当前位置:文档之家› 拟南芥中离子转运蛋白载体构建及烟草转化

拟南芥中离子转运蛋白载体构建及烟草转化

拟南芥中离子转运蛋白载体构建及烟草转化
拟南芥中离子转运蛋白载体构建及烟草转化

对载体蛋白、通道蛋白和受体的深入认识

对载体蛋白、通道蛋白和受体的深入认识载体蛋白和通道蛋白、受体分别体现了细胞膜的两大功能:控制物质进出与进行细胞识别。 1 细胞膜上的转运蛋白———载体蛋白和通道蛋白在细胞膜上广泛存在着负责无机离子和水溶性小分子跨膜运输的膜转运蛋白。膜转运蛋白分为两类:一类是载体蛋白,它既可以介导被动运输,又可以介导逆浓度或者电化学梯度的的主动运输;另一类为通道蛋白,只能介导顺浓度或化学梯度的被动运输(易化扩散)。 载体蛋白相当于结合在细胞膜上的酶,有特异性结合位点,可与底物(溶质)发生暂时的、可逆性的结合和分离,且一种特异性载体只转运一种类型的分子或离子。物质的转运过程类似于酶与底物作用的饱和动力学曲线,既可以被底物类似物竞争性抑制,又可以被痕量的某种成分(抑制剂)非竞争性抑制以及对pH 有依赖性等。因此有人将载体蛋白称为通透酶,与酶不同的是载体蛋白可以改变过程的平衡点,加快物质沿着自由能减少的方向跨膜运输的速率;此外与酶的不同是载体蛋白对转运的溶质不做任何共价修饰。 通道蛋白是一类跨越细胞膜双分子层的蛋白质,它所介导的被动运输不需要溶质分子与其结合,而是横跨膜形成亲水通道,允许大小适宜的分子和带电离子通过。通道蛋白可以是单体蛋白,也可以是多亚基组成的蛋白,它们都是通过疏水的氨基酸链进行重排,形成水性通道。某些通道蛋白在革兰氏阴性细菌的外膜、线粒体或叶绿体的外膜上形非选择性的通道。绝大多数的通道蛋白形成有选择性开关的多次跨膜通道。这些通道可分为两大类:离子通道和水通道。目前发现的通道蛋白已有100 余种。离子通道有以下两个显著的特征。①具有离子选择性。离子通道对被转运的离子的大小和电荷都有高度的选择性,而且转运速度高,可达106个/s,其速率是已知的任何一种载体蛋白的最快速率的1 000 倍以上。驱动带电荷的离子跨膜转运的净驱动力来自溶质的浓度梯度和跨膜电位差的合力。这种净驱动力构成离子跨膜的电化学梯度,这种梯度决定离子跨膜的被动运输的方向。②离子通道是门控的,即离子通道的活性由通道的开或关两种构象所调节,并通过通道开关应答各种信号。多数情况下,离子通道呈关闭状态,只有在膜电位变化、化学信号或压力刺激后,才开启形成跨膜的离子通道。因此离子通道又区分为电压力通道、配体门通道和压力激活通道(图1)。离子通道在神经元与肌细胞神经冲动传递过程中其重要作用。如含羞草的闭叶反应、草履虫的快速转向运动、内耳听觉的感应等都与离子通道有关。 图1 离子通道示意

农杆菌侵染拟南芥花序的转化方法

农杆菌侵染拟南芥花序的转化方法 制备转化用的农杆菌菌液 准备: 1.灭菌试管 400毫升细长烧杯2瓶,离心瓶4-6个(250ml)。 2.试剂:YEP 1200ml(每瓶300ml 共4瓶)+Kan 1;1000,Rif1:500。 1/2MS+2%蔗糖(灭菌115度20分钟),Silwet在-20℃贮存。 3.步骤: 共转化农杆菌:于中午12点接菌于有YEP培养液的试管中10ul:10ml接种。28℃,3000rpm摇过夜,约30小时,次日下午6点将已摇活的菌按(1:400)及750ul菌液转至汉300毫升YEP+K50+Rif中培养28℃,300rpm约14小时,次日上午8点测OD值,用YEP+Rif作为空白对照,当菌液达到OD600为1.5~3.0之内时,可收集菌体于250ml离心瓶(灭菌),4℃,4000g 离心10min 。用10%蔗糖(含0.02%silwet)稀释至OD600 约为0.8-- 1.0左右即,用10%蔗糖作对照。转化时将花在溶液中浸泡50s左右,于弱光下生长。 4.浇水:转化前一天将需要做转化的野生型拟南芥苗子浇水浇透。 (注意:选取上述配好的溶液2ml,充分打碎管底部的菌体,在将混匀的菌体溶入600ml溶液中,混匀后再加入Silwet(100%)120ul终浓度为0.02%)。 2.先将浇透水用于转化的苗子的夹全部剪掉,再用宽胶带把花盆的土封好。3.转化的准备工作:2个400细长烧杯,宽胶带,记号笔,表等。 4.转化过程略,视苗的长势弱 0.8 Pa 3`,长势好的0.8 Pa 5`。 5.标记好,将转化好的苗平放于盒子内,上盖封口膜封好,避光培养24hrs 2天后,将植株立起正常培养,浇水,3天1次。 花序浸泡(flower-dipping)法转化拟南芥

细胞生物学第五至第八章作业答案

第五章物质的跨膜运输 1 物质跨膜运输有哪三种途径?ATP驱动泵可分哪些类型? 答:物质跨膜运输有简单扩散、被动运输和主动运输三种途径。ATP驱动泵可分P型泵、V型质子泵和F型质子泵以及ABC 超家族,其中P型泵包括Na+—K+泵、Ca+泵和P型H+泵。 各种ATP驱动泵的比较: 2.简述钠钾泵的结构特点及其转运机制。 答:Na+—K+泵位于动物细胞的质膜上,由2个α和2个β亚基组成四聚体。Na+—K+泵的转运机制总结如下:在细胞内侧α亚基与Na+相结合促进ATP水解,α亚基上的一个天冬氨酸残基磷酸化引起α亚基构象发生变化,将Na+泵出细胞,同时细胞外的K+与α亚基的另一位点结合,使其失去磷酸化,α亚基的构象再次发生变化,将K+泵入细

胞,完成整个循环。 3、简述葡萄糖载体蛋白的结构特点及其转运机制。 答:葡萄糖载体蛋白,简称为GLUT,是一个蛋白质家族,包括十多种葡糖糖转运蛋白,他们具有高度同源的氨基酸序列,都含有12次跨膜的α螺旋。GLUT中多肽跨膜部分主要由疏水性氨基酸残基组成,但有些α螺旋带有Ser、Thr、Asp和Glu残基,他们的侧链可以同葡萄糖羟基形成氢键。葡萄糖载体蛋白的转运机制为:氨基酸残基为形成载体蛋白内部朝内和朝外的葡萄糖结合位点,从而通过构象改变完成葡萄糖的协助扩散。转运方向取决于葡萄糖的浓度梯度,从高浓度向低浓度顺梯度转运。 4、举例说明协同运输的机制。 答:协同运输是一类靠间接提供能量完成的主动运输方式。物质跨膜运动所需要的能量来自膜两侧离子的电化学浓度梯度,而维持这种电化学势的是钠钾泵或质子泵。根据物质运输方向与离子沿浓度梯度的转移方向,协同运输又可分为:同向协同与反向协同。 ①同向协同指物质运输方向与离子转移方向相同。如人体及动物体小肠细胞对葡萄糖的吸收就是伴随着Na+的进入,细胞内的Na+离子又被钠钾泵泵出细胞外,细胞内始终保持较低的钠离子浓度,形成电化学梯度。 ②反向协同物质跨膜运动的方向与离子转移的方向相反,如动物细胞常通过Na+/H+反向协同运输的方式来转运H+以调节细胞内的PH值,即Na+的进入胞内伴随者H+的排出。选做:5、举例说明受体介导的内吞作用。 答:受体介导内吞作用大致分为四个基本过程∶①配体与膜受体结合形成一个小窝;②小窝逐渐向内凹陷,然后同质膜脱离形成一个被膜小泡;③被膜小泡的外被很快解聚,形成无被小泡,即初级内体;④初级内体与溶酶体融合,吞噬的物质被溶酶体的酶水解。具有两个特点,即:①配体与受体的结合是特异的,具有选择性;②要形成特殊包被的内吞泡。 例如LDL受体蛋白是一个单链的糖蛋白,为单次跨膜蛋白。LDL受体蛋白合成后被运输到细胞质膜,即使没有相应配体的存在,LDL受体蛋白也会在细胞质膜集中浓缩并形成被膜小窝,当血液中有LDL颗粒,可立即与LDL的apoB-100结合形成LDL-受体复合物。一旦LDL与受体结合,就会形成被膜小泡被细胞吞入,接着是网格蛋白解聚,受体回到质膜再利用,而LDL被传送给溶酶体,在溶酶体中蛋白质被降解,胆固醇被释放出来用于质膜的装配,或进入其他代谢途径。 名词:

葡萄糖转运载体测定方法

一.刷状缘膜囊的制备:(方法参照Kessler(1978),Shirazi-Beechey(1991)和Bauer (2001b)修正) 所有操作过程需在冰上或者4℃下进行。将冷冻样品进行称重,并在冷烧杯中用缓冲剂(100mM 甘露醇,2mM HEPES/Tris 缓冲剂,pH7.1)解冻。解冻后,在冷的有盖培养皿中用剪刀和镊子将组织样剪为1cm小块,将小块组织样重放入冷烧杯,然后将组织块悬液振动2次(设定为No.80),每次一分钟。用布氏漏斗过滤振动后溶液,溶液转入250mL量筒,记录滤液体积后转移至400mL烧杯中。将烧杯放置冰上,搅拌溶液。制作多个平行样以备进一步分析,这些处理后样品为匀浆液。已知浓度的氯化镁溶液加入到匀浆液中以达到10mM的终浓度,温和搅拌溶液20分钟,然后进行两种离心:5min,3000*g;30min,30000*g。利用20-G型检测针对剩余的颗粒进行再悬浮,缓冲液为100mM甘露醇+20mM HEPES/Tris,pH7.5。悬浮颗粒在组织研磨机(Potter-Elvehjam; Teflon/glass)中均匀搅拌十次后在30000*g离心30min。最终颗粒用23-G型检测针在500μL缓冲液中(300mM甘露醇,0.1mM硫酸镁,20mM HEPES/Tris,pH7.5)再次悬浮。悬浮颗粒(囊泡)由反复流过27-G型检测针10次的溶液制备均匀,避免出现气泡。将试样等分入冷冻管后-80℃保存。 二.检测 利用BSA(牛血清白蛋白)作为匀浆蛋白浓度和囊泡浓度的标准。麦芽糖酶是刷状缘膜富集度的标记酶,Truner 和Moran(1982)的方法测定麦芽糖酶活,使用25mM磷酸盐缓冲液(pH6.3)和30mM麦芽糖。释放的葡萄糖通过COBAS FaraⅡ(全自动生化仪)(Roche,Montclair,NJ)测定麦芽糖酶活表达为μmol product/min*mg of protein。囊泡中麦芽糖酶活的富集(enrichment)表示为囊泡麦芽糖酶活/匀浆麦芽糖酶活。 37℃下将5μL(50μg of protein)的小囊泡置于预热的微量离心管中,预热的培养基中包含100mM硫氰酸钠或硫氰酸钾、99.8mM甘露醇、20mM HEPES/Tris (pH7.5),再加入200μM葡萄糖(1.0μCi【U-14C】-D-glucose)。加入1mL冰冻终止溶液(150mL氯化钠,250μM根皮苷)3s后葡萄糖吸收被终止。移取0.9mL上述溶液,迅速通过0.45μm圆形纤维素薄膜。整个薄膜用终止溶液(5*1mL)清洗。将薄膜置于20mL 闪烁计数瓶中,瓶中加入12mL scintillation cocktail(Scintisafe Plus 50%LSC Cocktail)。样品通过Quantasmart软件用于放射性测定(闪仪Tri-Carb 2900TR/SL)。在Na+和K+存在的前提下,葡萄糖吸收的测定重复五次。钠依赖性葡萄糖的吸收通过硫氰酸钠孵化值减去硫氰酸钾孵化值得到。 三.免疫印迹

农杆菌的活化培养及介导的遗传转化

农杆菌的活化培养及介导的遗传转化 一、目的要求 通过实验掌握农杆菌的活化与培养技术与农杆菌介导获得目的基因的转化植株。 二、基本原理 农杆菌共培养法最早是由Marton 等(1979 年)以原生质体为受体建立起来的,经过一系列改进后,目前已经成为最常用的转化方法。共培养法是利用Ti 质粒系统,将农杆菌与植物原生质体、悬浮培养细胞、叶盘、睫段等共同培养的一种转化方法。 三、材料及方法 1.含目的基因共整合载体或双元载体的根癌农杆菌。 2.植物幼苗。 (一)细菌培养液直接浸染法 操作︰ (1)无菌受体材料的准备︰叶片、睫段、胚轴、子叶等均可做受体材料,有两种来源。取自无菌试管苗。 取自田间或温室栽培植株︰叶片、睫尖、睫段用蒸馏水冲冼1 遍后,70%乙醇洗45 秒,0.1%升汞消毒6~8 分钟,无菌水冲洗三遍,无菌滤纸吸干水分。 (2)受体材料预培养︰将无菌叶片剪成0.5cm×0.5cm 的小块或用6mm 打孔器凿成圆盘,无菌胚轴、睫切成约0.8~1cm 长的切段,接种在愈伤组织诱导或分化培养基上进行预培养,注意叶片近轴面向下︰预培养2~3 天,材料切口处刚刚开始膨大时即可进行侵染。 (3)农杆菌培养︰从平板上挑取单菌落,接种到20mL 附加相应抗生素的细菌培养液体培养基(pH7.0)中,在恒温摇床上,于27℃, 180r/ min 培养至OD600 为0.6~0.8。 取OD600 为0.6~0.8 的菌液,按1%~2%的比例,转入新配制的无抗生素的细菌培养液体培养基中,可在与上相同的条件下培养6 小时左右,OD600 为0.2~0.5 时即可用于转化;或同时加入100~500μmol/的AS; (4)侵染︰于超净工作台上,将菌液倒入无菌小培养皿中(可根据材料对菌液的敏感情况进行不同倍数的稀释)。从培养瓶中取出预培养过的外植体,放入菌液中,浸泡适当时间(一般1~5 分钟,不同材料处理时间不同)。取出外植体置于无菌滤纸上吸去附着的菌液。 (5)共培养︰将侵染过的外植体接种在愈伤组织诱导或分化培养基上(烟草为MS 十 IAA0.5mg/L + BA2.0mg/L) ,在28℃暗培养条件下共培养2~4 天(光对某些植物的转化有抑制作用,故需暗培养,共培养时间因不同植物而异)。

小分子物质跨膜转运和离子通道的基础

?基础医学? 小分子物质跨膜转运和离子通道的基础 吴 燕 刘志红 关键词 跨膜转运 膜蛋白 小分子物质 离子通道 中图法分类号 Q73 细胞膜脂质双层结构中的疏水中心对大多数极性分子具有屏障作用,这种屏障作用可维持细胞内外液溶质浓度差,从而保持细胞内液溶质浓度和内环境的稳定。此外,细胞在摄取营养物质分泌代谢性产物以及调节细胞内多种离子特异性跨膜转运时,需要有特异性膜蛋白来辅助完成。现已知道介导上述物质转运的膜蛋白可分为两大类:载体蛋白和通道蛋白,载体蛋白具有可携带特异性分子穿越细胞膜的移动成分;通道蛋白可形成一狭窄亲水孔,使无机离子被动转运,这两类膜蛋白在小分子物质跨膜转运中起着非常重要的作用。 1 膜转运的基本原理〔1〕 1.1 细胞膜脂质双层结构对离子具有高度不通透性 如有足够长时间,任何分子均可顺浓度梯度穿透无蛋白成分脂质双层,其速度取决于脂溶性程度与分子大小。脂溶性越大(即疏水性或非极性强),则扩散速度越快,小的非极性分子,如O2(分子量32)和CO2 (分子量44)易溶于脂质双层,所以能很快扩散穿过脂质双层。不带电荷的极性分子如果分子足够小也很易穿透脂质双层,水(分子量18),乙烷(分子量46)和尿素(分子量60)穿透速度很快,甘油(分子量92)次之,而葡萄糖几乎不能穿越。 相比而言,脂质双层对带电分子(离子)无论大小均高度不通透,电荷及该分子高度亲水性阻止其进入脂质双层的疏水相,所以合成的脂质双层对水的穿透性可比Na+或K+强109倍。 1.2 两类主要的膜转运蛋白——载体蛋白和通道蛋白 和合成的脂质双层一样,非极性分子可通过简单的扩散方式穿透细胞膜,但细胞膜还必须能对多种极性分子通透,如离子、糖、氨基酸、核酸和细胞代谢产物,这些物质通过合成脂质双层速度很慢,特殊膜蛋白成分负责转运这些溶质,这些膜蛋白即膜转运蛋白,它们以不同形式出现于多种生物膜上,特异性转运一种分子或一类分子(图1)。 膜转运蛋白有两种主要类型:载体蛋白和通道蛋白,载体蛋白可与特异性溶质结合,再经过一系列变化转运结合溶质穿过细胞膜;而通道蛋白无须结合溶质,它们集聚成贯穿脂质双层的亲水孔,当这些孔打开时,特异性溶质分子便通过孔穿过细胞膜,所以通道蛋白介导的转运速度远大于载体蛋白。 1.3 主动转运是由载体蛋白介导的一个需能过程 所有通道蛋白和许多载体蛋白可使溶质被动穿膜转运(顺浓度递度),这一过程称为被动转运(或易化扩散),如果被转运分子不带电荷,那么仅由膜两侧的浓度差(其浓度梯度)驱动和决定转运方向;如果溶质带电荷,则由其浓度梯度和膜两侧的电压差影响其转运(电化学梯度),实际上几乎所有的胞浆膜两侧均存在电压差(电压梯度),细胞内相对于细胞外为负值,这种电压差有利于带正电荷离子进入细胞,排斥带负电荷离子进入细胞。 南京军区南京总医院解放军肾脏病研究所 (南京,210002)

载体蛋白和通道蛋白的区别

载体蛋白和通道蛋白的区别 2003年诺贝尔化学奖授予了美国科学家阿格雷和麦金农,他们因研究离子通道而获奖;不仅如此,人教版 必修三《稳态与环 境》在 18页讲述静息电位和动作电位的离子基础时也提到:静息时,由于膜主要对 K+有通透 性,造成K+外流,这是静息电位产生和维持的主要原因;受到刺激时,细胞膜对 Na+的通透性增加,Na+内流, 使兴奋部位膜内侧阳离子浓度高于外侧,表现为内正外负。上面讲的 K+外流与Na+内流其实都是通过膜上的离子 通道完成的。同样是必修一教材,在 物质跨膜运输的方式”一节中,提到协助扩散和主动运输都要依赖膜上的载体 蛋白来完成。通道蛋白和载体蛋白都与相关物质的跨膜运输有关,那么两者到底有什么区别呢?要回答这个问题, 我们先从膜转运蛋 白谈起。 在细胞膜上广泛存在着膜转运蛋白( membrane trans port proteins ),负责无机离子和水溶性小分子的跨膜 运输。膜转运蛋白分为两类:一类称为载体蛋白( carrier proteis ),它既可以介导被动运输,又可以介导逆浓度 或者电化学梯度的的主动运输;另一类为通道蛋白( channel proteins ),只能介导顺浓度或化学梯度的被动运输 (协助扩散)。 1 载体蛋白 载体蛋白是几乎所有类型的生物膜上普遍存在的多次跨膜蛋白分子。每种载体蛋白能与特定的溶质分子结 合,通过一系列构象 的改变介导溶质分子跨膜转运,相关模型见下图: 图1示载体蛋白通过构想改变介导溶质(葡萄糖)被动运输的假想模 该图中膜上的载体蛋白以两种构象状态存在:状态 A 时溶质结合位点在膜外侧暴露;状态 B 时,同样的溶 质结合位点在膜内侧暴露。该模型认为,两种构象状态的改变是随机发生的。假如溶质浓度在膜的外侧高,则状 态 i 状态B 的转变比 状态B^状态A 的转变更常发生,因此溶质顺浓度梯度进入细胞。换句话说,物质究竟向 哪个方向运输,取决于该物质在膜两侧的浓度 差。除了被动运输,载体蛋白还介导逆浓度梯度的主动运输。由于 运输过程向着被运输物质的自由能增加的方向进行,所以该过程不 能自发进行,需要提供能量才能完成。一些离 子(如Na+、K+等)在细胞内外存在着显著的差异,并且细胞能够维持这种恒定的离子 梯度差,正是相关载体蛋 白(如Na+,K+ — ATP 酶等)介导的主动运输的结果。 载体蛋白相当于结合在细胞膜上的酶,有特异性结合位点,可与底物(溶质)发生暂时的、可逆性的结合和 分离,且一种特异性载体只转运一种类型的分子或离子;转运过程类似于酶与底物作用的饱和动力学曲线;既可 以被底物类似物竞争性抑制,又可以被痕量的某种成分(抑制剂) 非竞争性抑制以及对 PH 的依赖性等,因此有人 载体蛋白质介导 的被动运《 溶质结合位点 浓度梯度 O 状态AV A 状态B 険弱卜髓 质膜内M 3

农杆菌介导转基因的原理

农杆菌介导转基因的原理? 转基因技术的飞速发展为生物定向改良和分子育种提供了一种较佳的方法,并使其成为基因工程和育种的最有效途径,目前应用较广泛的转基因技术有农杆菌介导法、花粉通道法、显微注射法、基因枪法、离子束介导法等等,其中农杆菌介导法以其费用低、拷贝数低、重复性好、基因沉默现象少、转育周期短及能转化较大片段等独特优点而备受科学工作者的青睐。农杆菌介导法主要以植物的分生组织和生殖器官作为外源基因导入的受体,通过真空渗透法、浸蘸法及注射法等方法使农杆菌与受体材料接触,以完成可遗传细胞的转化,然后利用组织培养的方法培育出转基因植株,并通过抗生素筛选和分子检测鉴定转基因植株后代。 农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物的受伤部位,并诱导产生冠瘿瘤或发状根。根癌农杆菌和发根农杆菌中细胞中分别含有Ti质粒和Ri质粒,其上有一段T-DNA,农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中。因此,农杆菌是一种天然的植物遗传转化体系。人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,然后通过细胞和组织培养技术,再生出转基因植株。 农杆菌转化的详细机理已有大量综述, 并介绍新进展. 野生型根癌农杆菌能够将自身的一段DNA转入植物细胞. 因为转入的这一段DNA含有一些激素合成基因, 因而导致转化细胞自身激素的不平衡从而产生冠瘿瘤. 这些致瘤菌株都含有一个约200 kb的环状质粒, 被称为Ti(tumor inducing)质粒, 包括毒性区(Vir 区)、接合转移区(Con区)、复制起始区(Ori区)和T-DNA区4部分. 其中与冠瘿瘤生成有关的是Vir区和T-DNA区. 前者大小为30 kb, 分virA~J等至少10个操纵子, 决定了T-DNA的加工和转移过程. T-DNA可以将携带的任何基因整合到植物基因组中, 但这些基因本身与T-DNA的转移与整合无关, 仅左右两端各25 bp的同向重复序列为其加工所必需, 其中14 bp是完全保守的, 分10和4 bp不连续的两组. 两边界中以右边界更为重要. VirA作为受体蛋白接受损伤植物细胞分泌物的诱导, 自身磷酸化后进一步磷酸化激活VirG蛋白; 后者是一种DNA 转录活化因子, 被激活后可以特异性结合到其他vir基因启动子区上游的一个叫vir框(vir box)的序列, 启动这些基因的转录. 其中, virD基因产物对T-DNA进行剪切, 产生T-DNA单链. 然后以类似于细菌接合转移过程的方式将T-DNA与VirD2组成的复合物转入植物细胞], 在那里与许多VirE2蛋白分子(为DNA单链结合蛋白)相结合, 形成T链复合物(T-complex). 在此过程中VirE1作为VirE2的一个特殊的分子伴侣具有协助VirE2转运和阻止它与T-DNA链结合的功能. 实验表明, 转基因植物产生的VirE2蛋白分子也能在植物细胞内与VirD2-T-DNA形成T链复合物. 之后, 这一复合物在VirD2和VirE2核定位信号(NLS)引导下以VirD2为先导被转运进入细胞核. 转入细胞核的T-DNA以单或多拷贝的形式随机整合到植物染色体上. 研究表明T-DNA优先整合到转录活跃区, 而且在T-DNA的同源区与DNA的高度重复区T-DNA的整合频率也比较高. 整合进植物基因组的T-DNA也有一定程度的缺失、重复、填充和超界等现象发生, 例如在用真空渗透法转化的拟南芥中有66%出现超界现象, 甚至有整个Ti质粒整合进植物基因组的报道, T-DNA超界转移现象的机理尚不完全清楚, 可能与其左边界周边序列有关. 现在, 对农杆菌感染过程中其本身因子的转录与调控已研究得相当深入, 但

氨基酸转运载体的研究

氨基酸转运载体的研究 摘要:氨基酸转运载体是介导氨基酸跨膜转运的膜蛋白,在氨基酸营养机体细胞和神经调节过程中起着重要作用;而且,其功能异常会导致严重的氨基酸吸收和代谢障碍性疾病,也具有重要的病理学意义。本文就近年来关于中性氨基酸、酸性氨基酸和碱性氨基酸转运载体家族成员及其组织分布、分子生物学特征、生理功能和病理学意义等研究进展进行了综述。 关键词:氨基酸转运载体;中性氨基酸;酸性氨基酸;碱性氨基酸 早在20世纪60年代,人们就开始通过制备膜泡和培养艾氏(Ehrlich)腹水瘤细胞、红细胞等手段陆续发现了A型、L型和β型等多种氨基酸转运载体[1]。虽然大多数氨基酸转运系统尚未在分子水平上阐明,但是通过克隆编码特定转运载体蛋白的cDNA,极大地加深了人们对氨基酸转运载体生理功能和病理学意义的了解。研究表明,氨基酸转运载体既是氨基酸作为营养素从机体胞外进入胞内的通道,也是氨基酸进出胞内完成神经细胞兴奋、抑制等重要细胞功能的通道。氨基酸转运载体也与胱氨酸尿症、范科尼(Fanconi)综合症、哈氏遗传性疾病(Hartnupdisorder)和家族性肾原性亚甘氨酸尿症等氨基酸吸收障碍病密切相关[2,3]。cDNA克隆技术是研究和认识氨基酸转运系统的有效手段,最初用于研究哺乳动物Na+依赖性高亲和性谷氨酸转运系统,即X-AG型酸性氨基酸转运载体[4],并基于与谷氨酸转运蛋白序列相似性,发现了转运丙氨酸、丝氨酸和半胱氨酸的Na+依赖性转运蛋白,即ASC型中性氨基酸转运载体[5]。最终,发现了中性和酸性氨基酸转运载体家族。迄今,已经形成了庞大的中性、酸性和碱性氨基酸转运载体家族。以下就各转运载体系统的研究进展做一综述 1 氨基酸转运载体系统分类 氨基酸转运载体系统一般以其底物分为中性酸性和碱性氨基酸转运载体系统,或者以对Na+的依赖性分为Na+依赖性和Na+非依赖性转运系统(见表1)[3,6]。Na+依赖性转运系统利用质膜上以Na+电化学势梯度形式储存的自由能逆浓度梯度从胞外转运氨基酸底物进入胞内,因此,这些转运载体具有强大的动力从胞外转运氨基酸至胞内[3]。Na+依赖性氨基酸转运系统包括A型、A

农杆菌介导转化法的概述

农杆菌介导转化法的概 述 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

学年第学期 2014级硕士生生物化学期末论文任课老师: 开课学院: 课程名称: 学院: 专业: 学号: 姓名: 2015年6月20日

农杆菌介导转化法的概述 摘要:自从1983年转基因植物诞生以来,植物基因工程成为发展最快、应用潜力最大的生物技术领域之一。植物转基因技术是指把从动物、植物或微生物中分离到的目的基因,通过各种方法转移到植物的基因组中,使之稳定遗传并赋予植物新的农艺性状,如抗虫、抗病、抗逆、高产、优质等。[1]? 目前,应用于植物转基因较多的方法有基因枪轰击法和农杆菌介导法。由于基因枪轰击的随机性,容易出现突变、丢失和引起基因沉默等不利于外源基因在宿主植物的稳定表达的缺点,而农杆菌介导法是一种天然的植物遗传转化系统,外源基因在转基因植物中的拷贝数低、遗传稳定,是最常用的转基因技术[2]。农杆菌介导法起初只被用于双子叶植物中,近年来,农杆菌介导转化法在一些单子 叶植物(尤其是水稻)中也得到了广泛应用。本文对农杆菌介导转化法进行综述。 关键词:农杆菌转化方法转化效率 1?关于农杆菌 农杆菌[3-5]是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性的感染大多数双子叶植物的受伤部位,并诱导产生冠瘿瘤或发状根。与植物基因转化有关的有根瘤农杆菌和发根农杆菌这两种类型。 1.1??根癌农杆菌

依据Ti质粒诱导的植物细胞产生的冠瘿碱的种类不同,根癌农杆菌可分为4种类型:章鱼碱型(Octopine)、胭脂碱型(Nopaline)、农杆碱型(Agropine)和琥珀碱型(Succinamopine)。? 原始的Ti质粒根据其功能的不同可分为4个区: —DNA?region):不同来源的菌株,T-DNA的长度在12~24?kb,它是在农杆菌侵染细胞时,从Ti质粒上切割下来转移到植物基因组中的一段DNA,其携带的基因与肿瘤的形成有关,但与T-DNA本身的转移与整合无关.T-DNA上最重要的是T-DNA区两端的边界各为25?bp的重复序列.其中14?bp是完全保守的,分10?bp(CAGGAATATAT)和4?bp(GTAA)不连续的2组.左右2个边界(LB和RB)是T—DNA转移所必需的,只要其存在,T-DNA可以将携带的任何基因转移并整合到植物基因组中,转移的方向是从右向左,T-DNA的右边界在T-DNA的整合中对于靶DNA位点的识别具有重要作用?,因此,尤以右边界更为重要。 位于T-DNA以外的1个30-40kb的区域内,该区段编码的基因虽然并不整合进植物基因组中,但对T-DNA的转移和整合非常重要。这些基因也称为Ti质粒编码毒性基因(vir)。目前,对章鱼碱型农杆菌Ti质粒 pTi15955和胭脂碱型农杆菌Ti质粒pTiC58的vir区进行了全序列分析,在章鱼碱型Ti质粒的vir区发现了8个操纵子,分别为virA-vjrH,共包括23个基因(virA,virB1-virB11,virC1,virC2,virD1-virD4,virE1,virE2,virF,virG,virH).而胭脂碱型Ti质粒的vir 区不含vjrF和virH操纵子,它含有另一个基因tzs?,也有学者认为有大约35个vir基因成簇排布于vir区。

(便宜+排版)通道蛋白和载体蛋白的异同

通道蛋白和载体蛋白的区别 1 载体蛋白 载体蛋白是几乎所有类型的生物膜上普遍存在的多次跨膜蛋白分子。每种载体蛋白能与特定的溶质分子结合,通过一系列构象的改变介导溶质分子跨膜转运,相关模型见下图: 该图中膜上的载体蛋白以两种构象状态存在:状态A时溶质结合位点在膜外侧暴露;状态B时,同样的溶质结合位点在膜内侧暴露。该模型认为,两种构象状态的改变是随机发生的。假如溶质浓度在膜的外侧高,则状态A→状态B的转变比状态B→状态A的转变更常发生,因此溶质顺浓度梯度进入细胞。换句话说,物质究竟向哪个方向运输,取决于该物质在膜两侧的浓度差。除了被动运输,载体蛋白还介导逆浓度梯度的主动运输。由于运输过程向着被运输物质的自由能增加的方向进行,所以该过程不能自发进行,需要提供能量才能完成。一些离子(如Na+、K+等)在细胞内外存在着显著的差异,并且细胞能够维持这种恒定的离子梯度差,正是相关载体蛋白(如Na+,K+—ATP酶等)介导的主动运输的结果。 载体蛋白相当于结合在细胞膜上的酶,有特异性结合位点,可与底物(溶质)发生暂时的、可逆性的结合和分离,且一种特异性载体只转运一种类型的分子或离子;转运过程类似于酶与底物作用的饱和动力学曲线;既可以被底物类似物竞争性抑制,又可以被痕量的某种成分(抑制剂)非竞争性抑制以及对PH的依赖性等,因此有人将载体蛋白称为通透酶(permease)。与酶不同的是载体蛋白可以改变过程的平衡点,加快物质沿着自由能减少的方向跨膜运输的速率;此外与酶的不同是载体蛋白对转运的溶质不做任何共价修饰[1]。 2 通道蛋白 通道蛋白是一类跨越细胞膜双分子层的蛋白质,它所介导的被动运输不需要溶质分子 与其结合,而是横跨膜形成亲水通道,允许大小适宜的分子和带电离子通过。通道蛋白可以是单体蛋白,也可以是多亚基组成的蛋白,他们都是通过疏水的氨基酸链进行重排,形成水性通道。某些通道蛋白在革兰氏阴性细菌的外膜、线粒体或叶绿体的外膜上形非选择性的通道。绝大多数的通道蛋白形成有选择性开关的多次跨膜通道。这些通道可分为两大类:离子通道和水通道。

农杆菌介导转化和再生的杨树

农杆菌介导法转基因杨树 摘要: 杨树品种已发展为一种植物转化和再生系统。叶植,从稳定发芽培养的一个杨树杂交NC - 5339(银白杨标本),被共培养用于农杆菌遗传转化关于一个烟草的看护培养。致瘤的和无防备的农杆菌株隐藏包含一个双元载体,其中包含两个新霉素磷酸转移酶II(NPT II')和细菌5莽草酸3-磷酸合酶(EPSP)(AROA)嵌合基因融合。没有开发芽,叶外植体时,双元缴械拉力的根癌农杆菌菌株共培养。然而,转化的植物,没有野生型的T-DNA获得使用农杆菌株原癌基因的二进制。NPT II '酶的活性检测,Southern印迹法分析和免疫学检测证实了遗传转化成功细菌EPSP合酶Western印迹。这是首次报道成功收回转化植株森林树,也是第一个记录的插入和重要农艺性状的外源基因的表达成木本植物物种。 关键词:白杨;转化;农杆菌 前言 基因工程树种的能力将是特别有用的遗传改良,如大型成熟的植物并长期有性世代倍(Nelson and Haissig 1984; Sederoff and Ledig 1985)。森林树种的应用重组DNA技术的一个先决条件是发展的基因转移系统。方法,例如显微注射(Crossway et al.1986)和直接DNA摄入(Paszkowski et al. 1985; Fromm et al. 1986) 已被用于外源基因引入到草本作物物种,但是,最有效的基因转移的方法,利用自然感染冠瘿病的机制造成的有机体,农杆菌(Bevan et al. 1983 ; Fraley et al. 1983 ; Herrera-Estralla, 1983). 。根癌农杆菌的自然感染周期期间,细菌的T-DNA 整合到宿主植物的染色体,从而导致肿瘤对植物的生产(奇尔顿等人,1980)。可以删除和替换而不影响根癌农杆菌的T-DNA转移到植物(DeGreve等,1982)的能力,由异源基因的肿瘤诱导基因。这些修改后的根癌农杆菌菌株的原生质体,悬浮细胞,外植体组织的共培养,可导致转化植物缺乏致癌基因性状的隔离。因此,我们着手开发一个混合型杨树无性系,银白杨x grandidentata的(NC - 5339 )作为载体的农杆菌转化体系。 有许多特征能使杨树NC-5339得到理想的转化研究首先,杨树是一个重要的全球森林树种。这是一个快速增长的落叶阔叶树,栽培主要用于纸浆生产。对

农杆菌转化法原理

农杆菌转化法原理 This manuscript was revised on November 28, 2020

农杆菌转化法原理: 农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物的受伤部位(受伤处的细胞会分泌大量酚类化合物,从而使农杆菌移向这些细胞),并诱导产生冠瘿瘤或发状根。 根癌农杆菌和发根农杆菌中细胞中分别含有Ti质粒和Ri质粒,其上有一段T-DNA,农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中,并且可以通过减速分裂稳定的遗传给后代,这一特性成为农杆菌介导法植物转基因的理论基础。 人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,然后通过细胞和组织培养技术,再生出转基因植株。农杆菌介导法起初只被用于双子叶植物中,近年来,农杆菌介导转化在一些单子叶植物(尤其是水稻)中也得到了广泛应用。 农杆菌转化植物细胞涉及一系列复杂的反应,主要包括:①受伤的植物细胞为修复创伤部位,释放一些糖类、酚类等信号分子。②在信号分子的诱导下,农杆菌向受伤组织集中,并吸附在细胞表面。③转移DNA上的毒粒基因被激活并表达,同时形成转移DNA的中间体。④转移DNA进入植物细胞,并整合到植物细胞基因组中。 方法:(根据不同受体环境基因要求而不同) 1.农杆菌准备 2.外植体的准备(愈伤组织、悬浮细胞系、幼嫩茎段或叶片); 3.用 MS-AS液体培养基稀释原菌液15倍(1.5ml / 20ml)或离心后稀释3倍; 4.外植体与菌液共培养20 分钟; 5.放置在带滤纸的培养皿上(注意充分吸干多余的菌液); 6.将外植体接种到MS-AS固体诱导培养基,培养2-3天 ; 7.移至含卡那霉素(Kan)300mg/L和羧苄青霉素(Cb 300mg/L)的固体筛选培养基上进行Kan抗性愈伤组织的筛选; 8.隔20天,进行第二次筛选; 9.抗性愈伤组织在固体筛选培养基上分化成苗; 10 在生根培养基上生根,获得完整的再分化植株。

水通道蛋白的发现及对人体的作用

水通道蛋白的发现及对人体的作用 刘彦成 (渭南师范学院环境与生命科学系陕西渭南 714000)摘要:水通道蛋白(aquaporin,AQP) 是一种对水专一的通道蛋白。具有介导水的跨膜转运和调节体内水代谢平衡的功能。水通道蛋白调节失控与水平衡紊乱等一系列疾病密切相关。 关键词:细胞膜;水通道蛋白(AQP);跨膜转运;疾病;调节 Abstract:The pass of water protein (aquaporin, AQP) is one kind of adding water single-minded channel protein.Has lies between leads the water the cross membrane transportation and the adjustment body domestic waters metabolism balance function.Pass of water protein adjustment out of control and level balance disorder and so on a series of disease close correlation. Key word:Cell membrane pass of water protein (AQP) cross membrane transportation disease adjusts 1 水通道蛋白的发现 1.1 细胞膜的运输方式 细胞是构成生物的基本单位,细胞与细胞之间则是通过细胞膜来沟通和实现基本的生命活动。细胞膜的主要成分为磷脂和蛋白质,其结构为磷脂双分子层,磷脂双分子层上有糖蛋白,糖蛋白所在一侧为细胞外侧。物质跨膜运输可分为自 图1 细胞膜的立体结构 由扩散(不需能量、载体),协助扩散(不需要能量、需载体),主动运输(要能量、需载体)三种。还有一些大分子物质是通过胞吞、胞吐方式通过细胞膜,它们需要能量、不要载体。另外还有一种很主要的方式就是通道蛋白。 1.2 生物膜水通道的发现【1】 长期以来对于水的运输方式研究者普遍认为主要有两种:即简单的扩散方式和借助离子通道通过磷脂双分子层。 近些年研究者发现某些细胞在低渗溶液中对水的通透性很高, 很难用简单扩散来解释。如将红细胞移入低渗溶液后,很快吸水膨胀而溶血,而水生动物的

农杆菌介导的基因瞬时表达技术及其应用

龙源期刊网 https://www.doczj.com/doc/b616001276.html, 农杆菌介导的基因瞬时表达技术及其应用 作者:宋建刘仲齐 来源:《天津农业科学》2008年第01期 摘要:主要介绍了农杆菌介导的基因瞬时表达方法的原理、技术、影响因素及其在外源基因表达分析、启动子分析、基因沉默及防卫反应等方面的应用。 关键词:农杆菌;植物;基因瞬时表达 中图分类号:Q789文献标识码:A文章编号:1006—6500(2008)01—0020—03 把外源基因导入受体植物内,是研究基因功能和获得遗传修饰有机体的主要手段。农杆菌介导法是目前最常用的遗传转化方法,当农杆菌感染植物受伤组织后,质粒上的目标基因可以进入植物细胞内并整合到植物染色体中,这种转化细胞经过诱导分化,再生成为转基因植株。通常大多数植物的遗传转化和再生效率低下,费时且费用昂贵。即使对于转化程序大大简化的植物,例如拟南芥,仍然需要花费数月的时间来产生适合分析的转基因植株。农杆菌介导的瞬时表达提供了一种快速分析基因型功能的方法,该方法是Rossi等在1993年创建的。他们将带有重组质粒的农杆菌,经诱导后通过抽真空渗透入植物叶片进而渗透入植物细胞,通过目的基因瞬时表达来检测植物中农杆菌介导的T-DNA转移的效率。随后人们又采用针管注射活体植株叶片,来进行农杆菌介导的基因瞬时表达检测。近几年该项技术不断完善、发展,已被广泛用于外源基因表达分析、无毒基因与抗性基因的相互作用、基因沉默、启动子分析等许多植物分子生物学领域。 1主要原理 农杆菌介导的瞬时表达是将目的基因插入共整合载体或双元载体,转化根癌农杆菌,后者经酚类化合物诱导处理后,通过真空渗透或针管注射入植物叶片组织中,农杆菌在叶片内与植物细胞紧密接触。诱导处理在转录水平激活Vir区基因,真空渗透或注射使得农杆菌与植株叶片细胞接触,从而实现了T-DNA转移进入植物细胞核。大部分T-DNA并未整合入植物基因组而是暂时存在于核内并在植物细胞转录、翻译成分的协助下瞬时表达T-DNA基因,通常在数小时后即可检测到外源基因的表达,并在1~2d内达到最高值。而少量整合进植物染色体的 T-DNA在瞬时表达中不起作用或极为微弱。

载体蛋白和通道蛋白的区别

载体蛋白与通道蛋白的区别 2003年诺贝尔化学奖授予了美国科学家阿格雷与麦金农,她们因研究离子通道而获奖;不仅如此,人教版必修三《稳态与环境》在18页讲述静息电位与动作电位的离子基础时也提到:静息时,由于膜主要对K+有通透性,造成K+外流,这就是静息电位产生与维持的主要原因;受到刺激时,细胞膜对Na+的通透性增加,Na+内流,使兴奋部位膜 内侧阳离子浓度高于外侧,表现为内正外负。上面讲的K+外流与Na+内流其实都就是通过膜上的离子通道完成的。同样就是必修一教材,在“物质跨膜运输的方式”一节中,提到协助扩散与主动运输都要依赖膜上的载体蛋白来完成。通道蛋白与载体蛋白都与相关物质的跨膜运输有关,那么两者到底有什么区别呢?要回答这个问题,我们先从膜转 运蛋白谈起。 在细胞膜上广泛存在着膜转运蛋白(membrane transport proteins),负责无机离子与水溶性小分子的跨膜运输。膜转运蛋白分为两类:一类称为载体蛋白(carrier proteis),它既可以介导被动运输,又可以介导逆浓度或者电化学梯度的的主动运输;另一类为通道蛋白(channel proteins),只能介导顺浓度或化学梯度的被动运输(协助扩散)。 1 载体蛋白 载体蛋白就是几乎所有类型的生物膜上普遍存在的多次跨膜蛋白分子。每种载体蛋白能与特定的溶质分子结合, 通过一系列构象的改变介导溶质分子跨膜转运,相关模型见下图: 图1 示载体蛋白通过构想改变介导溶质(葡萄糖)被动运输的假想模 该图中膜上的载体蛋白以两种构象状态存在:状态A时溶质结合位点在膜外侧暴露;状态B时,同样的溶质结合位点在膜内侧暴露。该模型认为,两种构象状态的改变就是随机发生的。假如溶质浓度在膜的外侧高,则状态A→状态B的转变比状态B→状态A的转变更常发生,因此溶质顺浓度梯度进入细胞。换句话说,物质究竟向哪个方向运输,取决于该物质在膜两侧的浓度差。除了被动运输,载体蛋白还介导逆浓度梯度的主动运输。由于运输过程向着被运输物质的自由能增加的方向进行,所以该过程不能自发进行,需要提供能量才能完成。一些离子(如Na+、K+等)在细胞内外存在着显著的差异,并且细胞能够维持这种恒定的离子梯度差,正就是相关载体蛋白(如Na+,K+—ATP酶等)介导的主动运输的结果。 载体蛋白相当于结合在细胞膜上的酶,有特异性结合位点,可与底物(溶质)发生暂时的、可逆性的结合与分离,且一种特异性载体只转运一种类型的分子或离子;转运过程类似于酶与底物作用的饱与动力学曲线;既可以被底物 类似物竞争性抑制,又可以被痕量的某种成分(抑制剂)非竞争性抑制以及对PH的依赖性等,因此有人将载体蛋白称为通透酶(permease)。与酶不同的就是载体蛋白可以改变过程的平衡点,加快物质沿着自由能减少的方向跨膜运输的速率;此外与酶的不同就是载体蛋白对转运的溶质不做任何共价修饰[1]。

农杆菌转化法原理

农杆菌转化法原理: 农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物的受伤部位(受伤处的细胞会分泌大量酚类化合物,从而使农杆菌移向这些细胞),并诱导产生冠瘿瘤或发状根。 根癌农杆菌和发根农杆菌中细胞中分别含有Ti质粒和Ri质粒,其上有一段T-DNA,农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中,并且可以通过减速分裂稳定的遗传给后代,这一特性成为农杆菌介导法植物转基因的理论基础。 人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,然后通过细胞和组织培养技术,再生出转基因植株。农杆菌介导法起初只被用于双子叶植物中,近年来,农杆菌介导转化在一些单子叶植物(尤其是水稻)中也得到了广泛应用。 农杆菌转化植物细胞涉及一系列复杂的反应,主要包括:①受伤的植物细胞为修复创伤部位,释放一些糖类、酚类等信号分子。②在信号分子的诱导下,农杆菌向受伤组织集中,并吸附在细胞表面。③转移DNA上的毒粒基因被激活并表达,同时形成转移DNA的中间体。④转移DNA进入植物细胞,并整合到植物细胞基因组中。 方法:(根据不同受体环境基因要求而不同) 1.农杆菌准备 2.外植体的准备(愈伤组织、悬浮细胞系、幼嫩茎段或叶片); 3.用MS-AS液体培养基稀释原菌液15倍(1.5ml / 20ml)或离心后稀释3倍; 4.外植体与菌液共培养20 分钟; 5.放置在带滤纸的培养皿上(注意充分吸干多余的菌液); 6.将外植体接种到MS-AS固体诱导培养基,培养2-3天; 7.移至含卡那霉素(Kan)300mg/L和羧苄青霉素(Cb 300mg/L)的固体筛选培养基上进行Kan抗性愈伤组织的筛选; 8.隔20天,进行第二次筛选; 9.抗性愈伤组织在固体筛选培养基上分化成苗; 10 在生根培养基上生根,获得完整的再分化植株。

相关主题
文本预览
相关文档 最新文档