当前位置:文档之家› RC微分电路的作用_RC微分电路原理

RC微分电路的作用_RC微分电路原理

RC微分电路的作用_RC微分电路原理

RC微分电路的作用_RC微分电路原理

RC微分电路简介RC微分电路,就是一种应用十分广泛的对脉冲信号进行变换的电路,它通常把矩形脉冲信号变换成正、负双向尖脉冲。在数学上,这种尖脉冲近似等于矩形波的微分形式,故有微分电路之称。微分电路的特点是输出能很快反映输入信号的跳变成分。即它能把输入信号中的突然变化部分选择出来。其输出的脉冲宽度很窄,与原来输入脉冲宽度较宽的波形相比,包含有“微分”的意思。

RC微分电路的特点RC微分电路的输出脉冲反映了输入脉冲变化部分,即反映了Ui在tl 和t2时刻的跳变部分,也就是说,它能够起“突出变化量”,“压低恒定量”的作用。在数学上,“微分”可以反映变化的快慢,因此这一电路叫“微分电路”。它的输出电压的大小是由输入电压的变化量所决定的,即当输入电压变化愈快,输出电压就愈大,当输入电压不变时,输山电压也基本为0。

RC微分电路的工作原理RC微分电路如下图所示,电容C与电阻R的串联作为输入端,电阻R两端为输出端,即满足Uo=Ui-Ue,由于电路中有电容C和电阻R存在,故在外加电压的作用下,存在着的充、放电过程。当矩形脉冲输入端后,在输出端可得到一对正、负尖脉冲。

微分电路的工作原理

当t=tl时,输入矩形波的电压Ui从零突然上眺到E,如下图(a)所示,这就相当于在RC 回路中突然接通一个电压为E的“电池”。由于电容C两端的电压不能突变,也就是电容器上的电压需要经过一个充电过程才逐渐上升,如下图(b)所示。在tl时刻,电容C两端的电压Ue=0,于是Ui全部落在电阻R上,因此tl时刻的输出电压Uo=Ui=E。

从tl以后到t2以前时刻,输入电压Ui=E开始对电容C充电,电容C两端的电压,按指数规律上升,而电阻R两端的输出电压按指数规律逐渐下降。RC电路的时间常数称之为T,T=R.C,T的单位为秒(s)、R的电阻器两端的(等效)电阻值,单位为欧(Q)、C的电容器的电容量,单位为法(F)。若T值很小,使Uc很快充电到接近输入电压的幅度E

电路微分方程解法

第七章 二阶电路 用二阶线性常微分方程描述的电路称为二阶电路,二阶电路中至少含有两个储能元件——当然含有两个储能元件的电路并不一定为二阶电路,比如两个电容(电感)串(并)联情况。 ◆ 重点: 1. 电路微分方程的建立 2. 特征根的重要意义 3. 微分方程解的物理意义 ◆ 难点: 1. 电路微分的解及其物理意义 2. 不同特征根的讨论计算 7.0 知识复习 一、二阶齐次微分方程的通解形式 0'''=++cy by ay ,其特征方程为:02 =++c bp ap ,特征根:a ac b a b p 44222 ,1-±-=。 当特征方程有不同的实根1p 、2p 时,t p t p e A e A y 2121+= 当特征方程有相同的实根p 时,pt e t A A y )(21+= 当特征方程有共轭的复根ω±δ-=j p 2,1时,)sin cos (21)(t A t A e e y t t j ω+ω==δ-ω+δ- 二、欧拉公式 β+β=β sin cos j e j 2 )sin() ()(j e e t t j t j β+ω-β+ω-=β+ω β-β=β -sin cos j e j 2 )cos() ()(β+ω-β+ω+= β+ωt j t j e e t 7.1 二阶电路的零输入响应 7.1.1 二阶电路中的能量振荡 在具体研究二阶电路的零输入响应之前,我们以仅仅含电容与电感的理想二阶电路(即R=0,无阻尼情况)来讨论二阶电路的零输入时的电量及能量变化情况。

+ U 0 C L _ - _ C L + (d) 图8-1 LC 电路中的能量振荡 设电容的初始电压为0U ,电感的初始电流为零。在初始时刻,能量全部存储于电容中,电感中没有 储能。此时电流为零,电流的变化率不为零(0≠==dt di L u u L C Θ,0≠∴dt di ) ,这样电流将不断增大,原来存储在电容中的电能开始转移,电容的电压开始逐渐减小。当电容电压下降到零时,电感电压也为零,此时电流的变化率也就为零,电流达到最大值I 0,此时电场能全部转化为电磁能,存储在电感中。 电容电压虽然为零,但其变化率不为零(00≠===dt du C I i i C L C Θ,0≠∴dt du C ),电路中的电流 从I 0逐渐减小,电容在电流的作用下被充电(电压的极性与以前不同),当电感中的电流下降到零的瞬间,能量再度全部存储在电容中,电容电压又达到,只是极性与开始相反。 之后电容又开始放电,此时电流的方向与上一次电容放电时的电流方向相反,与刚才的过程相同,能量再次从电场能转化为电磁能,直到电容电压的大小与极性与初始情况一致,电路回到初始情况。 上述过程将不断重复,电路中的电压与电流也就形成周而复始的等幅振荡。 可以想象,当存在耗能元件时的情况。一种可能是电阻较小,电路仍然可以形成振荡,但由于能量在电场能与电磁能之间转化时,不断地被电阻元件消耗掉,所以形成的振荡为减幅振荡,即幅度随着时间衰减到零;另一种可能是电阻较大,电容存储的能量在第一次转移时就有大部分被电阻消耗掉,电路中的能量已经不可能在电场能与电磁能之间往返转移,电压、电流将直接衰减到零。 7.1.2 二阶电路的微分方程 二阶电路如下,其中电容电压的初始值为0)0()0(U u u C C ==-+,电感电流的初始值为 0)0()0(==-+L L i i 。 图8-2 R 、L 、C 串联的二阶电路 根据该电路列写电路方程为0=++-L R C u u u 其电路电流为:dt du C i C -= 因此:dt du RC Ri u C R -==,2 2dt u d LC dt di L u C R -==

微分方程在电气中的应用

电气工程案例在大学数学教学中的应用研究 2018年7月-8月 一、一阶微分方程 当电路中的储能元件(电容C和电感L)的数目仅有一个,而电阻R的数目可以不论,由于描述这种电路性状的是一阶微分方程,故称为一阶电路,一阶电路可分为RC(电阻电容)电路和RL(电阻电感)电路。 从产生电路响应的原因来讲,响应可以是由独立电源的激励,即输入引起的;或者是由储能元件的初始状态引起的;也可以是由独立电源和储能元件的初始状态共同作用下产生的。 因此,按激励和响应的因果关系可划分为如下3种类型的响应。 (1)零输入响应——电路中没有电源的激励,即输入为0,响应是由初始时刻储能元件的中储存的电磁能量所产生的。 (2)零状态响应——储能元件的初始状态为0,仅由电源激励所引起的响应。 (3)全响应——由电源的输入激励与储能元件的初始能量共同作用下所产生的响应。 接下来,我们分别考虑RC电路的零输入响应和零状态响应两个案例在一阶微分方程教学中的应用。 1、一阶可分离变量微分方程(一阶齐次线性微分方程) RC电路的零输入响应(RC zero-input response) 如上图(a)所示的电路中,换路前的电路是由电压源和电容C连接而成,电容电压()=,其中表示换路前的瞬间;在时,将开关从位置1改接到位置2,于是电容C将通过电阻R放电,如图(c)所示,电容C的电压由它的初始值开始,随着时间的增长而逐渐减少,最后趋近于零。在该放电过程中电容C初始储存的电场能量,通过电阻R全总转换为热能发散出去。此时电路中的响应仅由电容C的初始状态引起,故为零输入响应。 为定量分析电容电压和电流的变化规律需要确立微分方程。根据上图(b)中的电流和电压的参考方向,应用基尔霍夫定律列出电压方程 ; ; ,; 在和两个电路变量中,选取作为求解对象,应用上述一组关系,建立关于

最新31微分方程与微分方程建模法汇总

31微分方程与微分方 程建模法

第三章微分方程模型 3.1微分方程与微分方程建模法 一、微分方程知识简介 我们要掌握常微分方程的一些基础知识,对一些可以求解的微分方程及其方程组,要求掌握其解法,并了解一些方程的近似解法。 微分方程的体系:(1)初等积分法(一阶方程及几类可降阶为一阶的方程) ?Skip Record If...?(2)一阶线性微分方程组(常系数线性微分方程组的解法) ?Skip Record If...?(3)高阶线性微分方程(高阶线性常系数微分方程解法)。其中还包括了常微分方程的基本定理。 0.常数变易法:常数变易法在上面的(1)(2)(3)三部分中都出现过,它是由线性齐次方程(一阶或高阶)或方程组的解经常数变易后求相应的非齐次方程或方程组的解的一种方法。 1.初等积分法:掌握变量可分离方程、齐次方程的解法,掌握线性方程的解法,掌握全微分方程(含积分因子)的解法,会一些一阶隐式微分方程的解法(参数法),会几类可以降阶的高阶方程的解法(恰当导数方程)。 分离变量法:(1)可分离变量方程: ?Skip Record If...? (2) 齐次方程:?Skip Record If...? 常数变易法:(1) 线性方程,?Skip Record If...??Skip Record If...?

(2) 伯努里方程,?Skip Record If...??Skip Record If...? 积分因子法:化为全微分方程,按全微分方程求解。 对于一阶隐式微分方程?Skip Record If...?有 参数法:(1) 不含x或y的方程:?Skip Record If...? (2) 可解出x或y的方程:?Skip Record If...? 对于高阶方程,有 降阶法:?Skip Record If...? 恰当导数方程 一阶方程的应用问题(即建模问题)。 2.一阶线性微分方程组:本部分主要内容有:一是一阶线性微分方程组的基本理论(线性齐次、非齐次微分方程组的通解结构,刘维尔公式等),二是常系数线性微分方程组的解法(求特征根,单根与重根[待定系数法]),三是常数变易法。本部分内容与线性代数关系密切,如线性空间,向量的线性相关与线性无关,基与维数,特征方程、特征根与特征向量,矩阵的若当标准型等。3.高阶线性微分方程:了解高阶线性微分方程的基本理论(线性齐次、非齐次微分方程的通解结构,刘维尔公式等); n阶线性常系数微分方程解法:(1)求常系数齐次线性微分方程基本解组的待定指数函数法;(2)求一般非齐次线性方程解的常数变易法;(3)求特

电路微分方程解法,DOC

第七章二阶电路 用二阶线性常微分方程描述的电路称为二阶电路,二阶电路中至少含有两个储能元件——当然含有两个储能元件的电路并不一定为二阶电路,比如两个电容(电感)串(并)联情况。 ◆ 重点: 1. 电路微分方程的建立 ''+ay 7.1.1在具体研究二阶电路的零输入响应之前,我们以仅仅含电容与电感的理想二阶电路(即R=0,无阻尼情况)来讨论二阶电路的零输入时的电量及能量变化情况。 设电容的初始电压为0U ,电感的初始电流为零。在初始时刻,能量全部存储于电容中,电感中没有储 能。此时电流为零,电流的变化率不为零(0≠==dt di L u u L C ,0≠∴dt di ) ,这样电流将不断增大,原来存储在电容中的电能开始转移,电容的电压开始逐渐减小。当电容电压下降到零时,电感电压也为零,此时电流的变化率也就为零,电流达到最大值I 0,此时电场能全部转化为电磁能,存储在电感中。 电容电压虽然为零,但其变化率不为零(00≠===dt du C I i i C L C ,0≠∴dt du C ),电路中的电流从I 0

逐渐减小,电容在电流的作用下被充电(电压的极性与以前不同),当电感中的电流下降到零的瞬间,能量再度全部存储在电容中,电容电压又达到,只是极性与开始相反。 之后电容又开始放电,此时电流的方向与上一次电容放电时的电流方向相反,与刚才的过程相同,能量再次从电场能转化为电磁能,直到电容电压的大小与极性与初始情况一致,电路回到初始情况。 上述过程将不断重复,电路中的电压与电流也就形成周而复始的等幅振荡。 可以想象,当存在耗能元件时的情况。一种可能是电阻较小,电路仍然可以形成振荡,但由于能量在电场能与电磁能之间转化时,不断地被电阻元件消耗掉,所以形成的振荡为减幅振荡,即幅度随着时间衰减到零;另一种可能是电阻较大,电容存储的能量在第一次转移时就有大部分被电阻消耗掉,电路 7.1.2值为 0(+L i 7.1.37.1.41.过阻尼的条件 当LC L R 122 > ?? ? ??,即C L R 2>(C L R 42>)时,特征根1p 、2p 为不相等的负实数。 此时固有频率为不相等的负实数, 2.过阻尼时的响应 当特征根为不相等的实数时,方程的解的形式为 其中:

电路微分方程解法

电路微分方程解法 Revised final draft November 26, 2020

第七章 二阶电路 用二阶线性常微分方程描述的电路称为二阶电路,二阶电路中至少含有两个储能元件——当然含有两个储能元件的电路并不一定为二阶电路,比如两个电容(电感)串(并)联情况。 重点: 1. 电路微分方程的建立 2. 特征根的重要意义 3. 微分方程解的物理意义 难点: 1. 电路微分的解及其物理意义 2. 不同特征根的讨论计算 知识复习 一、二阶齐次微分方程的通解形式 0'''=++cy by ay ,其特征方程为:02 =++c bp ap ,特征根:a ac b a b p 44222 ,1-±-=。 当特征方程有不同的实根1p 、2p 时,t p t p e A e A y 2121+= 当特征方程有相同的实根p 时,pt e t A A y )(21+= 当特征方程有共轭的复根ω±δ-=j p 2,1时,)sin cos (21)(t A t A e e y t t j ω+ω==δ-ω+δ- 二、欧拉公式 二阶电路的零输入响应 二阶电路中的能量振荡 在具体研究二阶电路的零输入响应之前,我们以仅仅含电容与电感的理想二阶电路(即R=0,无阻尼情况)来讨论二阶电路的零输入时的电量及能量变化情况。 设电容的初始电压为0U ,电感的初始电流为零。在初始时刻,能量全部存储于电容中,电感中没有储能。此时电流为零,电流的变化率不为零(0≠==dt di L u u L C ,0≠∴dt di ),这样电流将不断增大,原来存储在电容中的电能开始转移,电容的电压开始逐渐减小。当电容电压下降到零 时,电感电压也为零,此时电流的变化率也就为零,电流达到最大值I 0,此时电场能全部转化为电磁能,存储在电感中。 电容电压虽然为零,但其变化率不为零(00≠===dt du C I i i C L C ,0≠∴dt du C ),电路中的电流从I 0逐渐减小,电容在电流的作用下被充电(电压的极性与以前不同),当电感中的电流下降 到零的瞬间,能量再度全部存储在电容中,电容电压又达到,只是极性与开始相反。 之后电容又开始放电,此时电流的方向与上一次电容放电时的电流方向相反,与刚才的过程相同,能量再

试求图示电路的微分方程和传递函数

2-1 习 题 2-1 试求图示电路的微分方程和传递函数。 2-2 ur 为输入量,电动机的转速ω为输 出量,试绘制系统的方框图,并求系统的传递函数) () ( ,)( )(s M s s U s L r ΩΩ。(ML 为负载转矩,J 为电动机的转动惯量,f 为粘性摩擦系数,Ra 和La 分别为电枢回路的总电阻和总电感,Kf 为测速发动机的反馈系数)。 2-3 图示电路,二极管是一个非线性元件,其电流d i 和电压d u 之间的关系为)1(10026.0/6-=-d u d e i ,假设系统 工作在u 0=2.39V ,i 0=2.19×10-3A 平衡点,试求在工作点 (u 0,i 0)附近d i =f (d u )的线性化方程。 2-4 试求图示网络的传递函数,并讨论负载效应问题。

2-2 2-5 求图示运算放大器构成的网络的传递函数。 2-6 已知系统方框图如图所示,试根据方框图简化规则,求闭环传递函数。 2-7 分别求图示系统的传递函数)()(11s R s C 、)()(12s R s C 、)()(21s R s C 、)()(22s R s C 2-8 绘出图示系统的信号流图,并求传递函数)(/)()(s R s C s G

2-3 2-9 试绘出图示系统的信号流图,求系统输出C (s )。 2-10 求图示系统的传递函数C (s )/R (s )。 2-11 已知单位负反馈系统的开环传递函数 ] 4)4)[(1(234)(2223++++++=s s s s s s s G 1. 试用MA TLAB 求取系统的闭环模型; 2. 试用MA TLAB 求取系统的开环模和闭环零极点。 2-12 如图所示系统 1. 试用MA TLAB 化简结构图,并计算系统的闭环传递函数;

相关主题
文本预览
相关文档 最新文档