当前位置:文档之家› 汽车轮胎与地面接触的有限元分析

汽车轮胎与地面接触的有限元分析

汽车轮胎与地面接触的有限元分析
汽车轮胎与地面接触的有限元分析

第18章 接触问题有限元分析技术

第18章接触问题的有限元分析技术 第1节基本知识 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行准确而有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在求解问题之前,不知道接触区域,表面之间是接触或分开是未知的、突然变化的,这些随载荷、材料、边界条件和其它因素而定;其二,大多数的接触问题需要计算摩擦,有几种摩擦和模型可供挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。 一、接触问题分类 接触问题分为两种基本类型:刚体─柔体的接触和半柔体─柔体的接触。在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触;另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 ANSYS支持三种接触方式:点─点、点─面和平面─面。每种接触方式使用的接触单元适用于某类问题。 二、接触单元 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个节点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元。有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元。下面分类详述ANSYS使用的接触单元和使用它们的过程。 1.点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下)。 如果两个面上的节点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 2.点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组节点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是

轮轨接触力学

轮轨接触动力学报告 —关于轮轨接触动力学的思考 年级:2013级 专业:载运工具应用工程 姓名:刘新龙 学号:13217021

关于轮轨接触动力学的思考 提高机车运行速度和加大牵引能力是当今世界铁路发展的趋势,而达到这一目的就必须深入轮轨关系的理论研究,改善机车的粘着利用水平。轮轨关系则是机车车辆、轨道系统中最基本、最复杂的一个问题,是特殊的、典型的三维滚动摩擦接触问题。接触理论始于1882年, 由H. Hertz发表的经典论文《论弹性固体的接触》。他提出了椭圆接触面的假设, 把三维接触问题简化为弹性无限半空间问题。Hertz的研究成果为接触理论奠定了坚实的基础, 但Hertz理论仅局限于无摩擦表面及理想弹性固体, 对于轮轨这样复杂的三维滚动接触问题显然是不能准确求解的。 近几十年来,国内外在轮轨滚动接触问题的理论研究和实验研究方面都取得了很大进展,但随着铁路技术的不断提高,使用解析解法解决轮轨关系问题的局限性也愈加突出。在高速和重载的要求下,轮轨的波磨问题、疲劳损伤问题变得更加严重,而这些问题的产生都与轮轨间作用力有着直接的关系。因此,在现有轮轨滚动接触理论的基础上,使用有限元方法以精确模拟轮轨的几何形状及其相互接触关系,将是今后解决轮轨关系问题的主要途径。 不断增长的运输量, 要求铁路必须在保证安全的前提下, 增加货物列车的重量, 提高客运列车的速度和运行品质。因此, 新型机车车辆的设计、制造和线路的建设与维护, 都迫切需要预知轮轨之间的动力作用特性。而现在人类已经能够准确地模拟一个飞行体在宇宙空间的运动并进行精确控制, 但却不能精确摸拟铁路轮轨的相互作用。可见轮——轨关系及车辆——线路相互作用仍然是铁道车辆动力学的中心课题。机车车辆或者列车与铁道线路是一个整体系统, 在这个系统中, 它们相互关联, 相互作用。因此在研究机车车辆动力学性能时, 不能简单地视线路为外激干扰。换言之, 线路也并不存在独立于列车的激扰特性。引起系统产生振动和其它动力作用的是钢轨和车轮的滚动面上实际存在的不平顺和其它几何技术特性,当然还有列车中车辆与车辆之间, 机车与车辆之间的相互作用。

港口起重机小车轮轨接触的有限元分析(新编版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 港口起重机小车轮轨接触的有 限元分析(新编版) Safety management is an important part of production management. Safety and production are in the implementation process

港口起重机小车轮轨接触的有限元分析 (新编版) 利用ANSYS10.0软件进行轮轨弹性接触有限元分析。文章分别对不同载荷条件下,小车轮轨接触在不同的初始接触位置处的应力进行分析,得出小车横向偏移对接触应力分布的影响。 随着世界贸易量大幅增长,世界各个港口之间的货物吞吐量逐年增加。世界各港口,特别是集装箱港及大型散货港在最近十几年发展迅猛,随着各个港口码头对装卸效率要求的大幅提高,桥式起重机正趋于大型化、高速化发展。起重量越来越大。工作速度越来越高,不可避免的小车运行速度也加快。小车运行速度的加快也使得小车车轮发生和横向移动,对小车运行的稳定性带来威胁。导向装置间隙引起的部分偏斜、轨道侧面或者水平轮的磨损引起的部分偏斜和轨道水平面上的直线性公差引起的部分偏斜都将造成车轮走

偏。 有限元模型的建立与数值分析 在实际接触中,由于车轮的横向移动导致初始位置发生改变。我们考虑了四种典型的横截面接触位置,将有限元方法求得的计算值与赫兹接触理论值做出比较。分析在不同的接触位置处应力的分布情况。 在本次模型中采用800t/h的卸船机小车运行轨道进行分析,小车轨道与主轨道相同。 由于车轮的横向运动,轮廓的每一处都可能发生接触。对于车轮和轨道接触的四个不同横截面位置处,建立了有限元模型。为了得到满意的接触结果,接近接触区的轮轨网格对四个模型中任何一个都是适用的。 将有限元计算结果与赫兹理论值进行比较,如下表所示: 表2-1加载100t时有限元计算结果与赫兹理论值 图形 a

★★★装配体有限元分析

基于ANSYS WORKBENCH的装配体有限元分析 模拟装配体的本质就是设置零件与零件之间的接触问题。 装配体的仿真所面临的问题包括: (1)模型的简化。这一步包含的问题最多。实际的装配体少的有十几个零件,多的有上百个零件。这些零件有的很大,如车门板;有的体积很小,如圆柱销;有的很细长,如密封条;有的很薄且形状极不规则,如车身;有的上面钻满了孔,如连接板;有的上面有很多小突起,如玩具的外壳。在对一个装配体进行分析时,所有的零件都应该包含进来吗?或者我们只分析某几个零件?对于每个零件,我们可以简化吗?如果可以简化,该如何简化?可以删除一些小倒角吗?如果删除了,是否会出现应力集中?是否可以删除小孔,如果删除,是否会刚好使得应力最大的地方被忽略?我们可以用中面来表达板件吗?如果可以,那么,各个中面之间如何连接?在一个杆件板件混合的装配体中,我们可以对杆件进行抽象吗?或者只是用实体模型?如果我们做了简化,那么这种简化对于结果造成了多大的影响,我们可以得到一个大致的误差范围吗?所有这些问题,都需要我们仔细考虑。 (2)零件之间的联接。装配体的一个主要特征,就是零件多,而在零件之间发生了关系。我们知道,如果零件之间不能发生相对运动,则直接可以使用绑定的方式来设置接触。如果零件之间可以发生相对运动,则至少可以有两种选择,或者我们用运动副来建模,或者,使用接触来建模。如果使用了运动副,那么这种建模方式对于零件的强度分析会造成多大的影响?在运动副的附近,我们所计算的应力其精确度大概有多少?什么时候需要使用接触呢?又应该使用哪一种接触形式呢? (3)材料属性的考虑。在一个复杂的装配体中所有的零件,其材料属性多种多样。我们在初次分析的时候,可以只考虑其线弹性属性。但是对于高温,重载,高速情况下,材料的属性不再局限于线弹性属性。此时我们恐怕需要了解其中的每一种材料,它是超弹性的吗?是哪一种超弹性的?它发生了塑性变形吗?该使用哪一种塑性模型?它是粘性的吗?它是脆性的吗?它的属性随着温度而改变吗?它发生了蠕变吗?是否存在应力钢化问题?如此众多的零件,对于每一个零件,我们都需要考察其各种各样的力学属性,这真是一个丰富多彩的问题。(4)有限元网格的划分。我们知道,通过WORKBENCH,我们只需要按一个按钮,就可以得到一个粗糙的网格模型。但是如果从HYPERMESH的角度来看,ANSYS自动划分的网格,很多都是不合理的,质量较差而不能使用。那么对于装配体中的每个零件,我们该如何划分网格?对于每一个零件,我们是否要对之进行切割形成规则的几何体后,然后尽量使用六面体网格?如果

渐开线直齿圆柱齿轮接触应力有限元分析

渐开线直齿圆柱齿轮接触应力有限元分析 摘要:本文针对ANSYS有限元齿轮接触仿真进行了探讨,计算齿轮的等效应力和接触应力,对齿轮的弯曲强度失效和接触疲劳失效研究具有重要的实际意义。利用有限元分析方法,得出了相互啮合齿轮在静态情况下,等效应力和接触应力的分布规律;同时分析了齿轮与不同直径齿轮接触时,等效应力和接触应力的变化情况。 关键词:齿轮接触有限元等效应力接触应力 ANSYS 引言 齿轮的接触问题是典型的接触非线性问题,在传统的计算设计方法中,我们通常将非线性问题进行一定的简化与假设,使之变为线性问题来求解,但是这种计算方法的结果不是十分精确。本文基于ANSYS软件建立渐开线直齿圆柱齿轮的二维有限元模型,对静载荷作用下齿轮接触问题进行有限元分析,求得齿轮接触问题更为精确的解,为解决齿轮接触问题提供了一定依据。 1 齿轮传动失效分析 齿轮传动的失效主要是轮齿的失效。根据齿轮传动工作和使用条件的不同,齿轮传动也就有不同的失效形式。主要的失效形式有轮齿的折断、齿面疲劳点蚀、磨损、胶合和塑性变形等。设计齿轮传动时,应对具体情况作具体分析,按可能发生的主要损伤或失效形式来进行相应的强度计算,有时以齿根弯曲疲劳强度为主,有时以齿面接触疲劳为主。这些问题采用有限元法来计算是十分方便的,下面我们将通过ansys对传动比不同的3组齿轮进行有限元分析。 2 有限元模型及其求解 2.1模型的建立 齿轮均选用标准渐开线直齿圆柱齿轮,模数m=3,压力角α=20°,齿数分别为Z1=35、Z2=25、Z3=20,传动比分别为35:35、25:35、20:35。在建模时考虑到齿轮具有轴对称结构,每个齿的受力情况基本相同,因此可以将齿轮模型简化为平面问题,这样可以节省大量计算时间。先在三维设计软件Pro/E中生成齿轮的三维模型,再将模型保存为iges格式,然后导入到ansys中,删除多余面,仅剩下齿轮端面,并复制一个齿轮并调整角度,可得如图1所示的齿轮实体模型。

O形橡胶密封圈配合挡圈密封的应力与接触压力有限元分析_

2009年 5月第 34卷第 5期 润滑与密封 LUBR I CATI O N ENGI N EER I N G May 2009 Vol 134No 15 收稿日期 :2008-11-26 作者简介 :饶建华 , 教授 , 从事机电一体化的教学和科研工作 . E 2mail:rao 2jh@1631com 1 O 形橡胶密封圈配合挡圈密封的应力与接触压力有限元分析 饶建华陆兆鹏 (中国地质大学湖北武汉 430074 摘要 :利用有限元分析软件 M SC . MARC 对 O 形橡胶密封圈与挡圈密封在不同压力下的应力与接触压力进行了有限元分析 , 探讨了不同压力下 O 形橡胶密封圈和挡圈柯西应力分布、接触压力与接触宽度的关系、 O 形橡胶密封圈与挡圈相互接触的弧长与油压及接触压力的关系。结果表明 O 形橡胶密封圈在配合挡圈的情况下的柯西应力主要集中于挡圈的右上部分及左下部分 ; O 形橡胶密封圈与挡圈的接触弧长开始随油压的增加而增长 , 最后保持一定值 ; O 形橡胶密封圈与挡圈的接触宽度与接触压力近似呈二次曲线。 关键词 :O 形橡胶密封圈 ; 挡圈 ; 应力分布 中图分类号 :T B42文献标识码 :A 文章编号 :0254-0150(2009 5-065-4 Fi n ite Ele ment Ana lysis of Stress and Cont act Pressure

of Rubber O 2sea li n g Ri n g R ao J ia nhua Lu (China University of Abstract:Based on finite element oft w are . contact p ressure of the rubber O 2sealing ring with back 2up ring . The Cauchy stress distribution, the relati onship be 2t ween contact relati onshi p of contact length bet ween rubber O 2sealing ring and back 2up ring and oil p p ressure were discussed . The results show that Cauchy stress concentrates on the right t op and the left bott om of the back 2up ring . The contact length bet ween rubber O 2sealing ring and back 2up ring becomes longer firstly with the increase of oil p ressure, then it keep s a certain value . The relati onship of contact width and contact p ressure bet ween rubber O 2sealing ring and back 2up ring is cl ose t o a conic . Keywords:rubber O 2sealing ring; back up 2ring; stress distribution O 形橡胶密封圈是一种小截面的圆环形密封件。其具有结构简单、体积小、密封可靠、价格便宜等特点 , 广泛应用于液压机械、汽车等领域。当 O 形橡胶密封圈配合挡圈使用后 , 工作压力可以大大提高。 陈国定等 [1] 进行了 O 形密封圈的有限元力学分析 , 得出了在 3MPa 油压作用下 O 形橡胶密封圈的变形图 , 以及轴和密封接触面间的接触压力及剪应力分布 状态。周志鸿等 [2] 进行了 O 形橡胶密封圈应力与接触压力的有限元分析 , 得出了 O 形橡胶密封圈与轴之间的最大接触压力随着压缩率、油压的增加而增加。他们文中都提到了在大油压压力作用下需要在 O 形橡胶密封圈一侧配备挡圈 , 目的是防止 O 形橡胶密封圈被挤出 , 但是使用挡圈为何可以防止 O 形橡胶密封圈被挤出没有一定的科学计算依据 , 使用挡圈后应力与接触压力的有限元分析尚未有人进行 , 所以 本文作者利用大型有限元分析软件 MSC 1MARC 对 O

非线性有限元分析

非线性有限元分析 1 概述 在科学技术领域,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。 已经发展的数值分析方法可以分为两大类。一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。 另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。 1960年,R.W.CLOUGH发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。有限单元法的基本思想是将连续的求解区域离散为一组有限个,且按一定方式相互联接在一起的单元的组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。并且可以利用在每一个单元假设的近似函数来分片地表示全求解域上待求的未知场函数,从而使一个连续的无限自由度问题变成离散的有限自由度问题。 现已证明,有限单元法是基于变分原理的里兹法的另一种形式,从而使里兹法分析的所有理论基础都适用于有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法。利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,而且事先不要求满足任何边界条件,因此可以用来处理很复杂的连续介质问题。 在短短四十余年的时间里,有限单元的分析方法已经迅速地发展为适合于使用各种类型计算机解决复杂工程问题的一种相当普及的方法。如今,有限元广泛地应用于各个学科门类,已经成为工程师和科研人员用于解决实际工程问题,进行科学研究不可或缺的有力工具。有限单元法的应用围已由弹性力学平面问题扩展到空间问题,板壳问题,由静力平衡问题扩展到稳定问题,动力问题和波动问题。分析的对象从弹性材料扩展到塑性,粘弹性,粘塑性和复合材料等,从固体

基于Cowper-Symonds本构关系的轮轨滚动接触行为有限元分析

基于Cowper-Symonds本构关系的轮轨滚动接触行为有限元分析铁路运输作为一种节能环保的交通运输方式,近年来受到了越来越广泛的关注。而轮轨间的接触和相互作用则一直是铁路领域内被众多学者所关注的重要课题,这是因为轮对和轨道担任着铁路系统中最重要的角色,严重的轮轨故障必然会导致灾难性事故的发生。 随着列车行驶速度的不断提升,轮轨的损伤也会加剧,尤其是在高速列车的运用中,惯性效应变得不容忽视,材料的应变率效应也将更加显著的体现出来。然而,由于轮轨接触问题中存在着材料、几何和接触非线性,导致高速轮轨系统的动态接触行为十分的复杂,同时这也是研究该问题的意义所在。 因此,建立了三维轮轨滚动接触模型,并采用显式有限元软件LS-DYNA进行仿真计算,模型中考虑了轮轨接触的材料、几何和接触非线性,并考虑了应变率相关的材料参数,以研究动态轮轨接触行为。为了给轮轨滚动接触行为仿真分析提供真实、可靠的应变率相关的力学参数,采用HTM5020型高速拉伸试验机开展了D1轮辋钢和U71Mn轨钢在中应变率范围内的动态拉伸力学性能试验,得到了不同应变率下的塑性流动应力-应变响应曲线,建立了基于Cowper-Symonds经验性模型的动态本构关系。 同时还将三维轮轨滚动接触有限元模型拓展运用到轮对通过曲线的工况,考虑了曲线轨道的超高、轮对的横移和侧滚角。在直道工况下,以列车速度、轴重和材料的应变率效应为影响因素,进行轮轨动态响应的分析;在弯道工况下,以轨道曲线半径、轴重和材料的应变率效应为影响因素,进行轮轨动态响应的分析。 对轮轨动态响应的分析,包含:轮轨接触力、von-Mises等效应力、等效塑性应变、车轴轴心垂向加速度、直道下车轮踏面与轨面初始接触点的横向位移和弯

ABAQUS有限元接触分析的基本概念

ABAQUS有限元接触分析的基本概念2009-11-24 00:06:28 作者:jiangnanxue 来源:智造网—助力中国制造业创新—https://www.doczj.com/doc/b61438938.html, CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。世界上几大CAE公司各自以其独到的技术占领着相应的市场。ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域。ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。 《ABAQUS有限元分析常见问题解答》以问答的形式,详细介绍了使用ABAQUS建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。 《ABAQUS有限元分析常见问题解答》一书由机械工业出版社出版。 16.1.1 点对面离散与面对面离散 【常见问题16-1】 在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法(node-to-surface-dis - cre-tization)和面对面离散方法(surface-to-surface discretization),二者有何差别? 『解答』 在点对面离散方法中,从面(slave surface)上的每个节点与该节点在主面(master surface)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点。 使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。 面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化。可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。 在如图16-l和图16-2所示的实例中,比较了两种情况。

过盈配合应力的接触非线性有限元分析

过盈配合应力的接触非线性有限元分析 作者:许小强赵洪伦 摘要基于非线性有限元软件MARC,提出过盈配合应力的动态和静态两种有限元分析方法,并以铁道车辆某高速轮对组装的过盈装配为例进行了有限元仿真计算,比较了两种方法的计算结果,分析了过盈量、摩擦系数、形状误差对装配应力的影响,结果对于确定合理过盈量和改进加工工艺具有参考意义。 关键词过盈配合接触非线性接触应力 0引言 在机械工程实际中普遍采用过盈配合来传递扭矩和轴向力,例如轴承配合、轴瓦配合、铁道车辆的轮轴、制动盘等。它是利用过盈量产生半径方向的接触面压力,并依靠由该面压力产生的摩擦力来传递扭矩和轴向力。由于过盈配合两个相配合的接触面上不能粘贴应变片,因此难以对其应力状态进行测定,对整个组装过程的应力状态更难以进行跟踪研究,而且这种配合方式往往承受着交变载荷的作用,配合面间可能发生相对滑动,这一滑动是随着应力变化而变化的,因而配合面边缘的接触状态和应力状态也随着应力的交变而变化,表现出复杂的状态,因此一般只能凭经验确定采用的过盈量。从力学角度看,这类问题属于接触非线性问题,传统的弹性接触解法已难以处理,可采用光弹性模拟实验进行研究,但只能反映应力分布趋势。近年来,随着非线性理论的不断完善和计算机技术的飞速发展,利用非线性有限元法来分析这类问题已日趋成熟。 铁道车辆随着向高速、重载不断发展,对轮轴的安全性要求也越来越高。研究表明,轮轴配合部位的应力状态对车轴的疲劳强度具有重要的影响,因此对轮对配合部位的宏观接触应力状态进行研究将有助于指导轮对制造标准的制定、高速重载轮对的设计和加工工艺的改进,以提高轮对的抗疲劳性能。 本文利用著名非线性有限元软件MARC,针对过盈配合的压力压装法和温差组装法对这类问题提出动态和静态两种仿真计算方法,并以铁道车辆某高速轮对的配合为例进行了计算,对比了两种计算方法的结果,分析了过盈量、摩擦系数、形状误差等因素对装配应力的影响。

轮轨接触力学

轮轨接触力学

轮轨接触动力学报告 —关于轮轨接触动力学的思考 年级:2013级 专业:载运工具应用工程 姓名:刘新龙 学号:13217021

关于轮轨接触动力学的思考 提高机车运行速度和加大牵引能力是当今世界铁路发展的趋势,而达到这 一目的就必须深入轮轨关系的理论研究,改善机车的粘着利用水平。轮轨关系则是机车车辆、轨道系统中最基本、最复杂的一个问题,是特殊的、典型的三维滚动摩擦接触问题。接触理论始于1882年, 由H. Hertz发表的经典论文《论弹性固体的接触》。他提出了椭圆接触面的假设, 把三维接触问题简化为弹性无限半空间问题。Hertz的研究成果为接触理论奠定了坚实的基础, 但Hertz理论仅局限于无摩擦表面及理想弹性固体, 对于轮轨这样复杂的三维滚动接触问题显然是不能准确求解的。 近几十年来,国内外在轮轨滚动接触问题的理论研究和实验研究方面都取 得了很大进展,但随着铁路技术的不断提高,使用解析解法解决轮轨关系问题的局限性也愈加突出。在高速和重载的要求下,轮轨的波磨问题、疲劳损伤问题变得更加严重,而这些问题的产生都与轮轨间作用力有着直接的关系。因此,在现有轮轨滚动接触理论的基础上,使用有限元方法以精确模拟轮轨的几何形状及 其相互接触关系,将是今后解决轮轨关系问题的主要途径。 不断增长的运输量, 要求铁路必须在保证安全的前提下, 增加货物列车的重量, 提高客运列车的速度和运行品质。因此, 新型机车车辆的设计、制造和线路的建设与维护, 都迫切需要预知轮轨之间的动力作用特性。而现在人类已经能够准确地模拟一个飞行体在宇宙空间的运动并进行精确控制, 但却不能精确摸拟铁路轮轨的相互作用。可见轮——轨关系及车辆——线路相互作用仍然是铁道车辆动力学的中心课题。机车车辆或者列车与铁道线路是一个整体系统, 在这个系统中, 它们相互关联, 相互作用。因此在研究机车车辆动力学性能时, 不能简单地视线路为外激干扰。换言之, 线路也并不存在独立于列车的激扰特性。引起系统产生振动和其它动力作用的是钢轨和车轮的滚动面上实际存在的不平顺和其它几何技术特性,当然还有列车中车辆与车辆之间, 机车与车辆之 间的相互作用。

ABAQUS有限元接触分析的基本概念

CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。世界上几大CAE公司各自以其独到的技术占领着相应的市场。ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域。ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。 《ABAQUS有限元分析常见问题解答》以问答的形式,详细介绍了使用ABAQUS 建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。 《ABAQUS有限元分析常见问题解答》一书由机械工业出版社出版。 16.1.1点对面离散与面对面离散 【常见问题16-1】 在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法(node-to-surface-dis-cre-tization)和面对面离散方法(surface-to-surfacediscretization),二者有何差别? 『解答』 在点对面离散方法中,从面(slavesurface)上的每个节点与该节点在主面(mastersurface)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点。 使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。 面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化。可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。 在如图16-l和图16-2所示的实例中,比较了两种情况。

橡胶密封圈三维接触问题的有限元分析

收稿日期:1999204213 ?结构分析? 橡胶密封圈三维接触问题的有限元分析 陈 宏 左正兴 廖日东 (北京理工大学,北京 100081) 摘 要 本文采用三维模型对橡胶密封圈进行了有限元分析,在讨论超弹性体材料接触 问题的前提下,研究了密封结构同轴度和橡胶圈安装扭曲对密封接触状态的影响.通过对 这些影响规律的分析,找出了造成密封失效的一些可能原因. 关键词 有限元法;橡胶圈;结构分析 1 引 言 O 形圈在安装和密封过程中的变形及应力可以采用轴对称网格模型进行有限元分析,通过数值分析能够得到结构参数对橡胶圈与沟槽接触及变形状况的影响规律,较之传统的经验设计方法具有很多优点[1].但是,二维轴对称有限元模型对于O 型圈在安装或密封中的一些非轴对称问题却无能为力,这些非轴对称问题包括扭曲问题和同轴度问题.本文采用三维有限元模型描述O 形橡胶圈与沟槽所构成的力学模型,分析研究了扭曲和同轴度对密封圈变形及受力影响,通过有限分析结果得出几点有参考意义的结论. 本文所分析的工程对象是12150柴油机油泵传动轴承密封结构,该结构的密封工况为静态密封.在实际产品中由于各种因素使得该密封经常失效,其中轴承与安装孔的同轴度和橡胶圈安装过程中的扭曲是造成严重泄漏的重要原因.通过采用本文的三维有限元分析方法,从数值上反映了这些因素对密封接触状态的影响. 2 有限元模型的建立 O 形圈密封结构三维有限元模型包括金属沟槽实体单元、橡胶结构实体单元和接触单元.在建立了几何模型之后,对实体单元进行网格划分,采用超弹性八节点六面体单元对O 形橡胶圈进行了映射式划分,其截面形态如图1所示,这样划分的结果能够保证截面单元具有良好的性态.根据产品生产单位提供的硅材料和试验数据,橡胶采用M ooney 2R ivlin 两项式应变能描述的超弹性材料,材料参数C 1为015516M Pa ,C 2为011739M Pa ,泊松比为01499. 采用线弹性八节点六面体单元对沟槽进行网格划分,单元材料为金属铝,材料弹性模量为71000M Pa ,泊松比为013.密封结构的三维有限元网格模型如图2所示. 对于不同的受力状况,O 形圈外表面任何一点都有可能与周围的密封沟槽发生接触,而接触单元的多少决定了计算规模的大小,因此需要根据具体问题建立接触单元.通过罚单元法求解接触问题时,划分接触单元必须要事先预计好可能发生接触的表面,划分单元时在适当 1999年第4期兵 工 学 报 坦克装甲车与发动机分册总第76期

基于ANSYS的齿轮接触应力有限元分析【文献综述】

毕业论文文献综述 机械设计制造及其自动化 基于ANSYS的齿轮接触应力有限元分析 一、研究现状及研究主要成果 1. 《基于ANSYS的渐开线啮合齿轮有限元分析》中指出:采用有限元软件ANSYS建立了啮合齿轮的有限元模型,利用ANSYS软件的非线性接触分析功能,对啮合齿轮的接触问题进行仿真,计算出接触应力,为齿轮的强度计算和设计在方法上提供了参考和依据。建立了渐开线圆柱啮合齿轮的三维有限元模型;研究了齿轮系统整体分析中接触对的建立、齿轮加载方式的选择;研究了齿轮副结构有限元分析方法。采用在圆柱面的节点上加切向力来代替力矩的加载方式,对齿轮面接触参数进行设置,并且得到了接触分析的最终结果,说明该有限元建模的方法是可行的,为将来齿轮系统动力学的研究奠定基础。 2.《基于ANSYS的多齿差摆线齿轮有限元分析》中指出:应用ANSYS分析软件对多齿差摆线齿轮进行建模,推导出不同啮合相位角摆线齿轮根部应力计算公式,计算了不同啮合相位角摆线齿轮根部应力,找出齿轮齿根过渡圆弧半径与齿根处最大应力的关系和摆线齿轮根部过渡圆弧半径对齿轮根部应力的影响。摆线齿轮在齿顶啮合时齿轮根部具有最大应力值,采用了过渡圆弧的摆线齿轮齿根危险截面处的最大应力值明显比未采用过渡圆弧的摆线齿轮低,危险截面处的最大应力值随着过渡圆弧半径的增大而减小,当圆弧半径较小时最大应力减小趋势较快,当圆弧半径逐渐增大时应力减小趋势逐渐变缓。 3.《齿轮接触有限元分析》指出:计算接触非线性问题有许多方法,例如罚函数法、拉格朗日乘子法等,其中罚函数法由于其经济和方便而得到广泛使用。过去使用点-点接触单元,求解接触问题,对于象齿轮类接触,模型构造很麻烦,计算结果精度和准确性很难保证。随着计算机和有限元法的发展,新的接触单元法产生精确的几何模型,自动划分网格,适应求解。通过接触仿真分析研究了通用接触单元在轮齿变形和接触应力计算中的应用。建立了一对齿轮接触仿真分析的模型,并使用新的接触单元法计算了轮齿变形和接触应力,与赫兹理论比较,同时也计算了摩擦力对接触应力的影响。计算分析了单元离散、几何、边界范围与加载或约束处理方式的误差,建立了一个计算轮齿变形和接触应力的标准,说明了新的接触单元法的精确性、有效性和可靠性。 4.《渐开线直齿圆柱齿轮有限元仿真分析》中指出:ANSYS软件对齿轮变形和齿根应

ABAQUS有限元接触分析的基本概念

ABAQUS有限元接触分析的基本概念 来源:机械工业出版社《ABAQUS有限元分析常见问题解答》 CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。世界上几大CAE公司各自以其独到的技术占领着相应的市场。ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域。ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。 《ABAQUS有限元分析常见问题解答》以问答的形式,详细介绍了使用ABAQUS建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。 《ABAQUS有限元分析常见问题解答》一书由机械工业出版社出版。 16.1.1 点对面离散与面对面离散 【常见问题16-1】 在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法(node-to-surface-dis- cre-tization)和面对面离散方法(surface-to-surface discretization),二者有何差别? 『解答』 在点对面离散方法中,从面(slave surface)上的每个节点与该节点在主面(master surface)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点。 使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。 面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化。可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。 在如图16-l和图16-2所示的实例中,比较了两种情况。

齿轮接触有限元分析_杨生华

第20卷第2期2003年4月  计算力学学报  C hinese Journal of Computational Mechanics V ol.20,N o.2April 2003 文章编号:1007-4708(2003)02-0189-06 齿轮接触有限元分析 杨生华 (煤炭科学研究总院上海分院,上海200030) 摘 要:通过接触仿真分析研究了通用接触单元在轮齿变形和接触应力计算中的应用。建立了一对齿轮接触仿真分析的模型,并使用新的接触单元法计算了轮齿变形和接触应力,与赫兹理论比较,同时也计算了摩擦力对接触应力的影响。计算分析了单元离散、几何、边界范围与加载或约束处理方式的误差,建立了一个计算轮齿变形和接触应力的标准,说明了新的接触单元法的精确性、有效性和可靠性。关键词:接触单元;轮齿变形;接触应力;计算标准;仿真分析中图分类号:T P 391 文献标识码:A 收稿日期:2001-04-28;修改稿收到日期:2002-06-24. 基金项目:上海自然科学基金资助项目. 作者简介:杨生华(1963-),男,硕士生,工程师. 1 引 言 计算接触非线性问题有许多方法,例如罚函数法、拉格朗日乘子法等,其中罚函数法由于其经济和方便而得到广泛使用。过去使用点-点接触单元,求解接触问题,对于象齿轮类接触,模型构造很麻烦,计算结果精度和准确性很难保证。随着计算机和有限元法的发展,新的接触单元法产生精确的几何模型,自动划分网格,自适应求解。新的单元计算精度更高,更有效,功能更强大。其中接触单元能非常有效地求解接触非线性问题,新的通用接触单元(包括点-面和面-面单元)特别适合于计算齿轮接触问题。在微机上能实现齿轮接触仿真分析,大大地促进了齿轮C AE 的形成和发展。 轮齿变形的有限元分析20世纪70年代已开始,但仅仅计算挠曲变形。接触变形和接触应力的有限元分析在20世纪90年代才真正开始。总之,过去的计算是基于试验的计算方法,计算方法是简化的、近似的,不够精确更不够可靠;没有使用有限元法研究轮齿接触变形和应力,并说明与赫兹变形和应力之间的差别,没有分析计算误差,没有考虑齿轮本体变形对轮齿变形的影响,没有计算摩擦力对接触应力的影响。 文中使用AN SYS 大型通用有限元分析软件,在个人计算机上建立齿轮接触仿真分析模型。通过两圆柱赫兹接触变形和应力验证其有效性和精度,分析计算了一对直齿轮的轮齿变形和接触应力,说 明了新的接触单元法的精确性、有效性和可靠性。建立了一个计算轮齿变形和接触应力的标准或基准,给力学研究和机械设计人员一个参考。 2 通用接触单元的赫兹计算 为了检验通用接触单元的有效性和精确性,赫兹计算验证是必要的。两无限长圆柱有限元计算网格模型如图1所示。结构单元是具有附加形状函数的四节点等参单元(一次单元)。图中接触处网格边长为二十分之一接触半宽,该模型节点为7444,单元为7280(其中接触单元为80个点-面单元)。计算参数和结果如表1所示,理论结果按公式(1)-(4)计算[1]。计算结果表明:有限元计算结果和理论计算结果一致,两圆柱变形计算误差仅分别为0.08%和0.045%。注意到公式(2)、(4)是按赫兹接触半无限空间推导的公式,因而是理论近似的(变形误差为 1.7%、0.6%,应力误差为0.6%、0.4%),在接触点不远处一点的变形和应力与有限元计算结果基本一致,有限元计算结果略大于公式(2)和(4)与理论一致[1]。

橡胶接触的有限元分析

圆球与橡胶垫接触的有限元分析 一、问题描述 分别模拟钢球以及橡胶球在以=0.95F N 的垂向载荷挤压硅橡胶(PDMS )垫时的变形情况。钢球直径1=12.7mm Φ,硅橡胶圆盘直径2=50mm Φ,厚度d=5mm . 已知硅橡胶杨氏模量 1.0363E MPa =,泊松比0.499σ=,为超弹性材料。分别模拟小球为刚性材料和为橡胶材料时两种情况下硅橡胶垫的变形情况。 二、有限元分析 由于橡胶本构关系的非线性化,以及橡胶制品在应用时的大变形、接触非线性边界条件使其工程模拟变的非常困难。模拟的准确性与采用的本构关系模型以及模型中材料常数测试的准确性有密切关系。本次分析以橡胶中常用的Mooney-Rivlin 材料作为橡胶的本构模型。 1、 材料参数的确定 Mooney-Rivlin 模型的基本理论不赘述,通过查阅相关文献得知Mooney-Rivlin 模型中材料常数与材料弹性模量有如下关系: 10016()E C C =+ 并且有经验公式: 01100.25C C = 可以计算Mooney-Rivlin 模型中材料常数 1001138173,34543C C ==,用于有限元分析 中定义材料。 2、 钢球与硅橡胶盘接触 由于钢球与硅橡胶接触时钢球变形可以忽略,可以把钢球看做刚体(Rigid body ),建有限元模型如下:

图1 刚性球接触时的有限元模型分析结果如下: 图2 刚性球接触时圆盘变形云图 最大变形为图中红色部分,为 4 2.82100.282 y m mm - ?=?= 3、橡胶球与硅橡胶圆盘接触 将球划分网格,并定义为可变性体(Deformable body)有限元模型如下:

基于ANSYS与ABAQUS的赫兹接触问题有限元分析对比

基于ANSYS与ABAQUS的赫兹接触问题 有限元分析对比 郭波 [长春设备工艺研究所,长春130012] [ 摘要] 分别应用ANSYS软件与ABAQUS软件求解某精密部件的赫兹接触问题,并通过实验结果验证有限元分析结果的计算精度,结果显示ANSYS软件在求解精密部件的赫兹接触问题方面具 有较高的求解精度。 [ 关键词]ANSYS,ABAQUS,赫兹接触,有限元 Finite element analysis of Hertz contact problem based on ANSYS and ABAQUS GUO Bo [Changchun Equipment &Technology Research Institute , Changchun 130012] [ Abstract ] Solve Hertz contact problem both using ANSYS and ABAQUS, then verificate the computational accuracy of the Finite element analysis. The result shows, it has higher calculation precision in terms of Hertz contact problem of ANSYS in solving precision components. [ Keyword ] ANSYS,ABAQUS, Hertz contact, Finite element analysis 1前言 接触分析能够解决典型的状态非线性问题,在工程中应用广泛。由于传统的赫兹接触理论是在许多假设的前提下推导的近似解,而且在许多场合这些假设的前提是不成立的,因此运用赫兹理论来解决接触问题存在一定的局限性。近年来,随着计算机技术的普及,各种商用有限元分析软件逐步发展,有限元方法已成为应用广泛并且实用高效的求解接触问题的数值分析方法。ANSYS软件和ABAQUS软件是工程中应用最广泛的商用有限元分析软件。ANSYS软件是融合结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。ABAQUS 是一套功能强大的工程模拟的有限元软件,其解决问题的范围从相对

相关主题
文本预览
相关文档 最新文档