户申请接入。 设置程控电话交换机 采用光缆+六类非屏蔽电缆的配置: 主干万兆多/单模光缆,水平六类非 屏蔽双绞线。 采用“核心+汇聚+接入”三层星型网 络结构配置,万兆骨干、千兆桌面。 无线网络:采用AC控制器+瘦AP配置, 802.11ac标准 网络安全:采用统一威胁管理(UTM)设 备。 系统功能 实现基本的通话功能,物业自用办公室部 分通过程控交换机还可实现各种办公定制 的应用功能。 实现内部电话和外线电话的需要 提供给数据、语音、无线AP、视频监控、 IP校园广播、闭路电视以及公共信息发布 系统使用。包括室内外管线槽敷设、 42U标 准机柜及数据信息终端接口等,预留20%余 量。 设置校园网、智能网两个物理上独立 的网络,对校园进行无线网络信号覆 盖。 对校园网接入采用UTM进行安全保护 5有线电视系统 6 校园广播系 统 公共信息发布系 7 统 校园一卡通管理8 系统 智慧校园应用系9 统 智慧校园信息化10 应用平台 报告厅音视频系11 统 体育场馆扩声系12 统

数字电视+终端数字机顶盒+放大、分 提供当地数字有线电视接入的条 件, 将电视 配分支 信号接入指定位置,不设卫星接收设 备。 既有全院范围内统一集中的控制管理, 又可 授权多个分控点广播,对各区域内(教室) 基于智能网设置一套IP 网络音频广播 独立的控制管理,在遭遇紧急情况时,可强 系统,创建校园广播站,配置多个分控 切为应急广播或寻呼广播;可设多种不同节 点(院系广播、听力测试)。 目源,可自定选择节目。教室可以按年级或 班级同时播放指定节目,如英语听力训练和 考试。 基于智能网的IP 网络结构,设置节目 系统涵盖信息发布和信息查询等功能; 预留 制作、播放控制服务器。 室外大屏的信息发布点。 建设基于智能网的校园一卡通系统平 在院区建设多个“卡务中心”面向用户服 务, 携带一张卡就能实现多种用途,实现电子货 台,实现门禁、消费(电子支付)、图 币、认证、管理、服务、运维、开放五方面 书资料借阅、学籍管理 的建设需求。 为管理者提供了集成的一体化联动指挥 界 建立“绿色智慧校园综合管理平台”并 面。实现办公管理与服务一体化、 学生管理 与校园智能化系统集成。 与服务一体化、教学管理与服务一体 化、 知 识管理与服务一体化管理 建设云基础设施(刀片/机架服务器+ 建设智慧云数据计算中心(云平台建 设) 磁盘阵列+云交换网络(机房双汇聚 智慧校园智能管理中心(四个统一:系统标 +TOR )+虚拟化软件平台+虚拟桌面系 准(信息、应用、集成)、数字业务定制、 统、云安全和各类云服务构件)共同构 IT 资源管理、信息安全管理) 建贵州理工学院云服务平台 云计算管理中心(虚拟化管理) 设置会议发言、扩声、音频处理、视频 满足报告厅举办演讲、报告等会议声学、视 显示、摄像、音视频切换、同声传译、 频显示、视频会议及音视频切换控制要求。 中控等设备 满足体 育馆的声学要求,具有足够的声压 设置场地扩声和观众席扩声 级、良好的语言清晰度、 均匀的声场,以及

智慧能源系统发展历程及未来前景介绍

智慧能源系统发展历程及未来前景介绍智慧能源系统发展历程及未来前景介绍近年来,我国电力消耗 持续增长,工业用电和商业用电都在丌断增加,这也直接提高了生产和生活成本,同时在电力使用中也存在着丌必要癿浪费现象。 针对以上问题我国逐渐兴起了智慧能源解决方案,智慧能源一般借劣能源互联网,将电、水、气等能源数据化,利用 IPv6、大数据、云计算等互联网技术,将能源产业互联网化,劢态管理能源生产、传输和消费,达到提高效率、节能减排等作用。 而智慧能源系统在电力节能上尤为突出,近几年已经得到广泛癿应用。 我国用电量持续增长限电和节能成为首要问题随着我国经济癿快速增长,国民用电需求也持续走高,2019 年,全社会用电量首次突破 6 万亿千瓦时大关,达到 6.3077 万亿千瓦时,同比增长6.6%,电力消费达到 3 万亿以上,这也创造了新高。 表 1 2010-2019 年全国用电量及增速(单位亿瓦时/%)(资料来源: 中国电力年度发展报告)然而在电力大规模应用之后也相应癿面临着一些问题。 目前我国电力消耗还是以第二产业为主,我国工业生产中癿耗电占到了相当大癿一部分。 在用电高峰电力短缺癿环境下,对高耗能产业癿影响整体上是负 面癿,而且部分缺电严重癿省市高耗电企业可能面临拉闸限电癿风.

险。 根据国家能源局对投入产出癿多个行业电力消耗情冴迚行测算,结果显示除电力行业自身外,钢铁、建材、有色、化工和石化等亓大行业是中国耗电最高癿亓个行业,这些行业面对电荒将首当其冲,成为拉闸限电癿重点对象,一旦对企业限电,将会极大地打乱企业癿生产规划,企业将会受到一定癿经济损失。 此外,在工业生产中癿用电成本也给企业造成了一定癿负担,而电力成本丌仅表现为直接消耗癿影响,而且还可以通过产业链癿价格传导对行业成本产生影响。 如化工行业对电力癿完全消耗,丌仅包括生产过程中直接消耗癿电力,还涉及到产业链上游电力消耗包括: 基础化学、石油、燃料、电力、采矿业,这些电力成本都会间接承压到生产企业。 长此以来,解决电力限制,降低用电成本也成为企业必须解决癿难题。 除了工业用电外商用和民用电力也面临着一些困扰,目前一些园区、校园、医院、机场、居民住宅区等大型公共区域也急需解决电力消耗过大、用电成本较高癿难题。 目前我国电力实行峰谷分时电价,峰时和谷时价格相差较大,以江苏省为例,峰时电价 1.0697 元/度,平价 0.6418元/度,谷时电价 0.3139 元/度,峰谷电价相差 3 倍多,而这些大型公共区域用电高峰也主要集中在峰时,这也带来一笔额外癿开支。

智能楼宇能源管理系统

智能楼宇能源管理系统 一、前言 随着我国经济社会的发展,大型公共建筑耗能的问题日益突出,对建筑执行能耗量化管理以及效果评估,来控制降低建筑运营过程中所消耗的能量,最终降低建筑的运营成本,提高能源使用效率,已经成为社会最为关注的问题。 中恒汇鼎长期致力于为客户提供广泛的能源管理解决方案,此能源系统作为智能楼宇管控一体化的能源综合监控信息化平台,采用先进的在线监测技术、云计算、物联网等技术的应用实现供能设备与耗能设备的直接对话,传感器和执行器、监测和检测间环环相扣,从而实现智能楼宇的数字化管理。 整个能源管理系统将从以下几个方面着手,最终实现建筑管理辅助决策系统。 (1)实现对楼宇自控、门禁、智能空调、、电梯、变配电、照明、消防等子系统的大融合,通过汇总后由控制中心统一调度。 (2)减少能源消耗,采用实时能源监控、分户分项能源统计分析、优化系统运行。通过重点能耗设备监控、能耗费率分析等多种手段,使管理者能够准确掌握能源成本比重和发展趋势,制订有的放矢的节能策略。与蓄能装置、无功补偿装置联动,达到移峰填谷、提高功率因数的目的。 (3)监控办公、居住环境舒适信息:主要包括环境的温度、湿度、空气质量指标等。二、系统架构设计 智能楼宇能源管理系统设计采用分层分布式结构, 系统自上而下共分四层: 现场设备层:指分布于高低压配电柜中的测控保护装置、仪表、以及楼宇自控、门禁、智能空调、、电梯、变配电、消防等子系统。 网络通信层:使用通信网关可以将各个子系统所使用的非标准通信协议统一转换为标准的协议, 将监测数据及设备运行状态传输至智能楼宇能源管理平台,并下发上位机对现场设备的各种控制命令。 监控层:具有良好的人机交互界面,软件负责和国内外各种楼宇控制厂家的检测、控制设备构成任意复杂的监控系统,实现完美的过程可视化,并且可与“第三方”的软、硬件系统来进行集成。实时历史数据库提供丰富的企业级信息系统客户端应用和工具,大容量支持企业级应用,内部实现高数据压缩率,实现历史数据的海量存储。 能源管理层:为现场操作人员及管理人员提供充足的信息(包含楼宇供用能信息, 电能质量信息, 各子系统运行状态及用能信息等)制定能量优化策略, 优化设备运行, 通过联动控制实现能源管理, 提高经济效益及环境效益。

智慧校园管理系统模块简介

智慧校园管理系统功能简介 一.电子请假系统:一站式请假,各方联动。 1·学生出校信息可发送给班主任、家长和出入校控制系统; 2·具有统计功能,能够按照请假学生的事由、年级、班级等条件进行统计。各个老师依据自身权限能够第一时间查看管辖范围内当前的学生请假情况; 3·学校领导可随时进行查询和查看。 4·学生请假验证采用“刷脸”验证,及时反馈班主任和家长,且信息永久保存。 5·人脸识别系统严格把控,杜绝了以往学生使用假假条出校或以他人身份出校的情况; 6·有学生请假出校时,信息及时抄送给班主任和家长; 7·返校时人脸识别与出校信息做匹配以查证; 8·出校信息可存档留证,永久保存。 二、电子班牌:教室门口即可掌握班级各项信息,智能化班级管理。 1·安装在每个班门口可展示班级风采、任课教师风采、班级基本信息、学生请假信息、储物柜存取信息和发布通知公告的终端设备; 2·班主任具有修改电子班牌的全部权限; 3·班主任能够在本班班牌上发送通知以外,年级主任具有在年级内所有班牌发送通知的权限,学校领导则能够对全校的班牌发送通知; 三.宿舍考勤:通过宿舍考勤系统第一时间了解目前学生的归宿情况。 1·能够快速准确的识别归宿学生并记录,能够协助并减轻宿管晚上查寝的工作; 2·正常走动经过考勤设备处,设备屏幕显示学生姓名后即算作考勤成功; 3·宿管老师根据考勤系统屏幕上提供的考勤结果,可针对未考勤的学生进行重点查房,如发现问题即可及时向主管领导汇报; 4·宿舍考勤系统能够与请假系统联动,将学生请假信息显示在考勤结果中。 四.会议考勤系统:人脸识别办公考勤,大大节约教师考勤时间。 1·无需停留,可同时识别最高可达16人 2·可自动统计考勤结果

相关主题
文本预览
相关文档 最新文档