当前位置:文档之家› (完整版)高考一轮专题_牛顿运动定律[有答案及解析]

(完整版)高考一轮专题_牛顿运动定律[有答案及解析]

(完整版)高考一轮专题_牛顿运动定律[有答案及解析]
(完整版)高考一轮专题_牛顿运动定律[有答案及解析]

专题:牛顿运动定律

考点一对牛顿第一定律的理解

1.指出了物体的一种固有属性

牛顿第一定律揭示了物体所具有的一个固有属性——惯性,即物体总保持原有运动状态不变的一种性质.2.揭示了力的本质

牛顿第一定律明确了力是改变物体运动状态的原因,而不是维持物体运动的原因,物体的运动不需要力来维持.

3.揭示了不受力作用时物体的运动状态

牛顿第一定律描述的只是一种理想状态,而实际中不受力作用的物体是不存在的,当物体受外力作用但所受合力为零时,其运动效果跟不受外力作用时相同,物体将保持静止或匀速直线运动状态.1.关于惯性,下列说法中正确的是( )

A.磁悬浮列车能高速行驶是因为列车浮起后惯性小了

B.卫星内的仪器由于完全失重惯性消失了

C.铁饼运动员在掷出铁饼前快速旋转可增大铁饼的惯性,使铁饼飞得更远

D.月球上物体的重力只有在地球上的1/6,但是惯性没有变化

2.(多选)伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础.早期物理学家关于惯性有下列说法,其中正确的是( )

A.物体抵抗运动状态变化的性质是惯性

B.没有力的作用,物体只能处于静止状态

C.行星在圆周轨道上保持匀速率运动的性质是惯性

D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动

考点二对牛顿第三定律的理解

1.作用力与反作用力的“三同、三异、三无关”

2.应用牛顿第三定律时应注意的问题

(1)定律中的“总是”二字说明对于任何物体,在任何条件下牛顿第三定律都是成立的.

(2)牛顿第三定律说明了作用力和反作用力中,若一个产生或消失,则另一个必然同时产生或消失.

(3)作用力、反作用力不同于平衡力

1.(多选)关于牛顿第三定律,下列说法正确的是( )

A.对重力、弹力、摩擦力等都适用

B.当相互作用的两个物体相距很远时不适用

C.当相互作用的两个物体做加速运动时不适用

D.相互作用的两个物体没有直接接触时也适用

2.(2017·吉林实验中学二模)两人的拔河比赛正在进行中,两人均保持恒定拉力且不松手,而脚下开始移动.下列说法正确的是( )

A.两人对绳的拉力大小相等、方向相反,是一对作用力和反作用力

B.两人对绳的拉力是一对平衡力

C.拔河的胜利与否取决于谁的力量大

D.拔河的胜利与否取决于地面对人的摩擦力大小

3.如图所示,甲、乙两人在冰面上“拔河”,两人中间位置处有一分界线,约定先使对方过分界线者为赢.若绳子质量不计,冰面可看成光滑,则下列说法正确的是( )

A.甲对绳的拉力与绳对甲的拉力是一对平衡力

B.甲对绳的拉力与乙对绳的拉力是作用力与反作用力

C.若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利

D.若乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利

考点三牛顿第二定律瞬时性的理解

1.两种模型:

牛顿第二定律F=ma,其核心是加速度与合外力的瞬时对应关系,两者总是同时产生,同时消失、同时变化,具体可简化为以下两种模型:

2.求解瞬时加速度的一般思路

分析瞬时变化前、后物体的受力情况?列牛顿第二定律方程?求瞬时加速度

1.(2017·山东大学附中检测)如图所示,A、B两小球分别连在轻线两端,B球另一端与弹簧相连,弹簧固定在倾角为30°的光滑斜面顶端.A、B两小球的质量分别为m A、m B,重力加速度为g,若不计弹簧质量,在线被剪断瞬间,A、B两球的加速度大小分别为( )

A.都等于g

2B.

g

2

和0 C.

g

2

m A

m B

·

g

2

D.

m A

m B

·

g

2

g

2

2.如图所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为( )

A.0 B. 23

3

g C.g D.

3

3

g

3.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,物块2、4质量为M,两个系统均置于水平放置的光滑木板上.并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4.重力加速度大小为g,则有( )

A.a1=a2=a3=a4=0 B.a1=a2=a3=a4=g

C.a1=a2=g,a3=0,a4=m+M

M

g D.a1=g,a2=

m+M

M

g,a3=0,a4=

m+M

M

g

4.如图所示,在光滑水平面上,A、B两物体用轻弹簧连接在一起,A、B的质量分别为m1、m2,在拉力F作用下,A、B共同做匀加速直线运动,加速度大小为a,某时刻突然撤去拉力F,此瞬间A和B的加速度大小分别为a1、a2,则( )

A.a1=0,a2=0 B.a1=a,a2=

m2

m1+m2

a

C .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2a

D .a 1=a ,a 2=m 1

m 2

a

考点四 动力学的两类基本问题

1.求解两类问题的思路,可用下面的框图来表示:

2.分析解决这两类问题的关键:应抓住受力情况和运动情况之间联系的桥梁——加速度. 考向1:由受力情况求运动情况

1、如图所示,工人用绳索拉铸件,铸件的质量是20 kg ,铸件与地面间的动摩擦因数是0.25.工人用80 N 的力拉动铸件,从静止开始在水平面上前进,绳与水平方向的夹角为α=37°并保持不变,经4 s 后松手.(g =10 m/s 2)求:

(1)松手前铸件的加速度; (2)松手后铸件还能前进的距离.

考向2:由运动情况求受力情况

2.一质量为m =2 kg 的滑块能在倾角为θ=30°的足够长的斜面上以a =2.5 m/s 2匀加速下滑.如右图所示,若用一水平向右的恒力F 作用于滑块,使之由静止开始在t =2 s 内能沿斜面运动位移x =4 m .求:(g 取10 m/s 2)

(1)滑块和斜面之间的动摩擦因数μ; (2)恒力F 的大小.

3.如图所示,倾角为30°的光滑斜面与粗糙的水平面平滑连接.现将一滑块(可视为质点)从斜面上A点由静止释放,最终停在水平面上的C点.已知A点距水平面的高度h=0.8 m,B点距C点的距离L =2.0 m(滑块经过B点时没有能量损失,g取10 m/s2),求:

(1)滑块在运动过程中的最大速度;

(2)滑块与水平面间的动摩擦因数μ;

(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.

考点五超重和失重问题

1.不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变.

2.在完全失重的状态下,一切由重力产生的物理现象都会完全消失.

3.尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.

4.尽管整体没有竖直方向的加速度,但只要物体的一部分具有竖直方向的分加速度,整体也会出现超重或失重状态.

1.(2017·福建莆田模拟)关于超重和失重现象,下列描述中正确的是( )

A.电梯正在减速上升,在电梯中的乘客处于超重状态

B.磁悬浮列车在水平轨道上加速行驶时,列车上的乘客处于超重状态

C.荡秋千时秋千摆到最低位置时,人处于失重状态

D.“神舟”飞船在绕地球做圆轨道运行时,飞船内的宇航员处于完全失重状态

考点六连接体问题

1.处理连接体问题常用的方法为整体法和隔离法.

2.涉及隔离法与整体法的具体问题类型

(1)涉及滑轮的问题

若要求绳的拉力,一般都必须采用隔离法.例如,如图所示,绳跨过定滑轮连接的两物体虽然加速度大小相同,但方向不同,故采用隔离法.

(2)水平面上的连接体问题

①这类问题一般多是连接体(系统)各物体保持相对静止,即具有相同的加速度.解题时,一般采用先整体、后隔离的方法.

②建立坐标系时也要考虑矢量正交分解越少越好的原则,或者正交分解力,或者正交分解加速度. (3)斜面体与上面物体组成的连接体的问题

当物体具有沿斜面方向的加速度,而斜面体相对于地面静止时,解题时一般采用隔离法分析. 3.解题思路

(1)分析所研究的问题适合应用整体法还是隔离法.

①处理连接体问题时,整体法与隔离法往往交叉使用,一般的思路是先用整体法求加速度,再用隔离法求物体间的作用力;

②对于加速度大小相同,方向不同的连接体,应采用隔离法进行分析.

(2)对整体或隔离体进行受力分析,应用牛顿第二定律确定整体或隔离体的加速度. (3)结合运动学方程解答所求解的未知物理量.

1、如图所示,物块A 和B 的质量分别为4m 和m ,开始A 、B 均静止,细绳拉直,在竖直向上拉力F =6mg 作用下,动滑轮竖直向上加速运动.已知动滑轮质量忽略不计,动滑轮半径很小,不考虑绳与滑轮之间的摩擦,细绳足够长,在滑轮向上运动过程中,物块A 和B 的加速度分别为( )

A .a A =12g ,a

B =5g B .a A =a B =15g

C .a A =1

4

g ,a B =3g D .a A =0,a B =2g

考点七 动力学中的图象问题

1.常见的图象有

v -t 图象,a -t 图象,F -t 图象,F -a 图象等. 2.图象间的联系

加速度是联系v -t 图象与F -t 图象的桥梁.

3.图象的应用

(1)已知物体在一过程中所受的某个力随时间变化的图线,要求分析物体的运动情况.

(2)已知物体在一运动过程中速度、加速度随时间变化的图线,要求分析物体的受力情况.

(3)通过图象对物体的受力与运动情况进行分析.

4.解答图象问题的策略

(1)弄清图象坐标轴、斜率、截距、交点、拐点、面积的物理意义.

(2)应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”、“图象与物体”间的关系,以便对有关物理问题作出准确判断.

1.(多选)如图(a),一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图(b)所示.若重力加速度及图中的v0、v1、t1均为已知量,则可求出( )

A.斜面的倾角

B.物块的质量

C.物块与斜面间的动摩擦因数

D.物块沿斜面向上滑行的最大高度

2.(2017·广东佛山二模)广州塔,昵称小蛮腰,总高度达600 m,游客乘坐观光电梯大约一分钟就可以到达观光平台.若电梯简化成只受重力与绳索拉力,已知电梯在t=0时由静止开始上升,a-t图象如图所示.则下列相关说法正确的是( )

A.t=4.5 s时,电梯处于失重状态B.5~55 s时间内,绳索拉力最小

C.t=59.5 s时,电梯处于超重状态D.t=60 s时,电梯速度恰好为零

3.(多选)将一个质量为1 kg的小球竖直向上抛出,最终落回抛出点,运动过程中所受阻力大小恒定,方向与运动方向相反.该过程的v-t图象如图所示,g取10 m/s2.下列说法中正确的是( )

A.小球所受重力和阻力大小之比为5∶1

B.小球上升过程与下落过程所用时间之比为2∶3

C.小球落回到抛出点时的速度大小为8 6 m/s

D.小球下落过程中,受到向上的空气阻力,处于超重状态

4.如图甲所示,某人通过动滑轮将质量为m的货物提升到一定高处,动滑轮的质量和摩擦均不计,货物获得的加速度a与竖直向上的拉力F T之间的函数关系如图乙所示.则下列判断正确的是( )

A.图线与纵轴的交点的绝对值为g B.图线的斜率在数值上等于物体的质量m

C.图线与横轴的交点N的值F TN=mg D.图线的斜率在数值上等于物体质量的倒数1

m

考点八“板—块”模型

1.模型特点

上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.

2.两种位移关系

滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.

3.解题方法

整体法、隔离法.

4.解题思路

(1)分析滑块和滑板的受力情况,根据牛顿第二定律分别求出滑块和滑板的加速度.

(2)对滑块和滑板进行运动情况分析,找出滑块和滑板之间的位移关系或速度关系,建立方程.特别注意滑块和滑板的位移都是相对地的位移.

1.(2017·安徽芜湖模拟)质量为m0=20 kg、长为L=5 m的木板放在水平面上,木板与水平面的动摩擦因数为μ1=0.15.将质量m=10 kg 的小木块(可视为质点),以v0=4 m/s的速度从木板的左端被

水平抛射到木板上(如图所示),小木块与木板面的动摩擦因数为μ2=0.4(最大静摩擦力等于滑动摩擦力,g =10 m/s2).则下列判断中正确的是( )

A.木板一定静止不动,小木块不能滑出木板

B.木板一定静止不动,小木块能滑出木板

C.木板一定向右滑动,小木块不能滑出木板

D.木板一定向右滑动,小木块能滑出木板

2. (2017·山东德州质检)长为L=1.5 m的长木板B静止放在水平冰面上,小物块A以某一初速度v0从木板B的左端滑上长木板B,直到A、B的速度达到相同,此时A、B的速度为v=0.4 m/s,然后A、B又一起在水平冰面上滑行了s=8.0 cm后停下.若小物块A可视为质点,它与长木板B的质量相同,A、B间的动摩擦因数μ1=0.25,取g=10 m/s2.求:

(1)木板与冰面的动摩擦因数μ2;

(2)小物块A的初速度v0;

(3)为了保证小物块不从木板的右端滑落,小物块滑上木板的最大初速度v0m应为多少?

考点九水平传送带问题

滑块在水平传送带上运动常见的三个情景

项目图示滑块可能的运动情况

情景一

(1)可能一直加速

(2)可能先加速后匀速

情景二

(1)v0>v时,可能一直减速,

也可能先减速再匀速

(2)v0

也可能先加速再匀速

情景三

(1)传送带较短时,滑块一直

减速到达左端

(2)传送带较长时,滑块还要

被传送带传回右端.其中

v0>v返回时速度为v,当v0

返回时速度为v0

12

的光滑水平地面上的A处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t 图象(以地面为参考系)如图乙所示.已知v2>v1,则( )

A.t2时刻,小物块离A处的距离达到最大

B.t2时刻,小物块相对传送带滑动的距离最大

C.0~t2时间内,小物块受到的摩擦力方向先向右后向左

D.0~t3时间内,小物块始终受到大小不变的摩擦力作用

2.(多选)如图所示是某工厂所采用的小型生产流水线示意图,机器生产出的物体源源不断地从出口处以水平速度v0滑向一粗糙的水平传送带,最后从传送带上落下装箱打包.假设传送带静止不动时,物体滑到传送带右端的速度为v,最后物体落在P处的箱包中.下列说法正确的是( )

A.若传送带随皮带轮顺时针方向转动起来,且传送带速度小于v,物体仍落在P点

B.若传送带随皮带轮顺时针方向转动起来,且传送带速度大于v0,物体仍落在P点

C.若传送带随皮带轮顺时针方向转动起来,且传送带速度大于v,物体仍落在P点

D.若由于操作不慎,传送带随皮带轮逆时针方向转动起来,物体仍落在P点

3、如图所示,足够长的水平传送带,以初速度v0=6 m/s顺时针转动.现在传送带左侧轻轻放上质量m=1 kg的小滑块,与此同时,启动传送带制动装置,使得传送带以恒定加速度a=4 m/s2减速直至停止;已知滑块与传送带间的动摩擦因数μ=0.2,滑块可以看成质点,且不会影响传送带的运动,g=10 m/s2.试求:

(1)滑块与传送带共速时,滑块相对传送带的位移;

(2)滑块在传送带上运动的总时间t.

考点十倾斜传送带问题滑块在倾斜传送带上运动常见的四个情景

项目图示滑块可能的运动情况

情景一①可能一直加速

②可能先加速后匀速

情景二①可能一直加速

②可能先加速后匀速

③可能先以a1加速后以a2加速

情景三①可能一直加速

②可能先加速后匀速

③可能一直匀速

④可能先以a1加速后以a2加速

情景四①可能一直加速

②可能一直匀速

③可能先减速后反向加速

1、如图所示,倾角为37°,长为l=16 m的传送带,转动速度为v=10 m/s,在传送带顶端A处无初速度的释放一个质量为m=0.5 kg的物体,已知物体与传送带间的动摩擦因数μ=0.5,g取10 m/s2.求:(sin 37°=0.6,cos 37°=0.8)

(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;

(2)传送带逆时针转动时,物体从顶端A滑到底端B的时间.

2.如图所示为上、下两端相距L=5 m、倾角α=30°、始终以v=3 m/s的速率顺时针转动的传送带(传送带始终绷紧).将一物体放在传送带的上端由静止释放滑下,经过t=2 s到达下端,重力加速度g取10 m/s2,求:

(1)传送带与物体间的动摩擦因数多大?

(2)如果将传送带逆时针转动,速率至少多大时,物体从传送带上端由静止释放能最快地到达下端?

3.(多选)如图所示,三角形传送带以1 m/s的速度逆时针匀速转动,两边的传送带长都是2 m,且与水平方向的夹角均为30°.现有两质量相同的小物块A、B从传送带顶端都以1 m/s的初速度沿传送带下滑,物块与传送带间的动摩擦因数均为0.6,下列说法正确的是( )

A.下滑相同距离内物块A、B机械能的变化一定不相同

B.下滑相同时间内物块A、B机械能的变化一定相同

C.物块A、B一定不能同时到达传送带底端

D.物块A、B在传送带上的划痕长度相同

专题:牛顿运动定律 答案

1、解析:选D.惯性只与质量有关,与速度无关,A 、C 错误;失重或重力加速度发生变化时,物体质量不变,惯性不变,所以B 错误、D 正确.

2、解析:选AD.物体保持原来匀速直线运动状态或静止状态的性质叫惯性,即物体抵抗运动状态变化的性质,A 正确.没有力的作用,物体也可能保持匀速直线运动状态,B 错误,D 正确.行星在圆周轨道上保持匀速率运动而不是匀速直线运动,所以不能称为惯性,C 错误.

1、解析:选AD.对于牛顿第三定律,适用于重力、弹力、摩擦力等所有的力,而且不管相互作用的两物体的质量如何、运动状态怎样、是否相互接触都适用,例如,地球吸引地球表面上的石块,石块同样以相同大小的力吸引地球,且不管接触不接触,都互相吸引,所以B 、C 错误,A 、D 正确.

2、解析:选D.人拉绳的力与绳拉人的力是一对作用力与反作用力,大小相等,选项A 错误;两人对绳的拉力不一定是一对平衡力,要根据绳子所处的运动状态进行判断,选项B 错误;拔河的胜利与否取决于地面对人的摩擦力大小,选项D 正确,C 错误.

3、解析:选C.甲对绳的拉力与绳对甲的拉力是一对作用力与反作用力,故选项A 错误;甲对绳的拉力与乙对绳的拉力作用在同一物体上,不是作用力与反作用力,故选项B 错误;设绳子的张力为F ,则甲、

乙两人受到绳子的拉力大小相等,均为F ,若m 甲>m 乙,则由a =F m 得,a 甲

at 2

得,在相

等时间内甲的位移小,因开始时甲、乙距分界线的距离相等,则乙会过分界线,所以甲能赢得“拔河”比赛的胜利,故选项C 正确;收绳速度与“拔河”比赛胜负无关,故选项D 错误.

1、解析:选C.由整体法知,F 弹=(m A +m B )g sin 30° 剪断线瞬间,弹力瞬间不发生变化,由牛顿第二定律可得:

对B :F 弹-m B g sin 30°=m B a B ,得a B =m A m B ·g

2

对A :m A g sin 30°=m A a A ,得a A =1

2g

所以C 正确.

2、解析:选B.开始小球处于平衡态,受重力mg 、支持力F N 、弹簧拉力F 三个力作用,受力分析如图所示,由平衡条件可得F N =mg cos 30°+F sin 30°,F cos 30°=mg sin 30°,解得F N =23

3mg ,

重力mg 、弹簧拉力F 的合力的大小等于支持力F N ,当木板AB 突然向下撤离的瞬间,小球受力不再平衡,此时的合力与F N 等大反向,由牛顿第二定律得此时小球的加速度大小为233

g ,B 正确.

3、解析:选C.在抽出木板的瞬时,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a 1=a 2=g :而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对物块3向上的弹力大小和对物块4向下的弹力大小仍为mg ,因此物块3满足mg =F ,a 3=0;由牛顿第二定律得物块4满足a 4=

F +Mg M =M +m

M

g ,所以C 对. 4、解析:选D.撤去拉力F 前,设弹簧的劲度系数为k 、形变量为x ,对A 由牛顿第二定律得kx =m 1a ;撤去拉力F 瞬间,弹簧的形变量保持不变,对A 由牛顿第二定律得kx =m 1a 1,对B 由牛顿第二定律kx =m 2a 2,解得a 1=a ,a 2=m 1

m 2

a ,D 正确.

1、解析 (1)松手前,对铸件由牛顿第二定律得 a =Fcos 37°-μmg -Fsin 37°m =1.3 m/s 2

(2)松手时铸件的速度v =at =5.2 m/s 松手后的加速度大小a′=

μmg

m

=μg=2.5 m/s 2 则松手后铸件还能滑行的距离x =v 2

2a′=5.4 m

答案 (1)1.3 m/s 2 (2)5.4 m

2、解析:(1)以物块为研究对象受力分析如图甲所示,根据牛顿第二定律可得:

mgsin 30°-μmgcos 30°=ma 解得:μ=

36

. (2)使滑块沿斜面做匀加速直线运动,有加速度向上和向下两种可能.当加速度沿斜面向上时,受力分析如图乙所示,Fcos 30°-mgsin 30°-μ(Fsin 30°+mgcos 30°)=ma 1,根据题意可得a 1=2 m/s 2,

代入数据得:F =763

N

当加速度沿斜面向下时(如图丙):

mgsin 30°-Fcos 30°-μ(Fsin 30°+mgcos 30°)=ma 1 代入数据得:F =43

7

N.

答案:(1)

36 (2)7635 N 或437

N 3、解析:(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B 点时速度最大为v m ,设滑块在斜面上运动的加速度大小为a 1,由牛顿第二定律得:mgsin 30°=ma 1

v 2m

=2a 1h

s in 30°

,解得v m =4 m/s.

(2)滑块在水平面上运动的加速度大小为a 2,由牛顿第二定律得:μmg=ma 2 v 2m =2a 2L ,解得μ=0.4.

(3)滑块在斜面上运动的时间为t 1,有v m =a 1t 1,解得 t 1=

v m

a 1

=0.8 s 由于t >t 1,故滑块已经经过B 点,做匀减速运动的时间为t -t 1=0.2 s 设t =1.0 s 时速度大小为v ,有 v =v m -a 2(t -t 1),解得v =3.2 m/s. 答案:(1)4 m/s (2)0.4 (3)3.2 m/s

1、解析:选D.物体是否超重或失重取决于加速度方向,当加速度向上时物体处于超重状态,当加速度向下时物体处于失重状态,当加速度向下且大小等于重力加速度时物体处于完全失重状态.电梯正在减速上升,加速度向下,乘客失重,选项A 错误;列车加速时加速度水平向前,乘客既不超重也不失重,选项B 错误;荡秋千到最低位置时加速度向上,人处于超重状态,选项C 错误;飞船绕地球做匀速圆周运动时,其加速度等于飞船所在位置的重力加速度,宇航员处于完全失重状态,选项D 正确.

1、解析 对滑轮由牛顿第二定律得F -2F T =m′a,又滑轮质量m′忽略不计,故m′=0,所以F T =F 2=6mg 2=3mg ,对A 由于F T <4mg ,故A 静止,a A =0,对B 有a B =F T -mg m =3mg -mg m

=2g ,

故D 正确.

答案 D

1、解析:选ACD.由题图(b)可以求出物块上升过程中的加速度为a 1=v 0

t 1

,下降过程中的加速度为a 2

=v 1

t 1.物块在上升和下降过程中,由牛顿第二定律得mgsin θ+f =ma 1,mgsin θ-f =ma 2,由以上各式可求得sin θ=v 0+v 12t 1g ,滑动摩擦力f =m v 0-v 1

2t 1,而f =μF N =μmgcos θ,由以上分析可知,选项A 、

C 正确.由v -t 图象中横轴上方的面积可求出物块沿斜面上滑的最大距离,可以求出物块沿斜面向上滑行的最大高度,选项

D 正确.

2、解析:选D.利用a-t 图象可判断:t =4.5 s 时,电梯有向上的加速度,电梯处于超重状态,则A 错误;0~5 s 时间内,电梯处于超重状态,拉力>重力,5 s ~55 s 时间内,电梯处于匀速上升过程,拉力=重力,55 s ~60 s 时间内,电梯处于失重状态,拉力<重力,综上所述,B 、C 错误;因a-t 图线与t 轴所围的“面积”代表速度改变量,而图中横轴上方的“面积”与横轴下方的“面积”相等,则电梯的速度在t =60 s 时为零,D 正确.

3、解析:选AC.上升过程中mg +F f =ma 1,代入a 1=12 m/s 2,解得F f =2 N ,小球所受重力和阻力之比为5∶1,选项A 正确;下落过程中mg -F f =ma 2,可得a 2=8 m/s 2,根据h =12at 2可得t 1

t 2=

a 2

a 1

2

3

,选项B 错误;根据v =a 2t 2,t 2= 6 s 可得v =8 6 m/s ,选项C 正确;小球下落过程中,加速度方向竖直向下,小球处于失重状态,选项D 错误.

4、解析:选A.由牛顿第二定律可得:2F T -mg =ma ,则有a =2

m F T -g ,由a -F T 图象可判断,纵

轴截距的绝对值为g ,图线的斜率在数值上等于2

m ,则A 正确,B 、D 错误,横轴截距代表a =0时,F TN

mg

2

,C 错误. 1、解析:选A.木板与地面间的摩擦力为F f1=μ1(m 0+m)g =0.15×(20+10)×10 N=45 N ,小木块与木板之间的摩擦力为F f2=μ2mg =0.4×10×10 N=40 N ,F f1>F f2,所以木板一定静止不动;设小木块在木板上滑行的距离为x ,v 20=2μ2gx ,解得x =2 m

2、解析 (1)小物块和木板一起运动时,受冰面的滑动摩擦力,做匀减速运动,则加速度 a =v 2

2s

=1.0 m/s 2

由牛顿第二定律得μ2mg =ma 解得μ2=0.10.

(2)小物块相对木板滑动时受木板对它的滑动摩擦力,做匀减速运动,其加速度 a 1=μ1g =2.5 m/s 2

小物块在木板上滑动,木板受小物块的滑动摩擦力和冰面的滑动摩擦力,做匀加速运动,则有 μ1mg -μ2(2m)g =ma 2 解得a 2=0.50 m/s 2.

设小物块滑上木板经时间t 后小物块、木板的速度相同为v ,则 对于木板v =a 2t 解得t =v

a 2

=0.8 s

小物块滑上木板的初速度v 0=v +a 1t =2.4 m/s.

(3)小物块滑上木板的初速度越大,它在木板上相对木板滑动的距离越大,当滑动距离等于木板长时,小物块到达木板B 的最右端,两者的速度相等(设为v′),这种情况下小物块的初速度为保证其不从木板上滑落的最大初速度v 0m ,则

v 0m t -12a 1t 2-1

2a 2t 2=L

v 0m -v′=a 1t v′=a 2t

由以上三式解得v 0m =3.0 m/s.

答案 (1)0.10 (2)2.4 m/s (3)3.0 m/s

1、解析:选B.物块滑上传送带后将做匀减速运动,t 1时刻速度为零,此时小物块离A 处的距离达到最大,选项A 错误;然后在传送带滑动摩擦力的作用下向右做匀加速运动,t 2时刻与传送带达到共同速度,此时小物块相对传送带滑动的距离最大,选项B 正确;0~t 2时间内,小物块受到的摩擦力方向始终向右,选项C 错误;t 2~t 3时间内小物块不受摩擦力,选项D 错误.

2、解析:选AD.若传送带静止,物体滑到传送带右端的过程中,物体一直减速,其加速度a =μg,v 2-v 20=2aL ,当传送带顺时针转且速度小于v 时,物体仍一直减速,到达传送带右端速度仍为v ,因而物体仍落在P 点,A 正确;当传送带顺时针转且速度大于v 0时,物体应先加速,因而到达右端时速度一定大于v ,应落在P 点右侧,B 错误;当传送带顺时针转且速度大于v 时,物体在传送带上应先减速,当速度达到传送带速度时便和传送带一起匀速运动,到达右端时速度大于v ,应落在P 点右侧,C 错误;当传送带逆时针转时,物体一直减速,到达右端时速度为v ,仍落在P 点,D 正确.

2、答案 (1)3 m (2)2 s

解析 (1)对滑块,由牛顿第二定律可得: μmg =ma 1,得:a 1=2 m/s 2

设经过t 1滑块与传送带共速v ,有: v =v 0-at 1 v =a 1t 1,解得:v =2 m/s ,t 1=1 s 滑块位移为x 1=v t 1

2=1 m

传送带位移为x 2=(v 0+v )t 1

2

=4 m

故滑块相对传送带的位移Δx =x 2-x 1=3 m

(2)共速之后,设滑块与传送带一起减速,则滑块与传送带间的静摩擦力为F f ,有: F f =ma =4 N>μmg =2 N ,故滑块与传送带相对滑动. 滑块做减速运动,加速度仍为a 1. 滑块减速时间为t 2,有:t 2=0-v

-a 1=1 s ,

故:t =t 1+t 2=2 s. 3、答案 AC

解析 因为mg sin 30°=12mg <μmg cos 30°=33

10mg ,所以A 做匀速直线运动,B 做匀减速直线运动,下滑相

同距离内摩擦力做功不同,物块A 、B 机械能的变化一定不相同,A 正确,B 错误;如果都能到达底端,则位移相同,一个匀速运动,一个匀减速运动,所以物块A 、B 一定不能同时到达传送带底端,C 正确;由于A 相对传送带静止,所以在传送带上的划痕为零,B 做匀减速直线运动,相对传送带的划痕不为零,故D 错误.

1、解析 (1)传送带顺时针转动时,物体相对传送带向下运动,则物体所受滑动摩擦力沿斜面向上,相对传送带向下匀加速运动,根据牛顿第二定律有

mg(sin 37°-μcos 37°)=ma

则a =gsin 37°-μgcos 37°=2 m/s 2, 根据l =12

at 2

得t =4 s.

(2)传送带逆时针转动,当物体下滑速度小于传送带转动速度时,物体相对传送带向上运动,则物体所受滑动摩擦力沿传送带向下,设物体的加速度大小为a 1,由牛顿第二定律得

mgsin 37°+μmgcos 37°=ma 1

则有a 1=mgsin 37°+μmgcos 37°

m

=10 m/s 2.

设当物体运动速度等于传送带转动速度时经历的时间为t 1,位移为x 1,则有t 1=v a 1=10

10 s =1 s ,

x 1=12a 1t 21

=5 m <l =16 m.

当物体运动速度等于传送带速度瞬间,有mgsin 37°>μmgcos 37°,则下一时刻物体相对传送带向下运动,受到传送带向上的滑动摩擦力——摩擦力发生突变.设当物体下滑速度大于传送带转动速度时物体的加速度为a 2,则a 2=

mgsin 37°-μmgcos 37°

m

=2 m/s 2

x 2=l -x 1=11 m 又因为x 2=vt 2+1

2a 2t 22,

则有10t 2+t 22=11

解得t 2=1 s(t 2=-11 s 舍去) 所以t 总=t 1+t 2=2 s. 答案 (1)4 s (2)2 s

2、解析:(1)物体在传送带上受力如图所示,物体沿传送带向下匀加速运动,设加速度为a. 由题意得L =12

at 2

解得a =2.5 m/s 2

由牛顿第二定律得

mgsin α-F f =ma 又F f =μmgcos α故μ=0.29.

(2)如果传送带逆时针转动,要使物体从传送带上端由静止释放能最快地到达下端,则需要物体有沿传

送带向下的最大加速度即所受摩擦力沿传送带向下,设此时传送带速度为v m,物体加速度为a′.

由牛顿第二定律得mgsin α+F f=ma′

又v2m=2La′

故v m=2La′=8.66 m/s.

高三物理牛顿运动定律及图像专题训练

高三物理牛顿运动定律及图像专题训练 1(烟台市2013届高三3月).如图所示,滑块以初速度v0滑上表面粗糙的固定斜面,到达最高点后又返回到出发点.则能大致反映滑块整个运动过程中速度v、加速度a、动能E k、重力对滑块所做的功w与时间t或位移x关系的是(取初速度方向为正方向) 2(淄博市2013届高三3月).“蹦极”是一项既惊险又刺激的运动.运动员脚上绑好弹性绳从很高的平台上跳下,从开始到下落到最低点的速 度一时间图象如图所示.设运动员开始跳下时的初速度为 零,不计阻力,则下列说法正确的是 A.0-t1时间内,运动员做加速运动逐渐减小的加速运动 B.t1-t2时间内,运动员做加速度逐渐减小的加速运动 C.t1-t2时间内,重力对运动员做的功大于运动克服拉力做的功 D.t2-t3时间内,运动员动能的减少量大于克服拉力做的功 3(潍坊市2013届高三3月). 如图所示,在水平地面上有一个表面光滑的直角三角形物块M,长为L的轻杆下端用光滑铰链连接于0点(O点固定于地面上),上端连接小球m,小球靠在物块左侧,水平向左的推力F施于物块,整个装置静止.若撤去力f,下列说法正确的是 A. 物块先做加速运动,后做减速运动直至静止 B. 物块先做加速运动,后做勻速运动 C. 小球与物块分离时,若轻杆与水平地面成α角, 小球的角速度大小为ω,则物块的速度大小是ωLsina D. 小球落地的瞬间与物块分离 4. (济南3月).我国“蛟龙号”深潜器进行下潜试验,从水面开始竖直下潜,最后返回水 面,速度图象如图所示,则有 A.本次下潜的最大深度为6m B.全过程中的最大加速度为0.025m/s2 C.超重现象发生在3-4min和6—8min的时间段 D.0-4min和6~l0min两时间段平均速度大小相等

牛顿运动定律三年高考题

【2018年高考考点定位】 1、本题属于连接体模型,涉及的知识点有相对运动和牛顿运动定律的应用,需要考生运用整体法和隔离法解决这类问题,意在考查考生的综合分析能力。 2、本专题解决的是物体(或带电体)在力的作用下的匀变速直线运动问题.高考对本专题考查的内容主要有:①匀变速直线运动的规律及运动图象问题;②行车安全问题;③物体在传送带(或平板车)上的运动问题;④带电粒子(或带电体)在电场、磁场中的匀变速直线运动问题;⑤电磁感应中的动力学分析.考查的主要方法和规律有:动力学方法、图象法、临界问题的处理方法、运动学的基本规律等. 3、对于连接体模型,命题多集中在两个或两个以上相关联的物体之间的相互作用和系统所受的外力情况,一般根据连接类型(直接连接型、绳子连接型、弹簧连接型),且考查时多涉及物体运动的临界和极值问题。 【考点pk】名师考点透析 考点一、牛顿运动定律 1.牛顿第一定律:一切物体总保持静止状态或者匀速直线运动状态,直到有外力改变这种状态为止。1明确了力和运○动的关系即力是改变物体运动状态的原因,不是维持物体运动状态的原因。2保持原来运动状态不变时物质的一种属○性,即惯性,大小与质量有关。3牛顿第一定律是牛顿第二定律的基础,不能说牛顿第一定律是牛顿第二定律的特例。○牛顿第一定律定性的给出了力和运动的关系,牛顿第二定律定量的力和运动的关系。 2.牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相F ma。1力和加速度是瞬时对应关系,力发生变化加速度就发生变化,力撤处加速度就为0同,表达式,力的瞬○合时效果是加速度,并不是速度,力的变化和加速度的变化瞬时对应,但是力撤去,速度并不会马上等于0.2力和加速○度都是矢量,即可以根据合力求加速度也可以根据某个方向的加速度求该方向的合力,力和加速度都可以分解。3既○可以把相对静止的几个物体看做一个整体,根据整体受到的合力等于整体加速度,也可以根据其中一个物体用隔离法求合力得到一个物体加速度,整体法和隔离法的关联点在于整体的加速度和隔离的加速度相同。 3.牛顿第三定律:两个物体之间的相互作用力总是大小相等方向相反,作用在一条直线上。1相互作用力总是成对出○现,同时产生同时消失,是同种性质的力。2相互作用力作用在两个物体上,作用效果不能叠加或者抵消。○考点二、超重和失重 概念:物体对水平支持物的压力或者竖直悬挂物的拉力超过自身重力即为超重,反之对水平支持物的压力或者竖直悬挂物的拉力小于自身重力即为失重,若对水平支持物没有压力或对竖直悬挂物没有拉力则为完全失重。 1不论是超重还是失重,物体重力都没有发生变化。○2超重时加速度向上,但对速度方向没有要求,所以存在加速上升和减速下降两种情况。失重时加速度向下,同理存○在加速下降和减速上升两种运动情况。 3完全失重时不是物体不受重力,物体重力不变,只是物体由于重力而产生的现象都将消失,比如单摆停摆、天平失○效、浸在水中的物体不再受浮力、液体柱不再产生压强等。 【试题演练】. A被平行于斜面的细线拴在斜面的上端,整个装置保持静止状态,斜面被固定在台秤上,物体与

高考物理牛顿运动定律真题汇编(含答案)

高考物理牛顿运动定律真题汇编(含答案) 一、高中物理精讲专题测试牛顿运动定律 1.如图,有一水平传送带以8m/s 的速度匀速运动,现将一小物块(可视为质点)轻轻放在传送带的左端上,若物体与传送带间的动摩擦因数为0.4,已知传送带左、右端间的距离为4m ,g 取10m/s 2.求: (1)刚放上传送带时物块的加速度; (2)传送带将该物体传送到传送带的右端所需时间. 【答案】(1)24/a g m s μ==(2)1t s = 【解析】 【分析】 先分析物体的运动情况:物体水平方向先受到滑动摩擦力,做匀加速直线运动;若传送带足够长,当物体速度与传送带相同时,物体做匀速直线运动.根据牛顿第二定律求出匀加速运动的加速度,由运动学公式求出物体速度与传送带相同时所经历的时间和位移,判断以后物体做什么运动,若匀速直线运动,再由位移公式求出时间. 【详解】 (1)物块置于传动带左端时,先做加速直线运动,受力分析,由牛顿第二定律得: mg ma μ= 代入数据得:2 4/a g m s μ== (2)设物体加速到与传送带共速时运动的位移为0s 根据运动学公式可得:2 02as v = 运动的位移: 2 0842v s m a ==> 则物块从传送带左端到右端全程做匀加速直线运动,设经历时间为t ,则有 212 l at = 解得 1t s = 【点睛】 物体在传送带运动问题,关键是分析物体的受力情况,来确定物体的运动情况,有利于培养学生分析问题和解决问题的能力. 2.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)

高考二轮复习专题(物理-牛顿运动定律)

高考二轮复习专题三:牛顿运动定律 (一)牛顿第一定律(即惯性定律) 一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 (1)理解要点: ①运动是物体的一种属性,物体的运动不需要力来维持。 ②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。 ③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。 ④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。 (2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。 ①惯性是物体的固有属性,与物体的受力情况及运动状态无关。 ②质量是物体惯性大小的量度。 ③由牛顿第二定律定义的惯性质量m=F/a 和由万有引力定律定义的引力质量mF r G M =2 /严格相等。 ④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质、力是物体对物体的作用,惯性和力是两个不同的概念。 (二)牛顿第二定律 1. 定律内容 物体的加速度a 跟物体所受的合外力F 合成正比,跟物体的质量m 成反比。 2. 公式:F m a 合= 理解要点: ①因果性:F 合是产生加速度a 的原因,它们同时产生,同时变化,同时存在,同时消失; ②方向性:a 与F 合都是矢量,方向严格相同; ③瞬时性和对应性:a 为某时刻某物体的加速度,F 合是该时刻作用在该物体上的合外力。 (三)力的平衡 1. 平衡状态 指的是静止或匀速直线运动状态。特点:a =0 。 2. 平衡条件 共点力作用下物体的平衡条件是所受合外力为零,即∑=F 0。 3. 平衡条件的推论 (1)物体在多个共点力作用下处于平衡状态,则其中的一个力与余下的力的合力等大反向; (2)物体在同一平面内的三个不平行的力作用下,处于平衡状态,这三个力必为共点力; (3)物体在三个共点力作用下处于平衡状态时,图示这三个力的有向线段必构成闭合三角形。 (四)牛顿第三定律 两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,公式可写为F F =-'。 (五)力学基本单位制:k g m s 、、(在国际制单位中) 1. 作用力与反作用力的二力平衡的区别 内容 作用力和反作用力 二力平衡 受力物体 作用在两个相互作用的物体上 作用在同一物体上 依赖关系 同时产生,同时消失相互依存,不可单独存在 无依赖关系,撤除一个、另一个可依 然存在,只是不再平衡 叠加性 两力作用效果不可抵消,不可叠加,不可求合力 两力运动效果可相互抵消,可叠加, 可求合力,合力为零;形变效果不能 抵消 力的性质 一定是同性质的力 可以是同性质的力也可以不是同性质 的力 2. 应用牛顿第二定律解题的一般步骤 ①确定研究对象; ②分析研究对象的受力情况画出受力分析图并找出加速度方向; ③建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余分解到两坐标轴上; ④分别沿x 轴方向和y 轴方向应用牛顿第二定律列出方程; ⑤统一单位,计算数值。

高考物理最新模拟题精选训练(牛顿运动定律)专题 图像信息问题(含解析)

专题09 图像信息问题 1.(2017河南部分重点中学联考)如图a所示,在光滑水平面上叠放着甲、乙两物体.现对甲施加水平向右的拉力F,通过传感器可测得甲的加速度a随拉力F 变化的关系如图b所示,已知重力加速度g=10m/s2,由图线可知() A.甲的质量是2 kg B.甲的质量是6 kg C.甲、乙之间的动摩擦因数是0.2 D.甲、乙之间的动摩擦因数是0.6 【考点】牛顿第二定律;匀变速直线运动的位移与时间的关系. 【参照答案】BC 【名师解析】 由图象可以看出当力F<48N时加速度较小,所以甲乙相对静止, 采用整体法,F1=48N时,a1=6m/s2,由牛顿第二定律:F1=(M+m)a1① 图中直线的较小斜率的倒数等于M与m质量之和:M+m=8kg 对乙:Ma1=μmg 当F>48N时,甲的加速度较大,采用隔离法, 由牛顿第二定律:F′﹣μmg=ma′② 图中较大斜率倒数等于甲的质量:6kg,所以乙的质量为2kg, 较大斜率直线的延长线与a的截距等于μg 由图可知μg=2;则可知μ=0.2 所以BC正确,AD错误. 2.(2016·东北三省四市联考)某物体质量为1 kg,在水平拉力作用下沿粗糙水平地面做直线运动,其速度-时间图象如图所示,根据图象可知 ( )

A.物体所受的拉力总是大于它所受的摩擦力 B.物体在第3 s内所受的拉力大于1 N C.在0~3 s内,物体所受的拉力方向始终与摩擦力方向相反 D.物体在第2 s内所受的拉力为零 【参考答案】BC 3.(贵州省贵阳市第一中学2016届高三预测密卷)如图甲所示,在木箱内粗糙斜面上静止一个质量为m的物体,木箱竖直向上运动的速度v与时间t的变化规律如图乙所示,物体始终相对斜面静止.斜面对物体的支持力和摩擦力分别为N和f,则下列说法正确的是( ) A.在0~t1时间内,N增大,f减小 B.在0~t1时间内,N减小,f增大 C.在t1~t2时间内,N增大,f增大 D.在t1~t2时间内,N减小,f减小 【参考答案】:D 4. (2016福建福州联考)如图所示,劲度系数为k的轻弹簧竖直放置,下端固定在水平地面上.一质量为m的小球,从离弹簧上端高h处自由下落,接触弹簧后继续向下运动.观察小球从开始

高考物理牛顿运动定律基础练习题

高考物理牛顿运动定律基础练习题 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。求: (1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰; (2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。 【答案】(1)1.65m (2)0.928m 【解析】 【详解】 解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒: 解得: 对长木板: 得长木板的加速度: 自小滑块刚滑上长木板至两者达相同速度: 解得: 长木板位移: 解得: 两者达相同速度时长木板还没有碰竖直挡板 解得: (2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒: 最终两者的共同速度: 小滑块和长木板相对静止时,小滑块距长木板左端的距离: 2.某物理兴趣小组设计了一个货物传送装置模型,如图所示。水平面左端A 处有一固定挡板,连接一轻弹簧,右端B 处与一倾角37o θ=的传送带平滑衔接。传送带BC 间距 0.8L m =,以01/v m s =顺时针运转。两个转动轮O 1、O 2的半径均为0.08r m =,半径

O 1B 、O 2C 均与传送带上表面垂直。用力将一个质量为1m kg =的小滑块(可视为质点)向左压弹簧至位置K ,撤去外力由静止释放滑块,最终使滑块恰好能从C 点抛出(即滑块在C 点所受弹力恰为零)。已知传送带与滑块间动摩擦因数0.75μ=,释放滑块时弹簧的弹性势能为1J ,重力加速度g 取210/m s ,cos370.8=o ,sin 370.6=o ,不考虑滑块在水平面和传送带衔接处的能量损失。求: (1)滑块到达B 时的速度大小及滑块在传送带上的运动时间 (2)滑块在水平面上克服摩擦所做的功 【答案】(1)1s (2)0.68J 【解析】 【详解】 解:(1)滑块恰能从C 点抛出,在C 点处所受弹力为零,可得:2 v mgcos θm r = 解得: v 0.8m /s = 对滑块在传送带上的分析可知:mgsin θμmgcos θ= 故滑块在传送带上做匀速直线运动,故滑块到达B 时的速度为:v 0.8m /s = 滑块在传送带上运动时间:L t v = 解得:t 1s = (2)滑块从K 至B 的过程,由动能定理可知:2f 1 W W mv 2 -=弹 根据功能关系有: p W E =弹 解得:f W 0.68J = 3.如图所示.在距水平地面高h =0.80m 的水平桌面一端的边缘放置一个质量m =0.80kg 的木块B ,桌面的另一端有一块质量M =1.0kg 的木块A 以初速度v 0=4.0m/s 开始向着木块B 滑动,经过时间t =0.80s 与B 发生碰撞,碰后两木块都落到地面上,木块B 离开桌面后落到地面上的D 点.设两木块均可以看作质点,它们的碰撞时间极短,且已知D 点距桌面边缘的水平距离s =0.60m ,木块A 与桌面间的动摩擦因数μ=0.25,重力加速度取g =10m/s 2.求:

高考物理牛顿运动定律的应用试题经典

高考物理牛顿运动定律的应用试题经典 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。已知木板与物块间动摩擦因数μ1=3 ,木板与传送带间的动摩擦因数μ2= 3 4 ,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ; (3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。 【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲: 木块重力沿斜面的分力:1 sin 2 mg mg α= 斜面对木块的最大静摩擦力:13 cos 4 m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态; (2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则 1cos sin mg mg ma μαα-=

木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()9 9.0N 8 m F M m g = += (3)因为F=10N>9N ,所以两者发生相对滑动 对小木块有:2 1cos sin 2.5m/s a g g μαα=-= 对长木棒受力如图丙所示 ()21sin cos cos F Mg M m g mg Ma αμαμα--+-'= 解得24.5m/s a =' 由几何关系有:221122 L a t at =-' 解得1t s = 全过程中产生的热量有两处,则 ()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα?? =+=+++ ??? 解得:12J Q =。 2.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s2)求: (1)长板2开始运动时的加速度大小;

上海高三物理复习牛顿运动定律专题

第三章牛顿运动定律专题 考试内容和要求 一.牛顿运动定律 1.牛顿第一定律 (1)第一定律的内容:任何物体都保持或的状态,直到有迫使它改变这种状态为止。牛顿第一定律指出了力不是产生速度的原因,也不是维持速度的原因,力是改变的原因,也就是产生的原因。 (2)惯性:物体保持的性质叫做惯性。牛顿第一定律揭示了一切物体都有惯性,惯性是物体的固有性质,与外部条件无关,因此该定律也叫做惯性定律。 【典型例题】 1.(2005广东)一汽车在路面情况相同的公路上直线行驶,下面关于车速、惯性、质量和滑行路程的讨论,正确的是() (A)车速越大,它的惯性越大

(B)质量越大,它的惯性越大 (C)车速越大,刹车后滑行的路程越长 (D)车速越大,刹车后滑行的路程越长,所以惯性越大 2.(2006广东)下列对运动的认识不正确的是() (A)亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动 (B)伽利略认为力不是维持物体速度的原因 (C)牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动 (D)伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去 3.(2003上海理综)科学思维和科学方法是我们 认识世界的基本手段。在研究和解决问题过程中, 不仅需要相应的知识,还要注意运用科学的方法。 理想实验有时更能深刻地反映自然规律。伽利略 设想了一个理想实验,如图所示,其中有一个是经验 事实,其余是推论。 ①减小第二个斜面的倾角,小球在这斜面上仍然要达到原来的高度; ②两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面; ③如果没有摩擦,小球将上升到原来释放的高度; ④继续减小第二个斜面的倾角,最后使它成水平面,小球要沿水平面做持续的匀速运动。 请将上述理想实验的设想步骤按照正确的顺序排列(只要填写序号即可)。在上述的设想步骤中,有的属于可靠的事实,有的则是理想化的推论。 下列关于事实和推论的分类正确的是() (A)①是事实,②③④是推论 (B)②是事实,①③④是推论 (C)③是事实,①②④是推论 (D)④是事实,①②③是推论 2.牛顿第二定律 (1)第二定律的内容:物体运动的加速度同成正比,同成反比,而且加速度方向与力的方向一致。ΣF=ma (2)1牛顿=1千克·米/秒2

牛顿运动定律-经典习题汇总

牛顿运动定律经典练习题 一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3, 则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与 水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) 第 5 题 第 6 题

高三牛顿运动定律试题精选及答案

“牛顿运动定律”练习题 1.如图所示,在质量为m 0的无下底的木箱顶部用一轻弹簧悬挂质量为m (m 0>m )的A 、B 两物体,箱子放在水平地面上,平衡后剪断A 、B 间的连线,A 将做简谐运动,当A 运动到最高点时,木箱对地面的压力为(A ) A .m 0g B .(m 0 - m )g C .(m 0 + m )g D .(m 0 + 2m )g 2.如图所示,静止在光滑水平面上的物体A ,一端靠着处于自然状态的弹簧.现对物体作用一水平恒力,在弹簧被压缩到最短这一过程中,物体的速度和加速度变化的情况是(D ) A .速度增大,加速度增大 B .速度增大,加速度减小 C .速度先增大后减小,加速度先增大后减小 D .速度先增大后减小,加速度先减小后增大 3.为了测得物块与斜面间的动摩擦因数,可以让一个质量为m 的物块由静止开始沿斜面下滑,拍摄此下滑过程得到的同步闪光(即第一次闪光时物 块恰好开始下滑)照片如图所示.已知闪光频率为每秒10次, 根据照片测得物块相邻两位置间的距离分别为AB =2.40cm , BC =7.30cm ,CD =12.20cm ,DE =17.10cm .若此斜面的倾角θ =370,则物块与斜面间的动摩擦因数为 .(重力 加速度g 取9.8m /s 2,sin 370=0.6,cos 370=0.8) 答案:0.125 (提示:由逐差法求得物块下滑的加速度为a =4.9m /s 2,由牛顿第二定律 知a =g sin 370–μg cos 370,解得μ=0.125) 4.如图所示,一物体恰能在一个斜面体上沿斜面匀速下滑,设此过程中斜面受到水平地面的摩擦力为f 1.若沿斜面方向用力向下推此物体,使物体加速下滑,设此过程中斜面受到地面的摩擦力为f 2。则(D ) A .f 1不为零且方向向右,f 2不为零且方向向右 B .f 1为零,f 2不为零且方向向左 C .f 1为零,f 2不为零且方向向右 D .f 1为零,f 2为零 5.如图a 所示,水平面上质量相等的两木块A 、B 用一轻弹簧相连 接,整个系统处于平衡状态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬间这个过程,并且选定这个过程中木块A 的起始位置为坐标原点,则下列图象中可以表示力F 和木块A 的位移x 之间关系的是(A ) 6.如图所示,质量为m 的物体放在倾角为α的光滑斜面上,随斜面体一起沿水平方向运动,要使物体相对于斜面保持静止,斜面体的运动情况以及物体对斜面压力F 的大小是 m B A m 左 右 A B a A B b x O F x O F x O F x O F A B C D

牛顿运动定律(近三年高考题)

【2018年高考考点定位】 1、本题属于连接体模型,涉及的知识点有相对运动和牛顿运动定律的应用,需要考生运用整体法和隔离法解决这类问题,意在考查考生的综合分析能力。 2、本专题解决的是物体(或带电体)在力的作用下的匀变速直线运动问题.高考对本专题考查的内容主要有:①匀变速直线运动的规律及运动图象问题;②行车安全问题;③物体在传送带(或平板车)上的运动问题;④带电粒子(或带电体)在电场、磁场中的匀变速直线运动问题;⑤电磁感应中的动力学分析.考查的主要方法和规律有:动力学方法、图象法、临界问题的处理方法、运动学的基本规律等. 3、对于连接体模型,命题多集中在两个或两个以上相关联的物体之间的相互作用和系统所受的外力情况,一般根据连接类型(直接连接型、绳子连接型、弹簧连接型),且考查时多涉及物体运动的临界和极值问题。 【考点pk】名师考点透析 考点一、牛顿运动定律 1.牛顿第一定律:一切物体总保持静止状态或者匀速直线运动状态,直到有外力改变这种状态为止。错误!明确了力和运动的关系即力是改变物体运动状态的原因,不是维持物体运动状态的原因。\o \ac(○,2)保持原来运动状态不变时物质的一种属性,即惯性,大小与质量有关。错误!牛顿第一定律是牛顿第二定律的基础,不能说牛顿第一定律是牛顿第二定律的特例。牛顿第一定律定性的给出了力和运动的关系,牛顿第二定律定量的力和运动的关系。 2.牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F ma 合。错误!力和加速度是瞬时对应关系,力发生变化加速度就发生变化,力撤处加速度就为0,力的瞬时效果是加速度,并不是速度,力的变化和加速度的变化瞬时对应,但是力撤去,速度并不会马上等于0.错误!力和加速度都是矢量,即可以根据合力求加速度也可以根据某个方向的加速度求该方向的合力,力和加速度都可以分解。错误!既可以把相对静止的几个物体看做一个整体,根据整体受到的合力等于整体加速度,也可以根据其中一个物体用隔离法求合力得到一个物体加速度,整体法和隔离法的关联点在于整体的加速度和隔离的加速度相同。 3.牛顿第三定律:两个物体之间的相互作用力总是大小相等方向相反,作用在一条直线上。错误!相互作用力总是成对出现,同时产生同时消失,是同种性质的力。错误!相互作用力作用在两个物体上,作用效果不能叠加或者抵消。 考点二、超重和失重 概念:物体对水平支持物的压力或者竖直悬挂物的拉力超过自身重力即为超重,反之对水平支持物的压力或者竖直悬挂物的拉力小于自身重力即为失重,若对水平支持物没有压力或对竖直悬挂物没有拉力则为完全失重。 错误!不论是超重还是失重,物体重力都没有发生变化。 错误!超重时加速度向上,但对速度方向没有要求,所以存在加速上升和减速下降两种情况。失重时加速度向下,同理存在加速下降和减速上升两种运动情况。 错误!完全失重时不是物体不受重力,物体重力不变,只是物体由于重力而产生的现象都将消失,比如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生压强等。

牛顿运动定律专题(一)

牛顿运动定律专题(一) 知识达标: 1、下列说法正确的是…………………………………() A、甲主动推乙,甲对乙的作用力的发生先于乙对甲的作用力 B、施力物体必然也是受力物体 C、地球对人的吸引力显然要比人对地球的吸引力大得多 D、以卵击石,卵破碎,说明石块对卵的作用力大于卵对石块的作用力 2、关于惯性下列说法中正确的是…………………………………………() A、物体不受力或所受的合外力为零才能保持匀速直线运动状态或静止状态,因此只有此时物体才有惯性 B、物体加速度越大,说明它的速度改变得越快,因此加速度大的物体惯性小; C、行驶的火车速度大,刹车后向前运动距离长,这说明物体速度越大,惯性越大 D、物体惯性的大小仅由质量决定,与物体的运动状态和受力情况无关 3、一小球用一细绳悬挂于天花板上,以下几种说法正确的是………………………() A、小球所受的重力和细绳对它的拉力是一对作用力和反作用力 B、小球对细绳的拉力就是小球所受的重力 C、小球所受的重力的反作用力作用在地球上 D、小球所受重力的反作用力作用在细绳上 4、当作用在物体上的合外力不为零时,下面结论正确的是……………………() A、物体的速度大小一定发生变化 B、物体的速度方向一定发生变化 C、物体的速度不一定发生变化 D、物体的速度一定发生变化 5、关于超重和失重的说法中正确的是…………………………………() A、超重就是物体受到的重力增加了 B、失重就是物体受到的重力减少了 C、完全失重就是物体的重力全部消失了 D、不论超重、失重还是完全失重,物体所受重力不变 6、在升降机内,一人站在磅秤上,发现自己的体重减少了20%,于是他作出了下列判断,你认为正确的是() A、升降机以0.8g的加速度加速上升 B、升降机以0.2g的加速度加速下降 C、升降机以0.2g的加速度减速上升 D、升降机以0.8g的加速度减速下降 7、2001年1月,我国又成功进行“神舟二号”宇宙飞船的航行,失重实验是至关宇宙员生命安全的重要实验,宇宙飞船 在下列哪种状态下会发生失重现象………………………() A、匀速上升 B、匀速圆周运动 C、起飞阶段 D、着陆阶段 经典题型: 一、牛顿第二定律结合正交分解 例:1、细线悬挂的小球相对于小车静止,并与竖直方向成θ角,求小车运动的加速度。 2、如图,斜面固定,物体在水平推力F作用下沿斜面上滑,已知物体质量m,斜面倾角 θ,动摩擦因数μ和物体小球加速度a,求水平推力F的大小。 练习:1、如图,已知θ=300,斜杆固定,穿过斜杆的小球质量m=1kg,斜杆与小球动摩擦因数μ= √3/6,竖直向上的力F=20N,求小球的加速度a=?

最新高考物理牛顿运动定律练习题

最新高考物理牛顿运动定律练习题 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,一足够长木板在水平粗糙面上向右运动。某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。重力加速度g =10m/s 2,试求: (1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2 (3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。 【答案】(1)0.3(2)1 20 (3)2.75m 【解析】 【分析】 (1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】 (1)对小滑块分析:其加速度为:2221114 /3/1 v v a m s m s t --= ==-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=; (2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到: 1212v mg mg m t μμ+?= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到: 2 122 2v mg mg m t μμ-?= 而且121t t t s +== 联立可以得到:21 20 μ=,10.5s t =,20.5t s =; (3)在 1 0.5s t =时间内,木板向右减速运动,其向右运动的位移为: 1100.52 v x t m += ?=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:

高考物理牛顿运动定律题20套(带答案)

高考物理牛顿运动定律题20套(带答案) 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。求: (1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰; (2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。 【答案】(1)1.65m (2)0.928m 【解析】 【详解】 解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒: 解得: 对长木板: 得长木板的加速度: 自小滑块刚滑上长木板至两者达相同速度: 解得: 长木板位移: 解得: 两者达相同速度时长木板还没有碰竖直挡板 解得: (2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒: 最终两者的共同速度: 小滑块和长木板相对静止时,小滑块距长木板左端的距离: 2.某物理兴趣小组设计了一个货物传送装置模型,如图所示。水平面左端A 处有一固定挡板,连接一轻弹簧,右端B 处与一倾角37o θ=的传送带平滑衔接。传送带BC 间距 0.8L m =,以01/v m s =顺时针运转。两个转动轮O 1、O 2的半径均为0.08r m =,半径

O 1B 、O 2C 均与传送带上表面垂直。用力将一个质量为1m kg =的小滑块(可视为质点)向左压弹簧至位置K ,撤去外力由静止释放滑块,最终使滑块恰好能从C 点抛出(即滑块在C 点所受弹力恰为零)。已知传送带与滑块间动摩擦因数0.75μ=,释放滑块时弹簧的弹性势能为1J ,重力加速度g 取210/m s ,cos370.8=o ,sin 370.6=o ,不考虑滑块在水平面和传送带衔接处的能量损失。求: (1)滑块到达B 时的速度大小及滑块在传送带上的运动时间 (2)滑块在水平面上克服摩擦所做的功 【答案】(1)1s (2)0.68J 【解析】 【详解】 解:(1)滑块恰能从C 点抛出,在C 点处所受弹力为零,可得:2 v mgcos θm r = 解得: v 0.8m /s = 对滑块在传送带上的分析可知:mgsin θμmgcos θ= 故滑块在传送带上做匀速直线运动,故滑块到达B 时的速度为:v 0.8m /s = 滑块在传送带上运动时间:L t v = 解得:t 1s = (2)滑块从K 至B 的过程,由动能定理可知:2f 1 W W mv 2 -=弹 根据功能关系有: p W E =弹 解得:f W 0.68J = 3.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求

高中物理牛顿运动定律题20套(带答案)

高中物理牛顿运动定律题20套(带答案) 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。求: (1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰; (2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。 【答案】(1)1.65m (2)0.928m 【解析】 【详解】 解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒: 解得: 对长木板: 得长木板的加速度: 自小滑块刚滑上长木板至两者达相同速度: 解得: 长木板位移: 解得: 两者达相同速度时长木板还没有碰竖直挡板 解得: (2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒: 最终两者的共同速度: 小滑块和长木板相对静止时,小滑块距长木板左端的距离: 2.地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中大量使用了如图所示的传送带.已知某传送带与水平面成37θ=o 角,皮带的AB 部分长 5.8L m =,皮带以恒定的速率4/v m s =按图示方向传送,若在B 端无初速度地放置一个质量50m kg =的救灾物资

(P 可视为质点),P 与皮带之间的动摩擦因数0.5(μ=取210/g m s =,sin370.6)=o , 求: ()1物资P 从B 端开始运动时的加速度. ()2物资P 到达A 端时的动能. 【答案】()1物资P 从B 端开始运动时的加速度是()2 10/.2m s 物资P 到达A 端时的动能 是900J . 【解析】 【分析】 (1)选取物体P 为研究的对象,对P 进行受力分析,求得合外力,然后根据牛顿第三定律即可求出加速度; (2)物体p 从B 到A 的过程中,重力和摩擦力做功,可以使用动能定律求得物资P 到达A 端时的动能,也可以使用运动学的公式求出速度,然后求动能. 【详解】 (1)P 刚放上B 点时,受到沿传送带向下的滑动摩擦力的作用,sin mg F ma θ+=; cos N F mg θ=N F F μ=其加速度为:21sin cos 10/a g g m s θμθ=+= (2)解法一:P 达到与传送带有相同速度的位移2 1 0.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用 根据动能定理:()()2211sin 22 A mg F L s mv mv θ--=- 到A 端时的动能2 19002 kA A E mv J = = 解法二:P 达到与传送带有相同速度的位移2 1 0.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用, P 的加速度2 2sin cos 2/a g g m s θμθ=-= 后段运动有:2 22212 L s vt a t -=+, 解得:21t s =, 到达A 端的速度226/A v v a t m s =+=

高考物理试题目整理汇编—牛顿运动定律

2011普通高校招生考试试题汇编-牛顿运动定律 17.一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替。如图(a)所示,曲 线上的A点的曲率圆定义为:通过A点和曲线上紧邻A点 两侧的两点作一圆,在极限情况下,这个圆就叫做A点的 曲率圆,其半径ρ叫做A点的曲率半径。现将一物体沿与 水平面成α角的方向已速度υ0抛出,如图(b)所示。则在 其轨迹最高点P处的曲率半径是 A. 2 0 v g B. 22 sin v g α C. 22 cos v g α D. 22 cos sin v g α α 答案:C 解析:物体在其轨迹最高点P处只有水平速度,其水平速度大小为v0cosα,根据牛顿第 二定律得 2 (cos) v mg m α ρ =,所以在其轨迹最高点P处的曲率半径是 22 cos v g α ρ=, C正确。 21.如图,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。 假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2,下列反映a1和a2变化的图线中正确的是(A) 解析:主要考查摩擦力和牛顿第二定律。木块和木板之间相对静止时,所受的摩擦力为静摩擦力。在达到最大静摩擦力前,木块和木板以相同加速度运动,根据牛顿第二定律 2 1 2 1m m kt a a + = =。木块和木板相对运动时, 1 2 1m g m a μ =恒定不变,g m kt aμ - = 2 2 。 所以正确答案是A。 ρ A v0 α ρ P 图(a) 图(b)

相关主题
文本预览
相关文档 最新文档