当前位置:文档之家› 色谱联用技术

色谱联用技术

色谱联用技术
色谱联用技术

色谱联用技术

张玉慧

0942032216

摘要近年来,色谱联用技术的不断发展和完善,在灵敏度和选择性等方面都有了很大的提高,使得对复杂生物样品中药物及其代谢产物的测定变得更加准确,快速和简便,本文就近年来色谱联用技术在体内药物分析中的应用做一简要综述[1]。简述色谱联用技术如色谱一质谱联用、色谱一固相微萃取联用和色谱一色谱联用等技术的基本特点以及在药物及其代谢产物研究、天然药物化学成分分析及生物大分子分析等方面的应用[2]。

关键字色谱联用技术;体内;药物;药物分析;中药

正文

1 色谱-质谱联用技术

色谱技术可为质谱分析提供纯化的样品,而质谱则提供准确的结果信息,素朴质谱的联用能够使样品的分离、定性、定量一次完成[3]。

1.1 气相色谱--质谱联用法(GC-MS)

气相色谱--质谱联用法(GC-MS)发展最早,技术也最完善。GC-MS 检测灵敏度高,但对样品的极性和热稳定性有一定要求,有时需要衍生化才能检测[4]。朱荣华等以地西泮为内标,用GC-MS 法测定人血清中氯氮平及其代谢物。其采取程序升温,起始温度为120℃,高于溶剂沸点而低于样品沸点,充分利用热聚焦效应改善峰形,同时避免了溶剂效应所引起的空间谱带展宽的负面影响[5]。Anderson 等采用GC-MS 法同时测定癌症患者血浆中5-氟尿嘧啶(5-FU)及其主要代谢物α- 氟-β丙氨(alpha-fluoro-beta-alanine,FBA):用Sep-pack C18 柱处理样品,方法最低检测限小于1ng/mL(5-FU)和5ng/mL(FBA)[6]。

1.2 液相色谱--质谱联用法(LC-MS)

液相色谱--质谱联用(LC-MS)是目前最重要的分离分析方法之一,HPLC 的高分离性能和MS 的高选择性[7],高灵敏度及丰富的结构信息相结合,已成为体内药物分析研究中强有力的工具。分析前样品预处理简单, 一般无需衍生化或水解, 更适合于体内药物的分离和鉴定。Baumann等运用HPLC-MS 法同时测定人血浆中环磷酰胺(CTX)及其4 种代谢物,方法最低检测限为30ng/mL。谢智勇等以LC-MS-MS 法测定人血浆中地洛他定浓度,并研究地洛他定在中国男性健康人体内的药动学,结果地洛他定的线性范围为0.2~40ng/mL,最低检测限为0.2ng·mL-1[8],日内及日间相对标准差(RSD)均小于10%,该方法操作简便、快速、灵敏。

2色谱--色谱联用技术

多维色谱技术应用于样品复杂组分的分析,提高了分离能力。多维色谱技术中常用的方法是二维色谱,即色谱色谱联用法[9]。其一般多指2 种色谱方法的联用,它将分离机制不同而又相互独立的两支色谱柱以串联方式结合起来,目的是用一种色谱法补充另一种色谱法分离效果上的不足。常见的联用方法有:气相色谱--气相色谱(GC-GC)联用法、高效液相色谱--气相色谱(HPLC-GC)联用法、高效液相色谱--高效液相色谱(HPLC-HPLC)联用法等。

其中HPLC-HPLC联用法亦称柱切换技术(CS),是指用切换阀来改变流动相走向和流动相系统,从而使洗脱液在一特定时间内从预处理柱入到分析柱的在线固相分离技术[10]。CS 技术具有以下优势:①分辨率和选择性高;②使待测组分密集,灵敏度高;③在一个色谱系统中,实现多个分离目标;④在线衍生化,灵敏度高,重现性好;⑤在线净化样品,使预处理过程自动化[11]。CS 技术近年来发展迅速,广泛应用于各种分析领域,尤其在体内药物

分析中应用最多。

待测物的极性是应用CS技术是所需考虑的最重要参数。低极性和中等极性的药物宜使用反相色谱法,选用中等极性的氰基柱和二醇键合柱,用水为预处理柱的流动相。极性高的组分用正相柱作预处理柱,待测生物样品需用大体积于水相溶的有机溶剂萃取后进样。

采用CS技术可使衍生化在线完成,不仅提高了分析的自动化程度,而且还有助于得到较好的精密度和重现性。张群艳等建立HPLC 柱前衍生化结合柱切换技术测定血浆中卡托普利浓度的方法: 血浆中卡托普利与对溴苯甲基发生衍生化反应后,分别加入等体积的丙酮和水,离心后取上清液进样,以HPLCL 柱切换进行分离测定,结果其线性范围为20~1 000

ng/mL ,方法回收率大于98%,为卡托普利人体药动学研究和临床血药浓度监测提供了良好的方法。Tagawa 等在CS中引入微柱液相色谱技术,同时测定人体血清中胆固醇和胆固醇3- 硫酸酯的浓度,采用紫外检测器和电化学检测器,检测限分别为2.5 ng/mL和295ng/mL。Yu 等用自动柱切换技术直接分离测定人血浆中甲氨蝶呤及其代谢物, 相对回收率大于94%,最低检测限为0.2ng/mL和0.3ng/mL[12]。

3高效液相--核磁共振联用技术

近年来,随着NMR仪在灵敏度、分辨率、动态范围等方面技术的提高,色谱,特别是HPLC 与NMR仪直接联用已成为可能,并已经成为体内药物分析中有力的结构鉴定技术之一。

液相色谱--核磁共振联用技术(HPLC-NMR)能一次性地完成从样品分离纯化到峰的检测、结构测定和定量分析。但这种分析手段目前还存在检出限高、不能分析太大分子等缺点。含量较少的组分可以进行NMR累加扫描,甚至作二维谱图,以得到更大量的结构信息[13]。

目前HPLC-NMR联用进行体内药物分析研究主要集中于对尿液中的代谢产物的研究。Spraul第一次报道了使用HPLC-NMR 研究药物代谢,将服用了布洛芬受试者的尿液冷冻干燥处理后,分别用连续流动和驻流操作方法进行分析,并在驻流操作时作了二维谱得到了代谢产物的明确结构。从此HPLC-NMR 在药物代谢研究中的应用得到迅速的发展。

4色谱和原子光谱技术的联用

液相色谱最大的优点是无需衍生即能直接分离,简单快速,且分离效率高,而原子光谱联用具有多元素同时选择性检测能力,成为在元素形态分析中极为有效的方法之一。尤其是具有较好应用前景的热喷雾化器接口,它是由一个石英气化管的雾化器和一个适合微柱田LC的去溶装置组成,拥有较高的雾化效率和其所要求的流速适合等离子体对有机溶剂的要求等特点,解决了HPLC-ICP-AES联用的难题[14]。目前HPLC-ICP-AES已成功应用于海

洋生物中飚的化学形态分析。Rubio等利用Hamilton PRPX-100分离含A5(Ⅲ),AS(V),二甲基次胂酸钠及甲基胂酸二钠的水样,洗脱物用低压汞灯辐照,K2S208氧化,经NaBH4还原成舡飓测定。Emteborg开发了微孔柱离子色谱与塞曼效应石墨炉原子吸收(ETAAS)联用技术,将以80“L/min低流速的色谱流出物用小体积液体定量收集杯收集存留,定时将定量杯中试样注入ETAAS检测,很好地解决了连续过程和间歇过程,使用该装置测定生物样和水样中的硒化合物绝对检出限低于0.1 ng,与HPLC-ICP-MS检出限相当。

氢化物发生气化进样技术也较广泛用于As、Se、Hg等九种元素的原子吸收光谱、原子荧光光谱和ICP-AES的测定,与相应的气动雾化器相比,在ICP-AES中氢化物法的检出限可低2个数量级,生成的氢化物从溶液中分离出来消除了常规LC-ICP-AES联用中存在的基体干扰。贾志刚等人采用断续流动HG-AFS测量了补硒制剂康必硒中的Se(Ⅳ),Se(Ⅵ)和总硒,从总硒中减去Se(Ⅳ)和Se(Ⅵ)的含量为有机硒含量。研究表明,阳离子表面活性剂CTAB能显著提高测定硒的灵敏度,降低检出限,并提高测量的精密度及干扰离子存在的允许量116J。Kathryn等利用半胱氨酸作为预还原剂,在线微波消解HPLC-HG-AAS系统分离并测定了生物样品中的无机砷、砷甜菜碱(ASB)二甲基砷酸(DMA)、单甲基砷酸(MMA)以及总As。Villa-Lojo 等也利用PRP-x100阳离子交换柱测定了鱼样品中的各种砷形态。由于汞在氢化物发生试剂

的作用下很易形成汞蒸汽,Xin等用流动注射一高效液相色谱一冷蒸汽原子吸收光谱

(FI-HPLC-CVAAS) 定生物样中的甲基汞、乙基汞、苯基汞和汞(Ⅱ)的方法,检出限均达ng/L,方法简单,灵敏度高[15]。Gomez-Ariza等运用阳离子交换的HPLC-HG-AFS联用进行了As(Ⅲ)、As(V)、MMA、DMA的形态分析,检出限分别为0.17、0.38、0.45、0.30微克/L。而对于不

与氢化物反应的AsB,则在经过离子交换后通过在线紫外光解(UV)后原子荧光测定。BraInanti 等采用在线紫外二极管阵列一反向高效液相色谱一冷蒸汽原子荧光色谱(LC-DAD-CVGAFS)测

定了氨基酸等生物样品中的无机汞(Hg(Ⅱ))、甲基汞(MeHg)、乙基汞(EtHg)和苯基汞(PhHg),其检出限分别为16 pg、18 pg、18 pg和20pg,R.S.D范围在1.5~2.0%。经色谱柱分离出的三种有机汞,以HCl为介质的KBr/KBr03在线氧化为无机汞,而Hg(Ⅱ)则由硼氢化钠还原为Hg测定[16]。

在形态分析中常使用的等离子检测器是微波诱导等离子体(MIP),以极高的温度破坏分

子结构成为元素形态,通过光学发射光谱有选择性的测定不同形态的元素。Landaluze等用GC-MIP/AES联用技术分析了河流沉积物和鱼中的汞和甲基汞。分析的检出限为5 ng/L,

测量精密度为2.7%。样品在2 mol/L的硝酸或10%的甲醇KOH中磁搅拌90 min,滤液中

甲基汞的分子结构不会被破坏;混合液经离心机分离,取上清液4.9mL,加5mLpH4.8的醋酸,1 mL0.1%的NaB(C2H5)4和1 mL己醇,振荡10 min;有机相上GC-MIP/AES联用机

分析。此外,Botana等对该检测器在金属形态分析中的运用已作了很好的总结,此处不再

赘述[17]。

5多维色谱

多维色谱是采用多种色谱系统实现理想分离的方法[18]。高速逆流色谱(high-speed

counter-current chromatography,HSCCC)由于其不需要固定相,理论上能保证样品的100%回收。我们将HSCCC与UPLC-QTOFMS联用,快速筛选藤黄(gamboge)中诱导细胞凋亡的成分。具体做法是先用HSCCC将样品分离成不同的组分,将所有组分进行HeLa-C3细胞凋亡活性测试,对有活性的组分进行UPLC-QTOFMS分析,最后鉴定出诱导HeLa-C3细胞凋亡活性活性

成分gambogenic acid。

结语

近年来,色谱联用技术取得了较大进展,由以往仅少数专家进行研究的方法逐渐发展

成为一种常见的应用技术。随着色谱联用设备的普及,色谱联用技术将在食品、药品、生物、环境工程、大气化学和石油化工等诸多领域拥有十分广阔的应用前景。

色谱联用技术在体内药物的分离鉴定、体内外代谢产物及药物作用机理方面有着广泛

应用。特别是高效液相质谱联用技术在体内药物及其代谢产物的定量研究中发挥了重要作用,一些方法已经用在临床药物的筛选中。近年来,新方法、新技术的联用提高了检测的灵敏度和选择性,分析自动化程度提高,分析时间缩短。在体内药物分析领域中,高效液相--质谱联用以及高效液相--核磁共振联用等技术起了不可替代的作用。随着高效液相联用技术日趋成熟及其普遍应用,今后必将在体内药物分析中起更大的作用。

对于体内药分工作者来说,进一步将高效液相与其它各种新型的技术如气相色谱、傅

里叶变换红外光谱、固相微萃取技术联用推广应用于体内药物分析测定中,将会给体内药物分析学科的进展开拓出广阔的发展天地。

现代色谱联用技术的分离和在线鉴定功能使中药复杂体系的质量控制变得方便和快捷,已越来越多地应用于基于“全成分”分析为基础的中药质量控制的各个方面,相信随着这类高尖端仪器的不断普及,自动化程度的不断提高,研究工作的不断探索和积累,能体现中医药整体观的基于真正的全成分分析的中药控制体系必将为中药的现代化做出贡献。

参考文献

1梁鑫淼,肖红斌,卢佩章,色谱联用技术在中药复方研究中的应用,世界科学技术-中医

药现代化,2000,(2)4

2姚刚,廖梦霞,邓天龙,色谱联用技术在环境和生物样品中痕量超痕量元素形态分析研究进展,世界科技研究与发展,2006,(28)2

3李松林,宋景政,乔春峰,周燕,徐宏喜,现代色谱联用技术在中药质量控制中的应用,第十届全国中药和天然药物学术研讨会论文集

4魏东斌,肖铭,阴俊霞,杜宇国,色谱及联用技术在药物污染检测中的应用,环境化学,2011,(30)1

5吴永江,朱炜,程冀宇,气相色谱-质谱联用检测中药材中16种残留农药,中国药学杂志,2006(19)

6利锐,刘彦生,雷磊,现代色谱技术在中药检验中的应用及进展,辽宁药物与临床,2001(04) 7刘桂荣,色谱技术研究进展及应用,山西化工,2006(01)

8刘祥东,梁琼麟,罗国安,液质联用技术在医药领域中的应用,2005(01)

9周茂金,苏美英,液相色谱-质谱联用在药物代谢中的应用,中国医院药学杂志,2006(11) 10魏秀萍,色谱联用技术的进展,分析测试技术与仪器,2007(4)

11 Tamai G;Yoshida H;Imai H High-performance liquid chromatography drug analysis by direct injection of whole blood samples l.Determination of mederately hydrophorbic drugs in corporated into blood corpuscles ,1987

12 J. Chromatgr. A, 1999; 854(15th Montreux Symposium on LIquid Chromatography)-Mass Spectrometry, Supercritical Fluid Chromatgraphy-Mass Spectrometry, Capiplary Electrophoresis-Mass Spectrometry and Tandem Mass Spectrometry, Montreux, Switerzerland,11 - 13, Nov. 1998

13 Ogra Y;Ishiwata K;Iwashita Y Simultaneous speciation of selenium and sulfur species in selenized odorless garlic (Allium sativum L. Shiro) and shallot (Allium ascalonicum) by

HPLC-inductively coupled plasma-(octopole reaction system)-mass spectrometry and electrospray ionization ,2005(1/2)

14 Baumann F;Lorenz C;Jaehde U Determination of cyclophosphamide and its metaholites in human plasma by high-performance liquid chromatography-mass spectrometry ,1999(1/2) Anderson D;Kerr DJ;Blesing C Simultaneous gas chromatographic-mass spectrophotometric determination ofα-fluoro-β-alanine and 5-fluorouracil in plasma ,1997(01)

15 Le X C;Ma M S;Norris A Speciation of Arsenic Compounds Using High-Performance Liquid Chromatography at Elevated Temperature and Selective Hydride Generation Atomic Fluorescence Detection ,1996(24)

16 Yves Bichsel ;Urs von Gunten* Determination of Iodide and Iodate by Ion Chromatography with Postcolumn Reaction and UV/Visible Detection,Anal. Chem., 1999, 71 (1), pp 34–38

17 Li SL,Song JZ,Han QB,et a1.Improved highperformance liquid chromatographic method for simultaneous determinationof 12 cytotoxic caged xanthones in gamboges。a potential anticancer resin from Garcinia hanburyi【J】.Biomed Chromatogr,2008,22:637.644.

18 Qiao CF,Han QB,Song JZ,et a1.HPLC analysis ofbioactive diterpenoids from the root bark of Pseudolarix kaempferi【J】.J Food Drug Anal,2006,14:353-356.

气相色谱质谱联用仪技术指标(新)

气相色谱/质谱联用仪技术指标 1.2温度:操作环境15?C~35?C 1.3 湿度:操作状态25~50%,非操作状态5~95% 2.性能指标 2.1质谱检测器 2.1.1具有网络通讯功能,可实现远程操作。结构紧凑,无需冷却水及压缩空气冷却。 2.1.2*侧开式面板,无须取下质谱仪机盖即可进行维护。玻璃窗口可显示离子源类 型,灯丝运行情况和离子源连接状态。需提供彩页证明文件。 2.1.3质量数范围:2-1000amu,以0.1amu递增

2.1.4分辨率:单位质量数分辨 2.1.5质量轴稳定性: 优于0.10amu/48小时 2.1.6灵敏度: EI:全扫描灵敏度(电子轰击源EI):1pg八氟萘(OFN),信/噪比≥ 1400:1 (扫描范围: 50-300amu) 2.1.7*仪器检出限IDL:10fg八氟萘。并提供三份以上现场安装验收报告。 2.1.8最大扫描速率:大于19,000amu/秒 2.1.9动态范围:全动态范围为106 2.1.10选择离子模式检测(SIM)最多可有100组,每组最多可选择60个离子 2.1.11质谱工作站可根据全扫描得到的数据,自动选择目标化合物的特征离子并对其进 行分组,最后保存到分析方法当中,无须手动输入。(AutoSIM) 2.1.12具有全扫描/选择离子检测同时采集功能 2.1.13两根长效灯丝的高效电子轰击源,采用完全惰性的材料制成 2.1.14*离子化能量:5~241.5eV 2.1.15离子化电流:0~315uA 2.1.16离子源温度:独立控温,150~350?C可调 2.1.17*分析器:整体石英镀金双曲面四极杆,独立温控, 106?C ~200?C。非预四极杆 加热。需提供彩页等证明文件。 2.1.18质量分析器前有T-K保护透镜。 2.1.19检测器:三维离轴,检测器。长效高能量电子倍增器 2.1.20真空系统:250升/秒以上分子涡轮泵 2.1.21气质接口温度: 独立控温,100~350℃ 2.1.22TID 痕量离子检测技术,在数据采集的过程中优化信号。 2.1.23自动归一化调谐。 2.1.24EI源可以采用氢气做为载气,CI源可以采用氨气替代甲烷气。 2.1.25具备早期维护预报功能(EMF) 2.1.26可提供质量认证功能(OQ/PV) 2.2 气相色谱仪 2.2.1 主机 2.2.1.1 电子流量控制(EPC):所有流量、压力均可以电子控制,以提高重现性,配有13路电子流量控制; 2.2.1.2 压力调节:0.001psi。 2.2.1.3 大气压力传感器补偿高度或环境变化; 2.2.1.4 程序升压/升流:3阶;

高效液相色谱的应用与发展前景

高效液相色谱的应用呵发展前景 液相色谱分析是指流动相为液体的色谱技术,是色谱法中最古老的一种,但通过 改进填料的粒度及柱压,在经典的液相柱色谱的基础上引入了气相色谱的塔板理论,在技术上采用了高压输液泵,高效固定相和高灵敏度的检测器,实现了分析速度快. 分离效率高和操作自动化,这种色谱技术被称为高效液相色谱法(HighperformanceliquidchromatographyHPLC) HPLC的出现不过三十多年的时间,但这种分离分析技术的发展十分迅猛,目前应用也十分广泛。其仪器结构和流程也多种多样。典型的高效液相色谱仪结构。高效液相色谱仪一般都具备贮液器、高压泵、梯度洗提装置(用双泵)、进样器、色谱柱、检测器、恒温器、记录仪等主要部件。 高效液相色谱更适宜于分离、分析高沸点、热稳定性差、有生理活性及相对分子量比较大的物质,因而广泛应用于核酸、肽类、内酯、稠环芳烃、高聚物、药物、人体代谢产物、表面活性剂,抗氧化剂、杀虫剂、除莠剂的分析等物质的分析。 对于高效液相色谱的发展前景应该是非常乐观的,现在的社会的发展节奏很快,各个领域对于分析检验的需求很多,而分析检验中,HPLC所占的比重是不言而喻的,已成化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术。所以她的发展情景很乐观。理由有几点 1,随着科技的发展,技术的日臻完善,较之以前色谱分析的方法有了很大程度的提高,很多科学家在对于一些分析上的难点有了新的突破,这样一个 不断完善的技术在以后的社会发展中一定会扮演着一个重要的角色。 2,最近,一些先进的检测仪器成功的用在了高效液相色谱分析法上,使得高效液相色谱的应用更广泛,并充分利用高效快速.选择性好.灵敏度高等优 点,建立更加系统的成分分析方法.通过与质谱联用.梯度洗脱.柱切换技 术.配合先进的检测技术,以及与分子生物学.现代分子药理学相结合,必

气相色谱法附答案

气相色谱法(附答案) 一、填空题1. 气相色谱柱的老化温度要高于分析时最高柱温_____℃,并低于固定液的最高使用温度,老化时,色谱柱要与_____断开。答案:5~10 检测器 2. 气相色谱法分离过程中,一般情况下,沸点差别越小、极性越相近的组分其保留值的差别就_____,而保留值差别最小的一对组分就是_____物质对。答案:越小难分离3.气相色谱法分析非极性组分时应首先选用_____固定液,组分基本按沸点顺序出峰,如烃和非烃混合物,同沸点的组分中_____大的组分先流出色谱柱。答案:非极性极性4.气相色谱法所测组分和固定液分子间的氢键力实际上也是一种_____力,氢键力在气液色谱中占有_____地位。答案:定向重要 5.气相色谱法分离中等极性组分首先选用_____固定液,组分基本按沸点顺序流出色谱柱。答案:中极性 6.气相色谱分析用归一化法定量的条件是______都要流出色谱柱,且在所用检测器上都能_____。 答案:样品中所有组分产生信号 7.气相色谱分析内标法定量要选择一个适宜的__,并要求它与其他组分能__。答案:内标

物完全分离 8.气相色谱法常用的浓度型检测器有_____和_____。答案:热导检测器(TCD) 电子捕获检测器(ECD) 9. 气相色谱法常用的质量型检测器有_____和_____。答案:氢火焰检测器(FID) 火焰光度检测器(FPD) 10. 电子捕获检测器常用的放射源是_____和_____。答案:63Ni 3H 11. 气相色谱分析中,纯载气通过检测器时,输出信号的不稳定程度称为_____。答案:噪音 12. 顶空气体分析法是依据___原理,通过分析气体样来测定__中组分的方法。答案:相平衡平衡液相 13. 毛细管色谱进样技术主要有_____和______。答案:分流进样不分流进样 14. 液—液萃取易溶于水的有机物时,可用______法。即用添加_____来减小水的活度,从而降低有机化合物的溶解度。答案:盐析盐 15.气相色谱载体大致可分为______和______。答案:无机载体有机聚合物载体

高效液相色谱 质谱联用技术的应用

高效液相色谱质谱联用技术的应用 高效液相色谱(HPLC或LC)是以液体溶剂作为流动相的色谱技术,一般在室温下操作,可以直接分析不挥发性化合物、极性化合物和大分子化合物(包括蛋白、多肽、多糖、多聚物等),分析范围广,而且不需衍生化步骤。质谱是强有力的结构解析工具,能为结构定性提供较多的信息,是理想的色谱检测器,不仅特异,而且具有极高的检测灵敏度。串联质谱(MS/MS)是将一个质量选择的操作接到另一个质量选择的后面,在单极质谱给出化合物相对分子量的信息后,对准分子离子进行多极裂解,进而获得丰富的化合物碎片信息,确认目标化合物,对目标化合物定量等。[1] 高效液相色谱一质谱(HPLC—MS)联用技术是近几年来发展起来的一项新的分离分析技术,将HPLC 对复杂样品的高分离能力,与MS具有高选择性、高灵敏度及能够提供相对分子质量与结构信息的优点结合起来,在药物分析、环境分析等许多领域得到了广泛的应用。[2] 本文着重讲述液相色谱质谱联用仪在药物分析、环境分析上的应用。 1液相色谱质谱联用在药学分析上的应用 1.1LC/MS在药物代谢中的应用 Lee等[3]总结了利用LC/MS鉴定药物代谢产物的方法,主要包括以下几个步骤:测定原形药物的质谱;选择准分子离子、加合离子和主要的碎片离子进行多级质谱分析;选择原形药物的主要中性丢失,测定生物样品的中性丢失谱,图谱中的离子即为原形药物和可能的代谢物的分子离子;选择主要的子离子测定生物样品的母离子谱,所得母离子即为各个代谢物;测定生物样品中所有可能代谢物的子离子谱,解谱得到代谢物的结构。 王宁生等[4]以LC/MS联用技术及标准品对照法,分离检测健康志愿者口服复方丹参滴丸后,血清中水溶性成分及代谢产物,从一级质谱的分子离子峰推测,丹参素及原儿茶醛在体内分别与硫酸及葡萄糖醛酸结合,产生丹参素硫酸结合物及原儿茶醛的葡糖醛酸结合物。 Hsiu SL等[5]研究芍药苷在小鼠体内药代动力学,用LC/MS方法检测体内药物浓度,未检测到芍药苷原形药物;但在血浆及各种排泄物中,均可检测其代谢物,经液相色谱一质谱分析,结合核磁共振(NMR),确定其为芍药苷的脱糖基代谢物,提示芍药苷给药后,在肠道经细菌转化为PG后,被吸收进入血液循环中发挥作用。 Chen SJ等[6]用LC/DAD/MS/MS联用技术,对山豆根碱在小鼠体内的代谢进行了研究,用ESI /MSn技术检测山豆根碱的代谢物,并鉴定其主要代谢物为N一去甲基山豆根碱。 1.2LC/MS在药学浓度上的应用 M.Brolis等[7]采用I-IPLC—DAD—MS法从贯叶金丝桃Hyoericum performm中分离鉴定出槲皮素、异槲皮素、金丝桃苷等成分。 Gerthard Brillgma等[8]采用HPLC—NMR和HPLC—ESI—MS—MS法对Habropetalum dawei进行分析,分离鉴定出dioneopeltine、N-methyldioncophylline、N-methyl-7-epi-dioncophylline、tetralone、(1R,3R)和(1S,3R)-N-formyl-8-hydroxy-6-methoxy-l,3-dimthyltetra-hydroisoquinoline等7个已知化合物,以及5’-O-methydioncopeltine、isoquinoline phylline 2个新化合物。 徐智秀等[9]以反相高效液相色谱法分离了9种人参皂苷(I), 利用三级四级杆质谱研究了9种I的一级质谱(主要给出相对分子质量信息)和二级质谱(提供碎片结构信息),通过它们的质谱图差异对其进行了鉴别, 并将方法用于实际样品中的9种I的定性。 郭继芬等[10]选用Discovery C18柱,以甲醇-水-甲酸(40:60:0.025)为流动相,经紫外检测后,在ESI- 扫描方式下,对HPLC—UV图谱中各色谱峰进行一级和二级质谱分析,与对照品比较鉴定了提取物中4个已知的黄酮类化合物,推断出3个未知黄酮苷类化合物可能的结构。 2液相色谱质谱联用在环境分析上的应用 1

气相色谱技术的新进展及应用

气相色谱技术的新进展及应用张胜旺 (华宇橡胶有限责任公司化验室:张胜旺) 摘要:气相色谱技术室现代仪器分析的重要研究领域之一,由于其高效快速的分离特点,现在已成为物理化学分析不可缺少的重要工具,本文主要介绍了气相色谱在石油化工、环保行业中的应用。 关键词:气相色谱技术、应用。 一、气相色谱的发展历史:从茨维特1903年发现色谱算起,气相色谱已经有了100多年的历史,从马丁和辛格1941年提出分配色谱和1952年发明气-液色谱而获得诺贝尔化学奖也有50多年的历史了。自1952年世界上第1次创建实用气液色谱法以来,气相色谱仪作为现代分析检测仪器的代表,已发展成为一个有相当生产规模的产业,并形成了具有相当丰富的检测技术知识的学科。气相色谱法由于其具有分离效能高、分析速度快、选择性好等优点而被广泛应用于环境样品中的污染物分析、药品质量检验、天然产物成分分析、食品中农药残留量测定、工业产品质量监控等领域。随着新型气相色谱仪器、检测器、数据分析方法的出现,气相色谱的应用领域必将越来越广阔。 二、气相色谱的机构原理及特点: 色相色谱仪技术的基本原理是:当气体样品通过一定的进样方式送入色谱系统后,样品中混合物的各组分在流动相(载气)的带动下,通过称为色谱柱的固定相,利用各组分在流动相中具有不同的吸附能力,当二相作相对运动时,样品中各组分就会在二相中反复多次受到上述各种作用力的作用,从而使混合物中各组分获得分离,被分离后的单一组分随载气进入检测器的系统,获得非电量转换,将化学成分转变成与其浓度成正比的电信号,然后通过这些电信号的不同来分析样品成分。

2.1载气系统:包括气源、净化器干燥管和载气流速控制 2.2进样系统:进样器和汽化室 2.3色谱柱:填充柱或毛细管柱 2.4检测器:可连接各种检测器,以热导检测器或氢火焰检测器为常见 2.5记录系统:放大器、记录仪或数据处理仪 2.6温度控制系统:柱室、汽化室的温度控制 2.7气相色谱在石油化工行业中的应用 气相色谱法的特点:三高一快一广 2.8高选择性----能分离性质极为接近的物质,如:异构体、同位素 2.9高效能----在很短的时间内能分离测定性质极为复杂的混合物 3.0高灵敏度----微量、痕量组分,样品用量较少 3.1分析速度快----样品准备好后,几分或者几十分钟即可完成分析 3.2应用范围广----可广泛应用到环保,石油化工、食品、农药等方面的测定 三、气相色谱在石油化工行业中的应用 在石油和石油化工行业,气相色谱技术的应用相当普及,从石油勘探、石油加工研究到生产控制和产品质量把关等。气相色谱技术之所以得到石油和石化行业分析化学家们的欢迎,是由于它的分离和定量能力以及出色的性价比,目前尚无其它类型的仪器分析技术能与之匹敌。 1气体分析 1.1永久性气体分析

实验7 气相色谱-质谱联用技术定性鉴定混合溶剂的成分

实验七 气相色谱-质谱联用技术 定性鉴定混合溶剂的成分 I.实验目的 (1) 了解气相色谱-质谱联用技术的基本原理; (2) 学习气相色谱-质谱联用技术定性鉴定的方法; (3) 了解色谱工作站的基本功能。 II. 实验原理 质谱法是一种重要的定性鉴定和结构分析方法,但没有分离能力,不能直接分析混合物。色谱法则相反,它是一种有效的分离分析方法,特别适合于复杂混合物的分离,但对组分的定性鉴定有一定难度。如果把这两种方法结合起来,将色谱仪作为质谱仪的进样和分离系统,即混合试样进入色谱柱分离,得到的单个组分按保留时间的大小依次进入质谱仪测定质谱,这样就可以实现优势互补,解决复杂混合物的快速分离和定性鉴定。气相色谱-质谱联用(GC-MS )于1957年首次实现,并很快成为一种重要的分析手段广泛应用于化工、石油、食品、药物、法医鉴定及环境监测等领域。 气相色谱-质谱联用的主要困难是两者的工作气压不匹配。质谱仪器必须在10-3~10-4Pa 的高真空条件下工作,而气相色谱仪的流出物为常压(约100kPa ),因此需要一个硬件接口来协调两者的工作条件。当气相色谱仪使用毛细管柱时,因为每分钟几毫升的流量不足以破坏质谱仪的真空状态,所以可直接与质谱仪联用。 挥发性混合物从气相色谱仪进样,经色谱柱分离后,按组分的保留时间大小依次以纯物质形式进入质谱仪,质谱仪自动重复扫描,计算机记录和储存所有的质谱信息,然后将处理结果显示在屏幕上。质谱仪的每一次扫描都得到一张质谱图,色谱组分流入时得到的是组分的质谱图,没有色谱组分时得到的是背景的质谱图,计算机将质谱仪重复扫描得到的所有离子流信号(不分质荷比大小)的强度总和对扫描信号(即色谱保留时间)作图得到总离子流图,总离子流强度的变化正是流入质谱仪的色谱组分变化的反映,所以在GC-MS 中,总离子流图相当于色谱图,每一个谱峰代表了一个组分,谱峰的强度与组分的相对含量有关。下图是混合溶剂试样的总离子流图(a )和其中第4号峰的质谱图(b )。从总离子流图中出现的6个谱峰可以得知该混合溶剂中有6个组分;对质谱图(b )进行解析可知该组分的相对分子质量为100,图中有m/z29,43,57,71等一系列间隔14(相当于CH 2)的离子峰,说明该组分的结构中有长碳链,结合相对分子质量推测为庚烷,通过质谱标准谱库的检索验证,确定试样总离子流图的4号峰为正庚烷。 混合溶剂的总离子流图(a )和4号峰的质谱图(b ) III. 实验用品 仪器: 岛津公司GCMS-QP5050A 气相色谱-质谱联用仪,GCMS Solution 工作站,NIST 谱库。微量注射器(1μL ) 试剂: 混合试剂 异丙醇、乙酸乙酯、苯3种试剂(纯度≥99.5% )混合而成,甲

高效液相色谱质谱联用 HPLC-MS 实验 含思考题

液相色谱-质谱联用技术(LC-MS)的各种模式探索 一、实验目的 1、了解LC-MS的主要构造和基本原理; 2、学习LC-MS的基本操作方法; 3、掌握LC-MS的六种操作模式的特点及应用。 二、实验原理 1、液质基本原理及模式介绍 液相色谱-质谱法(Liquid Chromatography/Mass Spectrometry,LC-MS)将应用范围极广的分离方法——液相色谱法与灵敏、专属、能提供分子量和结构信息的质谱法结合起来,必然成为一种重要的现代分离分析技术。 但是,LC是液相分离技术,而MS是在真空条件下工作的方法,因而难以相互匹配。LC-MS经过了约30年的发展,直至采用了大气压离子化技术(Atmospheric pressure ionization,API)之后,才发展成为可常规应用的重要分离分析方法。现在,在生物、医药、化工、农业和环境等各个领域中均得到了广泛的应用,在组合化学、蛋白质组学和代谢组学的研究工作中,LC-MS 已经成为最重要研究方法之一。 质谱仪作为整套仪器中最重要的部分,其常规分析模式有全扫描模式(Scan)、选择离子监测模式(SIM)。 (一)全扫描模式方式(Scan):最常用的扫描方式之一,扫描的质量范围覆盖被测化合物的分子离子和碎片离子的质量,得到的是化合物的全谱,可以用来进行谱库检索,一般用于未知化合物的定性分析。实例:(Q1 = 100-259m/z) (二)选择离子监测模式(Selective Ion Monitoring,SIM):不是连续扫描某一质量范围,而是跳跃式地扫描某几个选定的质量,得到的不是化合物的全谱。主要用于目标化合物检测和复杂混合物中杂质的定量分析。实例:(Q1 = 259m/z) 本实验采用三重四极杆质谱仪(Q1:质量分析器;Q2:碰撞活化室;Q3:

气相色谱-质谱联用 原理和应用介绍

气相色谱法-质谱联用 气相色谱法–质谱法联用(英语:Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。GC-MS的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。GC-MS也用于为保障机场安全测定行李和人体中的物质。另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。 GC-MS已经被广泛地誉为司法学物质鉴定的金标方法,因为它被用于进行“专一性测试”。所谓“专一性测试”就是能十分肯定地在一个给定的试样中识别出某个物质的实际存在。而非专一性测试则只能指出试样中有哪类物质存在。尽管非专一性测试能够用统计的方法提示该物质具体是那种物质,但存在识别上的正偏差。 目录 1 历史 2 仪器设备 2.1 GC-MS吹扫和捕集 2.2 质谱检测器的类型 3 分析 3.1 MS全程扫描 3.2 选择的离子检测 3.3 离子化类型 3.3.1 电子离子化 3.3.2 化学离子化 3.4 GC-串联MS 4 应用 4.1 环境检测和清洁 4.2 刑事鉴识 4.3 执法方面的应用

4.4 运动反兴奋剂分析 4.5 社会安全 4.6 食品、饮料和香水分析 4.7 天体化学 4.8 医药 5 参考文献 6 参考书目 7 外部链接 历史用质谱仪作为气相色谱的检测器是上个世纪50年代期间由Roland Gohlke和Fred McLafferty首先开发的。当时所使用的敏感的质谱仪体积庞大、容易损坏只能作为固定的实验室装置使用。 价格适中且小型化的电脑的开发为这一仪器使用的简单化提供了帮助,并且,大大地改善了分析样品所花的时间。1964年,美国电子联合公司(Electronic Associates, Inc. 简称EAI)-美国模拟计算机供应商的先驱在开始开发电脑控制的四极杆质谱仪Robert E. Finnigan的指导下[3]开始开发电脑控制的四极杆质谱仪。到了1966年,Finnigan和Mike Uthe的EAI分部合作售出500多台四极杆残留气体分析仪。1967年,Finnigan仪器公司the (Finnigan Instrument Corporation,简称FIC)组建就绪,1968年初就给斯坦福大学和普渡大学发送了第一台GC/MS的最早雏型。FIC最后重新命名为菲尼根公司(Finnigan Corporation)并且继续持世界GC/MS系统研发、生产之牛耳。 1966年,当时最尖端的高速GC-MS (the top-of-the-line high-speed GC-MS units)单元在不到90秒的时间里,完成了火灾助燃物的分析,然而,如果使用第一代GC-MS至少需要16分钟。到2000年使用四极杆技术的电脑化的GC/MS仪器已经化学研究和有机物分析的必不可少的仪器。今天电脑化的GC/MS仪器被广泛地用在水、空气、土壤等的环境检测中;同时也用于农业调控、食品安全、以及医药产品的发现和生产中。 气质联用色谱是由两个主要部分组成:即气相色谱部分和质谱部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基

多角度激光光散射仪与凝胶渗透色谱联用技术

多角度激光光散射仪与凝胶渗透色谱联用技术 仪器组成: Wyatt DAWN HELEOS Ⅱ(十八角度激光光散射检测器) Wyatt ViscoStar Ⅱ(粘度检测器) Wyatt Optilab rEX (示差折光检测器) 配一套Waters 515单元泵和柱温箱。 检测原理: 光散射法是测定高分子物质重均分子量的绝对方法。高分子溶液可视为不均匀介质,当光通过它时,入射光的电磁波诱导高分子成为振荡偶极子,并产生强迫振动作为二次光源发出散射光。高分子溶液的散射光强度远远高于其溶剂,并且强烈依赖于高分子的分子量、链形态、溶液浓度、散射光角度和折光指数增量(dn/dc值)等基本参数,从而得到高分子物质的绝对分子量。 凝胶渗透色谱可将溶剂中的高分子物质按照分子量的大小依次洗脱出来。利用光散射仪与凝胶渗透色谱联用技术,除了可以得到物质的平均分子量,还可以测得不同的高分子物质的分布及其相应分子量大小,并且不需要使用结构相似的标准样品做标准曲线。在直接测定

高分子物质的绝对分子量的同时,由于联用了粘度检测器和示差折光检测器,还可得到特性粘数、均方根旋转半径等重要参数。 应用: 光散射强度与分子大小直接相关,凝胶渗透色谱能分离不同分子量大小的高分子物质,结合次两种特性,可得到许多重要信息,已经被广泛应用于高分子化学、生物化学等众多研究领域。 第一,高分子物质的分子量的测定。不需要标准品、校正曲线以及任何假设,即可直接求得高聚物、多糖、蛋白质等多种高分子物质的绝对分子量。测定范围广泛,可达103~107,且采用十八角度激光光散射检测器,准确度高。 第二,多组分高分子物质的平均分子量及其相应组分对应的绝对分子量的测定。不仅可以单机操作测定混合物质的平均分子量,还可结合凝胶渗透色谱分离技术,测定各个分子量不同的各个不同组分的绝对分子量。 第三,高分子物质的折光指数增量(dn/dc值)、均方根旋转半径(Rg)、第二维里系数(A2)等重要参数和重均分子量(Mw)、数均分子量(Mn)等多种不同分子量的测定,可得到分子的分枝程度等形态特征,研究高分子物质与溶剂的相互作用,研究高分子物质的聚合与降解作用等。 具体检测工作: 第一,化学品、药品的合成过程中的质量控制,通过测定分子量的变化,控制反应的进程与方向,确定药品的含量品质。例如,以某一高聚物为母体,在其上进行聚合反应,通过分子量的测定,控制反应的进行程度。 第二,食品生产过程中的质量控制。通过测定分子量的变化,控制反应的进程与方向,确定食品的品质。例如,在高蛋白牛奶中的蛋白质的分子量,当蛋白质过大时是不利于人体吸收的,通过测定其分子量,对食品的品质进行鉴定。 第三,医疗器材材料的降解聚合作用的研究。例如,聚乳酸被广泛应用于心血管支架、假牙的医学材料中,在医疗器材申报的过程中要求对其降解作用进行研究。 标准: 1、GB/T 21864-2008 聚苯乙烯的平均分子量和分子量分布的检测标准方法高效体积排 阻色谱法 2、GB/T 21863-2008 凝胶渗透色谱法(GPC) 用四氢呋喃做淋洗液 3、SH/T 1759-2007 用凝胶渗透色谱法测定溶液聚合物分子量分布

高效液相色谱技术(HPLC)

140 7 高效液相色谱技术(HPLC ) 高效液相色谱(HPLC :High Performance Liquid Chromatography )是化学、生物化 学与分子生物学、医药学、农业、环保、商检、药检、法检等学科领域与专业最为重要的 分离分析技术,是分析化学家、生物化学家等用以解决他们面临的各种实际分离分析课题 必不可缺少的工具。国际市场调查表明,高效液相色谱仪在分析仪器销售市场中占有最大 的份额,增长速度最快。 高效液相色谱的优点是:检测的分辨率和灵敏度高,分析速度快,重复性好,定量精 度高,应用范围广。适用于分析高沸点、大分子、强极性、热稳定性差的化合物。其缺点 是:价格昂贵,要用各种填料柱,容量小,分析生物大分子和无机离子困难,流动相消耗 大且有毒性的居多。目前的发展趋势是向生物化学和药物分析及制备型倾斜。 7.1 基本原理 固定相 流动相 A B C C B A 固定相 —— 柱内填料,流动相 —— 洗脱剂。 HPLC 是利用样品中的溶质在固定相和流动相之间分配系数的不同,进行连续的无数 次的交换和分配而达到分离的过程。 通常,按溶质(样品)在两相分离过程的物理化学性质可以作如下的分类: 分配色谱:—— 分配系数 亲和色谱:—— 亲和力 吸附色谱:—— 吸附力 离子交换色谱:—— 离子交换能力 凝胶色谱(体积排阻色谱):—— 分子大小而引起的体积排阻 分配色谱又可分为:

正相色谱:固定相为极性,流动相为非极性。 反相色谱:固定相为非极性,流动相为极性。用的最多,约占60~70%。 固定相(柱填料): 固定相又分为两类,一类是使用最多的微粒硅胶,另一类是使用较少的高分子微球。后者的优点是强度大、化学惰性,使用pH范围大,pH=1~14,缺点是柱效较小,常用于离子交换色谱和凝胶色谱。 最常使用的全孔微粒硅胶(3~10μm)是化学键合相硅胶,这种固定相要占所有柱填料的80%。它是通过化学反应把某种适当的化学官能团(例如各种有机硅烷),键合到硅胶表面上,取代了羟基(-OH)而成。它是近代高效液相色谱技术中最重要的柱填料类型。 使用微粒硅胶要特别注意它的使用pH范围是2~7.5,若过碱(>pH7.5),硅胶会粉碎或溶解;若过酸(<pH2),键合相的化学键会断裂。 键合相使用硅胶作基质的优点是:①硅胶的强度大;②微粒硅胶的了孔结构和表面积易人为控制。③化学稳定性好。 硅胶( SiO2?n H2O) :OH OH —Si—O—Si— 重要的键合相是:硅烷化键合相,它是硅胶与有机硅烷反应的产物。 最常用的键合相键型是: —Si—O—Si—C R1R1 —Si—OH + X—Si—R —Si—O—Si—R + HX R2R2 硅胶有机硅烷键合相 X ━Cl,CH3O,C2H5O等。 R ━烷:C8H17(即C8填料),C10H21,C18H37等。 R1、R2 ━X、CH3等。 最常用的“万能柱”填料为“C18”,简称“ODS”柱,即十八烷基硅烷键合硅胶填料(Octadecylsilyl,简称ODS)。这种填料在反相色谱中发挥着极为重要的作用,它可完成高效液相色谱70~80%的分析任务。由于C18(ODS)是长链烷基键合相,有较高的碳含量和更好的疏水性,对各种类型的生物大分子有更强的适应能力,因此在生物化学分析工作中应用的最为广泛,近年来,为适应氨基酸、小肽等生物分子的分析任务,又发展了 141

气相色谱质谱联用原理和应用

气相色谱-质谱联用原理和应用

————————————————————————————————作者:————————————————————————————————日期:

气相色谱-质谱联用测定农药多残留 摘要:本文研究了气相色谱-质谱联用(GS-MS)仪检测农药残留的方法,辅助以样品前处理技术,对蔬菜、水果、食用油、土壤中的农药多残留的检测方法进行了研究,取得了比较理想的效果。 关键词:气相色谱-质谱联用仪;农药多残留;检测 1引言 当前人类环境持续恶化,世界各国在工业、民用、科技、商业和军事防御等领域都面临着严重的环境污染问题。随着人们对环境污染、食品安全的关注,环境、食品中有机污染物检测方面的规范越来越严格,相应的检测技术也越来越先进。在各种有机物检测技术中,色谱仪器与质谱仪器联用作为一种比较成熟的检测手段,既可发挥色谱法的高分离能力,又兼具质谱准确鉴定化合物结构的优点,即可定性又可定量,尤其适用于环境样品中微量、痕量有机污染物的分析检测工作。1979 年美国环保局(EPA)将GC-MS(Gas Chromatography-MassS pectrometry)联用技术列为检测饮用水、地表水中有机物的标准分析方法。随着仪器的不断完善与发展,检测技术的成熟与推广,GC-MS 法应用范围越来越广。除了在传统挥发油、脂肪油等的分析测定方面不断发展与普及外,在环境有机污染物检测、食品安全、农药残留、化妆品禁用成分研究等方面的应用也得到了广泛开展。 近年来,由于农药的大量使用引起的食品安全问题已被人们广泛的认识、关注和重视。人们食用了受到农药严重污染的蔬菜水果,而造成人体急性中毒或者慢性中毒的事件屡有发生。为保证食品的质量,世界卫生组织和世界各国制订了严格的限量标准,与此同时,许多国家也借此施行技术壁垒,使得农药残留问题不仅是影响人的身体健康,而且也严重影响到国家的对外贸易。 由于各类食品组成成分复杂,不同农药品种的理化性质存在较大差异,并且近年来高效、低毒、低残留农药品种不断涌现,给农药残留检测技术提出了更高的要求。发展快速、可靠、灵敏和实用的农药残留分析技术无疑是控制农药残留、保证食品安全和避免国际间有关贸易争端的基础。目前,我国农药残留限量标准制定工作滞后,残留监测体系不健全,残留检测能力有限、覆盖面窄。因此,我国应该根据自己的技术条件及农产品市场制定相应的多残留分析方法。 食品中的农药残留污染影响着人民生活质量的提高和食品贸易的顺利进行。日常食用的果蔬施用的农药种类繁多,常见的农药如有机磷类农药、氨基甲酸酯类农药、菊酯类农药和除草剂,抑菌剂等。由于果蔬中往往同时残留不同种类的农药,这对多残留同时检测条件提出很高要求。由于气相色谱-质谱联用(GC

气相色谱-质谱联用技术..-共15页

气相色谱-质谱联用技术 气相色谱-质谱联用技术,简称质谱联用,即将气相色谱仪与质谱仪通过接口组件进行连接,以气相色谱作为试样分离、制备的手段,将质谱作为气相色谱的在线检测手段进行定性、定量分析,辅以相应的数据收集与控制系统构建而成的一种色谱-质谱联用技术,在化工、石油、环境、农业、法医、生物医药等方面,已经成为一种获得广泛应用的成熟的常规分析技术。 1、产生背景 色谱法是一种很好的分离手段,可以将复杂混合物中的各种组分分离开,但它的定性、鉴定结构的能力较差,并且气相色谱需要多种检测器来解决不同化合物响应值的差别问题;质谱对未知化合物的结构有很强的鉴别能力,定性专属性高,可提供准确的结构信息,灵敏度高,检测快速,但质谱法的不同离子化方式和质量分析技术有其局限性,且对未知化合物进行鉴定,需要高纯度的样本,否则杂质形成的本底对样品的质谱图产生干扰,不利于质谱图的解析。气相色谱法对组分复杂的样品能进行有效的分离,可提供纯度高的样品,正好满足了质谱鉴定的要求。 气相色谱-质谱联用(gas chromatography-mass sepetrometry , GC-MS)技术综合了气相色谱和质谱的优点,具有GC的高分辨率和质谱的高灵敏度、强鉴别能力。GC-MS可同时完成待测组分的分离、鉴定和定量,被广泛应用于复杂组分的分离与鉴定。 2、技术原理与特点 气相色谱技术是利用一定温度下不同化合物在流动相(载气)和固定相中分配系数的差异,使不同化合物按时间先后在色谱柱中流出,从而达到分离分析的目的。保留时间是气象色谱进行定性的依据,而色谱峰高或峰面积是定量的手段,所以气相色谱对复杂的混合物可以进行有效地定性定量分析。其特点在于高效的分离能力和良好的灵敏度。由于一根色谱柱不能完全分离所有化合物,以保留时间作为定性指标的方法往往存在明显的局限性,特别是对于同分异构化合物或者同位素化合物的分离效果较差。 质谱技术是将汽化的样品分子在高真空的离子源内转化为带电离子,经电离、引出和聚焦后进入质量分析器,在磁场或电场作用下,按时间先后或空间位置进行质荷比(质量和电荷的比,m/z)分离,最后被离子检测器检测。其主要特点是迁建的结构鉴定能力,能给出化合物的分子量、分子式及结构信息。在一定条件下所得的MS碎片图及相应强度,犹如指纹图,易与辨识,方法专属灵敏。但质谱拘束最大的不足之处在与要求样品是单一组分,无法满足复杂物质的分析。

气相色谱法

气相色谱法测定丁醇中少量甲醇含量 一、实验目的 1. 掌握用外标法进行色谱定量分析的原理和方法。 2. 了解气相色谱仪氢火焰离子检测器FID的性能和操作方法。 3. 了解气相色谱法在产品质量控制中的应用。 4. 学习气相色谱法测定甲醇含量的分析方法。 二、实验原理 在丁醇生产的过程中,不可避免地有甲醇产生。甲醇是无色透明的具有高度挥发性的液体,是一种对人体有害的物质。甲醇在人体内氧化为甲醛、甲酸,具有很强的毒性,对神经系统尤其是视神经损害严重,人食入 5 g 就会出现严重中毒,超过 12. 5 g 就可能导致死亡,在白酒的发酵过程中,难以将甲醇和乙醇完全分离,因此国家对白酒中甲醇含量做出严格规定。根据国家标准(GB10343-89),食用酒精中甲醇含量应低于0.1g?L-1(优级)或0.6 g?L-1(普通级)。 气相色谱法是一种高效、快速而灵敏的分离分析技术,具有极强的分离效能。一个混合物样品定量引入合适的色谱系统后,样品被气化后,在流动相携带下进入色谱柱,样品中各组分由于各自的性质不同,在柱内与固定相的作用力大小不同,导致在柱内的迁移速度不同,使混合物中的各组分先后离开色谱柱得到分离。分离后的组分进入检测器,检测器将物质的浓度或质量信号转换为电信号输给记录仪或显示器,得到色谱图。利用保留值可定性,利用峰高或峰面积可定量。 外标法是在一定的操作条件下,用纯组分或已知浓度的标准溶液配制一系列不同含量的标准溶液,准确进样,根据色谱图中组分的峰面积(或峰高)对组分含量作标准曲线。在相同操作条件下,依据样品的峰面积(或峰高),从标准曲线上查出其相应含量。利用气相色谱可分离、检测丁醇中的甲醇含量,在相同的操作条件下,

气相色谱_质谱联用技术

气相色谱-质谱联用技术 本章目录(查看详细信息,请点击左侧目录导航) 第一节气相色谱质谱联用仪器系统 一、GC-MS系统的组成 二、GC-MS联用中主要的技术问题 三、GC-MS联用仪和气相色谱仪的主要区别 四、GC-MS联用仪器的分类 五、一些主要的国外GC-MS 联用仪产品简介 第二节气相色谱质谱联用的接口技术 一、GC-MS联用接口技术评介 二、目前常用的 GC-MS接口 第三节气相色谱质谱联用中常用的衍生化方法 一、一般介绍 二、硅烷化衍生化 三、酰化衍生化 四、烷基化衍生化 第四节气相色谱质谱联用质谱谱库和计算机检索 一、常用的质谱谱库 二、NIST/EPA/NIH库及其检索简介 三、使用谱库检索时应注意的问题 四、互联网上有关GC-MS和的信息资源 第五节气相色谱质谱联用技术的应用 一、GC-MS检测环境样品中的二噁英 二、GC-MS在兴奋剂检测中的应用 三、GC-MS区分空间异构体 四、常用于GC-MS 检测提高信噪比的方法 五、GC-MS( TOF)的应用 气质联用仪是分析仪器中较早实现联用技术的仪器。自1957年霍姆斯和莫雷尔首次实现 GC-MS系统的组成 气相色谱和质谱联用以后,这一技术得到长足的发展。在所有联用技术中气质联用,即GC-MS

发展最完善,应用最广泛。目前从事有机物分析的实验室几乎都把GC-MS作为主要的定性确认手段之一,在很多情况下又用GC-MS进行定量分析。另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅里叶变换质谱(FTMS)等均能和气相色谱联用。还有一些其他的气相色谱和质谱联接的方式,如气相色谱! 燃烧炉! 同位素比质谱等。GC-MS逐步成为分析复杂混合物最为有效的手段之一。 GC-MS联用仪系统一般由图11-3-1所示的各部分组成。 气相色谱仪分离样品中各组分,起着样品制备的作用;接口把气相色谱流出的各组分送入质谱仪进行检测,起着气相色谱和质谱之间适配器的作用,由于接口技术的不断发展,接口在形式上越来越小,也越来越简单;质谱仪对接口依次引入的各组分进行分析,成为气相色谱仪的检测器;计算机系统交互式地控制气相色谱、接口和质谱仪,进行数据采集和处理,是GC-MS的中央控制单元。 GC-MS联用中主要的技术问题 气相色谱仪和质谱仪联用技术中主要着重要解决两个技术问题: 1.仪器接口 众所周知,气相色谱仪的入口端压力高于大气压,在高于大气压力的状态下,样品混合物的气态分子在载气的带动下,因在流动相和固定相上的分配系数不同而产生的各组分在色谱柱的流速不同,使各组分分离,最后和载气一起流出色谱柱。通常色谱往的出口端为大气压力。质谱仪中样品气态分子在具有一定真空度的离子源中转化为样品气态离子。这些离子包括分子离子和其他各种碎片离子在高真空的条件下进入质量分析器运动。在质量扫描部件的作用下,检测器记录各种按质荷比分离不同的离子其离子流强度及其随时间的变化。因此,接口技术中要解决的问题是气相色谱仪的大气压的工作条件和质谱仪的真空工作条件的联接和匹配。接口要把气相色谱柱流出物中的载气,尽可能多的除去,保留或浓缩待测物,使近似大气压的气流转变成适合离子化装置的粗真空,并协调色谱仪和质谱仪的工作流量。2.扫描速度

气相色谱分离技术

第三章气相色谱分离技术 第一节气相色谱系统 气相色谱法是一种很重要的,以气体为流动相,以液体或固体为固定相的色谱方法,气相色谱法(GC)有以下特点: (1)高选择性GC能够分离分析性质极为相近的物质。如氢的同位素,有机物的异构体。 (2)高效GC可在较短的时间内同时分离分析极其复杂的混合物。如用空心毛细管柱一次可以分析轻油中的200个组分。 (3)高灵敏度由于使用了高灵敏度的检测器,可以检测10-11-10-13克物质。检测浓度可达到ppt级。 (4)分析速度快GC一般只要几到几十分钟的分析时间,某些快速分析,一秒可以分析十几个组分。 GC法的应用相当广泛,在一千万个化合物中,大约有20%的物质可以用GC方法进行分析,如: 生物化学分析:GC一开始就是用于生物化学领域,气-液GC的创始人Martin首先进行了脂肪酸和脂肪胺的分析。 石油化工分析:用200m的毛细管GC法一次可以分析200个化合物。 环境分析:如水中有机物分析。 食品分析:如粮食中残留农药的分析。 药物临床分析:氨基酸、兴奋剂的分析。 法庭分析:各种物证鉴定。 空间分析:如飞船中气氛分析。 军工分析:如火药、炸药分析。

图3-1是GC的流程示意图。 9 图3-1气相色谱流程示意图 1—高压瓶,2—减压阀, 3—净化器,4—气流调节阀,5—进样口,6—气化室,7—色谱柱,8—检测器, 9—记录仪 气相色谱仪的种类很多,但主要由分离系统和检测系统组成。 3.1.1 分离系统 分离系统主要由气路系统、进样系统和色谱柱组成,其核心为色谱柱。 1.气路系统 气路系统指流动相载气流经的部分,它是一个密闭管路系统,必须严格控制管路的气密性,载气的惰性及流速的稳定性,同时流量测量必须准确,才能保证结果的准确性。载气通常用N2,He,H2,Ar等。 2.进样系统 进样系统包括进样装置和气化室。气体样品可以用注射器进样,也可用旋转式六通阀进样。气化室必须预热至设定温度。 3.色谱柱

高效液相色谱二极管阵列检测器联用仪技术参数

高效液相色谱-二极管阵列检测器联用仪技术参数 1、二元泵主机 *两个双活塞串联泵,具有独特的伺服控制可变冲程(100ul)驱动、浮动活塞设计。 *可设置的流速范围:0.001~10mL/min, 增量为0.001mL/min *流速精密度:≤0.070%RSD或≤0.02min SD 流速准确度:±1%或10uL/min *压力范围:0~600bar 压力脉动:< 2% pH范围:1.0~12.5 梯度形成:高压二元混合 梯度延迟体积:600~800μL(与反压相关); 梯度组成比例范围:0-100% 混合准确度:<0.2%RSD或<0.04min SD *集成的脱气元件:通道个数:2通道;每个通道的内部体积:1.5mL 2、集成真空脱气机 *二通路在线真空膜过滤技术,内置真空泵,压力传感器,实时监控真空腔压力变化,保证及时高效的脱气操作。 最大流速(每一通路):10mL/min 内体积(每一通路):12mL pH耐受范围:1~14 3、标准自动进样器 自动进样器具独特的流路设计,采用高压、阀进样技术。 进样范围:0.1~100uL,增量为0.1uL;安装多次进样组件,最大进样体积可达1800uL 进样精密度:< 0.25% RSD(进样体积5~100uL) < 1% RSD (进样体积1~5uL) < 0.5% RSD (进样体积达1500uL,安装多次进样套件)最快进样速度:1000uL/min 样品粘度范围:0.2~5cp pH范围:1.0~9.5 *样品容量≥130位2mL样品瓶 交叉污染:<0.004% *操作压力范围:最高800bar 4、柱温箱 *半导体温控设计,流动相柱前预加热,有效防止流动相在色谱柱内的热交换,有利于色谱柱内快速温度平衡,及两相间的物质分配平衡。 控温范围:室温下10℃~80℃,宏命令可控制至90℃ 控温速率:室温加热至40℃,5min;40℃降温至20℃,10min 控温精度:±0.15℃ 控温准确度:±0.5℃ 最大柱容量:9.4mm ID × 30cm × 2 *内体积:左控温模块3μL,右控温模块6μL 5、二极管阵列检测器 检测器类型:1024个二极管元件

气相色谱-质谱(GC-MS)联用技术及其应用(精)

气相色谱-质谱(GC-MS )联用技术及其应用 摘要:气相色谱法—质谱(GC-MS )联用技术是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。其在环境中的应用主要包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。本文主要列举了GC-MS 在职业卫生检测、医药、农药残留检测、食品、刑事鉴识和社会安全方面的应用。 关键词:GC-MS ,应用,药物检测,环境 1 气相色谱-质谱(GC-MS )联用 气相色谱法–质谱法联用(Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS )是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。GC-MS 的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。GC-MS 也用于为保障机场安全测定行李和人体中的物质。另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。 气相色谱—质谱(GC —MS )联用技术是由两个主要部分组成:即气相色谱(GC )部分和质谱(MS )部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基聚硅氧烷)。GC 是用气体作为流动相的色谱法,当试样流经柱子时,根据混合物组分分子的化学性质的差异而得到分离。分子被柱子所保留,然后,在不同时间(叫做保留时间)流出柱子。GC 可以将混合物分离为纯物质,但是GC 只依靠保留时间定性,很大程度上具有不可靠性。MS 是通过将每个分子断裂成离子化碎片并通过其质荷比来进行测定,可以确定待测物的分子量、分子式,但MS 只能对纯物质进行定性,对混合组分定性无能为力。 把气相色谱和质谱这两部分放在一起使用要比单独使用那一部分对物质的识别都会精细很多倍。单用气相色谱或质谱是不可能精确地识别一种特定的分子的。通

相关主题
文本预览
相关文档 最新文档