当前位置:文档之家› 影响永磁同步电机功率因数的原因

影响永磁同步电机功率因数的原因

影响永磁同步电机功率因数的原因
影响永磁同步电机功率因数的原因

影响永磁同步电机功率因数的原因

抽油机上所用的永磁同步电动机是一种异步启动的同步电机,由转子交流启动后牵入同步运行,类似于交流同步电动机。其运行是靠定子线圈在气隙中产生的旋转磁场与转子上磁钢间的相互吸引,使转子与定子气隙磁场同步旋转而做功。其转子等效为电阻电路,故功率因数高。因无励磁电流,其空载损耗小。电动机效率可达96%左右,较三相异步电动机高。

影响永磁同步电机功率因数的原因是电压质量(电压幅值)和负载率。当电网电压高于电动机的反电势点时,永磁电机呈感性负载运行;反之,电动机呈容性负载运行。因此,电网电压波动会造成电机的功率因数波动,补偿困难。若电压幅值与电动机反电势点接近,偏差在12%电压范围内时,电机功率因数大于或等于0.9,否则,功率因数较低;另外,当永磁同步电机的负载率低于25%时,电机功率因数也偏低。

提高永磁电机功率因数的方法

通过对各单井点功率因数低的原因分析,分别采取了以下方法进行调整。

1.根据实测负载率适当调换电机,以保证适当的负载率。

2.稳定系统电压,尤其是重载线路末端,电压普遍偏低。

3.稳定单井电压使其接近永磁同步电机的空载反电势。

4.当运行电压高于永磁电机的反电势点时,可根据感性无功功率的大小,加电容补偿,以提高功率因数。

5.当运行电压低于永磁电机的反电势点时,可调节变压器分接开关,适当提高二次电压的幅值,使电机运行电压在反电势点附近,提高功率因数。

6.对于重负荷长线路,调节变压器分接开关后,变压器二次电压幅值仍低于永磁电机反电势点时,可更换永磁同步电机,采用电容柜补偿。

调整情况及效果分析

通过对采油六队部分油井的调整试验,使功率因数不达标的油井基本达标。

首先对变电所及线路电容做了调整,使末端电压有所提高。

其次,根据对各单井的测试结果,采取了相应对策,有的增加电容,有的调整变压器挡位,对部分井调整了电动机功率。测试结果显示,使用永磁同步电机的各井功率因数除一台外,其他全部合格,功率因数调整电费大幅度下降。

该办法在采油六队取得成功后,现已在全厂推广应用。目前,临盘采油厂的功率因数调整电费由2004年初的50万元下降到5万元,取得了良好效果。

电机匝间短路与相间短路

电机匝间短路及相间短路问题解答 一、什么是电机匝间短路 就是同一个绕组是由很多圈(匝)线绕成的,如果绝缘不好的话,叠加在一起的线圈之间会短路,这样一来,相当于一部分线圈直接被短路掉不起作用了。匝间短路后,电机的绕组因为一部分被短路掉,磁场就和以前不同了,不对称了,而且剩余的线圈电流比以前大了,电机运行中会振动增大,电流增大,出力相对减小。 二、发生电机匝间短路,会有以下现象: 1)被短路的线圈中将流过很大的环流(常达正常电流的2---10倍),使线圈严重发热; 2)三相电流不平衡,电动机转矩降低; 3)产生杂音; 4)短路严重时,电动机不能带负载起动。 匝间短路在刚开始时,可能只有两根导线因交叠处绝缘磨坏而接触。 由于短路线匝内产生环流,使线圈迅速发热,进一步损坏邻近导线的绝缘,使短路的匝数不断增多、故障扩大。 短路匝数足够多时,会使熔断器烧断,甚至绕组烧焦冒烟。 当三相绕组有一相发生匝间短路时,相当于该相绕组匝数减少,定子三相电流就不平衡。不平衡的三相电流使电动机振动,同时发出不正常的声音。电动机平均转矩显著下降,拖动负载时就显得无力。

三、电动机绕组短路故障现象和原因是什么? 答:由于电动机电流过大、电源电压变动过大、单相运行、机械碰伤、制造不良等造成绝缘损坏所至,分绕组匝间短路、绕组间短路、绕组极间短路和绕组相间短路。 1.故障现象 离子的磁场分布不均,三相电流不平衡而使电动机运行时振动和噪声加剧,严重时电动机不能启动,而在短路线圈中产生很大的短路电流,导致线圈迅速发热而烧毁。 2.产生原因 电动机长期过载,使绝缘老化失去绝缘作用;嵌线时造成绝缘损坏;绕组受潮使绝缘电阻下降造成绝缘击穿;端部和层间绝缘材料没垫好或整形时损坏;端部连接线绝缘损坏;过电压或遭雷击使绝缘击穿;转子与定子绕组端部相互摩擦造成绝缘损坏;金属异物落入电动机内部和油污过多。 相间短路的电机短路点会瞬间烧断融化,导致电机无法工作。 匝间短路的电机会电流不正常,稍后冒烟甚至起火,烧毁至电机无法工作。维修时一眼就能鉴别出来。 *异步电机与同步电机区别:

极槽配合对永磁同步电机性能的影响_新(技术相关)

极槽配合对永磁同步电机性能的影响 摘要:永磁同步电机由于具有结构简单、体积小、效率高、功率因数高、转动惯量小、过载能力强,运行可靠等特点,在家用电器、医疗器械和汽车中得到广泛使用。永磁同步电机的齿槽转矩会引起输出转矩的脉动和噪声,不平衡径向电磁力则是电机的主要噪声源。本文着重研究极槽配合对永磁同步电机性能的影响,主要包括齿槽转矩和径向电磁力两个方面。详细介绍了齿槽转矩和径向电磁力的相关原理,并通过仿真对8极9槽和8极12槽两种极槽配合的电机进行分析比较,验证了相关的理论的正确性,最后得出电机设计中应综合考虑齿槽转矩、径向电磁力等相关因素合理选择极槽配合。 关键词:极槽配合;齿槽转矩;永磁同步电机;径向力 Influence of Pole-Slot Combination on The Performance of Permanent Magnet Synchronous Motor Abstract: Permanent magnet synchronous motor has simple structure, small volume, high efficiency, high power factor, small moment of inertia, strong overload capacity, reliable operation, widely used in household appliances, medical equipment and vehicles. Cogging torque will cause output torque ripple and noise of PMSM ,And unbalanced radial electromagnetic force is the main reason of noise of motor. In this paper,we focuses on the research of pole-slot combination effects on the performance of PMSM, including two aspects:the cogging torque and radial electromagnetic force. The relevant principles of the cogging torque and radial electromagnetic force were introduced in detail, and through the simulation of 8 poles 9 slots and 8 poles 12 slots motors,the two kinds of pole-slot combination motor were analyzed and compared, verified the related theory.Finally, we conclude that the cogging torque and radial electric force and so on related factors should be considered into the motor design when selecting reasonable pole-slot combination. Key words: pole-slot combination; cogging torque;PMSM; radial force 1引言 永磁同步电机结构简单、体积小、效率高、功率因数高、转动惯量小、过载能力强,运行可靠,且其

表贴式永磁同步电机伺服系统电流环设计_王恩德

第32卷第33期中国电机工程学报V ol.32 No.33 Nov.25, 2012 82 2012年11月25日Proceedings of the CSEE ?2012 Chin.Soc.for Elec.Eng. 文章编号:0258-8013 (2012) 33-0082-07 中图分类号:TM 351 文献标志码:A 学科分类号:470 40 表贴式永磁同步电机伺服系统电流环设计 王恩德,黄声华 (强电磁工程新技术国家重点实验室(华中科技大学),湖北省武汉市 430074) Current Regulator Design for Surface Permanent Magnet Synchronous Motor Servo Systems WANG Ende, HUANG Shenghua (State Key Laboratory of Advanced Electromagnetic Engineering and Technology (Huazhong University of Science and Technology), Wuhan 430074, Hubei Province, China) ABSTRACT: The current control loop directly affects the current of the surface permanent magnet synchronous motor (SPMSM) and the electromagnetic torque, which makes the static and dynamic performance of the motor deteriorate. The decoupling control cannot be realized with the changes of the motor’s inductance parameters due to saturation effects when the operating condition changes. This paper proposed a decoupling control to improve the dynamic performance, without the inductance value with the perspective of complex vector. As the dead zone, the motor manufacturing process and the magnetic saturation, the servo system current often contains low-order harmonics, such as 5th, 7th, 11th, 13th, which produce torque ripple and affect the motor’s performance. The current regulation with the proportional Integral and proportional resonance based on the synchronous rotating dq coordinate was used for the closed loop control of the low harmonic currents, to improve the system performance. Simulation and experimental results verify the feasibility of the schemes proposed by this paper. KEY WORDS: surface permanent magnet synchronous motor (SPMSM); synchronous dq coordinate; complex vector; decoupling control; proportion resonance 摘要:电流环直接影响表贴式永磁同步电机(surface permanent magnet synchronous motor,SPMSM)伺服系统的电流波形和电磁转矩,使系统的动、静态性能变差。当系统运行工况变化使得电机电感饱和时,电流环中含有电感参数的解耦项就会失效。从合成矢量的角度出发,提出了一种同步dq旋转坐标系下无需电感参数的电流解耦调节器,实现了无电感参数解耦控制,改善了SPMSM系统的动态性能。另外,由于死区、电机制造工艺、磁场饱和等原因,电机电流中含有影响系统性能的5、7、11、13等低次谐波。提出了同步旋转dq坐标系下比例积分+比例谐振(proportional integral + proportional resonance,PI+PR)的电流复合调节器,对低次电流谐波进行闭环调节,从而显著减小了谐波电流,改善了系统性能。仿真分析和实验结果均验证了该方案的可行性。 关键词:表贴式永磁同步电机;同步旋转dq坐标系;合成矢量;解耦控制;比例谐振 0 引言 表贴式永磁同步电机(surface permanent magnet synchronous motor,SPMSM)的永磁体产生与转子同步旋转的正弦波磁场,通过编码器获得转子位置后就能方便地实现基于转子磁链解耦的矢量控制,达到等同于直流伺服系统的控制精度。SPMSM具有功率密度高、损耗小、电气时间常数小等优点,加之近年来数字控制芯片的快速发展,使得基于SPMSM的数字交流伺服系统广泛应用于数控机床、航空航天等领域[1,2]。 应用场合的多样化和复杂性,也对伺服系统的静、动态控制性能提出了更高的要求。基于SPMSM 的伺服控制系统是一个包含位置环、速度环和电流环的多闭环系统。其中,作为最内环的电流环决定了电流的跟踪性能,直接影响SPMSM的输出转矩,对伺服系统的控制性能起着非常重要的作用。文献[3-4]分析了永磁同步电动机控制的电流环,并设计了调节器参数,其中文献[3]引入微分环节和过调制技术,文献[4]分析了电流环3种控制方法的利弊,并提出适用于工程实践的设计方案。为了简化分析,文献[3-4]均忽略了耦合项,但这样会导致系统的动态性能变差。文献[5]从电流环带宽的角度出发,提出了带宽扩展策略,提高了伺服系统的动态性能,虽然考虑了耦合项,但没有考虑电感变化对解耦控制的影响。文献[6]提出了一种基于合成矢量的无需电感参数的解耦控制策略,取得了较好的控 DOI:10.13334/j.0258-8013.pcsee.2012.33.013

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率 密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航 天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电 动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速 永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电 动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另 一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变 频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell 软件中的RMxprt 模块进行了一种调速永磁同步电 动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D 中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行 了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子 冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 永磁同步电动机的效率η、功率因数cos ?、起动转矩st T 和最大转矩max T 。本例所设计永磁同步电动机的额定数据及其性能指标如下: 额定数据 数值 额定功率 N 30kw P = 相数 =3m 额定线电压 N1=380V U 额定频率 =50Hz f 极对数 =3p 额定效率 N =0.94η 额定功率因数 N cos =0.95? 绝缘等级 B 级 计算额定数据:

发电机匝间短路故障诊断

目录 1 引言 (1) 1.1 研究目的与意义 (1) 1.2 发电机故障诊断技术的发展状况 (1) 1.3 发电机转子绕组匝间短路故障检测的研究现状 (2) 1.4 本文的内容和主要工作 (4) 2 汽轮发电机转子绕组匝间短路的理论分析 (6) 2.1 汽轮发电机的转子结构 (6) 2.2 转子绕组发生匝间短路的原因 (6) 2.3 匝间短路的磁场分析 (7) 2.3.1 发电机发生匝间短路的磁场分析 (9) 3 发电机转子绕组匝间短路故障的探测线圈法 (12) 3.1 探测线圈法的测试原理 (12) 3.2 探测线圈的结构及置放 (14) 3.2.1 诊断系统及其功能组成 (15) 3.2.2 基本参数 (16) 3.2.3 传感器安装和定位 (16) 3.3.3 故障判断 (16) 3.3 大亚湾核电站发电机组的探测线圈法实例分析 (17) 参考文献 (20)

1引言 1.1研究目的与意义 随着我国国民经济的快速发展,电力工业正处于大电机和大电网的发展阶段。人们的生活和生产水平迅速提高,使得电能需求量日益增长,进而对电力系统的供电质量、可靠性及经济性等指标的要求也不断提高。发电机是电能生产的重要设备,它为整个电力系统提供电能,是整个电网的心脏,因此如果发电机发生故障,可能会导致局部停电甚至整个系统崩溃。 发电机转子作为发电机的重要组成部分,主要由励磁绕组线圈、线圈引线以及阻尼绕组等部分组成。发电机运行时,由于转子处于高速旋转状态,这些部件将承受很大的机械应力和热负荷,若超过其极限值时将导致部件的损坏。转子绕组是发电机经常出现故障的部位,除本体故障外,主要是转子绕组的短路故障,如匝间短路、一点接地短路、两点接地短路等。发电机正常运行时,转子绕组对地之间会有一定的分布电容和绝缘电阻,绝缘甩阻的阻值通大于1兆欧。但是因某种原因导致对地绝缘损坏或绝缘电阻严重下降时,就会发生转子绕组接地事故。当发电机转子发生一点接地故障时,因为励磁电源的泄漏电阻很大,一般不会造成多大的伤害,限制了接地泄露电流的数值。但是,发电机转子两点接地故障将会产生很大的电流,经故障点处流过的故障电流会烧坏转子本体。而部分转子绕组的短接,励磁绕组中增加的电流可能会导致转子因过热而烧坏,气隙磁通也会失去平衡,从而引起发电机的振动,还可能使转子大轴磁化,甚至会导致灾难性的后果,因此两点接地故障的后果是很严重的。 目前,在国内运行的大型发电机组中,发电机匝间短路故障占故障总数的比重较大,大多数发电机都发生过或已经存在转子绕组匝间短路的故障。由于转子绕组绝缘的损坏,转子绕组匝间短路后会形成短路电流,从而导致局部过热。发电机长期在这种环境下运行,会进一步引起绝缘的损坏,导致更为严重的匝间短路,最终形成恶性循环。据统计资料表明,发电机转子匝间短路故障并不会影响机组的正常运行,所以常常被忽略,但是如果任其发展,转子电流将会显著增加,绕组温升过高,无功输出降低,电压波形畸变,机组振动加剧,并且还会引起其它的机械故障,严重时还会影响发电机的无功出力。如果发生的是不对称的匝间短路故障,发电机组的振动将会加剧,转子绕组的绝缘也有可能进一步的损坏,进而发展成为接地故障,对发电机组的安全稳定运行构成了严重的威胁。因此,对发电机绕组匝间短路故障的诊断与识别是十分必要的。 1.2 发电机故障诊断技术的发展状况 早期的故障诊断主要依靠人工经验,如:看、听、触、摸等方法进行诊断,

PMSM电流环速度环位置环设计与实现中的心得体会

一:电流环参数的调节 1:PMSM传动控制系统中,电机运行速度范围很宽,电流频率范围从零到上百赫兹,要在这么宽的频率范围内准确地检测电机电流,常选用霍尔元件实现电机电流的检测。 霍尔检测方法优点:动态响应好,信号传输线性及频带范围宽等优点。 为保证电机对称运行,电流三相各反馈信道的反馈系数必须相等,这就要精心选择调理电路组件,仔细调整反馈回路参数。信号调理电路使用模拟放大器时,放大器的零漂是影响电机低速运行性能的主要因素,要仔细调整放大器,将零点漂移控制在10mv以内。 2:PMSM调速系统需要电机有很宽的调速范围,达到10^4:1以上,要在这么宽的速度范围内检测出电机的速度,以实现调速系统的控制确实是个很重要的问题。尽管T法在低速时有很好的测速精度,但研究调速系统控制的论文极少见使用(T或M/T)法测速的,基本上都是采用M法测速。实际上,当电机处于极低转速时,电机能否稳定运行不仅仅取决于位置传感器及其所送来的脉冲信号,还有速度调节器的作用,以及电流环与电机转子惯性环节的影响,所以,M法仍可用于低速范围内电机速度的检测与反馈。 3:电流调节器参数对电流环的动态响应具有决定性影响。 电流调节器比例系数越大,电流阶跃跟踪响应速度越快,响应的超调越大,振荡次数越多。电流调节器的积分系数越大,电流阶跃跟踪响应的稳态误差越小,但太大会引起电流环振荡。 PMSM调速控制系统的电流环控制对象为PWM逆变器、电机电枢绕组、电流检测环节组成。在实际系统运行过程中,电流环的相应受电机反电势的影响,电流环动态响应不好,为提高永磁同步电机调速系统电流环动态响应性能,抑制反电动势对电流环的影响,在实际系统电流调节器制作时,比例和积分系数均做了调整,增大比例系数,减小积分时间常数。 电流环响应若不加微分负反馈环节,电流环动态响应将会出现振荡与超调。然而实际应用中,通常不加微分反馈环节,因为微分极易引起系统的振荡。而且按照电流环I型系统的校正原则,采用PI控制才能实现电流环系统的稳定性和高动态响应。 二、速度环参数的调节 采用II型系统设计的速度环,实际应用中,在速度阶跃过程中,速度调节器会出现饱和,系统的实际运行情况和设计时所采用的线性对象具有很大的差别,调节器设计时的初始条件和实际系统退饱和后调节器参与调节时的初始条件有很大差别。因此按照II型系统设计的速度环需要作很大的调整才能满足实际系统的需要。但该设计方法关于调节器的形式选择仍然适用。 从自动控制原理可知,调速控制系统的速度超调是使用PI调节器并要求有快速响应的必然结果,原因是速度调节器要退出饱和,参与调解。 随着速度调节器输出限幅的增加,速度响应加快,到达指定速度时的振荡程度增加。输出限幅数值决定电机在动态过程中加速力矩的大小,影响电机在加减速过程中的加速度,影响调速系统的速度响应过程。输出限幅值要合理设置,应该充分利用电机的过载能力,以提高调速控制系统的速度响应性能。同时,在调速控制系统中可设置速度微分负反馈(肖老师建议速度环一般不要加前馈),可以

永磁同步电机基础知识

(一) PMSM 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ?=+-????=++?? 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 cos sin 22cos()sin()3322cos()sin()33a d b q c u u u u u θθθπθπθπθπ?? ?-????? ??=--- ? ???? ???? ?+-+? ? (2)d/q 轴磁链方程: d d d f q q q L i L i ψψψ=+???=?? 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项 倍。

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell软件中的RMxprt模块进行了一种调速永磁同步电动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 T。本例所永磁同步电动机的效率η、功率因数cos?、起动转矩st T和最大转矩max 设计永磁同步电动机的额定数据及其性能指标如下: 计算额定数据:

(1) 额定相电压:N 220V U U == (2) 额定相电流:3 N N N N N 1050.9A cos P I mU η??== (3) 同步转速:160=1000r /min f n p = (4) 额定转矩:3 N N 1 9.5510286.5N m P T n ?==g 2.2 主要尺寸和气隙长度的确定 永磁电机的主要尺寸包括定子内径和定子铁心有效长度,它们可由如下公式 估算得到: 2 i11P D L C n '= N N N cos E K P P η?'=, 6.1p Nm dp C K K AB δ α=' 式中,i1D 为定子内径,L 为定子铁心长度,P '为计算功率,C 为电机常数。 E K 为额定负载时感应电势与端电压的比值,本例取0.96;p α'为计算极弧系数, 初选0.8;Nm K 为气隙磁场的波形系数,当气隙磁场为正弦分布时等于1.11;dp K 为电枢的绕组系数,初选0.92。A 为电机的线负荷,B δ为气隙磁密,A 和B δ的 选择非常重要,直接影响电机的参数和性能,应从电机的综合技术经济指标出发 来选取最合适的A 和B δ值,本例初选为200A/cm,0.7T A B δ==。 由上式可初步确定电机的2i1D L ,但要想进一步确定i1D 和L 各自的值,还应选择主要尺寸比i1i122L L pL D D p λπτπ===,其中τ为极距。通常,中小型同步电动机的0.6~2.5λ=,一般级数越多,λ也越大,本例初选1.4。 永磁同步电动机的气隙长度δ一般要比同规格的感应电动机的气隙大,主要 是因为适当的增加气隙长度可以在一定的程度上减小永磁同步电动机过大的杂 散损耗,减低电动机的振动与噪声和便于电动机的装配。所以设计永磁同步电动 机的气隙长度时,可以参照相近的感应电动机的气隙长度并加以适当的修改。本 例取=0.7mm δ。 确定电动机定子外径时,一般是在保证电动机足够散热能力的前提下,视具 体情况为提高电动机效率而加大定子外径还是为降低成本而减小定子外径。

永磁同步电机匝间短路故障在线检测方法

第37卷第3期2018年3月 电工电能新技术 AdvancedTechnologyofElectricalEngineeringandEnergy Vol.37,No.3Mar.2018 收稿日期:2017?03?29 作者简介:彭一伟(1991?),男,重庆籍,硕士研究生,研究方向为电动汽车用交流电机的控制; 赵一峰(1979?),男,陕西籍,研究员,研究方向为电动汽车用交流电机的控制三 永磁同步电机匝间短路故障在线检测方法 彭一伟1,2,赵一峰1,3,4,王永兴1,3,4,关天一1,2 (1.中国科学院电工研究所,北京100190;2.中国科学院大学,北京100049; 3.中国科学院电力电子与电气驱动重点实验室,北京100190; 4.电驱动系统大功率电力电子器件封装技术北京市工程实验室,北京100190) 摘要:本文提出了简单的永磁同步电机(PMSM)匝间短路故障在线检测方法三首先对不同状态PMSM定子电流谐波成分展开分析,提出一个融合了-fe及?3fe谐波成分的故障特征量Ft三针对采用快速傅立叶变换方法计算特征量实时性差的问题,在连续细化傅立叶变换方法基础上引入布莱克曼窗,从而改善了连续细化傅立叶变换方法的幅值辨识精度,实现了故障特征量快速且准确的求取三仿真及实验结果表明,特征量Ft能够正确反映PMSM匝间短路故障是否发生,本文提出的在线检测方法在不增加任何硬件设备的基础上实现了PMSM匝间短路故障的检测三关键词:永磁同步电机;匝间短路故障;故障特征量;在线检测;连续细化傅立叶变换 DOI:10 12067/ATEEE1703103一一一文章编号:1003?3076(2018)03?0041?08一一一中图分类号:TM351 1一引言 永磁同步电机(PMSM)具有高转矩/惯量比二高功率密度二高效率二响应快等优点三近年来,随着永磁性能不断提高,PMSM在电动汽车中的应用越来越广泛[1]三永磁同步电机在长期运行的过程中不可避免会出现各种故障,严重影响其在电动汽车应用中的可靠性和安全性三永磁同步电机驱动系统中,由匝间短路引起的定子绕组故障是最为常见的故障之一[2]三在早期的匝间短路故障阶段,电机仍然可以正常运行,然而由于大的短路电流的存在,短路回路会产生大量热量,从而引起更多的绝缘失效三因此,早期匝间短路故障的检测对于避免驱动系统失效二避免危害人身安全具有十分重要的作用三目前,已有许多学者展开了永磁同步电机定子 故障检测方面的工作[3?11]三这些研究主要包括基于磁通密度传感器的方法[3]二基于测得的定子电压和电流构建状态观测器的方法[4]二基于频域及时频分析工具的定子电流特征分析的方法[5?10]二智能控制(如人工神经网络)方法[11]等故障检测方案三其中,定子电流特征分析方法因其低成本而受到国内 外学者最广泛的关注三文献[5]提出将负序电流幅值作为反映匝间短路故障严重程度的特征量,并采用负序dq轴结合低通滤波器的方案成功提取出负序电流幅值三文献[6]利用傅立叶变换的方法对定子电流信号进行分析,通过对比正常电机和故障电机定子电流频谱,指出故障电机定子电流3次谐波含量增加,故以此作为故障的判定依据三文献[7]在文献[6]的基础上提出以q轴2次谐波幅值为特征量代替定子电流3次谐波电流的提取,简化了故障检测算法三傅立叶变换将原有电流信号从时域变换到频域进行分析,难以应对系统非线性工况下的特征量提取三针对这一问题,文献[8,9]分别采用离散小波变换(DWT)和小波包变换对动态情况下匝间短路故障的定子电流进行分析三仿真和实验结果表明,该方法在电机变速二中速二低速二高速情况下,根据3次谐波所在频段能量进行分析均可判定短路故障是否发生三文献[10]采用经验模态分解(EMD)方法对定子电流进行分析,得到一个本征模态函数IMF的集合,然后用时频分析方法对包含故障谐波的模态进行分析得到故障对应的瞬时频率,仿真和实验表明了该诊断方法的有效性三时频分析

永磁同步电动机电流环矢量控制文档

永磁同步电动机的数学模型和矢量控制 1.坐标变换原理 (1)坐标系介绍 三种:三相静止坐标系(abc)、两相静止坐标系(αβ)以及同步旋转坐标系(dq)(2)坐标变换 主要目的是为了将交流电机的物理模型等效地变成直流电机的物理模型,使控制大大简化。不同电机模型等效的原则是:在不同坐标系下产生的磁动势相同。 三相静止坐标系与两相静止坐标系之间转换 为方便起见,取α轴与A轴重合,设三相系统每相绕组的有效匝数为N 3 ,两 相系统每相绕组的有效匝数为N 2 ,各相磁动势均为有效匝数及其瞬时电流的乘积。交流电流的磁动势大小随时间耳边,图中磁动势矢量的长短是任意画的。设磁动势波形是正弦分布,当三相磁动势与两相磁动势相等时,两套绕组瞬时磁动势在α、β上的投影应当相等。 为了便于求反变换,最好将变换阵表示成可逆的方阵。为此,在两相系统上人为 地增加一相零轴磁动势N 2i ,并定义为 将以上三式合在一起,写成矩阵形式,得 式中 是三相坐标系变换到两相坐标系的变换阵。满足功率不变条件时应有

显然,两矩阵的乘积应该为单位阵, 由此求得 这就是满足功率不变约束条件时的参数关系。由此得到 在实际电机中并没有零轴电流,因此实际的电流变换式为 如果三相绕组是星形不带零线接法则 整理得

●两相静止/两相旋转变换 ●由三相静止坐标系到任意两相旋转坐标系上的变换

2.永磁同步电动机的数学模型 当永磁同步电动机的定子通入三相交流电I时,电枢电流在定子绕组电枢电阻 R 上产生电压降IR。由三相交流电流I产生的旋转电枢磁动势Fa,及建立的电S 枢磁场aφ,一方面切割定子绕组并在定子绕组中产生感应反电动势a E,另一方面以电磁力拖动转子以同步转速n 旋转。电枢电流I还会产生仅与定子绕组相交 s 链的定子绕组漏磁通。并在定子绕组中产生感应漏电动势Eσ。此外转子永磁极 产生的磁场0φ以同步转速切割定子绕组,从而产生空载电动势0E。因此永磁同步电动机运行时的电磁关系如下所示:

永磁同步电机性能要求与技术现状分析

在各类驱动电机中, 永磁同步电机能量密度高, 效率高、体积小、惯性低、响应快, 有很好的应用前景。永磁电动机既具有交流电动机的无电刷结构、运行可靠等优点, 又具有直流电动机的调速性能好的优点, 且无需励磁绕组, 可以做到体积小、控制效率高, 是当前电动汽车电动机研发与应用的热点。 永磁同步电动机( PMSM)系统具有高控制精度、高转矩密度、良好的转矩平稳性以及低噪声的特点, 通过合理设计永磁磁路结构能获得较高的弱磁性能, 提高电动机的调速范围, 因此在电动汽车驱动方面具有较高的应用价值。 作为车辆电驱动系统的中心环节, 驱动电机的总体性能是设计研制技术的关键之一。根据车辆运行的特殊环境以及电驱动车辆自身的特点, 对驱动电机的技术要求主要是: ( 1)体积小、重量轻; 有较高的功率和转矩密度; ( 2)要求在宽速域范围内, 电动机和驱动控制器都有较高的效率; ( 3)有良好的控制性能以及过载能力, 以提高车辆的起动和加速性能。 永磁同步电机的功率因数大, 效率高, 功率密度大, 是一种比较理想的驱动电机。但正由于电磁结构中转子励磁不能随意改变, 导致电机弱磁困难, 调速特性不如直流电机。目前, 永磁同步电机理论还不如直流电机和感应电机完善, 还有许多问题需要进一步研究, 主要有以下方面。 1) 电机效率: 永磁同步电机低速效率较低, 如何通过设计降低低速损耗, 减小低速额定电流是目前研究的热点之一。 2)提高电机转矩特性 电动车驱动电机要求低速大转矩且有一定的高速恒功率运行范围, 所以相应控制策略的研究也主要集中在提高低速转矩特性和高速恒功率特性上。 1.低速控制策略: 为了提高驱动电机的低速转矩,一般采用最大转矩控制。早期永磁同步电机转子采用表面式磁钢, 由于直轴和交轴磁路的磁阻相同, 所以采用 id= 0 控制。控制命令中直轴电流设为 0, 从而实现最大转矩控制。随着同步电机结构的发展, 永磁同步电机转子多采用内置式磁钢, 利用磁阻转矩增加电机的输出转矩。id= 0 控制电机电枢电流的直轴分量为 0, 不能利用电机的磁阻转矩, 控制效果不好。目前, 永磁同步电机低速时常采用矢量控制, 包括气隙磁场定向、转子磁链定向、定子磁链定向等。 2.高速控制策略: 为了获得更宽广的恒功率运行范围, 永磁同步电机高速运行通常采用弱磁控制。另外, 在电机采用低速转矩控制和高速弱磁控制的同时, 还要考虑如何

电机匝间短路与相间短路

电机匝间短路及相间短路问题解答 一、什么就是电机匝间短路 就就是同一个绕组就是由很多圈(匝)线绕成得,如果绝缘不好得话,叠加在一起得线圈之间会短路,这样一来,相当于一部分线圈直接被短路掉不起作用了。匝间短路后,电机得绕组因为一部分被短路掉,磁场就与以前不同了,不对称了,而且剩余得线圈电流比以前大了,电机运行中会振动增大,电流增大,出力相对减小。 二、发生电机匝间短路,会有以下现象:1?)被短路得线圈中将流过很大得环流(常达正常电流得2---10倍),使线圈严重发热;2?)三相电流不平衡,电动机转矩降低; 3)产生杂音;4?)短路严重时,电动机不能带负载起动。?匝间短路在刚开始时,可能只有两根导线因交叠处绝缘磨坏而接触。?由于短路线匝内产生环流,使线圈迅速发热,进一步损坏邻近导线得绝缘,使短路得匝数不断增多、故障扩大。 短路匝数足够多时,会使熔断器烧断,甚至绕组烧焦冒烟。 当三相绕组有一相发生匝间短路时,相当于该相绕组匝数减少,定子三相电流就不平衡。不平衡得三相电流使电动机振动,同时发出不正常得声音。?电动机平均转矩显著下降,拖动负载时就显得无力。 三、电动机绕组短路故障现象与原因就是什么?

答:由于电动机电流过大、电源电压变动过大、单相运行、机械碰伤、制造不良等造成绝缘损坏所至,分绕组匝间短路、绕组间短路、绕组极间短路与绕组相间短路。 1、故障现象 离子得磁场分布不均,三相电流不平衡而使电动机运行时振动与噪声加剧,严重时电动机不能启动,而在短路线圈中产生很大得短路电流,导致线圈迅速发热而烧毁。 2、产生原因 电动机长期过载,使绝缘老化失去绝缘作用;嵌线时造成绝缘损坏;绕组受潮使绝缘电阻下降造成绝缘击穿;端部与层间绝缘材料没垫好或整形时损坏;端部连接线绝缘损坏;过电压或遭雷击使绝缘击穿;转子与定子绕组端部相互摩擦造成绝缘损坏;金属异物落入电动机内部与油污过多。 相间短路得电机短路点会瞬间烧断融化,导致电机无法工作。 匝间短路得电机会电流不正常,稍后冒烟甚至起火,烧毁至电机无法工作。维修时一眼就能鉴别出来。 *异步电机与同步电机区别: 异步电机又叫感应电机,转子上得电磁场就是通过定子磁场感应出来得。同步电机转子上要有自带得磁场。?异步电机得转速会随负载得不同,略有改变,而且这个转速就是低于定子磁场得转速得,所以才叫异步电机。同步电机转速严格得按定子磁场转速旋转,所以叫同步电机。?异步电动机可以直接启动。同步电动机要有专门得启动装置或者启动绕组,所以制造工艺复杂,造

利用电磁特性分析对永磁同步电机进行故障诊断的新方法讲诉

文献翻译 题目利用电磁特性分析对永磁同步电机 进行故障诊断的新方法 学生姓名黄建波 专业班级电气工程及其自动化10级1班学号541001020215 院(系)电气信息工程学院 指导教师张志艳 完成时间 2014年 05月23日

利用电磁特性分析对永磁同步电机进行故障诊断的新方法姚达,IEEE学生会员,石晓东,IEEE会员,马赫施·奎纳姆瑟,IEEE会员 摘要 本文提出了一种通过直接测量传感线圈的磁通量对永磁同步电机进行健康监测和多故障检测的新方法。不同于其他基于频谱的故障检测方案,这种方法仅需要测量用于故障检测的基频分量。因此,本方案的性能不受速度波动或者电源谐波的影响。此外,可以检测到匝间短路的位置和静态偏心的方向,这是其他方案都没有的。虽然是嵌入式技术,但它非常适合于关键任务和新兴技术的应用,离岸风力涡轮机和混合动力汽车技术,军事上的应用等故障的早期检测非常重要的场合。使用有限元分析进行二维模拟已经验证了不同条件下提出的方法。实验简介对定子匝间短路故障、失磁故障、静态偏心故障进行了讨论,对提出的方案进行实验,验证其有效性。 关键词:故障检测,有限元分析、永磁同步电机、传感线圈。 1.简介 过去十年,永磁同步电机(PMSM)由于其高效率、高输出功率体积比和高转矩电流比,在诸如风力涡轮机和电动汽车中得到了很大的普及。在这些关键任务的应用中,一个意想不到的机器故障可能会导致非常高的维修或更换费用,甚至灾难性的系统故障。因此,这种场合需要坚固可靠的健康监测和故障检测方法,可以为预防性维护提供依据,延长使用寿命,减少机器故障。 离线机故障检测与诊断的方法不能频繁地测试,经济上也不允许,研究人员已经提出了许多在线检测的方法,这类方法维修费用少、诊断结果更可靠。一个具有成本效益的方式是基于定子电流频谱,通常被称为电动机电流特征分析(MCSA)[1]-[6]。电机电流的特定次谐波可以作为某种特定故障的标志。由于离散傅里叶变换(DFT)不包含机器操作和快速变化的速度的时间信息,短时傅里叶变换可以权衡时间和频率的分辨率。然而,一个固定长度的窗口可能导致不同的电流频率[7]不一致,改变电机的速度使它难以确定谐波次数。为了避免时间分辨率和频率分辨率之间的矛盾,罗赛罗等人[7]利用连续小波变换(CWT)和离散小波变换(DWT)在一台机器非平

永磁同步电机匝间短路故障在线诊断研究2500字

永磁同步电机匝间短路故障在线诊断研究2500字 分析永磁同步电机匝间短路故障常用的模拟方法,研究我国匝间短路故障诊断方法,在目前发展状况,预测定子匝间短路故障的处理方法,提出了针对解决匝间短路故障的解决注意问题。永磁同步电机匝间短路故障不能被诊断得到纠正,会造成一定故障问题,需要及时对于故障进行诊断,对于影响车辆的正常运行,减少故障的破坏性,早期及时发现故障及时处理,减少故障诱发的停机问题,保障机器正常运转模式。 /3/view-13032379.htm 永磁;同步;电机;匝间短路故障;诊断 永磁同步电机的结构一般比较紧凑,体积比较小,重量比较轻,工作效率也比较高,工作具有很高可靠性,噪声比较低的特点。在电动汽车驱动综合指标中,电动汽车的电机需要合理选择。通常情况下电动汽车的运行环境比较复杂,会涉及到很多方面问题,比如振动、湿度、粉尘和频繁起动等问题,这些都会直接影响到电机安全运行问题,会诱发一定电机故障问题。 一、永磁同步电机定子匝间短路故障模拟方法分析 永磁同步电机定子匝间短路故障诊断研究中,可以集中分为两个方面,要寻找故障特征量,判断故障发生,判定故障的严重程度,对于永磁同步电机定子匝间短路故障进行及时处理,总结变化规律,及时判断故障发生的原因,有效分析故障出现问题,利用有效办法解决故障问题,比如采用有限元分析方法,建立良好故障模型,减少故障发生,设定良好电机运行环境,对于电机故障仿真处理,分析形成故障原因,采用有效措施解决故障。 另一种办法就是建立永磁同步电机数学模型,借助仿真平台,提高故障处理,设定良好的接头和附加电阻,及时调整好电阻大小,分析定性电阻之间关系。 二、永磁同步电机定子匝间短路故障短路故障诊断方法研究分析 在电机运行过程中,要提高内部空间存在的气隙磁场,电机中的点磁场要在不同媒质中分布,根据变化情况分析,实现对于电机运行状态性能分析,及时反映电机内部磁场的数学模型,运用良好的诊断方法对于电机进行分析研究,常用的方法有参数辨识法、卡尔曼滤波算法和磁通估计法等。建立良好永磁同步电机匝间短路故障处理模式,有效控制好系统基础上的仿真模型,针对电流发生的故障处理好数学模型,如果出现电机的绕组故障问题,快要针对坐标数学模型,做好建模仿真工作,实现对于电机常见故障仿真方法处理。 在永磁同步电机数学模型基础上,推动坐标系的匝间短路故障处理,建立良好电机互感和反向磁动势动态参数分析,建立良好故障电机仿真模型,附加合理电机模拟匝间短路故障严重程度分析,解决故障电流不平衡问题。在电机发生故障的时候,电气量的电流的电压都会发生一定变化,需要借助变换的信号及时处理好故障信息问题,常见的信号变换主要是对于电机状态的监测和故障诊断工作,比如小波?化、电机电流频谱分析和傅里叶的变换方法处理。要及时消除电机固有不对称供电影响问题,提出功率分解技术故障检测方法,有效消除故障产生的负序电流影响问题,及时检测电流线圈故障问题,准确获得电机参数,提高大幅度的故障诊断精度分析, 基于人工职能的诊断方法研究中,人工职能可以有效模拟人类分析处理问题的职能行为,需要提高数学模型分析和研究,保障永磁同步电机故障有效诊断研究,采用新的研究方法,提高故障诊断系统维护智能化,保障人工职能诊断方法处理合理性。处理中要及时有效将负荷波动产生的高频成分从负面电流中分离出来,调整好电流的负序阻抗作用,及时判断故障

相关主题
文本预览
相关文档 最新文档