当前位置:文档之家› 计算机视觉期末复习

计算机视觉期末复习

计算机视觉期末复习
计算机视觉期末复习

一、

1.什么是计算机视觉?理解计算机视觉问题的产生原理。

研究用计算机来模拟生物视觉功能的技术学科。具体来说,就是让计算机具有对周围世界的空间物体进行传感、抽象、分析判断、决策的能力,从而达到识别、理解的目的。

2.直方图的均衡化

处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。

是将原图像通过某种变换,得到一幅灰度直方图更为均匀分布的新图像的方法。设图像均衡化处理后,图像的直方图是平直的,即各灰度级具有相同的出现频数,那么由于灰度级具有均匀的概率分布,图像看起来就更清晰了。

二、 1.常见的几何变换:平移T x 为点(x ,y )在x 方向要平移的量。 旋转 变尺度:x 轴变大a 倍,y 轴变大b 倍。 2.卷积掩膜技术:(,)(,)(,)(,)m n f i j h i m j n g m n =--∑∑ 对应相乘再相加 掩膜的有效应用——去噪问题

3. 均值滤波器(低通):抑制噪声 主要用于抑制噪声,对每一个目标像素值用其局部邻域内所有像素值的加权均值置换。con 命令

高斯滤波器:一个朴素的道理,距离目标像素越近的点,往往相关性越大,越远则越不相干。所以,高斯

滤波器根据高斯函数选择邻域内各像素的权值 medfilt1 。

区别方法是:高通滤波器模板的和为0,低通滤波器模板的和为1

常用的非线性滤波器:中值滤波;双边滤波;非局部滤波 4.边缘检测算子:通过一组定义好的函数,定位图像中局部变换剧烈的部分(寻找图像边缘)。主要方法有:Robert 交叉梯度,Sobel 梯度,拉普拉斯算子,高提升滤波,高斯-拉普拉斯变换(都是高通滤波器)

Canny 边缘检测 算法步骤:1. 用高斯滤波器平滑图像.

2. 用一阶偏导有限差分计算梯度幅值和方向.

3. 对梯度幅值进行非极大值抑制 .

4. 用双阈值算法检测和连接边缘.

5.分割(大题 伪码?)

(1)经典方法是基于灰度阈值的分割方法 *介绍单值阈值,它把一幅灰度图像转换成二值图像 *求T 的常用的方法是求解灰度直方图中的双峰或者多峰,并以两峰之间的谷底作为阈值。

*全局阈值是指整幅图像使用同一个阈值做分割处理,并产生一个二值图,区分出前景对象和背景。适用于背景和前景对比度大的图像

算法实现:-- 选取一个合适的阈值T ,逐行扫描图像

– 凡灰度级大于T 的,颜色置为255;凡灰度级小于T 的,颜色置为0

(2)自适应阈值:解决单值阈值无法工作的一个方法是将图像分割为子图像,并分别进行阈值化处理

6.Hough 变换:可用于将边缘像素连接起来得到边界曲线,主要优点在于受噪声和曲线间断的影响较小(鲁棒性好)

???≤>=T

y x f T y x f y x g ),( 0),( 1),(如果如果1100cos sin 0[1][1]sin cos 0001x y x y θθθθ-?? ?

= ? ???110000[1][1]0000a x y x y b ab ?? ?= ? ???(,)1

[,][,]k l N h i j f k l M ∈=∑?

???? ??=1010001]1[]1[0011y x T T y x y x

这意味着:原图像空间中的每条直线在参数空间中都对应一个点。

如果一幅图像中存在某一条直线,那么对应参数空间中,某个点一定被击中较多次。但是如果采用表示直线,

不能表示水平和竖直的情况。

将其转换为θθsi n cos y x s +=Hough 变换就没有了限制。直线还会变成单个点。参数空间的坐标变成了s ,θ

7.拓扑描述(应用?)

区域的拓扑描述用于描述物体平面区域结果形状的整体性。也就是说,只要图形不撕裂或者折叠,拓扑描述的性质就不会受到图形变形的影响。常用的特性有:

(1)孔: 如果一个封闭的区域内,其不包含我们感兴趣的像素,则成为此区域为图像的孔洞,用H 表示。

(2)欧拉数EUL :在图像中,图像中所有对象的总数C 与孔洞数相减,为欧拉数。 EUL=C-H

在Matlab 中,采用bweuler 计算二值图像的欧拉数。

三、

1.角点: 是景物轮廓线上曲率的局部极大点,是物体边缘拐角所在的位置点,对掌握景物的轮廓特征具有决定作用。一旦找到了景物的轮廓特征点也就大致掌握了景物的形状。Moravec 角点算子是最早的角点算子

颜色特征:属于图像的内部特征,它描述了图像或者图像一部分区域。颜色特征和线段,角点特征比起来,对于尺寸,方向,突变等不敏感,因此颜色特征被用于图像识别,检索。颜色矩和颜色直方图

颜色矩:以数字方法为基础,通过计算矩来描述颜色的分布,一般来说在RGB 空间,由于颜色分布主要集中

在低阶矩,因此常采用一阶矩、二阶矩等表达颜色的分布

纹理特征:描述的是对图像区域内的内容变化进行量化,捕捉那种具有周期性,规律性的变化。例如粗糙度,光滑度,颗粒度,随机性和规范性。如灰度差统计,自相关函数,灰度更生矩阵和基于频谱特征的分析法。

灰度共生矩阵就是通过研究灰度在空间相关性来描述纹理的常用方法。

????形状特征?尺度空间理论

2.排污口检测(大题):具体检测的思路有两种:

第一种:间接阈值法

step1: 通过大量采样,在晴天、阴天、多云、大雾的天气条件下,分别选定天空和海水的一块区域,分别在此区域内统计海水和天空的饱和度并求均值;

step2: 根据上述得到的海水的饱和度设置阈值。具体阈值的设定方法必须依据天空的饱和度,因为海水的饱和度与天气直接相关。例如,在晴天的条件下,统计得到的天空的平均饱和度,记为sky_threshold ,并根据sky_threshold 从大量统计数据中确定一个饱和度的取值范围,例如从 M 到N ,海水的平均饱和度记为sea_threshold ,也就是污水的饱和度阈值

step3: 当摄像头每次循环获取到当前帧图像时,按照step1中的方法,分别从天空和海水区域分割出一幅子图,统计并计算出二者饱和度的均值,然后进行判断;

step4: 当step3中得到的天空的饱和度处于 M 到 N 的范围,就以sea_threshold 作为污水的阈值,如果step3中得到的海水的平均饱和度低于sea_threshold ,就认为海水被污染了,启动报警系统发出警报,否则继续执行step3,直到系统关闭;

第二种:直接阈值法

step1:采集大量样本图片,不考虑天气因素;

step2:在海水区域,在排污口附近分割出一幅子图,并统计饱和度,记为s1;

step3:在远离排污口处分割出一幅相同大小的子图,并统计饱和度,记为s2(也可以设置一个经验阈值);

step4:计算两个饱和度的差值记s = s1 - s2,然后根据多次试验,求多组s 的平均值,作为污水的阈值,记threshold;step4之后,摄像头每次获取的当前图片重复上述操作,当计算得到的饱和度差值大于threshold时,认为排污口正在排污,启动报警系统发出警报。

3.熵

熵是图像所具有的信息量的度量,纹理信息也属于图像的信息,是一个随机性的度量,当共生矩阵中所有元素有最大的随机性、空间共生矩阵中所有值几乎相等时,共生矩阵中元素分散分布时,熵较大。它表示了图像中纹理的非均匀程度或复杂程度。

若灰度共生矩阵值分布均匀,也即图像近于随机或噪声很大,熵会有较大值。

4.Sift特征// 步骤?

a) SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪

声也保持一定程度的稳定性。

b) 独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配。

c) 多量性,即使少数的几个物体也可以产生大量SIFT特征向量。

d) 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求。

e) 可扩展性,可以很方便的与其他形式的特征向量进行联合

5.均值漂移:

是一种有效的统计迭代算法。是一种基于密度梯度上升的非参数方法,通过迭代运算找到目标位置,实现目标跟踪。它显著的优点是算法计算量小,简单易实现,适合于实时跟踪场合;但是跟踪小目标和快速移动目标时常常失败,而且在全部遮挡情况下不能自我恢复跟踪。通过实验提出应用核直方图来计算目标分布,证明了均值漂移算法具有很好的实时性特点Mean Shift特性

四、

1.人工智能:AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。它企图了解人类与机器智能的实质,并生产出一种能以人类智能相似的方式做出反应的智能机器。

2.机器学习:通过算法使得机器从大量的历史数据中习得规律,从而对新的数据样本做智能识别或预测未来。机器学习主要分为符号主义学习(以决策树模型与相关算法为代表)、连接主义学习(以神经网络模型...)与统计学习(以支持向量机...)

3.机器学习按照学习的方式:

1.监督学习:一种典型的机器学习方法。利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程。监

督学习相当于有人在旁边看着算法学习(实际上利用两组已经标定好的正样本和负样本去实现),随时纠正学习中的错误。纠正的方式就是对于错误的学习给予惩罚(例如降低权值),直到训练得到的模型达到目标识别率。

2.非监督学习:在未加标签的数据中(没有正负样本集合了),试图找到隐藏的结构。因为提供给学习者的实例是未标

记的,因此没有错误或报酬信号来评估潜在的解决方案。典型算法为K-means算法。

3.强化学习:不同于监督学习一开始就提供带标签的学习数据集合,强化学习中由环境提供学习好坏作的评价(通常为

一个回报函数),RL系统靠获得的反馈不断的获得知识并改进学习方案,从而进行自身学习。典型的算法:Agent技术。

4.深度学习:概念源于人工神经网络的研究。是一种多隐式层的神经网络。通过组合低层特征形成更加抽象的高层表示

属性类别或特征,以发现数据的分布式特征表示。

相互关系

人工智能

机器学习

神经网络

简述每个

4.贝叶斯方法(大题)(概率图模型)算题:

P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件的条件概率。

(通常用)

?注意:朴素贝叶斯算法是假设各个特征之间相互独立。

举例:一座别墅在过去的20 年里一共发生过2 次被盗,别墅的主人有一条狗,狗平均每周晚上叫 3 次(A),在盗贼入侵(B)时狗叫的概率被估计为0.9,问题是:在狗叫的时候发生入侵的概率是多少?答:我们假设A 事件为狗在晚上叫,B 为盗贼入侵,我们现在要估计的是P(B|A)。

则以天为单位统计,P(A) = 3/7,P(B) = 2/(20*365) = 2/7300,P(A|B) = 0.9,

按照公式很容易得出结果:P(B|A) = 0.9*(2/7300)/(3/7) = 0.00058

5.聚类:聚类分析是在数据中发现数据对象之间的关系,将sj进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好。K-means算法是一种硬聚类算法,是典型的基于原型的目标函数聚类方法的代表。

K均值聚类法步骤:

一、初始化聚类中心

?1、根据具体问题,凭经验从样本集中选出C个比较合适的样本作为初始聚类中心。

?2、用前C个样本作为初始聚类中心。

?3、将全部样本随机地分成C类,计算每类的样本均值,将样本均值作为初始聚类中心

二、初始聚类

?1、按就近原则将样本归入各聚类中心所代表的类中。

?2、取一样本,将其归入与其最近的聚类中心的那一类中,重新计算样本均值,更新聚类中心。然后取下一样本,重复操作,直至所有样本归入相应类中。

三、判断聚类是否合理

?采用误差平方和准则函数判断聚类是否合理,不合理则修改分类。循环进行判断、修改直至达到算法终止条件。6.k近邻算法(大题):(是一种基本分类和回归方法)即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入实例分类到这个类中。(类似于少数服从多数思想)//最近的概念?归一化公式????算法藻类识别

五、

1.视频处理方法mmreader

myvideo = mmread('FileName.后缀名',1:10);如:myvideo=mmread('test.mp4',1:10);

% myvideo 是一个数组,1:10 表示读取第1:10帧.(读取的文件要在当前目录,否则自己路径)

或者[video,sound] = mmread('FileName.后缀名',1:10);%[video,sound]分别表示视频和音频例如:一个读取视频,显示帧,并保存每一帧的代码为:

2.帧差法

两帧差法伪代码:

下面一样

三帧差法伪代码:

3.Lucas-Kanade是一种广泛使用的光流估计的差分方法,这个方法是由Bruce D. Lucas和Takeo Kanade发明的。它假设光流在像素点的邻域是一个常数,然后使用最小二乘法对邻域中的所有像素点求解基本的光流方程。调用方式:Lucas_Kanade('1.bmp','2.bmp',10) 对运动大小的敏感程度。(上图)

六、

被动测距传感指视觉系统接收来自场景发射或反射的光能量,形成有关场景光能量分布函数,即灰度图像,然后在这些图像的基础上恢复场景的深度信息.

最一般的方法是使用两个相隔一定距离的摄像机同时获取场景图像来生成深度图.与此方法相类似的另一种方法是一个摄象机在不同空间位置上获取两幅或两幅以上图像,通过多幅图像的灰度信息和成象几何来生成深度图.深度信息还可以使用灰度图像的明暗特征、纹理特征、运动特征间接地估算.是

主动测距传感是指视觉系统首先向场景发射能量,然后接收场景对所发射能量的反射能量.主动测距传感系统也称为测距成象系统.雷达测距系统和三角测距系统是两种最常用的两种主动测距传感系统.

因此,主动和被动测距传感的主要区别在于视觉系统是否是通过增收自身发射的能量来测距。

读图像:

读取

A=imread(FILENAME,FMT)

这里FILENAME 指定图像文件的完整路径和文件名。如果在work工作目录下只需提供文件名。

FMT为图像文件的格式对应的标准扩展名。

I1=imread('D:\1.jpg'); %读入图像

图像进行处理

1.图像的平移是将图像映射到新图像中的新坐标。

function J=move(I,a,b)

% 定义一个函数名字move,I表示输入图像,a和b描述I图像沿着x轴和y轴移动的距离

% 不考虑平移以后,图像溢出情况,找不到对应点的地方都赋值为1

[M,N,G]=size(I);%获取输入图像I的大小,彩色图像,多出一维

I=im2double(I); %将图像数据类型转换成双精度

J=ones(M,N,G); %初始化新图像矩阵全为1,大小与输入图像相同

for i=1:M

for j=1:N

if((i+a)>=1&&(i+a<=M)&&(j+b>=1)&&(j+b<=N));%判断平移以后行列坐标是否超出范围J(i+a,j+b,:)=I(i,j,:);%进行图像平移%最后一维遍历

end

end

end

2.图像的缩放是指将图像按照x和y方向缩放。

B=imresize(I,m) m大于1时,是放大;m小于1,是缩小。

B=imresize(I,[mrows ncols])表示缩放后结果图像的大小。

3 旋转:指整幅图像以原点(图像的中心)按照一定的角度旋转。

使用imrotate()命令进行旋转。

B=imrotate(A,angle)

B=imrotate(A,angle,method) method指得是插值的方法

B=imrotate(A,angle,method,bbox) bbox表示新图像大小,这是因为旋转导致四角越界,需要对图像进行缩小。

如有侵权请联系告知删除,感谢你们的配合!

计算机视觉课程设计1

燕山大学 课程设计说明书题目:基于矩形物体的旋转角度测量 学院(系)电气工程学院 年级专业: 学号: 1301030200 1301030200 学生姓名: 指导教师: 教师职称:讲师 燕山大学课程设计(论文)任务书

院(系):电气工程学院基层教学单位:仪器科学与工程系 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2016年 12 月 22 日燕山大学课程设计评审意见表

摘要 本文主要研究对矩形物体旋转角度的测量,并且比较每种方法的处理速度。通过对图像的滤波、二值化、边框的识别等等操作,完成对矩形物体的角度测量。本文采用五种方法分别对同一个矩形物体进行旋转角度测量,并比较其处理时间。五种方式分别为,边缘直线角度测量、对角线角度测量、矩形内部标准角度测量、角点边缘角度测量、垂线角度测量。 关键词:图像处理二值化旋转角测量定位识别

目录 第一章矩形物体的识别 (1) 1、图像滤波 (1) 2、图像的边缘检测 (2) 3、图像的二值化处理 (3) 4、图像的区域选择及处理 (4) 第二章旋转角度的测量 (6) 1、边缘直线角度测量 (6) 2、对角线角度测量 (8) 3、矩形内部标准角度测量 (9) 4、角点边缘角度测量 (10) 5、垂线角度测量 (11) 第三章算法时间的比较 (15) 参考文献 (16) 附录一 (17) 1、边缘直线角度测量程序 (17) 2、对角线角度测量程序 (17) 3、矩形内部标准角度测量程序 (18) 4、角点边缘角度测量程序 (19) 5、二值化-垂线角度测量程序 (23) 6、Soble-垂线角度测量程序 (24) 附录二 (26)

数字图像处理教学大纲(2014新版)

数字图像处理 课程编码:3073009223 课程名称:数字图像处理 总学分: 2 总学时:32 (讲课28,实验4) 课程英文名称:Digital Image Processing 先修课程:概率论与数理统计、线性代数、C++程序设计 适用专业:自动化专业等 一、课程性质、地位和任务 数字图像处理课程是自动化专业的专业选修课。本课程着重于培养学生解决智能化检测与控制中应用问题的初步能力,为在计算机视觉、模式识别等领域从事研究与开发打下坚实的理论基础。主要任务是学习数字图像处理的基本概念、基本原理、实现方法和实用技术,并能应用这些基本方法开发数字图像处理系统,为学习图像处理新方法奠定理论基础。 二、教学目标及要求 1.了解图像处理的概念及图像处理系统组成。 2.掌握数字图像处理中的灰度变换和空间滤波的各种方法。 3.了解图像变换,主要是离散和快速傅里叶变换等的原理及性质。 4.理解图像复原与重建技术中空间域和频域滤波的各种方法。 5. 理解解彩色图像的基础概念、模型和处理方法。 6. 了解形态学图像处理技术。 7. 了解图像分割的基本概念和方法。 三、教学内容及安排 第一章:绪论(2学时) 教学目标:了解数字图像处理的基本概念,发展历史,应用领域和研究内容。通过大量的实例讲解数字图像处理的应用领域;了解数字图像处理的基本步骤;了解图像处理系统的组成。 重点难点:数字图像处理基本步骤和图像处理系统的各组成部分构成。 1.1 什么是数字图像处理 1.2 数字图像处理的起源

1.3.1 伽马射线成像 1.3.2 X射线成像 1.3.3 紫外波段成像 1.3.4 可见光及红外波段成像 1.3.5 微波波段成像 1.3.6 无线电波成像 1.3.7 使用其他成像方式的例子 1.4 数字图像处理的基本步骤 1.5 图像处理系统的组成 第二章:数字图像基础(4学时) 教学目标:了解视觉感知要素;了解几种常用的图像获取方法;掌握图像的数字化过程及其图像分辨率之间的关系;掌握像素间的联系的概念;了解数字图像处理中的常用数学工具。 重点难点:要求重点掌握图像数字化过程及图像中像素的联系。 2.1 视觉感知要素(1学时) 2.1.1 人眼的构造 2.1.2 眼镜中图像的形成 2.1.3 亮度适应和辨别 2.2 光和电磁波谱 2.3 图像感知和获取(1学时) 2.3.1 用单个传感器获取图像 2.3.2 用条带传感器获取图像 2.3.3 用传感器阵列获取图像 2.3.4 简单的图像形成模型 2.4 图像取样和量化(1学时) 2.4.1 取样和量化的基本概念 2.4.2 数字图像表示 2.4.3 空间和灰度级分辨率 2.4.4 图像内插 2.5 像素间的一些基本关系(1学时) 2.5.1 相邻像素 2.5.2 临接性、连通性、区域和边界 2.5.3 距离度量 2.6 数字图像处理中所用数学工具的介绍 2.6.1 阵列与矩阵操作

图像处理课程设计报告

图像处理课程设计报告 导语:设计是把一种设想通过合理的规划周密的计划通过各种感觉形式传达出来的过程。以下是XX整理图像处理课程设计报告的资料,欢迎阅读参考。 图像处理课程设计报告1 摘要:图像处理技术从其功能上可以分为两大类:模拟图像处理技术、和数字图像处理技术。数字图像处理技术指的是将图像信号直接转换成为数字信号,并利用计算机进行处理的过程,其主要的特点在于处理的精度高、处理的内容丰富、可以进行复杂、难度较高的处理内容。当其不在于处理的速度比较缓慢。当前图像处理技术主要的是体现在数字处理技术上,本文说阐述的图像处理技术也是以数字图像处理技术为主要介绍对象。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。近年来, 图像处理技术得到了快速发展, 呈现出较为明显的发展趋势, 了解和掌握这些发展趋势对于做好目前的图像处理工作具有前瞻性的指导意义。本文总结了现代图像处理技术的三点发展趋势。 对图像进行处理(或加工、分析)的主要目的有三个方面: (1)提高图像的视感质量,如进行图像的亮度、彩色变换,增强、抑制某些成分,对图像进行几何变换等,以改善图像的质量。(2)提取图像中所包含的某些特征或特殊信息,这些被提

取的特征或信息往往为计算机分析图像提供便利。提取特征或信息的过程是计算机或计算机视觉的预处理。提取的特征可以包括很多方面,如频域特征、灰度或颜色特征、边界特征、区域特征、纹理特征、形状特征、拓扑特征和关系结构等。 (3)图像数据的变换、编码和压缩,以便于图像的存储和传输。不管是 何种目的的图像处理,都需要由计算机和图像专用设备组成的图像处理系统对图像数据进行输入、加工和输出。 数字图像处理主要研究的内容有以下几个方面: 图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅里叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。 图像编码压缩图像编码压缩技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。

中国海洋大学计算机视觉课程大纲(理论课程)-中国海洋大学信息科学与

中国海洋大学计算机视觉课程大纲(理论课程) 英文名称:Computer Vision 【开课单位】信息学院计算机系【课程模块】工作技能 【课程编号】080504301305 【课程类别】选修 【学时数】68 (理论51 实践17 )【学分数】3.5 一、课程描述 (一)教学对象 计算机相关专业学生。 (二)教学目标及修读要求 1、教学目标 了解计算机视觉的应用领域,掌握基本的图像分割、特征检测、聚类及分类算法,理解相机模型以及相机标定方法,学会利用已有相关算法,使用OpenCV进行相关视觉应用的开发。 2、修读要求 计算机视觉属于计算机专业的一门新课,和研究前沿结合的比较紧密,需要学生具有数字图像处理、计算机图形学以及线性代和概率论方面的基础。 (三)先修课程 数字图像处理。 二、教学内容 (一)绪论 1、主要内容:介绍计算机视觉的基本概念,应用领域,发展历史等相关内容。 2、教学要求:了解计算机视觉的应用领域及学习的内容。 (二)第二章图像形成 1、主要内容:几何基元和变换,光度测定学的图像形成,数字摄像机。 2、教学要求:理解图像形成的物理过程,包括相机镜头的物理特性对图像形成过程的影响,掌握3D到2D的投影变换,掌握相机内参和外参的概念。 3、重点、难点:相机内参和外参的标定。 (三)第三章图像处理 1、主要内容:点算子,线性滤波器,其他邻域算子,傅里叶变换,几何变换等。 2、教学要求:掌握数字图像处理课程相关的基本内容,包括空间域的图像处理及频率域的图像处理基本方法。 3、重点、难点:傅里叶变换。 (四)第四章特征检测与匹配 1、主要内容:图像的点与块,图像的边缘,直线。 2、教学要求:理解图像特征的概念,掌握几种特征(点、块、边缘、直线)的检测方法,了解特征匹配的在图像拼接及相机标定等方面的应用。 3、重点、难点:几种特征描述子的生成过程。 (五)第五章图像分割 1、主要内容:活动轮廓,基于区域的分割。 2、教学要求:掌握几种流行的图像分割方法,包括基本的阈值方法,活动轮廓方法,基于聚类的方法。 (六)第六章基于特征的配准 1、主要内容:基于2D和3D特征的配准,姿态估计,几何内参标定。

人脸识别课程设计论文(完美版)

前言 在人类社会的发展进入到21世纪的今天,安全问题已经成为困扰人们日常生活的重要问题之一。社会的发展促进了人的流动性,进而也增加了社会的不稳定性,使得安全方面的需求成为21世纪引起广泛关注的问题。不论是享受各项服务如网上冲浪、还是居家、办公等都涉及到安全,以往这些行为基本上是通过符号密码来进行安全保护,但是随着服务数量的不断增加,密码越来越多以致无法全部记住,而且密码有时也会被他人所窃取,各种密码被破解的概率越来越高,因为通常由于记忆的原因,人们经常会选用自己或亲人的生日、家庭地址、电话号码等作为密码并长期使用,这些很容易被一些不法分子获取。可见在现代社会中,身份识别已经成为人们日常生活中经常遇到的一个基本问题。人们乎时时刻刻都需要鉴别别人的身份和证明自己的身份,以获得对特定资源的使用权或者制权,同时防止这些权限被他人随意的取得。传统的身份识别方法主要基于身份标识物(如证件、卡片)和身份标识知识(如用户名、密码)来识别身份,这在很长一段时期是非常可靠和方便的识别方法,得到了广泛的应用。但是,随着网络、通信、交通等技的飞速发展,人们活动的现实空间和虚拟空间不断扩大,需要身份认证的场合也变得无不在。人们需要携带的身份标识物品越来越多,身份标识知识也变得越来越复杂和冗长在这种情况下,传统身份识别方式的弊端日益彰显。身份标识物品容易被丢失和伪造,份标识知识容易被遗忘、窃取和破解,而身份标识的重要性又使得一旦失去了身份标识会给标识的所有者甚至整个社会带来重大的甚至难以弥补的损失。在美国,每年约有上百万的福利款被人以假冒的身份领取;每年发生的信用卡、ATM、移动电话和冒领支票等成的损失达数百亿美元[2]。面临着这样的状况,人们对身份识别的安全性、可靠性、准确和实用性提出了更高的要求,必须寻求身份识别的新途径。 于是,近年来人类生物特征越来越广泛地用于身份识别,而且生物特征可以更好的进行安全控制,世界各国政府都在大力推进生物识别技术的发展及应用。与原有的人类身分识别技术(如:个人密码、磁卡、智能卡等)相比,基于人类生物特征的识别技术具有安全可靠、特征唯一、不易伪造、不可窃取等优点。人类本身具有很多相对独特的特征,如DNA、指纹、虹膜、语音、人脸等。基于这些相对独特的人类特征,结合计算机技术,发展起众多的基于人类生物特征的人类身份识别技术,如DNA识别技术、指纹识别技术、虹膜识别技术、语音识别技术、人脸识别技术。 人脸识别和其他的生物识别比起来有以下几个优点:1、其他的生物特征识别方法都需要一些人为的行为配合,而人脸识别不需要。2、人脸识别可应用在远距离监控中。3、针一对现在的第一、二代身份证,每个身份证都有人脸的正面照片,也就是人脸库将是最完善的,包括人最多的,我们可以利用这个库来更直观、更方便的核查该人的身份。 4、相对于其他基于生物特征识别技术,人脸识别技术具有特征录入方一便,信息丰富,使用面广等优点,同时人脸识别系统更加直接友好。人脸识别技术作为生物识别技术的

计算机图形学课程设计书

计算机图形学课程设计 书 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

课程设计(论文)任务书 理学院信息与计算科学专业2015-1班 一、课程设计(论文)题目:图像融合的程序设计 二、课程设计(论文)工作: 自2018 年1 月10 日起至2018 年1 月12日止 三、课程设计(论文) 地点: 2-201 四、课程设计(论文)内容要求: 1.本课程设计的目的 (1)熟悉Delphi7的使用,理论与实际应用相结合,养成良好的程序设计技能;(2)了解并掌握图像融合的各种实现方法,具备初步的独立分析和设计能力;(3)初步掌握开发过程中的问题分析,程序设计,代码编写、测试等基本方法;(4)提高综合运用所学的理论知识和方法独立分析和解决问题的能力; (5)在实践中认识、学习计算机图形学相关知识。 2.课程设计的任务及要求 1)基本要求: (1)研究课程设计任务,并进行程序需求分析; (2)对程序进行总体设计,分解系统功能模块,进行任务分配,以实现分工合作;(3)实现各功能模块代码; (4)程序组装,测试、完善系统。 2)创新要求: 在基本要求达到后,可进行创新设计,如改进界面、增加功能或进行代码优化。

3)课程设计论文编写要求 (1)要按照书稿的规格打印誊写课程设计论文 (2)论文包括封面、设计任务书(含评语)、摘要、目录、设计内容、设计小结(3)论文装订按学校的统一要求完成 4)参考文献: (1)David ,《计算机图形学的算法基础》,机械工业出版社 (2)Steve Cunningham,《计算机图形学》,机械工业出版社 (3) 5)课程设计进度安排 内容天数地点 程序总体设计 1 实验室 软件设计及调试 1 实验室 答辩及撰写报告 1 实验室、图书馆 学生签名: 2018年1月12日 摘要 图像融合是图像处理中重要部分,能够协同利用同一场景的多种传感器图像信息,输出一幅更适合于人类视觉感知或计算机进一步处理与分析的融合图像。它可明显的改善单一传感器的不足,提高结果图像的清晰度及信息包含量,有利于更为准确、更为可靠、更为全面地获取目标或场景的信息。图像融合主要应用于军事国防上、遥感方面、医学图像处理、机器人、安全和监控、生物监测等领域。用于较多也较成熟的是红外和可见光的融合,在一副图像上显示多种信息,突出目标。一般情况下,图像融合由

计算机视觉系统及其应用

课程设计 课程名称工业自动化专题 题目名称_计算机视觉系统及其应用学生学院_____自动化________ 专业班级______ 学号 学生姓名____ 指导教师___________ 2013 年 6月 25日

机器视觉系统及其应用 摘要:主要介绍机器视觉系统的概要,简要分析机器视觉的特点、优越性和应用,具体介绍了机器视觉技术在印刷行业、农业、工业、医学中的实际应用,并且分别举例说明。机器视觉的诞生和应用在理论和实际中均具有重要意义。 关键词:机器视觉;标签检测;药物检测;水果品质检测;硬币检测。 1. 机器视觉系统 1.1 机器视觉系统简介 机器视觉系统是指利用机器替代人眼做出各种测量和判断。机器视觉是工程领域和科学领域中的一个非常重要的研究领域,它是一门涉及光学、机械、计算机、模式识别、图像处理、人工智能、信号处理以及光电一体化等多个领域的综合性学科。 机器视觉系统通过图像摄取装置将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号。机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成。 机器视觉系统的优点有:1.非接触测量,对于被检测对象不会产生任何损伤,而且提高了系统能够的可靠性;2.较宽的光谱响应范围,例如使用人眼看不见的红外测量,扩展人眼的视觉范围;3.长时间稳定工作,人类难以长时间对同一对象进行观察,而机器视觉系统则可以长时间地作测量、分析和识别任务。 现在,机器视觉系统在工业、农业、国防、交通、医疗、金融甚至体育、娱乐等等行业都获得了广泛的应用,可以说已经深入到我们的生活、生产和工作的方方面面。 1.2 基本原理 图 1 是机器视觉系统的基本结构,在一定的光照(包括可见光,红外线甚至超声波等各种成象手段)条件下,成象设备(摄象机,图像采集板等)把三维场景的图像采集到计算机内部,形成强度的二维阵列——原始图象;然后,运用图像处理技术对采集到的原始图像进行预处理以得到质量改善了的图像;其次,运用机器视觉技术从图像中提取感兴趣的特征分类整理;,构成对图像的进一步,运用模式识别技术对抽取到的特征进行描述;最后,运用人工智能得到更高层次的抽象描述。完成视觉系统的任务。 图1机器视觉的基本结构

《人工智能》课程教学大纲.doc

《人工智能》课程教学大纲 课程代码:H0404X 课程名称:人工智能 适用专业:计算机科学与技术专业及有关专业 课程性质:本科生专业基础课﹙学位课﹚ 主讲教师:中南大学信息科学与工程学院智能系统与智能软件研究所蔡自兴教授 总学时:40学时﹙课堂讲授36学时,实验教学4学时﹚ 课程学分:2学分 预修课程:离散数学,数据结构 一.教学目的和要求: 通过本课程学习,使学生对人工智能的发展概况、基本原理和应用领域有初步了解,对主要技术及应用有一定掌握,启发学生对人工智能的兴趣,培养知识创新和技术创新能力。 人工智能涉及自主智能系统的设计和分析,与软件系统、物理机器、传感器和驱动器有关,常以机器人或自主飞行器作为例子加以介绍。一个智能系统必须感知它的环境,与其它Agent和人类交互作用,并作用于环境,以完成指定的任务。 人工智能的研究论题包括计算机视觉、规划与行动、多Agent系统、语音识别、自动语言理解、专家系统和机器学习等。这些研究论题的基础是通用和专用的知识表示和推理机制、问题求解和搜索算法,以及计算智能技术等。 此外,人工智能还提供一套工具以解决那些用其它方法难以解决甚至无法解决的问题。这些工具包括启发式搜索和规划算法,知识表示和推理形式,机器学习技术,语音和语言理解方法,计算机视觉和机器人学等。通过学习,学生能够知道什么时候需要某种合适的人工智能方法用于给定的问题,并能够选择适当的实现方法。 二.课程内容简介 人工智能的主要讲授内容如下: 1.叙述人工智能和智能系统的概况,列举出人工智能的研究与应用领域。 2.研究传统人工智能的知识表示方法和搜索推理技术,包括状态空间法、问题归约法谓词逻辑法、语义网络法、盲目搜索、启发式搜索、规则演绎算法和产生式系统等。 3.讨论高级知识推理,涉及非单调推理、时序推理、和各种不确定推理方法。 4.探讨人工智能的新研究领域,初步阐述计算智能的基本知识,包含神经计算、模糊计算、进化计算和人工生命诸内容。 5.比较详细地讨论了人工智能的主要应用,包括专家系统、机器学习、自动规划、Agent、自然语言理解、机器视觉和智能控制等。对于应用内容,根据学时,有选择地进行讲授。 6.评述近年来人工智能的争论,讨论人工智能对人类经济、社会和文化的影响,展望人工智能的发展。 以上内容反映了人工智能的最新进展,理论联系实际,具有很好的针对性。 三.教学内容和学时安排

MATLAB课程设计报告图像处理

一.课程设计相关知识综述...................................................................... 1.1 研究目的及意义 (3) 1.2 数字图像处理研究的内容........................................................... 1.3 MATLAB 软件的介绍.................................................................. 1.3.1 MATLAB 语言的特点......................................................... 1.3.2 MATLAB 图像文件格式.................................................... 1.3.3 MATLAB 图像处理工具箱简介........................................ 1.3.4 MATLAB 中的图像类型.................................................... 1.3.5 MATLAB 的主要应用........................................................ 1.4 函数介绍........................................................................................ 二.课程设计内容和要求........................................................................... 2.1 主要研究内容................................................................................ 2.2 具体要求....................................................................................... 2.3 预期达到的目标........................................................................... 三.设计过程............................................................................................... 3.1 设计方案及步骤............................................................................ 3.2 程序清单及注释........................................................................... 3.3 实验结果........................................................................................ 四.团队情况................................................................................................ 五.总结....................................................................................................... 六.参考文献............................................................................................... 一.课程设计相关知识综述. 1.1研究目的及意义

《数字图像处理》课程教学大纲

《数字图像处理》课程教学大纲 (Digital Image Processing) 课程编号:1223523 课程性质:专业课 适用专业:计算机科学与技术 先修课程:高等数学、线性代数、概率论与数理统计、数据结构、程序设计 后续课程:模式识别 总学分:2.5学分(其中实验学分0.5) 一、教学目的与要求 1.教学目的 数字图像处理是模式识别、计算机视觉、图像通讯、多媒体技术等学科的基础,是一门涉及多领域的交叉学科。通过对本课程的学习,使学生能够较深入地理解数字图像处理的基本概念、基础理论以及解决问题的基本思想方法,掌握基本的处理技术,了解与各个处理技术相关的应用领域。 2.教学要求 根据我院计算机专业的实际情况和教学条件采用讲授实验与学生自学相结合的方法进行教学。教学过程中力求做到重点突出、概念明确、线索清晰,注意适当介绍本学科前沿及当前应用领域中有关的热门问题。 实验是本课程中重要的教学内容,要求学生自己完成规定的实验并认真观察教师的实验演示。 二、课时安排 三、教学内容 1 概论(2学时) (1)教学基本要求

了解:数字图像处理的研究内容,图像处理的发展历史、现状。 掌握:图像处理系统的基本概念、特点和主要内容;数字图像处理系统的硬件组成及其相关应用 (2)教学内容 ①数字图像处理及其特点。(重点) ②数字图像处理的目的和主要内容。 ③数字图像处理系统 ④数字图像处理的应用 2数字图像处理基础(4学时) (1)教学基本要求 了解:图像数字化设备,色度学基础 掌握:图像数字化技术(采样、量化);数字图像的类型和文件格式;数字图像的颜色模型(RGB模型和HIS模型) (2)教学内容 ①图像数字化技术。 ②数字图像类型和文件格式。 ③色度学基础与颜色模型。(重点、难点) 3Matlab图像编程基础(3学时) (1)教学的基本要求 了解:数字图像程序设计的各种方法。 掌握:Matlab中各种图像处理的函数。 (2)教学内容 ①Matlab 概述。 ②Matlab图像的代数运算函数。 ③Matlab 图像处理工具箱函数。(重点) ④Matlab图像程序设计。(难点、重点)

《人工智能导论》教学大纲.

《人工智能导论》教学大纲 大纲说明 课程代码:3235042 总学时:32学时(讲课32学时) 总学分:2学分 课程类别:限制性选修 适用专业:计算机科学与技术,以及有关专业 预修要求:C程序设计语言,数据结构 课程的性质、目的、任务: 人工智能是计算机科学中涉及研究、设计和应用智能机器的一个分支。本课程是计算机科学与技术,以及有关专业重要的专业方向与特色模块课程之一。通过本课程的开设,使学生对人工智能的发展概况、基本原理和应用领域有初步了解,对主要技术及应用有一定掌握,启发学生对人工智能的兴趣,培养知识创新和技术创新能力。 课程教学的基本要求: 人工智能的研究论题包括计算机视觉、规划与行动、多Agent系统、语音识别、自动语言理解、专家系统和机器学习等。这些研究论题的基础是通用和专用的知识表示和推理机制、问题求解和搜索算法,以及计算智能技术等。要求学生掌握这些研究论题的基础知识。 人工智能还提供一套工具以解决那些用其它方法难以解决,甚至无法解决的问题。这些工具包括启发式搜索和规划算法,知识表示和推理形式,机器学习技术,语音和语言理解方法,计算机视觉和机器人学等。要求学生掌握利用其中的重要工具解决给定问题的基本方法。大纲的使用说明: 通过适当调节教学内容和学时安排,减少有关章节学时和增加专家系统这一章的学时,本大纲亦可作为《人工智能与专家系统》的课程教学大纲。 大纲正文 第一章绪论学时:2学时(讲课2学时)了解人类智能与人工智能的含义,人工智能的发展和应用领域;理解人工智能的内涵。 本章讲授要点:在介绍人工智能概念的基础上,使学生了解本课程所涉知识的重要意义,以及人工智能的应用现状和应用前景。

数字图像课程设计 监控视频中道路车流量检测系统设计

山东建筑大学 课程设计说明书 题目:监控视频中道路车流量检测系统设计课程:数字图像处理课程设计 院(部):信息与电气工程学院 专业:电子信息工程 班级:电信 学生姓名: 学号: 指导教师: 完成日期:2013年6月

目录 摘要································································································II 1 设计目的 (1) 2 设计要求 (1) 3 设计内容 (2) 3.1运动车辆检测算法比较 (2) 3.2形态学滤波 (5) 3.3车辆检测 (6) 3.4车辆计数 (9) 3.5软件设计 (9) 总结与致谢 (10) 参考文献 (11) 附录 (12)

摘要 获得实时的交通信息是当前各种检测方式的前提,但是现有的信息采集方式并不能满足交通管理与控制的需求。随着计算机技术的快速发展,基于视频的检测技术在交通中得到了广泛的应用,同其它检测方式相比,它具有检测范围大、设置灵活、安装维护方便、检测参数多等优点。基于图像处理的视频检测方式近年来发展很快,已成为当今智能交通系统的一个研究热点。本论文对视频交通流运动车辆检测的内容进行了深入地研究。结合视频图像详细的介绍了视频检测中的背景更新、阴影去除、车辆分割等关键技术和算法,介绍了视频检测的方法。最后在MATLAB的平台上进行了系统实现设计。实验结果表明,该算法具有一定的可行性,能够快速的将目标参数检测出来关键词:MATLAB;帧间差法;车辆检测

随着经济的发展,人民生活水平的提高,汽车保有量大幅增加,怎样安全高效地对交通进行管理,就显得非常重要.解决这一问题的关键是建立智能交通系统(ITS),其中车辆检测系统是智能交通系统的基础.它为智能控制提供重要的数据来源 作为ITS的基础部分,车辆检测系统在ITS中占有很重要的地位,目前基于视频的检测法是最有前途的一种方法,它是通过图像数字的方法获得交通流量信息,主要有以下优点:(1)能够提供高质量的图像信息,能高效、准确、安全可靠地完成道路交通的监视和控制工作.(2)安装视频摄像机破坏性低、方便、经济.现在我国许多城市已经安装了视频摄像机,用于交通监视和控制.(3)由计算机视觉得到的交通信息便于联网工作,有利于实现道路交通网的监视和控制.(4)随着计算机技术和图像处理技术的发展,满足了系统实时性、安全性和可靠性的要求 2 设计要求 通过对视频流中的车辆进行检测和跟踪,准确地统计每个车道流量、平均车速、平均车道占有率、车队长度、平均车间距等信息为交通规划,交通疏导和车辆动态导航领域提供一系列指导。 设计车辆检测与识别方法和车流量统计方法,实现监控视频中道路车流量检测。通过实验验证检测精度。

计算机视觉在各个方面的应用

计算机视觉在各个方面的应用 摘要 计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,用电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。这里所指的信息指Shannon定义的,可以用来帮助做一个“决定”的信息。因为感知可以看作是从感官信号中提取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。 关键词:图像处理,模式识别,图像理解。 正文 1.1序言 计算机视觉是使用计算机及相关设备对生物视觉的一种模拟。它的主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样。 计算机视觉既是工程领域,也是科学领域中的一个富有挑战性重要研究领域。计算机视觉是一门综合性的学科,它已经吸引了来自各个学科的研究者参加到对它的研究之中。其中包括计算计科学和工程、信号处理、物理学、应用数学和统计学,神经生理学和认知科学等。 所需要的知识储备以及相关课程如下, 图1-1 图1-2

1.1.2 现阶段的形式 视觉是各个应用领域,如制造业、检验、文档分析、医疗诊断,和军事等领域中各种智能/自主系统中不可分割的一部分。由于它的重要性,一些先进国家,例如美国把对计算机视觉的 图1-3计算机视觉与其他领域的关系 研究列为对经济和科学有广泛影响的科学和工程中的重大基本问题,即所谓的重大挑战(grand challenge)。计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。作为一门学科,计算机视觉开始于60年代初,但在计算机视觉的基本研究中的许多重要进展是在80年代取得的。计算机视觉与人类视觉密切相关,对人类视觉有一个正确的认识将对计算机视觉的研究非常有益。为此我们将先介绍人类视觉。 人类正在进入信息时代,计算机将越来越广泛地进入几乎所有领域。一方面是更多未经计算机专业训练的人也需要应用计算机,而另一方面是计算机的功能越来越强,使用方法越来越复杂。这就使人在进行交谈和通讯时的灵活性与目前在使用计算机时所要求的严格和死板之间产生了尖锐的矛盾。人可通过视觉和听觉,语言与外界交换信息,并且可用不同的方式表示相同的含义,而目前的计算机却要求严格按照各种程序语言来编写程序,只有这样计算机才能运行。为使更多的人能使用复杂的计算机,必须改变过去的那种让人来适应计算机,来死记硬背计算机的使用规则的情况。而是反过来让计算机来适应人的习惯和要求,以人所习惯的方式与人进行信息交换,也就是让计算机具有视觉、听觉和说话等能力。这时计算机必须具有逻辑推理和决策的能力。具有上述能力的计算机就是智能计算机。 智能计算机不但使计算机更便于为人们所使用,同时如果用这样的计算机来控制各种自动化装置特别是智能机器人,就可以使这些自动化系统和智能机器人具有适应环境,和自主作出决策的能力。这就可以在各种场合取代人的繁重工作,或代替人到各种危险和恶劣环境中完成任务。 1.1.3 简单原理 计算机视觉就是用各种成象系统代替视觉器官作为输入敏感手段,由计算机来代替大脑完成处理和解释。计算机视觉的最终研究目标就是使计算机能象人那样通过视觉观察和理解世界,具有自主适应环境的能力。要经过长期的努力才能达到的目标。因此,在实现最终目标以前,人们努力的中期目标是建立一种视觉系统,这个系统能依据视觉敏感和反馈的某种程度的智能完成一定的任务。例如,计算机视觉的一个重

数字图像处理课程设计(图像去雾)复习进程

数字图像处理课程设计(图像去雾)

数字图像处理 课设题目:图像去雾 学院:信息与电气工程学院 专业:电子信息工程 班级: 姓名: 学号: 指导教师: 哈尔滨工业大学(威海) 年月日

目录 一. 课程设计任务 (4) 二. 课程设计原理及设计方案 (5) 三. 课程设计的步骤和结果 (7) 四. 课程设计总结 (9) 五. 设计体会 (10) 六. 参考文献 (11)

一. 课程设计任务 由于大气的散射作用,雾天的大气退化图像具有对比度低、景物不清晰的特点,给交通系统及户外视觉系统的应用带来严重的影响。但由于成像系统聚焦模糊、拍摄场景存在相对运动以及雾天等不利环境,使得最终获取的图像往往无法使用。为了解决这一问题,设计图像复原处理软件。 要求完成功能: 1、采用直方图均衡化方法增强雾天模糊图像,并比较增强前后的图像和 直方图; 2、查阅文献,分析雾天图像退化因素,设计一种图像复原方法,对比该 复原图像与原始图像以及直方图均衡化后的图像; 3、设计软件界面

二. 课程设计原理及设计方案 2.1 设计原理 在雾、霾等天气条件下, 大气中悬浮的大量微小水滴、气溶胶的散射作用导致捕获的图像严重降质,随着物体到成像设备的距离增大, 大气粒子的散射作用对成像的影响逐渐增加. 这种影响主要由两个散射过程造成: 1) 物体表面的反射光在到达成像设备的过程中, 由于大气粒子的散射而发生衰减;2) 自然光因大气粒子散射而进入成像设备参与成像. 它们的共同作用造成捕获的图像对比度、饱和度降低, 以及色调偏移, 不仅影响图像的视觉效果, 而且影响图像分析和理解的性能. 在计算机视觉领域中, 常用大气散射模型来描述雾、霾天气条件下场景的成像过程.Narasimhan 等给出雾、霾天气条件下单色大气散射模型(Monochrome atmospheric scat-tering model), 即窄波段摄像机所拍摄的图像灰度值可表示为 (1) 式中, x 为空间坐标, A 表示天 空亮度(Skylight), ρ为场景反照率, d 为场景的景深, β为大气反射系数。图像去雾的过程就是根据获得的有降质的图像,即 I (x )来推算出ρ的过程。 但由于该物理模型包含3 个未知参数, 从本质上讲, 这是一个病态反问题. 在只有单幅图像的条件下,我们可以考虑用假设以及推算的方式使其中的几个量固定,然后求解。 2.2 设计方案 2.2.1 白平衡 WP (White point) 算法, 也称为Max-RGB 算法, 利用R 、G 、B 颜色分量的最大值来估计光照的颜色。我们用天空亮度A 来取代最大值。对于A ,如果直接用图像中最亮的灰度估计的话会受到高亮噪声或白色物体的干扰,因此我们首先对图像颜色分量进行最小滤波,然后选择阀值为0.99,大于此值的认定为天空区域,然后取平均值为我们估计的天空亮度A 。然后方程(1)变为 (2) 2.2.2 估计大气耗散函数 )1()(d e A d e A x I ββρ--+-=d e d e A I β βρ--+-=1/

计算机视觉教学大纲彭绍武

《计算机视觉》教学大纲 课程编号:155336 总学时:48理论课学时:32实验课学时:16 一、课程的性质 本课程为面向软件学院本科生开设的专业方向课,针对本科高年级学生,学习完整的计算机视觉基础理论。要求学生熟悉数字信号与多媒体对象、尤其是图像的处理方法。建议选修、非必要的前置课程可包括:数字媒体处理技术,图形图像智能分析技术,人工智能,机器学习等。 二、课程的目的与教学基本要求 课程的目的 计算机视觉是当前人工智能最重要的研究方向,本课程介绍计算机视觉的基本问题,帮助学生掌握该领域的基本概念,基础知识和基本方法,为从事相关领域研究打开一扇大门。课程还通过经典文献阅读、经典算法与应用的验证,锻炼学生在计算机科学领域的学习与探索能力。教学基本要求 计算机视觉的知识点及涉及相关领域较多,实践与应用性强。教师讲解应该把握住每个专题的核心脉络与目标,讲解清楚代表性模型、方法的原理与思路,并结合典型应用,让学生在了解知识域内的基本问题后,能顺利衔接到相关的实践验证环节。 三、课程适用专业 软件工程相关专业 四、课程教学内容 1.计算机视觉理论基础与框架3学时 a)计算机视觉的基本问题 b)视觉悖论与计算机视觉的难点 c)计算机视觉框架 表达与建模,计算与求解,实现 d)计算机视觉应用 2.视觉中的局部特征6学时 a)特征检测与描述子 b)常见的形状、方向梯度和色彩纹理的特征

ShapeContext,SIFT;简介LSS,SURF,GLOH,HOG,ColorMoments等。 c)实时应用中的快速特征 FAST,BRIEF,OBR d)3D特征简介 e)特征匹配及相关问题 野点去除;距离定义(NNDR);ROC曲线与正确/错误率;RANSAC 3.物体识别简介3学时 a)视觉模型:产生式模型,描述式模型,判别式模型 b)基于匹配的实例识别 c)基于词袋的类别识别 4.几何配准与运动结构6学时 a)立体视觉与几何原理 b)姿态估计(外标定)与摄像机标定(几何参数内标定) c)基于特征序列的运动到结构恢复(SFM) d)光束平差法(BundleAdjuctment) e)稠密运动估计(光流,KLT) f)增强现实应用 5.立体对应与3D重建7学时 a)极线几何 b)稠密与稀疏对应 c)深度计算 d)点云、体与表面重建 6.基于视觉的SLAM 7学时 a)从SFM、PTAM到v-SLAM的演进与对比 b)典型v-SLAM算法的架构分析 c)闭环与全局优化 d)基于卡尔曼滤波的IMU数据融合 e)重建后的3D分割、识别与场景理解问题 五、实践教学内容 1.局部特征检测与匹配4学时 2.手机摄像头标定与AR应用设计4学时 3.基于PCL的点云数据处理4学时 4.基于ORB-SLAM的物体扫描4学时

模式识别课程设计

模式识别课程设计 聚类图像分割 一.图像分割概述 图像分割是一种重要的图像分析技术。在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣。这些部分常称为目标或前景(其他部分称为背景)。它们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析图像中的目标,需要将它们从图像中分离提取出来,在此基础上才有可能进一步对目标进行测量,对图像进行利用。图像分割就是把图像分成各具特性的区域并提取出感兴趣目标的技术和过程。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。近年来,研究人员不断改进原有的图像分割方法并把其它学科的一些新理论和新方法用于图像分割,提出了不少新的分割方法。 图象分割是图象处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图象分割应用在许多方面,例如在汽车车型自动识别系统中,从CCD摄像头获取的图象中除了汽车之外还有许多其他的物体和背景,为了进一步提取汽车特征,辨识车型,图象分割是必须的。因此其应用从小到检查癌细胞、精密零件表面缺陷检测,大到处理卫星拍摄的地形地貌照片等。在所有这些应用领域中,最终结果很大程度上

依赖于图象分割的结果。因此为了对物体进行特征的提取和识别,首先需要把待处理的物体(目标)从背景中划分出来,即图象分割。但是,在一些复杂的问题中,例如金属材料内部结构特征的分割和识别,虽然图象分割方法已有上百种,但是现有的分割技术都不能得到令人满意的结果,原因在于计算机图象处理技术是对人类视觉的模拟,而人类的视觉系统是一种神奇的、高度自动化的生物图象处理系统。目前,人类对于视觉系统生物物理过程的认识还很肤浅,计算机图象处理系统要完全实现人类视觉系统,形成计算机视觉,还有一个很长的过程。因此从原理、应用和应用效果的评估上深入研究图象分割技术,对于提高计算机的视觉能力和理解人类的视觉系统都具有十分重要的意义。 二.常用的图像分割方法 1.基于阈值的分割方法 包括全局阈值、自适应阈值、最佳阈值等等。阈值分割算法的关键是确定阈值,如果能确定一个合适的阈值就可准确地将图像分割开来。阈值确定后,将阈值与像素点的灰度值比较和像素分割可对各像素并行地进行,分割的结果直接给出图像区域。全局阈值是指整幅图像使用同一个阈值做分割处理,适用于背景和前景有明显对比的图像。它是根据整幅图像确定的:T=T(f)。但是这种方法只考虑像素本身的灰度值,一般不考虑空间特征,因而对噪声很敏感。常用的全局阈值选取方法有利用图像灰度直方图的峰谷法、最小误差法、最大类间方差法、最大熵自动阈值法以及其它一些方法。

计算机视觉课程设计报告

计算机视觉课程设计实验报告 1.题目: 图像变形 2.组员:曹英(E03640201) 叶超(E03640124) 李淑珍(E03640104) 3.实验目的:掌握图像几何运算中变形算法 4.实验原理:对两幅图分别进行卷绕、插值,每幅图得到一序列图片,然后 对这些序列图片进行加权求和,得到一序列帧,再将其显示出来,就得到了由一幅图到另一幅图的变形。 5.实验步骤:对一幅图分别选4行4列的16个控制点,在每条边上进行五 等分,每条边形成六个点,加上原来的16个就是36个控制点,这样就把它分成了不规则的25小块,对每小块进行卷绕、插值,本实验我们用的是最近邻插值,目标控制点就是将图片分成标准并且相同大小的25小块的36个点。这样会得到一幅不规则图片,让它作为新的原图进行如前所述一样的处理,控制点都是这样自动产生的:一开始所选每个控制点到相应标准控制点等距离(本实验我们是分成9等分)产生一序列的36个控制点。这样每产生一幅图都对它进行相类似的处理,控制点的产生方法就是上面所说的那样。得到的一序列图片越来越接近原图,最后一幅与原图一样。这样我们就可以得到这样的一序列图片:原图,手工选控制点进行处理后得到的不规则图,循环产生控制点得到的越来越接近原图的9幅图(最后一幅与原图一样)。为了描述的方便,这里我把它编号为1_1到1_11。对目标图进行与原图一样的处理。编号也类似,即2_1到2_11。 最后进行加权求和,第一帧是原图,第二帧是1_10与2_2加权求和,其中1_10的权值是0.9,2_2的权值是0.1,第三帧是1_9与2_3加权求和,其中1_9的权值是0.8,2_3的权值是0.2,……,第十帧是1_2与2_10加权求和,其中1_10的权值是0.1,2_2的权值是0.9,第十一帧是目标图。这样就得到了所要的结果。这里需要说明的是两幅手工选择的控制点最好是那些有代表性的特征点,这样的话结果会更好。

相关主题
文本预览
相关文档 最新文档