当前位置:文档之家› 超临界CO2在高分子合成中的应用研究进展

超临界CO2在高分子合成中的应用研究进展

超临界CO2在高分子合成中的应用研究进展
超临界CO2在高分子合成中的应用研究进展

超临界CO2在高分子合成中的应用研究进展

摘要总结了超临界CO2在链增长反应和逐步聚合反应中的应用研究进展。指出超临界CO2在聚合反应中能作为溶剂使用而代替传统的有机溶剂,并且在应用超临界CO2技术进行的聚合反应中,表面活性剂起到了重要的作用。

关键词超临界CO2 聚合反应表面活性剂

Abstract The developments of research and application of supercritical carbon dioxide both in chain growth and step growth polymerization are summarized. It indicates that supercritical carbon dioxide can be used as a polymerization solvent instead of conventional organic solvent, and the surfactant plays an important role in such polymerizations using supercritical carbon dioxide

Key words supercritical carbon dioxide polymerization

surfactant

近年来,随着人类环保意识的增强,鉴于化工有机溶剂对环境造成的严重污染,人们正试图寻找一种新的无毒无污染的物质来代替有机溶剂。超临界CO2作为超临界流体的一种,它在环境化学中能出色地代替许多有害、有毒、易挥发、易燃的有机溶剂;并且,CO2可看作是与水最相似的且比较便宜的溶剂。它能从环境中得来,用于化学过程后可再回到环境,无任何副产物,完全具有绿色的特性;此外,CO2有较温和的临界条件。这些优点决定了CO2能被广泛的应用,因此它正逐渐引起人们的研究兴趣。

1 超临界CO2的性质

超临界流体(supercritical fluid,简称SCF)是指温度和压力

处于其临界温度和临界压力以上的流体[1]

。超临界流体具有许多特殊的性质,如,特殊的溶解度、易改变的密度、较低的粘

度、较低的表面张力和较高的扩散性等, 因此在许多方面都有广泛的应用前景。CO2是超临界流体技术中最常用的溶剂,其临界温度为31.05°C ,临界压力为7.37MPa 。由于它的临界温度不高,因而可在室温附近实现SCF 操作技术,所以能节约能量。它的临界压力也不算高,因此设备加工并不困难。

2 利用CO2进行高分子合成研究的历史回顾

1960年,Biddulph 和Plesch 报道了在-50°C 的液态CO2中异丁烯的阳离子聚合反应。1968年,Hagiwara 等在一法国专利中报道了在大于常压,-78°C 到100°C 的CO2中进行氯乙烯、苯乙烯、甲基丙烯酸甲酯、丙烯酸、丙烯腈及醋酸乙烯酯等烯类单体的自由基均聚与共聚反应,得到了较高分子量的各种聚合物,聚合产率为15%~100%。Hagiwara 等还研究了在20°C ~

45°C 、39.2MPa 的CO2中乙烯的离子辐射和自由基聚合反应[2]

1970年,Fukui 等 [3]

在一美国专利中探讨了乙烯基单体在催化

剂存在的条件下,于液态CO2中的进行的聚合或共聚反应。他们认为CO2在聚合反应中只做为溶剂或分散剂 ,并不参与聚合反应。他们研究的单体包括氯乙烯、丙烯腈、甲基丙烯酸甲酯、苯乙烯等。但这些反应都属于沉淀聚合反应,转化率较低,产物分子量小、分布宽,因此该领域的研究受到很大的限制。此后,这方面的报道较少。直到1986年,Sertage 等在一加拿大专利中报道,在85~140°C ,31MPa 的超临界CO2中进行丙烯酸的非均相自由基聚合,能得到一种水溶性的聚合物。1988年,Hartmann 和Denzinger 以及Herbert 和Huvard 各自申请了类似

的美国专利和欧洲专利[4]

。但这些早期的研究工作得到的多是一些低分子量的,没有多大实用价值的粘性固体或液态聚合物,并未引起人们的足够重视。直到1992年,美国北卡罗纳大学的DeSimone 及其合作者们首次在《Science 》中报道,用超临界CO2作溶剂,AIBN 为引发剂,进行1,1-二氢全氟代辛基丙烯酸

酯(FOA)的自由基均聚,得到了分子量达27万的聚合物[5]

。至此,运用液相和超临界CO2技术进行高分子合成与制备的研究开展了起来。其中如何使反应体系很好地分散在超临界CO2介质中是合成中的关键。要求反应物必须对CO2有一定的亲和性,但一般的有机化合物大多是亲酯或憎CO2的,不能直接用于反应。有研究表明,CO2对氟碳、氟醚和硅醚等化合物具有极大的亲和性,这些化合物的存在能有效地促进一般类型的有机物在CO2中的溶解。因此在有机物的合成中,往往向体系中加入一定量的增溶剂,增溶剂的分子结构要求既要有亲酯基团,又要有亲CO2基团。DeSimone 用由超临界合成的方法得到的氟链修饰的增溶剂poly-FOA 与甲基丙烯酸甲酯(MMA)一起反应,该增溶剂能使MMA 单体与超临界CO2形成很好的多相分散体系。进行多相分散聚合时,得到了粒子尺寸为微米级的PMMA 粒子,且转化率达到

了98%[6]

。90年代以来,以DeSimone 为首的研究小组进行了大

量的研究工作,并一直与杜邦公司合作。杜邦公司准备在21世纪初,建成运用超临界CO2技术生产氟化聚合物的工厂,如生产氟化苯乙烯-聚丙烯,全氟烷氧基树酯等,使实验性工作迈向产业化。

3 超临界CO2用于链增长聚合反应

链增长聚合反应主要包括自由基、阳离子、阴离子聚合反应。在CO2中进行的链增长聚合反应大部分是自由基聚合反应。自由基聚合反应可分为均相和非均相聚合反应,在均相聚合反应中,单体、引发剂和生成的聚合物都溶于液态CO2。非均相聚合反应指在反应过程中至少有一种成分不溶于CO2。

4 超临界CO2 用于逐步聚合反应

由于CO2能高度增塑聚合物且能溶解小分子缩合物,所以适用于缩聚反应。在超临界CO2中进行熔融缩聚反应有以下优点:反应容易进行;能得到高分子量的产物。传统的方法是用较高

的真空度来去除缩合物,但这种方法需要高的资金消耗和必要的设备维护。利用CO2技术进行缩聚反应时,通过去除溶于CO2的小分子缩合物而使反应不断进行。不断排出小分子缩合物能使反应速率提高,并且产生较高分子量的聚合物。目前CO2的缩聚反应主要用于合成聚碳酸酯、聚酯和聚酰胺。

合成聚对苯二甲酸乙二醇酯(PET)通常采用熔融缩聚。应用超临界CO2合成PET 一般是以对苯二甲酸双羟乙酯(BHET)为原料,三氧化二锑为催化剂,温度250°C ~280°C ,CO2流速2~10mL/min ,压力为20.7MPa 。生成的PET 分子量为3×103~6×103g/mol 。并且,随着CO2流速和反应时间的增加,产物的分子

量不断增大[7,8]

。但是产物的分子量比普通熔融聚合产生的PET 的分子量要小得多(普通一般约为2×104g/mol)。由于反应生成的缩合物乙二醇能以2%~3%的重量百分比溶于CO2中,因此从溶胀的聚合产物中能除去缩合物乙二醇,以此来得到较高分

子量的PET。

用超临界CO2合成聚碳酸酯的情况比PET要好一些,主要原因可能是缩合物酚在CO2中的溶解性比乙二醇要好。Odell曾研

究了双酚和碳酸二苯酯在CO2中的熔融聚合反应[9]

。反应釜先

被加热到70°C来熔化预聚物。然后体系充入CO2并加热到所需要的温度。反应温度为180°C~250°C,压力20.7MPa~

24.1MPa,产物的数均分子量为2.2×103~1.1×104g/mol。随着温度的提高,分子量也不断的增加,但温度和压力的选择要有利于能更充分地萃取缩合物酚。采用特殊合成的表面活性剂能促进聚合物分子量的增加。例如,在CO2中合成聚碳酸酯A时,可采用聚碳酸酯A-b-聚二甲基硅氧烷作为表面活性剂。由于表面活性剂能促使聚合物在胶束分子上聚集,阻止了聚合物胶束粒子的凝聚,从而有利于缩合物酚的去除,使聚合速率加快、聚合物分子量增加。DeSimone等曾研究了在超临界CO2中用双

酚A 和碳酸二苯酯来合成聚碳酸酯的聚合反应[7,10,11]。Beckman 则将双酚A 聚碳酸酯做成薄膜放在50°C ~87°C ,压力

为60MPa 的CO2中12h ,结果产生了结晶的聚合物[12]

。用超临

界CO2熔融合成聚酰胺也有报道[7,10]

5 结论

综上所述,超临界CO2合成技术已逐渐应用于各种聚合物的合成中。对于不同类型的链增长聚合反应和逐步聚合反应来说,超临界CO2都可作为一种连续相的溶剂,从而代替有机溶剂的使用,减少了对环境的污染。不过,应用超临界CO2进行聚合反应时,表面活性剂起到了至关重要的作用。所以,设计和合成合适的、既能适用于超临界CO2技术又有利于聚合反应的表面活性剂,显得尤其重要。

6 参考文献

[1] 陈维杻. 超临界流体萃取的原理和应用. 北京: 化学工

业出版社, 1998:3-6.

[2] Hagiwara M , Mitsui H, Machi S et al. Liquid Carbon Dioxide as a solvent for the Radiation Polymerization of Ethylene. J. Polym. Sci. Part-A, 1968, 6(3): 603.

[3] Fukui K, Kagiya T, Yokota H, Toriuchi Y, Kuniyoshi

F. Novel Method for Polymerization: A Vinyl Compound in the Presence of a Carbon Dioxide Medium. 美国: 3522228, July 28,1970.

[4] 徐志康,封麟先. 超临界CO

在高分子合成与制备中的

2

应用. 高分子通报,1998, (1): 65.

[5] DeSimone J M, Guan Zhi bin, Elsbernd C S et al. Synthesis of Fluoropolymers in Supercritical Carbon Dioxide. Science, 1992, 257(5072): 945.

[7] DeSimone J M, Maury E E, Menceloglu Y Z et al.

Dispersion Polymerizations in Supercritical Carbon

Dioxide. Science, 1994, 265: 356-359.

[8] Burke A L C, Givens R D, DeSimone J M. Use of CO

2 in Step-Growth Polymerizations: From Plasticized

Polymer Melts to Solid State Polymerizations. Polym.

Prepr. , 1997,38(2): 387-388.

[9] Burke A L C, Maier G, DeSimone J M. Synthesis of

Polyesters in Supercritical Carbon Dioxide. Polym.

Mater. Sci. Eng. ,1996, 74:248-249.

[10] Odell P G, Hamer G K. Polycarbonates via Melt

Transesterification in Supercritical Carbon Dioxide.

Polym.Prepr. , 1997, 38(2): 470-471.

[11] Gross S M, Flowers D, Roberts G et al. Solid State

Polymerization of Polycarbonates Using Supercritical . Macromolecules, 1999, 32(9): 3167-3169.

CO

2

[12] Beckman E, Porter R S. Crystallization of Bisphenol

a Polycarbonate induced by Supercritical Carbon Dioxide. J. Polym. Sci. part B, 1987, 25(7): 1511-1517.

功能高分子材料研究进展

功能高分子材料研究进展 摘要 功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 关键词:高分子材料;功能高分子;功能材料; Abstract Functional polymer materials is an important branch of polymer science, it is the study of various functional polymer molecular design and synthesis of relationship between structure and properties and application technology as a new material. its importance is that contains every kind of polymer has special function it light functional polymer materials mainly include chemical functional polymer materials electric magnetic functional polymer materials acoustic functional polymer materials, polymer liquid crystal sections medical polymer materials, the research of this field mainly includes the study of the function of the molecular structure and formation of various sorts of special relationship, which is from the macro and go deep into the micro, and from the quantitative and semi-quantitative into from the chemical composition and structure principle to explain the special function of regularity, to explore and this paper mainly discusses the synthesis of new functional materials. Keywords:high polymer materials; functional polymer; functional Materials;

光敏高分子材料的研究进展

光敏高分子材料的研究进展 骆海强,重庆大学化学化工学院应用化学2班 摘要:由于当今材料科学技术的快速更迭,高分子材料逐渐成为材料科学领域中极具发展潜力的一类材料。在可利用能源不断缩减的今天,光敏高分子材料的研究力度大大提升,逐渐成为现代生活中不可或缺的部分。本文分别对光敏高分子材料的四大类——感光性高分子材料、光能转化高分子材料、光功能高分子材料及高分子非线性光学材料本身的特性及应用进行了综述性概括,以便快捷了解光敏高分子材料的特点。 0前言 随着材料科学技术相关研究人员在该领域的不断探索,高分子材料无论是在科研领域还是社会生活中,都扮演着极为重要的角色。在光电材料研究风气盛行的当下,太阳能电池、太阳能汽车等光能利用、转化设备普及的大环境下,光敏高分子材料的研究力度渐渐增加,也得到了许多理想的科研成果, 1光敏高分子材料概述 在光照下能表现出特别性能的高分子聚合物即为光敏高分子材料,是材料科学里一类主要的功能高分子材料,所触及范畴也较为普遍,如光致抗蚀剂、光导电高分子、高分子光敏剂等功能材料。 光敏高分子材料根据其自身在光照条件下所产生的反应类型及其展现出的特征性能,可以分成如下四类:感光性高分子材料、光能转化高分子材料、光功能高分子材料及高分子非线性光学材料。 现基于以上分类,对各种材料进行阐述。 2 感光性高分子材料 在光照下可以进行光化学反应的高分子材料常被称为感光性高分子材料。

根据其用途可分为光敏涂料和光刻胶。 2.1光敏涂料 2.1.1光敏涂料的作用机理 光敏涂料具有光敏固化功能,可以利用光交联反应或光聚合反应,使其中的低聚物聚合成膜或网状。经过恰当波长照射后,光敏涂料会快速固化,获得膜状物。因为固化过程较为稳定不易挥发溶剂,从而降低了排放,提高了材料利用,保障了安全性。而且由于是在覆盖之后才发生的交联,使图层交联度更好,机械强度也更稳固。 2.1.2光敏涂料的中常见低聚物的类型 以铁酸锌环氧酯错误!未找到引用源。错误!未找到引用源。涂料为一类的环氧树脂型低聚物,在紫外光的处理下,给电冰箱表面上漆,能够是冰箱表面具有很好的柔顺性且不宜脱落。以含氟丙烯酸酯预聚物错误!未找到引用源。为一类的不饱和聚酯型低聚物,与光引发剂等结合后形成的混合型涂料,其硬度、耐挂擦力、附着力等性能大大提高。此外还有聚氨酯型低聚物错误!未找到引用源。及聚醚型低聚物。 2.2光刻胶(光致抗蚀剂) 2.2.1光刻胶的作用机理 生产集成电路的现有工艺中,通常会用这类感光性树脂覆盖在氧化层从而避免其被活性物质腐蚀。将设计好的图案曝光、显影,改变了其溶解性,其中树脂发生化学反应后去除了易溶解的物质,氧化层表面留下不溶部分,从而避免氧化层被活性物质腐蚀。 2.2.2光刻胶的分类 正性光刻胶和负性光刻胶错误!未找到引用源。是根据曝光前后涂膜的溶解性来分类的。其中正性光刻胶受光后会降解,被显影液所消融;而与之相反,在光照后,负性光刻胶获得的图形恰好与掩膜板图形互补,即曝光处会发生交链反应形成不溶物残余在表面形成图像,而非曝光处则如正性光刻胶同样被消融,。 根据光刻胶所吸收的光的紫外波长,还可将其分为深紫外(i-线,g-线)光刻胶,远紫外(193 nm)光刻胶和极紫外(13. 5nm)光刻胶错误!未找到引用源。。Lawrie等错误!未找到引用源。经过多次实践合成了一种感光灵敏度为4~6 mJ/cm2、分辨率为22.5 nm的

生物医用高分子材料研究进展及趋势

生物医用高分子材料研究进展及趋势

J I A N G S U U N I V E R S I T Y 医用材料学课程学习总结及结课论文生物医用高分子材料的研究及发展趋势

学院名称:材料科学与工程 专业班级:金属1302 学生姓名:钱振 指导教师姓名:王宝志 2016年 10 月 生物医用高分子材料的研究及发展趋势 钱振 学号:63 班级:金属1302 材料科学与工程学院 摘要:随着我国经济发展水平的不断提高,分子材料在各领域得到了显著应用,在医用领域应用更多,本文综述了生物医用高分子材料的分类、特点及基本条件,概述了医用高分子材料的研究现状及其用途,并浅谈了医用高分子材料的发展及展望。通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。 关键词:生物材料,生物医用高分子材料,现状,应用,展望 1.引言 生物医用材料是生物医学科学中的最新分支学科,它是生物学、医学、化学、 物理学和材料学交叉形成的边缘学科,是用于人工组织或器官制备、高性能医疗

器械的研制、药物新剂型的开发和和仿生效应研究的基础[1] 。 生物医用材料,简称生物材料(BiomaterialS),是一类具有特殊性能或功能,用于与生物组织接触以形成功能的无生命的材料]2[。主要包括生物医用高分子材料、生物医用陶瓷材料、生物医用金属材料和生物医用复合材料等。研究领域涉及材料学、化学、医学、生命科学]3[,生物医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。目前医用高分子材料的应用已遍及整个医学领域(如:人工器官、外科修复、理疗康复、诊断治疗、心血管、骨修复、神经传递、皮肤、器官、药物控释等)。 2.研究现状 生物医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的高分子材料。在功能高分子材料领域,生物医用高分子材料取得了长足的进展,目前已成为发展最快的一个重要分支。随着医用高分子产业的发展,出现了大量的医用新材料和人工装置,如人工心脏瓣膜、人工血管、人工肾用透析膜、心脏起博器及骨生长诱导剂等。近10年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。 生物医用高分子材料是生物材料的重要组成部分,它发展最早、应用最广泛、用量最大、品种繁多,主要包括:塑料、橡胶、纤维、粘合剂等。随着医学的发展,这些材料在医学领域得到广泛的应用。如:膨体聚四氟乙烯人造血管、聚矾中空纤维人工肾、硅橡胶医用导管、介入栓塞材料、介入诊疗导管以及护理方面使用的一次性医疗用品等,都是由高分子材料制成的。这些产品在临床诊断、治疗、护理等方面起着越来越重要的作用。正是由于高分子材料在医学上的独特作用,因而在高分子化学上出现了一个新的分支—医用高分子(Medical highpolymers)。它是把高分子化学的理论、研究方法、临床医学的需要结合起来,用于研究生物体的结构、生物体器官的功能及医用材料的应用等的一门年轻而边缘性的学科]4[。

功能高分子材料聚合方法的研究进展

功能高分子材料聚合方法的研究进展 摘要:本文简述了对功能高分子材料的认识,功能高分子材料的特征和功能高分子材料的分类。并展望了功能高分子材料未来发展方向及其意义。 关键字:高分子;材料;应用;发展 材料是人类赖以生存和发展的物质基础。是人类文明的重要里程碑,如今有人将能源、信息和材料并列为新科技革命的三大支柱。进入本世纪80年代以来。一场与之相适应的“新材料革命”蓬勃兴起。功能材料是新材料发展的方向.而功能高分子材料占有举足轻重的地位。由于其原料丰富、种类繁多,发展十分迅速,已成为新技术革命必不可少的关键材料[1]。 1功能高分子材料 功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50%[2]。 2功能高分子材料的发展现状 2.1反应性高分子 反应性高分子是带有反应性官能团的高分子。可分为高分子试剂、高分子催化剂和离子交换树脂,具有广泛的应用前景,1984年诺贝尔化学奖得主就是由于多肽的固相合成法获得成功而被授与的。高分子催化剂与常规催化剂相比,优势明显,如可随时终止反应、稳定性高、可连续操作和反复使用等。尤其是高分子固定化酶催化剂,催化速度为常规催化剂的千百倍。离子交换树脂具有离子交换功能,目前发展方向主要是特种离子交换树脂,如螯合树脂、蛇笼树脂和耐热性离子交换树脂等[3]。 2.2吸附分离功能高分子 吸附分离功能高分子材料主要是指那些对某些特定离子或分子有选择性亲

(完整版)可降解高分子材料

可降解高分子材料 1 可生物降解高分子材料的定义 可生物降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。 2 生物降解高分子材料降解机理 生物降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物(有机酸、酯等);然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。降解除有以上生物化学作用外,还有生物物理作用,即微生物侵蚀聚合物后,由于细胞的增大,致使高分子材料发生机械性破坏。因此,生物降解并非单一机理,而是一个复杂的生物物理、生物化学协同同作用,相互促进的物理化学过程。到目前为止,有关生物降解的机理尚未完全阐述清楚:除了生物降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。 人们深入研究了不同的生物可降解高分子材料的生物降解性,发现与其结构有很大关系,包括化学结构、物理结构、表面结构等。高分子材料的化学结构直接影响着生物可降解能力的强弱,一般情况下:脂肪族酯键、肽键>氨基甲酸酯>脂肪族醚键> 亚甲基。当同种材料固态结构不同时,不同聚集态的降解速度有如下顺序:橡胶态>玻璃态>结晶态。一般极性大的高分子材料才能与酶相粘附并很好地亲和,微生物粘附表面的方式受塑料表面张力、表面结构、多孑L性、环境的搅动程度以及可侵占表面的影响。生物可降解高分子材料的降解除与材料

仿生机械鱼研究新进展

“如果瞧到一只游动得鱼,您会想到什么?”如果有人问起这个 问题,按照笔者得思维,准就是会回答:“清蒸得得话会就是非常得鲜 美,红烧得得话口感应该会更加香。”而带着同样得问题,笔者走进仿生 机器鱼课题组,组员们给出得答案却超出了R常生活,她们得回答 就是:“瞧见尾鳍得一摆一动,勾起我们得就是如何能进一步改进控制算法,在仿生鱼身上更完美地实现鱼类得波动推进方式。” “用智能算法来理解鱼之乐” 按预约得时间,笔者来到了仿生鱼课题组所在得办公室——自动化大厦9层906室。课题组成员王硕研究员热情地将我们请到了十三层咖啡厅,点上一壶茶水,在茶叶得沉落之间,为我们一一讲述关于仿生机器鱼得话题。 仿生机器鱼得研究工作由复杂系统控制与管理国家重点实验室得谭民研究员组织与指导,多名研究员、副研究员与在读博士生、硕士生共同合作开展。 一边品茶,王硕一边回忆起课题组得情况。顺着时间得脉络,她将课题组得情况进行了简要得回顾。 王硕告诉笔者:“仿生鱼作为课题组得研究内容,已经长达十余年之久。最早就是在2001年,谭民老师与北京航空航天大学王田苗教授交流时,谈到就是否可以将研究所智能控制算法应用于工业设计中。 受其启发,课题组开始了仿生鱼得研究。” 2001年算就是探索起步阶 段,这一时期主要就是对鱼类得跟踪模仿。 到2003年前后,课题组得研究进入到一个新得阶段:三维仿生运动阶段。为了提高任务得环境适应性,需要机器鱼具有水中得三维运动能力, 也就就是需要机器鱼除了推进外还要能够上浮下潜,甚至维持某一深度。

课题组在已有多关节仿生机器鱼得基础上,总结设计了一种新型机器鱼,基于改变胸鰭攻角法,完成仿生机器鱼得俯仰与浮潜运动,设计得机器鱼既可实现俯仰与浮潜,响应迅速,动态特性好。 到2004年,课题组提出一种基于重心改变法得仿生机器鱼俯仰姿态与深度控制方法,用于实现机器鱼水中得浮潜运动。据介绍,这种方法利用一种可调整位置得配重块结构,以改变机器鱼得重心位置,进而实现机器鱼俯仰姿态得调节。 2005年之后,课题组开始了仿生机器鱼转身、快速起动、运动中 变速与转向、倒游、定深、制动等高机动控制研究。 经过十多年得坚持与攻坚,课题组在对鱼类深入观察得基础上,结合仿生学、机器人学、材料学、机械学与智能控制,深入探讨了鱼类游动得机制,形成了身体/尾鰭推进、胸鳍推进、子母式、长鳍、两栖、海豚式推进等多个系列,聚焦高机动、高游速两大指标,目前已实现利用多模式控制技术将多种性能集成到高性能机器鱼平台。课题组成员 介绍说,她们所研制出得多仿生机器鱼群体协作与控制仿生机器鱼, 就是参照鱼类游动得推进机理,利用机械、电子元器件与智能材料实现水下推进得运动装置,具有低噪声、高效率、高机动性、高隐蔽性等特点。 目前,课题组已在机器人学得顶期国际期刊IEEE Transactions on Robot i cs 与I EEE Robotics and Automat io n Magaz i ne 上发表多篇文章,在国际仿生机器鱼领域占有重要得一席之地。 “在鱼类身上找寻前行得新力量” 随着科技得深入发展与产业、军事等领域应用需求得拉动,仿生机器学(Biomimetics)研究越来越受到关注。“通过研究、学习、模仿得仿生学方法来复制与再造生物得形态、结构、功能、工作原理及控制机制等已成为机器人学得一项重要研究内容。”王硕说道。

新型药用高分子材料的研究现状

新型药用高分子材料的研究现状 首先,我们先来了解一下什么是高分子材料。 高分子材料:macromolecular material,以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。 了解过了高分子材料,我们再来了解下什么是药用高分子材料。 药用高分子材料(polymers for pharmaceuticals)具有生物相容性、经过安全评价且应用于药物制剂的一类高分子辅料。 近年来,随着纳米技术与材料科学的发展,涌现出大量纳米级微粒负载药物的新型制剂,极大地推进了新型药用高分子的研究与发展。在制药领域中,高分子材料的应用具有久远的历史。药用高分子的发展,不仅改变了传统的用药方式,开辟了药物制剂学的新领域,丰富了药物的类型,而且对制剂学与药理学的发展提出了大量的新问题。上世纪六十年代开始,大量新型高分子材料进入药剂领域,推动了药物缓控释剂型的发展。这些高分子材料以不同方式组合到制剂中,起到控制药物的释放速率,释放时间以及释放部位的作用。 那么,它的作用原理又是什么呢? 药用高分子材料是一种药物缓释技术,就是通过医用高分子材料包覆在药物表面,当然药物不是成块状的,而是很小的。有高分子材料的保护,药物在短时间内不会被身体吸收,而是随血液流动到特定区域,当到达之后药物表面的高分子材料已经溶解到血液中,最终随体液排出。而药物能够有针对性的治疗病患处。 那么,目前的药用高分子材料有哪些呢? 首先,是淀粉及其衍生物 其中包括:淀粉、糊精、预胶化淀粉和羧甲基淀粉钠等 然后是纤维素及其衍生物和纤维素醚的酯类 已列入一些国家法定典籍中的要用纤维素有粉状纤维素和微晶纤维素两种。 纤维素衍生物有:纤维素酯类、甲基纤维素、乙基纤维素、羟乙基纤维素、羟丙基纤维素和低取代羟丙基纤维素、羟丙甲纤维素。 纤维素醚的酯类有:羟丙甲纤维素酞酸酯、醋酸羟丙甲纤维素琥珀酸酯。 最后是一些其他的天然药用高分子材料。 其中包括:阿拉伯胶、明胶、瓜尔豆胶、壳多糖和脱乙酰壳多糖、西黄蓍胶、黄原胶、透明质酸、琼脂、海藻酸钠、白蛋和聚麦芽三糖。 而药用高分子对材料又有哪些基本要求呢? 第一,要有利于成品的加工; 第二,要有利于提高生物利用度或病人的适应性; 第三,要有助于从外观鉴别药物制剂; 第四,要有助于增强制剂在贮存或应用时的安全性和有效性。 目前,药用高分子材料在药物制剂中主要作为辅料应用,是药物制剂不可缺

仿生材料研究与进展 王一安 刘志刚

齐齐哈尔大学 综合实践课程论文 题目仿生材料研究进展 学院材料科学与工程学院 专业班级无机非金属材料工程无机112班 学生姓名王一安刘志刚 指导教师李晓生 成绩 2014年 5月9 日

仿生材料学研究进展 摘要:仿生材料学以阐明生物体材料结构与形成过程为目标,用生物材料的观点来思考人工材料,从生物功能的角度来考虑材料的设计与制作。仿生材料的当前研究热点包括贝壳仿生材料、蜘蛛丝仿生材料、骨骼仿生材料、纳米仿生材料等,它们具有各自特殊的微结构特征、组装方式及生物力学特性。仿生材料正向着复合化、智能化、能动化、环境化的趋势发展,给材料的制备及应用带来革命性进步。 关键词:表面仿生超疏水材料、聚乙烯三元复合仿生材料、植物叶片仿生伪装材料、仿生层状结构壳聚糖医用材料 Abstract:The“biomimeticmaterialsscience”formedbytheintersectionofmaterialscien ceandlifesciencehasgreattheoreticalandpracticalsignificance.Biomimeticmaterialsscie ncetakesmaterialstructureandformationastarget,considersartificialmaterialattheviewof bio2material,exploresthedesignandmanufactureofmaterialfromtheangleofbiologicalfu nction.Atpresent,thehotresearchesonbiomimeticmaterialsscienceincludeshellbiomime ticmaterial,spidersilkbiomimeticmaterial,bonebiomimeticmaterial,andnano2biomimet icmaterial,etc.whichhavetheirownspecialmicro2structuralcharacteristics,formationstyl e,andbio2mechanicalproperties.Biomimeticmaterialsaredevelopingtowardscompound ,intellectual,active,andenvironmentaltendency,willbringrevolutionaryimprovementfor manufactureandapplicationofmaterial,andwillchangegreatlythestatusofhumansociety. Keywords:Bionics,Materialsscience,Review 1.前言 仿生材料学以阐明生物体材料结构与形成过程为目标,用生物材料的观点来思考人工材料,从生物功能的角度来考虑材料的设计与制作。仿生材料的当前研究热点包括贝壳仿生材料、蜘蛛丝仿生材料、骨骼仿生材料、纳米仿生材料等,它们具有各自特殊的微结构特征、组装方式及生物力学特性。仿生材料正向着复合化、智能化、能动化、环境化的趋势发展,给材料的制备及应用带来革命性进步。

仿生材料电活性聚合物_人工肌肉_的研究进展

仿生材料电活性聚合物/人工肌肉0的研究进展 李晓锋梁松苗李艳芳王永鑫徐坚* (高分子物理与化学国家重点实验室,中国科学院化学研究所,北京100080) 摘要:自古以来,自然界就是人类各种技术思想、工程原理及重大发明的源泉。20世纪中期,人们越来越深刻认识到大自然的启发对于开发新材料和新技术的重要性,从而提出仿生学概念并建立仿生学这一学科。随 着研究的发展,仿生学已成为自然科学的一个前沿和焦点。进入21世纪以来,随着机器人开发的不断深入以 及人们对智能机械系统的强烈需求,作为机器人和智能机械系统驱动关键的人工肌肉已成为仿生领域的研究 重点。电活性聚合物驱动器具有应变高、柔软性好、质轻、无噪声等特点,与肌肉有着极为相似的特性,甚至在 一些方面的性能已经超过了肌肉,被公认为是最合适的仿肌肉材料,称之为/人工肌肉0。近二十年来,在电活 性聚合物驱动材料方面取得的研究进展使得仿生的/人工肌肉0研究得以飞速发展。 关键词:仿生;人工肌肉;电活性聚合物;驱动器 引言 肌肉是生物学上可收缩的组织,具有信息传递、能量传递、废物排除、能量供给、传动以及自修复功能,一直以来就是研究者开发驱动器灵感的来源,人类很早就致力于仿生物肌肉的/人工肌肉0研发。上世纪50年代,M cKibben首次研制了气动驱动器,并发展成为商业上的Mc Kibben驱动器[1],但是作为人工肌肉材料,M cKibben驱动器体积大,而且受到辅助系统的限制。形状记忆合金也被尝试用作人工肌肉材料[2],与同时代的驱动材料相比,具有高能量密度和低比重等特点,但同样存在许多不利因素,如形变不可预知性,响应速度慢以及使用尺寸受限等,这些都制约了其在人工肌肉材料方面的发展。电活性陶瓷是人工肌肉的另一个备选材料,其响应速度较形状记忆合金快,但是脆性大,只能获得小于1%的应变[3]。由于受材料的限制,人工肌肉的研究一直出于缓慢发展阶段,直到一类新型材料)))电活性聚合物(Electroactive polymers,E AP)的出现。E AP可以产生的应变比电活性陶瓷大两个数量级,并且较形状记忆合金响应速度快、密度小、回弹力大,另外具有类似生物肌肉的高抗撕裂强度及固有的振动阻尼性能等[4]。EA P的出现给人工肌肉领域以新的冲击,从上个世纪90年代初开始,基于电活性聚合物材料的人工肌肉驱动器得到快速发展。 电活性聚合物驱动材料是指能够在电流、电压或电场作用下产生物理形变的聚合物材料,其显著特征是能够将电能转化为机械能。EA P开发应用可追溯到1880年,伦琴发现一端固定的橡胶条在电场下可以发生长度的改变[5]。之后在1925年压电聚合物被发现,但由于应变和做功很小,只被用作传感器[6]。1949年Katchalsky[7]发现胶原质纤维在酸碱溶液中可重复收缩和膨胀,这是聚合物材料的化学响应性首次被发现。1969[8]年,研究者发现PVD F材料具有较大的压电效应,人们开始把目光投向其它聚合物体系,之后大量具有铁电性质的电活性聚合物材料被开发出来。人工肌肉研究最大的发展发生在最近十几年,应变可以达到380%甚至更大的材料已被研制出[9]。随着E AP材料研究的不断深入和发展,其巨大的应用前景已呈现在人们面前。E AP材料可作为人工肢体和人造器官、内窥镜导管、供宇航员和残疾人用的增力外骨架以及制作机器人肌肉,可用于制造尺寸更加细小的器件用于基因工程来操作细胞。利用电活性聚合物可实现设备与器件的小型化,从而推动微电子机械技术的发展。目前国际上研究目标之一是制造/昆虫0机器人,可用于军事、医疗等领域。利用电活性聚合物模仿鱼尾作为推进器,可用于制 基金项目:国家自然科学基金(50425312,50521302,50673097),973项目(2007CB936400)和中国科学院方向性创新项目; *作者简介:李晓锋(1982-),男,博士研究生,从事凝胶电场驱动研究; *通讯联系人,E2mail:jxu@https://www.doczj.com/doc/bf6931906.html,.

生物功能材料的研究进展

生物功能材料的研究进展 随着人民生活水平的提高,人们对于医疗保健方面的要求也越来越强,使得对于生物医用材料的要求也越苛刻。本文详细阐述了生物医用功能高分子材料近年来的应用研究及发展状况,综述了国内外生物医用高分子材料的分类、特性及研究成果,展望了未来的生物医用高分子材料的发展趋势。 生物功能材料和加工技术的发展, 使得人工合成材料在医学上的应用, 变得越来越广泛。数十年的医学发展和临床应用, 证明医用高分子材料在人体内外, 获得了成功的应用, 而医学的进步, 又给高分子材料提出了大量新的课题, 使其向“精细化”, “功能化”的方向发展, 赋予了高分子材料以新的生命力。 生物医用高分子材料分合成和天然两大类,下面我们就分别对这两种材料进行详细的论述。 ﹙1﹚天然生物材料 天然生物材料是指从自然界现有的动、植物体中提取的天然活性高分子,如从各种甲壳类、昆虫类动物体中提取的甲壳质壳聚糖纤维,从海藻植物中提取的海藻酸盐,从桑蚕体内分泌的蚕丝经再生制得的丝素纤维与丝素膜,以及由牛屈肌腱重新组构而成的骨胶原纤维等。这些纤维由于他们来自生物体内且都具有很高的生物功能和很好的生物适应性,在保护伤口、加速创面愈方面具有强大的优势,已引起国内外医务界广泛的关注。自然界广泛存在的天然生物材料仍有着人工材料无可比拟的优越性能。例如:迄今为止再高明的材料学家也做不出具有高强度和高韧性的动物牙釉质,海洋生物能长出色彩斑斓、坚阊义不被海水腐蚀的贝壳等等。甲壳素又称几丁质(chitin),广泛存在于虾、蟹等甲壳动物及昆虫、藻类和细菌中,是世界上仅次于纤维素的第二大类天然高分子化合物。它是一种惰性多糖,用浓碱脱去乙酰基可转变成聚壳糖(chintosan)。甲壳素、聚壳糖及其衍生物具有良好的生物相容性和生物降解性。降解产物带有一定正电荷,能从血液中分离出血小板因子,增加血清中H-6水平,促进血小板聚集或凝血素系统,作为止血剂有促进伤口愈合,抑制伤口愈合中纤维增生,并促进组织生长的功能,对烧、烫伤有独特疗效。比如家蚕丝脱胶后可得到纯丝素蛋白成分,丝素蛋白是一种优质的生物医学材料,具有无毒、无刺激性、良好的血液相容性和组织相容性。根据研究报道,由于天然高分子医用材料的独特临床效果,它的应用前景相当广阔。﹙2﹚合成生物材料 由于天然材料的有限,人们需要大量的生物材料来维持他们的健康。合成高分子材料因与人体器官组织的天然高分子有着极其相似的化学结构和物理性能,因而可以植入人体,部分或全部取代有关器官。因此,在现代医学领域得到了最为广泛的应用,成为现代医学的重要支柱材料。与天然生物材料相比,合成高分子材料具有优异的生物相容性,不会因与体液接触而产生排斥和致癌作用,在人体环境中的老化不明显。通过选用不同成分聚合物和添加剂,改变表面活性状态等方法可进一步改善其抗血栓性和耐久性,从而获得高度可靠和适当有机物功能响应的生物合成高分子材料。目前,使用于人体植入产品的高分子合成材料包括聚酰胺、环氧树脂、聚乙烯、聚乙烯醇、聚乳酸、聚甲醛、聚甲基丙烯酸甲酯、聚四氟乙烯、聚醋酸乙烯酯、硅橡胶和硅凝胶等。应用场合涉及组织粘合、手术缝线、眼科材料(人工玻璃体、人工角膜和人工晶状体等)、软组织植入物(人工心脏、人工肾、人工肝等)和人工管形器(人工器官、食道)等。 合成医用高分子材料发展的第一阶段始于1937年,其特点是所用高分子材料都是已有的现成材料,如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953年,其标志是医用级有机硅

仿生材料学研究进展

仿生材料学研究进展 摘要:本文介绍了可降解塑料的研究进展,论述了仿生材料学研究进展及其种类,重点介绍了当前研究热点:表面仿生超疏水材料、聚乙烯三元复合仿生材料、植物叶片仿生伪装材料、仿生层状结构壳聚糖医用材料… 关键词:表面仿生超疏水材料、聚乙烯三元复合仿生材料、植物叶片仿生伪装材料、仿生层状结构壳聚糖医用材料 1.引言 仿生材料学以阐明生物体材料结构与形成过程为目标,用生物材料的观点来思考人工材料,从生物功能的角度来考虑材料的设计与制作。仿生材料的当前研究热点包括贝壳仿生材料、蜘蛛丝仿生材料、骨骼仿生材料、纳米仿生材料等,它们具有各自特殊的微结构特征、组装方式及生物力学特性。仿生材料正向着复合化、智能化、能动化、环境化的趋势发展,给材料的制备及应用带来革命性进步。 2.仿生材料 我们在现实生活中接触过许多动物与植物,它们都属于生物的范畴。在地球上所有生物都是由理想的无机或有机材料通过组合而形成.动植物为了铸造自己身体所用的材料在有机系列里有纤维素、木质素、甲壳质、蛋白质和核酸等等,其构造非常复杂。许多生物体的某些构成材料是我们完全不知道的,这些材料大多数是在常温常压的条件下形成,并能发挥出特有的性能。当人们对这些生物现象有了充分的理解之后,把它们应用于材料科学技术方面,就是仿生材料.

2.1表面仿生超疏水材料 自然界中的超疏水现象近年来,基于仿生科学而进行的各种新型材料的开发和研究正在各个领域广泛开展,人们对于超疏水表面的研究就是受到荷叶“出淤泥而不染”这种现象的启发而不断发展起来的。固体表面的润湿性可以用表面和水的接触角来衡量,通常将接触角小于900的固体表面称为亲水表面,接触角大于900的表面称为疏水表面,而将接触角大于150。的表面称为超疏水表面llI。自然界中,水滴在荷叶表面上可以自由滚动,当水滴滚动时可以将附着在表面上的灰尘等污染物带走,从而使表面保持清洁。因此,超疏水表面 又被称为自清洁表面。20世纪90年代,德国波恩大学的植物学家Wilhelm Barthlott针对荷叶表面不沾水这一特殊现象进行了一系列的实验,发现了荷叶的疏水性与自我洁净的关系,创建了“荷叶效应”(Lotus effect)--i百-Jt21。此后,超疏水表面在世界范围内引起了极大的关注,并且逐渐成为仿生纳米材料技术中的热点之一。这种表面在国防、工农业生产和日常生活等许多领域都有着极其重要的应用前景。例如,将其应用在高降雪地区的室外天线上,可以防止积雪,以保证信号畅通13J:用于石油管道中,可以防止石油对管道壁粘附;作为汽车、飞机、航空器等的挡风玻璃,不仅可以减少空气中灰尘等污染物的污染,还能够使其在高湿度环境或雨天保持干燥:用于水中运输工具或水下核潜艇上,可以减少水的阻力,提高行驶速度;用于微流体装置中,可以实现对流体的低阻力、无漏损传送;也可以用它来修饰纺织品,做防水和防污的服装等等。

智能高分子材料的研究进展

智能高分子材料的研究进展 大学材料学院高分子1201 摘要:智能高分子材料是材料研究的新领域,本文综述了智能高分子材料的分类及研究现状。主要介绍了形状记忆高分子材料、智能高分子膜、智能药物释放体系、智能高分子凝胶、智能纤维织物的研究现状及应用,并展望了智能高分子材料的前景。 关键词:智能高分子;薄膜;形状记忆;药物释放;凝胶;纤维织物;应用 前言: 智能高分子材料又称机敏材料,也被称为刺激-响应型聚合物或环境敏感聚合物,是智能材料的一个重要的组成部分。它是通过分子设计和有机合成的方法使有机材料本身具有生物所赋予的高级功能:如自修与自增殖能力,认识与鉴别能力,刺激响应与环境应变能力等。环境刺激因素很多,如温度、pH值、离子、电场、磁场、溶剂、反应物、光(或紫外光)、应力和识别等,对这些刺激产生有效响应的智能聚合物自身性质会随之发生变化。它的研究涉及到众多的基础理论研究,波及信息、电子、生命科学、宇宙、海洋科学等领域,不少成果已在高科技、高附加值产业中得到应用,已成为高分子材料的重要发展方向之一。 1.智能高分子材料的类别及应用 智能材料按材料的种类可分为金属类智能材料、非金属类智能材料、高分子类智能材料和智能复合材料。其中,智能高分子材料的研究最广。其不完全类别及应用如下表: 2.智能高分子材料的研究进展 2.1形状记忆高分子材料

形状记忆高分子材料是利用结晶或半结晶高分子材料经过辐射交联或化学交联后具有记忆效应的原理而制造的一类新型智能高分子材料。高分子材料的形状记忆性,是通过它所具有的多重结构的相态变化来实现,如结晶的形成与熔化、玻璃态与橡胶态的转化等。迄今开发的形状记忆高分子材料都具有两相结构,即能够固定和保持其成型物品固有初始形状的固定相以及在一定条件下能可逆地发生软化与固化,而获得二次形状的可逆相。这两相结构的实质就是对应着形状记忆高分子部多重结构中的结点和这些结点之间的柔性链段。故形状记忆过程可简单表述为:初始形状的制品-二次形变-形变固-形变回复[1]。 形状记忆高分子材料种类很多,根据形状回复原理大致可分为:电致感应型、光致感应型、化学感应型、热致感应型等。其中热致感应型材料应用围较广,是目前形状记忆高分子材料研究和开发较为活跃的品种。 2.1.1 电致感应型 电致感应型是通过电流产生的热量使体系温度升高,致使形状回复,所以既具有导电性能,又具有良好的形状记忆功能,主要用于电子通讯及仪器仪表等领域,如电子集束管、电磁屏蔽材料等。 2.1.2 光致感应型 光致感应型是将某些特定的光致变色基团引入高分子主链或侧链中,当受到光照射时,光致变色基团发生光异构化反应,使分子链的状态发生显著变化,材料在宏观上表现为光致形变;光照停止时,光致变色基团发生可逆的光异构化反应,分子链的状态回复,材料也回复其初始形状。用作印刷材料、光记忆材料、“光驱动分子阀”和药物缓释剂等。 2.1.3化学感应型 某些高分子材料在化学物质的作用下,也具有形状记忆现象。它利用材料周围介质性质的变化来激发材料变形和形状回复。常见的化学感应方式有PH变化、平衡离子置换、螯合反应、相转变反应和氧化还原反应等,这类物质有部分皂化的聚丙烯酰胺、聚乙烯醇和聚丙烯酸混合物薄膜等。该材料用于蛋白质或酶的分离膜[2]、“化学发动机”等特殊领域。 2.1.4热致感应型 热致感应型是指在一定温度下,即记忆温度下,具有橡胶的特性,主要表现

仿生材料的研究现状及应用

仿生材料的研究现状及应用 1.研究背景 人类探索自然的历程经历了数千年, 然而至今仍然不能对生命的运作施加任何控制。人体内的细胞按照遗传既定的程序运做着。这种自发性从6 亿年前的单细胞组合开始, 造就了海藻、水母、昆虫、鸟兽, 直至人类这样的多细胞生物体,生物化石等等。因而就激发了今天的人类仿造天然的灵感。材料科学技术与生物技术、信息技术和能源技术一起成为现代社会文明发展的四大支柱。从材料的角度来研究生物体的规律,进行仿生设计,为新材料的设计和制备开辟了新的途径。仿生材料的发展日新月异,它已成为生物科学、材料科学、医学、矿物学、化学等众多学科的研究热点,并在各领域取得了一定的进展。这一切充分说明仿生材料这门年轻学科正在成熟,其广阔的研究和应用前景不可估量。 2.国内外研究现状 国际上对天然生物材料及仿生材料研究的重视始于20 世纪80 年代。目前, 国际上一流大学都已把生物材料放在优先发展的地位。中国生物与仿生材料研究者在这一领域已取得国际瞩目的研究成果。自1988 年中国生物无机化学家王夔院士和材料学家李恒德院士将生物矿化的概念介绍到国内后, 中国的生物矿化研究开始逐渐形成规模。其中很重要的一个方面就是在学习矿化材料合成方法的基础上, 研究并实施新的材料制备策略。而深入进行这些工作的一个重要前提就是表征天然生物矿物的分级结构及探索生物矿化的基本机理。 3。仿生材料相关介绍 3。1仿生材料学定义 仿生材料是指模仿生物的各种特点或特性而研制开发的材料。通常把仿照生命系统的运行模式和生物材料的结构规律而设计制造的人工材料称为仿生材料。仿生学在材料科学中的分支称为仿生材料学(biomimetic materials science) , 它是指从分子水平上研究生物材料的结构特点、构效关系, 进而研发出类似或优于原生物材料的一门新兴学科, 是化学、材料学、生物学、物理学等学科的交叉。地球上所有生物体都是由无机和有机材料组合而成。由糖、蛋白质、矿物质、水等基本元素有机组合在一起, 形成了具有特定功能的生物复合材料。仿生设计不仅要模拟生物对象的结构, 更要模拟其功能。将材料科学、生命科学、仿生学相结合, 对于推动材料科学的发展具有重大意义。自然进化使得生物材料具有最合理、最优化的宏观、细观、微观结构, 并且具有自适应性和自愈合能力。在比强度、比刚度与韧性等综合性能上都是最佳的。 3。 2仿生材料化学 著名的生物矿化和仿生纳米材料学家, 英国Bristol 大学S。Mann 教授在2002 年美国Gordon 会议上有一个题为“基质诱导成核: 一个矿化过程的介观现象?”的精彩报告。报告指出, 生物矿物通常在有机的模板如大分子框架、脂膜或细胞壁表面合成。因此, 第一需要理解生物源的矿物生长和形态发生,例如, 磷酸钙、碳酸钙和氧化硅如何在有机分子和有机表面存在时发生沉积过程。第二, 利用生物结构和系统, 在实验室内模拟矿化过程, 从而在有机组分如病毒和细

智能化高分子的研究进展

智能化高分子的研究进展 摘要:近年来,在新材料领域中正在兴起一门新的分支学科——智能高分子材料。本文对一些智能高分子材料在各个领域的研究及应用做出综述性的阐述,并对该领域的发展做出一些展望。 关键字:智能高分子材料(Intelligent Polymer Materials)特征应用发展智能高分子材料 智能高分子材料(Intelligent Polymer Materials)又称智能聚合物,机敏性聚合物,刺激相应型聚合物,环境敏感型聚合物。智能高分子材料是一种能够通过对周围的环境变化的感觉,针对这个变化采取一定反应的高分子材料。智能高分子材料它在模仿生命系统中同时具有感知和驱动双重功能的材料,即不仅能够感知外界环境或内部状态所发生的变化,而且能够通过材料自身的或外界的某种反馈机制,实时地将材料的一种或多种性质改变,做出所期望的具有某种响应的材料,又称机敏材料。目前智能高分子材料主要研究,记忆功能高分子材料、智能高分子凝胶、智能药物释放系统、聚合物电流变流体、智能高分子膜、智能纺织品、智能橡塑材料、生物材料的仿生化、智能化等等。 表1智能材料的分类 分类方法智能材料种类 按材料的种类 金属类智能材料非金属类智能材料高分子类智能材料智能复合材料 按材料的来源 天然智能材料合成智能材料建筑用智能材料工业用智能材料

按材料的应用领域军用智能材料 医用智能材料 航天用智能材料 按材料的功能半导体;压电体;电致流变体按电子结构和化学键金属;陶瓷;聚合物;复合材料 20世纪80年代,人们提出智能材料的概念,20世纪90年代以来,美国、日本、意大利、英国等国家都在大力加强对智能材料的基础研究和应用研究。智能材料要求材料体系集感知、驱动和信息处理于一体,形成类似生物材料那样的具有智能属性的材料。其概念设计可以从以下观点构思:(1)材料开发的历史——由结构材料、功能材料进而到智能材料;(2)人工智能在材料的水平反映——生物计算机的未来模式;(3)从材料设汁的立场制造智能材料;(4}软件功能引入材料;(5)人们对材料的期望;(6)能量传递;(7)材料具有时间轴,要求材料有寿命预告、自修复、自分解,甚至自学习、自增殖、自净化功能和可对应外部刺激时间轴积极自变的动态功能。智能高分子材料在信息、电子、宇宙、海洋科学、生命科学等领域得到了大力的发展和应用。 记忆功能高分子材料 形状记忆高分子材料(shape memory polymer,SMP)就是运用现代高分子物理学理论和高分子合成及改性技术,对通过高分子材料进行分子组合和改性获得的一类高分子材料。例如:聚乙烯,聚酰胺等高分子材料进行分子设计及分子结构的调整,使他们在一定的条件下,被赋予一定的形状初始态(initial state)当外部的环境发生变化之后,他可以相应地改变形状并将其固定变形态(varrable morphology)。如果环境以特定的方式和规律再次发生变化,它便可逆的恢复到初始态。形状记忆过程可简单表达为:初始形状的制品→2次形变→形变固定→形变恢复。 根据实现记忆功能的条件的不同,可以将SMP分为以下四种。 (1)热致SMP。(2)电致SMP。(3)光致SMP。(4)化学感应型SMP。目前研究最多,并投

高分子材料在生物医药中的应用与发展

高分子材料在生物医药中的应用与发展 摘要:人类使用高分子材料的历史悠久,在生活各个方面无处不见,随着人类社会对材料的需求不断膨胀,高分子材料急剧发展,向国民经济各个方面扩张,尤其在生物医药领域,高分子材料发挥着不可替代的作用,由此,生物高分子材料成为高分子材料的一个重要组成部分。而生物医用高分子作为生物医用材料中发展最早、应用最广泛、用量最大的材料,鉴于其具有原料来源广泛、可以通过分子设计改变结构、生物活性高、材料性能多样等优点,是目前发展最为迅速的领域,已经成为现代医疗材料中的主要部分。关键词:发展过程,组成材料,医学用途,未来发展 一:医用高分子材料的发展过程及应用领域人类使用高分子材料的历史,可以追溯到7000年前。我国浙江省余姚县出土的河姆渡文化遗址中发现了涂有大漆的木碗,我国西汉时期已有麻布增强大漆树脂而成的脱胎漆器技术,这应是世界上最早的“树脂基复合材料”。蚕丝的使用可以追溯到4-5千年前,在浙江吴兴出土了中国4-5千年前的蚕丝织物。 由天然高分子化学改性或由人工合成探索新高分子材料的近代高分 子材料研究始于19世纪中叶。1844年Goodyear(美国)发明的天然橡胶硫化技术,开创了近代的高分子材料研究。1868年出现了硝基

纤维素酯用樟脑作增塑剂,制赛璐珞的技术,从而出现了塑料。1890年出现了硝基纤维素酯用乙醇做溶剂湿法纺丝的成纤技术,从而出现了人造纤维。1895年左右出现了用帆布增强硫化橡胶制轮胎的技术,这是首次出现的近代技术的复合材料。 生物医用高分子材料指用于生理系统疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的高分子材料。研究领域涉及材料学、化学、医学、生命科学。在功能高分子材料领域,生物医用高分子材料可谓异军突起,目前已成为发展最快的一个重要分支。合成医用高分子材料发展的第一阶段始于1937年,其特点是所用高分子材料都是已有的现成材料,如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953年,其标志是医用级有机硅橡胶的出现。目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段。 生物医用高分子材料的特性要求:医用高分子材料,是指在医学上使用的高分子材料。其对于挽救生命.救治伤残.提高人类生活质量等方面具有重要意义。通过归纳,应当符合以下要求:(1)生物相容性。生物相容性是描述生物医用材料与生物体相互作用情况的。是作为医用材料必不可少的条件。 2)生物功能性。生物功能性是指生物材料具有在其植入位置上行使功能所要求的物理和化学性质.(3)无毒性。无毒性即化学惰性。此外,还应具备耐生物化.物理和力学稳定性。(4)可加工性:能够成型、消毒。

相关主题
文本预览
相关文档 最新文档