当前位置:文档之家› 基于原子系综的高分辨光谱和大失谐Raman存储研究

基于原子系综的高分辨光谱和大失谐Raman存储研究

基于原子系综的高分辨光谱和大失谐Raman存储研究
基于原子系综的高分辨光谱和大失谐Raman存储研究

基于原子系综的高分辨光谱和大失谐Raman存储研究

【摘要】:远距离量子通信、量子网络以及分布量子计算等均依赖于量子中继的实现,而量子中继的基础则是量子存储。目前,量子存储在多个领域发挥着重要作用,除上述应用外,还包括基于量子存储的关联光子对以及触发式单光子源的产生、无漏洞贝尔不等式的实验验证以及可以突破经典极限的精密测量等。原子系综由于存在集体激发增强效应和多种延长自旋波退相干时间的技术而成为实现量子存储的理想选择。一个好的量子存储器意味着它可以长寿命地储存光子或光场的非经典特性及量子纠缠,因而它可以视为一种可以增强精度和灵敏度的纠缠源。人们利用原子系综可以显著增强弱光与原子之间的耦合的特性,通过探测外部微扰对其影响,使得测量精度甚至可以达到甚至超越散粒噪声的极限水平。上述过程是建立在激光与原子相互作用的基础上进行的。这往往又得益于激光技术的发展和对原子内、外态的控制和研究。利用原子系综的高分辨光谱,可以实现对原子内部能级结构的测量和研究,这将有助于我们选择合适的原子能级以提高激光光谱的测量精度和分辨率。同时,高分辨激光光谱还可以作为频率参考标准用于量子存储、量子信息等过程中的原子能级的识别、激光频率的锁定以及原子态的制备和探测等。本文的主要内容就是围绕原子系综内的高分辨光谱以及大失谐Raman存储的实现展开的。原子系综内多种方案的量子存储(如基于电磁诱导透明(EIT)以及基于大失谐Raman散射)本质上都是得益于原子系综的相干效应。实际上,利用原

子的相干效应还可以进一步提高激光光谱的分辨率和信噪比等。同时,利用原子相干效应导致的高分辨激光光谱(如CPT信号)还可以对激光系统的位相相干性进行验证和评价。本文的部分内容就是在上述这些方面开展的。完成的主要工作如下:1.通过对速度选择光抽运光谱的改造,在V型原子能级系统中获得了一种具有背景平整、高信噪比、窄线宽、消交叉共振吸收峰等优点的单共振光抽运光谱(SROP),并利用获得的铯原子D1线和D2线的SROP光谱对气室热原子基态缀饰分裂进行了探测;2.在室温铯原子气室内,实验上观察到了阶梯型能级中的双共振光抽运光谱(DROP),并将其应用到了激光稳频以及原子能级结构测量等方面。通过与阶梯型原子能级结构中的EIT进行对比,分析了原子相干效应对DROP光谱的影响;3.采用光学注入锁定的方法,自制了两台位相锁定且频差可精确调谐至铯原子基态超精细分裂间距(9.19263177GHz)的双色DFB半导体激光系统。利用该系统在铯原子系综内获得的高分辨的相干布居俘获的CPT光谱信号(CPT信号线宽约12.3kHz),我们验证了该激光系统的两个DFB半导体激光之间的位相相干性;4.利用上述位相锁定的半导体激光系统,实现了相干光在铯原子气室中的大失谐Raman存储,目前获得的最大存储带宽约20MHz,最高总存储效率约35%,最长存储时间约为1μs。实验中还研究了脉冲形状、脉冲参数、原子系综温度等对存储时间及存储效率的影响,部分结果验证了已发表文献中的理论研究结果。同时,还分析了目前影响存储带宽和存储时间的因素。目前的实验结果有助于加深我们对大失谐Raman存储的理解,这为进一步提高其性能并将其应用于

单原子-单光子的量子存储、非经典光源的量子存储奠定了实验基础;

5.为了进一步延长存储时间和提高存储效率,我们计划将来在冷原子中进行大失谐Raman存储。为此,采用光学注入锁定的方法实现了与主激光器输出特性相同的两台DFB激光器。将上述三台激光器分别作为磁光阱的冷却光,从而达到增加MOT的冷却光强的目的。同时,冷却光的光束直径经望远镜系统扩束以增加冷原子的俘获范围。通过对MOT的上述改造后,获得了较高光学厚度的冷原子介质。采用逐点测量吸收的方法,测得了冷原子的光学厚度;

6.实验获得了磁光阱内冷原子激发态的高分辨吸收光谱。实验结果显示,这种光谱不仅可以用于研究原子激发态的缀饰分裂,而且可以发展为一种测量MOT内冷却光对冷原子的有效Rabi频率的方法。【关键词】:原子系综高分辨激光光谱单共振光抽运光谱双共振光抽运光谱大失谐Raman存储光学注入锁定磁光阱光学厚度

【学位授予单位】:山西大学

【学位级别】:博士

【学位授予年份】:2013

【分类号】:O431.2

【目录】:中文摘要9-11ABSTRACT11-14第一章引言14-321.1原子系综简介14-171.2原子系综的高分辨光谱17-221.2.1饱和吸收光谱(SAS)17-201.2.2速度选择光抽运光谱(VSOP)20-221.3基于原子系综的大失谐Raman存储22-301.3.1Raman散射过程22-251.3.2原子系综的集体增强效应25-301.4本文主要内容30-32第二章热原子系综的单

共振及双共振光抽运光谱32-502.1背景介绍322.2阶梯型系统中的双共振光抽运光谱(DROP)32-402.2.1DROP光谱的实现32-352.2.2阶梯型系统中的原子相干效应35-372.2.3DROP光谱的应用37-402.3单共振光抽运光谱(SROP)40-492.3.1SROP光谱简介40-422.3.2SROP光谱过程分析42-432.3.3实验系统43-442.3.4实验结果及应用44-492.4本章小结49-50第三章冷原子系综的激发态光谱50-583.1背景介绍503.2磁光阱中铯原子激发态吸收光谱及其应用50-573.2.1磁光阱中铯原子激发态吸收光谱实验装置51-533.2.2铯冷原子激发态吸收光谱中的Autler-Townes分裂53-573.3本章小结57-58第四章基于室温下铯原子系综的大失谐Raman存储研究58-864.1量子存储简介58-604.2大失谐Raman存储过程分析60-624.3用于大失谐Raman存储的激光系统研制62-734.3.1中等激光功率输出且位相锁定的大频差双色激光系统62-694.3.2高光学厚度的热原子系综69-714.3.3脉冲激光的产生方案71-734.4大失谐Raman存储的实验研究73-834.4.1大失谐Raman 存储的实验系统73-754.4.2大失谐Raman存储与读取的实验结果75-764.4.3原子系综的温度对大失谐Raman存储实验结果的影响76-774.4.4光强对大失谐Raman存储实验结果的影响77-804.4.5Read 光脉冲对读出信号的影响80-814.4.6大失谐Raman存储中的存储时间测量81-834.5本章小结83-86第五章用于实现量子存储的高光学厚度冷原子系综的制备86-1045.1冷原子系综的量子存储简介86-885.2高光学厚度冷原子系综的制备88-975.2.1磁光阱中冷原子光学厚度的制约因素88-915.2.2磁光阱中高光学厚度冷原子系综的制备91-975.3

冷原子系综光学厚度的测量97-1025.4本章小结102-104总结与展望104-108附录一~(133)Cs的D_2线的超精细能级结构图108-109附录二~(133)Cs的D_1线的超精细能级结构图109-110参考文献110-124博士期间的科研成果124-126致谢126-132个人简况及联系方式132 本论文购买请联系页眉网站。

第四章原子吸收题解

习题 1 试述原子吸收光谱法分析的基本原理,并从原理、仪器基本结构和方法特点上比较原子发射光谱与原子吸收光谱的异同点。 2 试述原子吸收光谱法比原子发射光谱灵敏度高、准确度好的原因。 3 原子吸收光谱法中为什么要用锐线光源?试从空心阴极灯的结构及工作原理方面,简要说明使用空心阴极灯可以得到强度较大、谱线很窄的待测元素共振线的道理。 4 阐述下列术语的含义:灵敏度,检出线,特征浓度和特征质量。它们之间有什么关系,影响它们的因素是什么? 5 通常为何不用原子吸收光谱法进行定性分析?应用原子吸收光谱法进行定量分析的依据是什么? 6 简述光源调制的目的及其方法。 7 解释原子吸收光谱分析工作曲线弯曲的原因。并比较标准曲线法和标准加入法的特点。 8 解释下列名词: (1)原子吸收; (2)吸收线的半宽度; (3)自然宽度; (4)多普勒变宽; (5)压力变宽; (6)积分吸收; (7)峰值吸收; (8)光谱通带。 9 原子吸收光谱分析中存在哪些干扰?如何消除干扰? 10 比较火焰法与石墨炉原子化法的优缺点。 11 原子荧光产生的类型有哪些?各自的特点是什么? 12 比较原子荧光分析仪、原子发射光谱分析仪和原子吸收光谱分析仪三者之间的异同点。 13 已知钠的3p 和3s 间跃迁的两条发射线的平均波长为589.2 nm, 计算在原子化温度为2500K 时,处于 3p 激发态的钠原子数与基态原子数之比。 提示:在3s 和3p 能级分别有2个和6个量子状态,故 32 60 == p p j 解:处于 3p 激发态的钠原子数与基态原子数之比,由玻耳兹曼方程计算: kT E j j e p p N N ?-= kT c h j e p p λ-= 2500 1038.11058921000.31063.623710 343 6??????- ---=e 41069.1-?= 14 原子吸收光谱法测定某元素的灵敏度为0.01g mL -1 /1%A ,为使测量误差最小,需要得到0.436的吸收值,在此情况下待测溶液的浓度应为多少? 解:灵敏度表达式为: %1/0044.01-= gmL A c S μ 100.10044 .0436 .001.00044.0-=?=?= gmL A S c μ 15 原子吸收分光光度计三档狭缝调节,以光谱通带0.19, 0.38和1.9 nm 为标度,其所对应的狭缝宽度分别为0.1, 0.2和1.0 mm ,求该仪器色散元件的线色散率倒数;若单色仪

氢原子光谱

摘要:本实验用光栅光谱仪对氢原子光谱进行测量,测得了氢原子光谱巴尔末线系的波长, 求出了里德伯常数。最后对本实验进行了讨论。 关键词:氢原子光谱,里德伯常数,巴尔末线系 正文 一、引言 光谱线系的规律与原子结构有内在的联系,因此,原子光谱是研究原子结构的一种重要方法。1885年巴尔末总结了人们对氢光谱测量的结果,发现了氢光谱的规律,提出了著名的巴尔末公式,氢光谱规律的发现为玻尔理论的建立提供了坚实的实验基础,对原子物理学和量子力学的发展起过重要作用。1932年尤里(H. C. Uery )根据里德伯常数随原子核质量不同而变化的规律,对重氢赖曼线系进行摄谱分析,发现氢的同位素——氘的存在。通过巴尔末公式求得的里德伯常数是物理学中少数几个最精确的常数之一,成为检验原子理论可靠性的标准和测量其他基本物理常数的依据。 WGD-3型光栅光谱仪用于近代物理实验中的氢原子光谱实验,一改以往在摄谱仪上用感光胶片记录的方法,而使光谱仪既可在微机屏幕上显示,又可打印成谱图保存,实验结果准确明了。 二、实验目的 1、熟悉光栅光谱仪的性能和用法; 2、用光栅光谱仪测量氢原子光谱巴尔末系数的波长,求里德伯常数; 三、实验原理 氢原子光谱 氢原子光谱是最简单、最典型的原子光谱。用电激发氢放电管(氢灯)中的稀薄氢气(压力在102Pa 左右),可得到线状氢原子光谱。瑞士物理学家巴尔末根据实验结果给出氢原子光谱在可见光区域的经验公式 2 024 H n n λλ=?- 式中H λ为氢原子谱线在真空中的波长,ι0=364.57nm 是一经验常数;n 取3,4,5等整数。 若用波数表示,则上式变为 式中H R 称为氢的里德伯常数。 根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得 ??? ??-==221211~n R v H H H λ)/1()4(23202 42M m ch z me R z += πεπ

高考经典课时作业15-2 原子结构、氢原子光谱

高考经典课时作业15-2 原子结构、氢原子光谱 (含标准答案及解析) 时间:45分钟 分值:100分 1.(2011·高考天津卷)下列能揭示原子具有核式结构的实验是( ) A .光电效应实验 B .伦琴射线的发现 C .α粒子散射实验 D .氢原子光谱的发现 2.关于巴耳末公式1λ =R ????122-1n 2的理解,下列说法正确的是( ) A .所有氢原子光谱的波长都可由巴耳末公式求出 B .公式中n 可取任意值,故氢原子光谱是连续谱 C .公式中n 只能取不小于3的整数值,故氢原子光谱是线状谱 D .公式不但适用于氢原子光谱的分析,也适用于其他原子光谱的分析 3.(2012·高考北京卷)一个氢原子从n =3能级跃迁到n =2能级,该氢原子( ) A .放出光子,能量增加 B .放出光子,能量减少 C .吸收光子,能量增加 D .吸收光子,能量减少 4.(2012·高考江苏卷)如图所示是某原子的能级图,a 、b 、c 为原子跃迁所发出的三种波长 的光.在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是( ) 5.氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确 的是( ) A .氢原子的能量增加 B .氢原子的能量减少 C .氢原子要吸收一定频率的光子 D .氢原子要放出一定频率的光子 6.(2011·高考大纲全国卷)已知氢原子的基态能量为E 1,激发态能量E n =E 1/n 2,其中n = 2,3,….用h 表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( ) A .-4hc 3E 1 B .-2hc E 1 C .-4hc E 1 D .-9hc E 1 7.(2012·高考四川卷)如图为氢原子能级示意图的一部分,则氢原子( )

ZEEnit700 原子吸收光谱仪-特点介绍

ZEEnit700原子吸收光谱仪特点介绍 型号: ZEEnit700 产地: 德国 制造商:德国耶拿分析仪器股份公司 图:ZEEnit? 700 原子吸收光谱仪 应用范围: 可测定近70种金属元素。广泛的应用于地质矿产、环境保护、疾病控制、农牧渔业、食品安全、资源调查、生命科学等各个领域 AAS ZEEnit700显著的特点和优势: 1.原装德国卡尔蔡司光学系统----所有光学元件全部采用全球最为优秀的卡尔蔡司产 品。作为原子吸收分光光度计的核心部件——光通量不仅仅决定于光栅的刻线数,而且决定于光栅的有效面积。AAS ZEEnit700型原子吸收分光光度计的有效光栅面积及总有效刻线数:1800×54=97200条。同时光学系统采用紧凑型设计,全反射石英涂膜光学部件,整个光谱范围内具有最佳的光通量. 2.单光束/双光束微机控制自动切换技术---- ZEEnit700具有单/双光束自动切换技术, 单光束具有光通量大,灵敏度高,信噪比好的特点;而双光束则能克服元素灯引起的漂移,具有重现性好的特点.用户可根据需要选择单光束或双光束测量方式,如测量铜、铅、锰等元素时,由于元素灯较为稳定,而又要求较高的灵敏度,可选择单光束测量方式,当测定锌等元素,由于元素灯不稳定,可采用双光束测量,一台仪器具有两台仪器的特点; 3.独特的双原子化器设计----AAS ZEEnit 700型原子吸收光谱仪采取独特的双原子化器设 计,火焰与石墨炉之间切换无需任何机械移动,避免机械移动后光路重新调整、准直等. 4.全自动分析光谱仪----完全由微机自动控制的,目前市场上最紧凑的原子吸收光谱仪,仪器 可自动设定操作参数,自动调节燃烧头高度,自动调节气体流量和助/燃比, 自动进样,自动样品测量,自动样品稀释、浓缩,自动校正;强大的方法开发扩展能力,多元素序列分析操作,降低分析时间和运行成本。

拉曼光谱的原理及应用.doc

拉曼光谱的原理及应用 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器 3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。 4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。 5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。(四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术 2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术 3、采用傅立叶变换技术的FT-Raman光谱分析技术 4、共振拉曼光谱分析技术 5、表面增强拉曼效应分析技术 (五) 拉曼频移,拉曼光谱与分子极化率的关系 1、拉曼频移:散射光频与激发光频之差,取决于分子振动能级的改变,所以它是特征的,与入射光的波长无关,适应于分子结构的分析 2、拉曼光谱与分子极化率的关系 分子在静电场E中,极化感应偶极矩P为静电场E与极化率的乘积 诱导偶极矩与外电场的强度之比为分子的极化率 分子中两原子距离最大时,极化率也最大 拉曼散射强度与极化率成正比例 (六)应用激光光源的拉曼光谱法 应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有

氢原子光谱实验研究

氢原子光谱实验研究 张清琳(045) 指导教师:胡君辉 摘要:本文通过实验利用摄谱仪测量氢灯可见光各光谱线的波长值,了解氢原子光谱规律,能较准确测定氢的里德伯常数,同时学会光谱分析的一般方法。 关键字:氢光谱;摄谱仪;里德伯常数; 引言:原子吸收光谱分析,是利用物质的基态原子可以吸收特定波长单色辐射的光量子,其吸收量的大小是与物质原子浓度成比例的关系为基础的。氢原子的结构最简单,它发出的光谱有明显的规律,很早就为人们所注意,光谱的规律首先由氢原子光谱得到突破,从而为原子结构的研究提供了重要依据。因而,氢原子光谱的研究,在原子物理学的发展中一直起着重要的作用。 正文: 一、氢光谱原理 一百余年来,人们研究氢原子的光谱结构,不论在实验方面,还是在理论方面都取得了丰硕的成果。实验上精确测量各谱线的波长、发现和测量各个氢谱系、探测谱线的精确结构,数据越来越精确,理论上则相当完满地解释了这些谱线的成因,从而发展了电子与电磁场相互作用的理论。 1885年巴尔末根据实验结果,经验性的确定了可见光区域氢光谱的谱线分布规律,写 作(1) 式中为连续的整数3,4,5……。一般常称这些氢谱线为巴尔末线系。之后,又陆续发现氢的其他线系。为了更清楚的表明谱线分布的规律,将(1)式改写为 (2) 式中称为氢的里德伯常数。在这些完全从实验得到的经验公式的基础上,玻尔建 立了原子模型的理论,并从而解释了气体放电时的发光的过程。根据玻尔的理论,每条谱线是对应于原子中的电子从一个能级跃迁到另一个能级释放能量的结果。根据这个理论,对巴尔末线系有 (3)

式中为电子电荷,为普朗克常数,为光速,为电子质量,为氢原子核的质 量。这样,不仅给予巴尔末的经验公式以物理解释,而且把里德伯常数和许多基本物理常数联系了起来。即 (4) 其中代表将核的质量视为(即假定核固定不动)时的里得伯常数: (5) 比较(2)(3)式,可以认为(2)式是玻尔理论推论所得到的关系。因此,(2)和实验结果符合到什么程度,就可检验波尔理论正确到什么程度。实验表明(2)式与实验数据符合的程度相当高,而成为玻尔理论的有力证据。 继巴尔末规律之后,又发现氢光谱有更为复杂的结构,巴尔末规律只能作为一个近似的规律;同时,原子结构的理论也有了很大的发展。因此,就其对理论的作用来讲,验证公式(2)在目前的科学研究中已不必要。但是里德伯常数的测定比起一般基本物理常数来可以达到更高的精度,因而成为一个测定基本物理常数的依据,占有很重要的地位。目前公认 瑞典光谱学家里德堡(Rydberg)发现,改用波数表示巴尔末公式时,其规律性更为明显。波数等于波长的倒数,于是(2)式改为 这是现在常用的巴尔末公式。符号称为里德堡常数。 二、实验仪器 (1) 摄谱仪:照明系统的光轴必须与摄谱仪的光轴重合,才能使谱线最明亮。 (2) 电弧发生器做铁谱光源:本实验采用了两根铁棒作电极,接WJD —4 型交流电弧 火花发生器。为了能使电弧火花均匀而集中地照射狭缝后的棱镜中央,采用单透镜光路,称为照明系统,照明系统的光轴必须调到与摄谱仪光轴重合。 (3) 氢管做为氢光光源:由霓虹灯变压器供电,如图1所示。氢灯加上高压后,其分子 在放电过程中分解为原子,然后进入激发状态产生光辐射。由于氢灯的光强很弱,所以应将氢灯的毛细管中部靠近摄谱仪的狭缝。

拉曼光谱、红外光谱、XPS的原理及应用

拉曼光谱、红外光谱、XPS的原理及应用 一.拉曼光谱的原理及应用 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD 检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器 3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。 4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。

原子吸收光谱法的原理

原子吸收光谱法 原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。 中文名 原子吸收光谱法 外文名 Atomic Absorption Spectroscopy 光线围 紫外光和可见光 出现时间 上世纪50年代 简称 AAS 测定方法 标准曲线法、标准加入法 别名 原子吸收分光光度法 基本原理 原子吸收光谱法(AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,在线性围与被测元素的含量成正比: A=KC

式中K为常数;C为试样浓度;K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础 由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。AAS现已成为无机元素定量分析应用最广泛的一种分析方法。该法主要适用样品中微量及痕量组分分析。 原子吸收光谱法谱线轮廓 原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长围,即有一定的宽度。原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。中心波长由原子能级决定。半宽度是指在中心波长的地方,极大吸收系数一半处,吸收光谱线轮廓上两点之间的频率差或波长差。半宽度受到很多实验因素的影响。影响原子吸收谱线轮廓的两个主要因素: 1、多普勒变宽。多普勒宽度是由于原子热运动引起的。从物理学中已知,从一个运动着的

关于氢原子光谱的超精细结构的研究

关于氢原子光谱的超精细结构的研究 摘要:本文通过介绍原子核的结构、原子核的自旋以及核磁矩,讨论了氢原子光谱的超精细结构的产生原因并介绍了相关公式推导。 关键词:光谱;氢原子;超精细结构 原子核的结构 1、原子核 自卢瑟福提出原子的核式模型以来,原子就被分为两部分来处理:一是处于原子中心的原子核,一是绕核运动的电子。除了原子核的质量和电荷外,原子核的其他性质对原子的影响是相当微小的,核外电子的行为对原子核的性质也几乎毫无关系。原子和原子核是物质结构泾渭分明的两个层次。 2、原子核的结构 发现中子之前,人们知道的“基本”粒子只有两种:电子和质子。物理学家开始时有把原子核当做质子和电子的组成体的想法,但一开始就遇到了不可克服的困难。因为假如原子核由质子和电子所组成,那么,我们将无法解释核的自旋,且推导出来的原子核内电子的能量与实验结果不符。在查德威克发现中子之后,海森堡很快就提出了原子核由质子和中子所组成的假说。海森堡把质子和中子统称为核子,并把中子和质子看做核子的两个不同状态。 原子核的自旋以及核磁矩 1、电子自旋 在乌仑贝克和古兹米特提出电子自旋之前,泡利为了解释原子光谱的超精细结构,就提出了原子核作为一个整体必须有自旋的假设。但是,只有在查德威克发现中子之后,人们才理解自旋的起源。实验发现,中子和质子都是费米子,具有的固有角动量(自旋)与电子一样。既然原子核式中子和质子所组成,它的自旋就应该是中子和质子的轨道角动量和自旋之和。我们研究的“原子核的自旋”,都是指原子核基态的自旋。 2、核磁矩 除了核子的自旋磁矩外,我们还要考虑轨道磁矩。下面给出自核自旋的核磁矩的表示式。类似于原子磁矩的表示式,核磁矩和核自旋角动量I成正比。 μI = g IμN I 在磁场中,核自旋磁矩与磁场相互作用所产生的附加能量为 U = -μI ?B = -g IμN Bm I 因为m I有2I+1个值,所以有2I+1个不同的附加能量,于是就发生赛曼能级分裂,一条核能级在磁场中就分裂为2I+1条,相邻两条分裂能级间的能量差为 上述对核自旋磁矩与磁场的相互作用的讨论是下面研究氢原子光谱的超精细结构的基础。 氢原子的超精细结构光谱 最初讨论原子中的电子运动时,只考虑电子和原子核之间的库仑相互作用,后来随着实验水平的提高,人们发现了H的谱线并不是一条,由此引入电子自旋的概念,从而产生了了氢原子的精细结构。

氢原子光谱的研究解读

实验三氢原子光谱的研究 课任教师:胡君辉 一、明确实验目的 1、学习摄谱、识谱和谱线测量等光谱研究的基本技术。 2、通过测量氢光谱可见谱线的波长,验证巴耳末公式的正确性,从而对玻尔理论的实验基础有具体了解。 3、力求准确测定氢的里德伯常数,对近代测量所达到的精度有一初步了解。 二、仪器介绍和实验原理讲解 1、仪器介绍 实验中需要的仪器为: A、拍谱用的摄谱仪(见讲义附录A)(重点介绍); B、寻找和辨认谱线的映谱仪和铁谱图(见讲义附录B); C、测量谱线距离用的比长仪(见讲义附录C),(拍好底片后讲解示范如何使用); D、氢谱光源和作为铁谱光源的电弧发生器(重点介绍)。 2、注意事项 (1)移动氢灯时要特别小心,以免碰坏;不要使氢灯接触摄谱仪金属部分,以免氢灯冷热不均,引起爆裂,氢灯电源高压危险,小心操作。 (2)先调节铁光谱光斑位置及大小,使其正对狭缝并照满光阑,然后调整氢光谱管的位置,使观察到的光谱彩带最亮,装上毛玻璃,调整物镜聚焦,使谱线最清晰,然后进行拍摄。曝光顺序为“先氢后铁”。 (3) 由于氢光源较弱,拍摄时要将氢放电管平行地尽量靠近狭缝(勿与摄谱仪接触),使进入狭缝的光尽可能地强。铁谱光源的光通过透镜聚在狭缝上,使其成为直径约为一厘米的光斑即可。两种光源都用高压电源,必须注意人身安全,调整电极时必须先断电源。调整电极与操纵电源要由同一人进行,以防多人配合不当,发生危险。对铁谱光源,最好戴防护镜以防紫外线伤眼(如果有)。 3、摄谱条件参考数据 (1)狭缝宽度:(已调好,不用再调); (2)中心波长位置:以铁谱的左边第一条红光出现在毛玻璃最左边沿为准; (3)物镜位置:10(左边那台);16(右边那台) (4)底片盒偏转角度:10度; (5)底片盒高度:三个位置,自己定; (6)摄谱时间:氢光谱(15-20min),铁光谱(8s—12s)(重点强调); (7)冲洗底片时间:显影(15-20min),定影(10-12min)(重点强调) 4、实验原理讲授 引入:氢原子的结构最简单,它的线光谱明显地具有规律,早就为人们所注意。各种原子光谱的规律性的研究正式首先在氢原子上得到突破的,氢原子又是一种典型的最适合于进行理论与实验比较的原子。本世纪上半世纪中对氢原子光谱的种种研究在量子论的发展中多次起过重要作用。1913年玻儿建立了半经典的氢原子理论,成功地解释了包括巴耳末线系在内的氢光谱的规律。事实上氢的每一谱线都不是一条单独的线,换言之,都具有精细结构,不过用普通的光谱仪器难以分析,因而被当作单独一条而已。这一事实意味氢原子的每一能级都具有

2014届高考物理 15-2原子结构、氢原子光谱领航规范训练

2014届高考物理领航规范训练:15-2原子结构、氢原子光谱 1.(2011·高考天津卷)下列能揭示原子具有核式结构的实验是( ) A.光电效应实验B.伦琴射线的发现 C.α粒子散射实验D.氢原子光谱的发现 解析:光电效应实验说明光的粒子性,伦琴射线的发现说明X射线是一种比光波波长更短的电磁波,氢原子光谱的发现促进了氢原子模型的提出.故C正确. 答案:C 2.关于巴耳末公式1 λ=R? ? ?? ? 1 22 - 1 n2的理解,下列说法正确的是( ) A.所有氢原子光谱的波长都可由巴耳末公式求出 B.公式中n可取任意值,故氢原子光谱是连续谱 C.公式中n只能取不小于3的整数值,故氢原子光谱是线状谱 D.公式不但适用于氢原子光谱的分析,也适用于其他原子光谱的分析 解析:巴耳末公式是经验公式,只适用于氢原子光谱,公式中n只能取n≥3的整数,故C正确. 答案:C 3.(2012·高考北京卷)一个氢原子从n=3能级跃迁到n=2能级,该氢原子( ) A.放出光子,能量增加B.放出光子,能量减少 C.吸收光子,能量增加D.吸收光子,能量减少 解析:根据玻尔原子理论知,氢原子从高能级n=3向低能级n=2跃迁时,将以光子形式放出能量,放出光子后原子能量减少,故B选项正确. 答案:B 4.(2012·高考江苏卷)如图所示是某原子的能级图,a、b、c为原子跃迁所发出的三种波长 的光.在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是( )

解析:由h ν=h c λ=E 初-E 末可知该原子跃迁前后的能级差越大,对应光线的能量越大, 波长越短.由图知a 对应光子能量最大,波长最短,c 次之,而b 对应光子能量最小,波长最长,故C 正确. 答案:C 5.氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确 的是( ) A .氢原子的能量增加 B .氢原子的能量减少 C .氢原子要吸收一定频率的光子 D .氢原子要放出一定频率的光子 解析:氢原子的核外电子离原子核越远,氢原子的能量(包括动能和势能)越大.当氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,原子的能量减少,氢原子要放出一定频率的光子.显然,选项B 、D 正确. 答案:BD 6.(2011·高考大纲全国卷)已知氢原子的基态能量为E 1,激发态能量E n =E 1/n 2 ,其中n = 2,3,….用h 表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( ) A .-4hc 3E 1 B .-2hc E 1 C .-4hc E 1 D .-9hc E 1 解析:依题意可知第一激发态能量为E 2=E 1 22,要将其电离,需要的能量至少为ΔE =0 -E 2=h ν,根据波长、频率与波速的关系c =νλ,联立解得最大波长λ=-4hc E 1 ,C 正确. 答案:C 7.(2012·高考四川卷)如图为氢原子能级示意图的一部分,则氢 原 子( ) A .从n =4能级跃迁到n =3能级比从n =3能级跃迁到n =2能级辐射出电磁波的波长长 B .从n =5能级跃迁到n =1能级比从n =5能级跃迁到n =4能级辐射出电磁波的速度大

原子吸收光谱仪简介

SOLAAR 969原子吸收光谱仪简介工作原理:当特征辐射通过原子蒸气时,基态原子就从入射辐射中吸收能量,由基态跃迁到激发态,发生共振吸收,产生原子吸收光谱。在一定的实验条件下,吸光度和试液中待测成分的浓度成正比。利用被测元素已知浓度的标准溶液对光的吸光度作比较,从而求得试样中被测元素的含量。本机配有两种原子化器:火焰(空气-乙炔焰)原子化、石墨炉原子化。原子吸收光谱仪主要用于碱金属、碱土金属、有色金属和黑色金属元素的定量分析。 仪器结构:原子吸收光谱仪主要包括5个部分:光源、原子化器、光学系统、信号检测与数据处理系统、背景校正系统,系统图如下:

目前大量用于煤样、废弃物、生物质以及燃烧过程中的排放物包括颗粒排放物(如飞灰、底灰)和烟气中Pb、Cr、Cd、Ni、Cu、Zn、K、Na、Ca、Mg、Fe、Mn等的测量。仪器灵敏度在ppm级以上,对少数元素可达ppb级。 应用领域: 1.不同粒径对痕量重金属分布的影响

<0.410 .67~0.410.67~1.31.3~2.32.3~3.43.4~4.74.7~6.46.4~9.39.3~15>15 --0 100200300400500600700800900100011001200130014001500 重金属含量(μ g / g ) 粒径分布(μ m) 上图为循环流化床燃煤电站排放烟气中不同粒径颗粒物吸附的痕量金属含量对比 该图是将燃用石煤的循环流化床电站电除尘器前烟尘用冲击式分级装置收集,经酸溶消解后在原子吸收光谱仪得到的重金属含量分布图,可知重金属元素含量按递减规律依次为Cr 、Ni 、Cu 、Cd 。其中Cr 为难挥发金属,在粗颗粒中的含量较高Ni 、Cu 、Cd 为半挥发性金属元素,均有虽粒径减小而相对富集的趋势。

《氢原子光谱》报告

氢原子光谱研究 姓名:___________ 学号:___________ 院系:___________

氢原子光谱研究 引言 原子吸收光谱分析,是利用物质的基态原子 可以吸收特定波长单色辐射的光量子,其吸收量 的大小是与物质原子浓度成比例的关系为基础 的。氢原子的结构最简单,它发出的光谱有明显 的规律,很早就为人们所注意。光谱的规律首先 由氢原子光谱得到突破,从而为原子结构的研究 提供了重要依据。因而,氢原子光谱的研究在原 子物理学的发展中一直起着重要的作用。 实验原理 一百余年来,人们研究氢原子的光谱结构,不论在实验方面,还是在理论方面都取得了丰硕的成果。实验上精确测量各谱线的波长、发现和测量各个氢谱系、探测谱线的精确结构,数据越来越精确,理论上则相当完满地解释了这些谱线的成因,从而发展了电子与电磁场相互作用的理论。 1885年巴尔末根据实验结果,经验性的确定了可见光区域氢光谱的谱线分布规律,写作: (1) 式中为连续的整数3,4,5……。一般常称这些氢谱线为巴尔末系。之后又陆续发现氢的其他线系。为了更清楚的表明谱线分布的规律,将(1)式改写为:

(2) 式中称为氢的里德伯常数。 在这些完全从实验得到的经验公式的基础上,玻尔建立了原子模型的理论,并从而解释了气体放电时的发光的过程。根据玻尔的理论,每条谱线是对应于原子中的电子从一个能级跃迁到另一个能级释放能量的结果。根据这个理论,对巴尔末线系有: (3) 式中e为电子电荷,h为普朗克常数,c为光速,m为电子质量,M为氢原子核的质量。这样,不仅给予巴尔末的经验公式以物理解释,而且把里德伯常数和许多基本物理常数联系了起来。即: (4) 其中代表将核的质量视为(即假定核固定不动)时的里伯德常数: (5) 比较(2)(3)两式可认为(2)式是玻尔理论推论所得到的关系。因此(2)和实验结果符合到什么程度,就可检验波尔理论正确到什么程度。实验表明(2)式与实验数据符合的程度相当高,而成为玻尔理论的有力证据。 继巴尔末规律之后,又发现氢光谱有更为复杂的结构,巴尔末规律只能作为一个近似的规律。同时原子结构的理论也有了很大的发展。因此,就其对理论的作用来讲,验证公式(2)在目前的科学研究中已不必要。但

高中物理原子结构光谱氢原子光谱教师用书教科版

3.光谱氢原子光谱 学习目标知识脉络 1.了解光谱、连续谱、线状谱等 概念.(重点) 2.知道光谱分析及应用.(重点) 3.知道氢原子光谱的规律.(重 点、难点) 光谱和光谱分析 [先填空] 1.光谱 复色光分解为一系列单色光,按波长长短的顺序排列成一条光带,称为光谱. 2.分类 (1)连续谱:由波长连续分布的彩色光带组成的光谱. (2)发射光谱:由发光物质直接产生的光谱. (3)吸收光谱:连续光谱中某些特定频率的光被物质吸收而形成的谱线. (4)线状谱:由分立的谱线组成的光谱. (5)原子光谱:对于同一种原子,线状谱的位置是相同的,这样的谱线称为原子光谱. 3.光谱分析 (1)定义:利用原子光谱的特征来鉴别物质和确定物质的组成部分. (2)优点:灵敏度、精确度高. [再判断] 1.各种原子的发射光谱都是连续谱.(×) 2.不同原子的发光频率是不一样的.(√) 3.线状谱和连续谱都可以用来鉴别物质.(×) [后思考] 为什么用棱镜可以把各种颜色的光展开? 【提示】不同颜色的光在棱镜中的折射率不同,因此经过棱镜后的偏折程度也不同.

1.光谱的分类 2.光谱分析的应用 (1)应用光谱分析发现新元素; (2)鉴别物体的物质成分;研究太阳光谱时发现了太阳中存在钠、镁、铜、锌、镍等金属元素; (3)应用光谱分析鉴定食品优劣; (4)探索宇宙的起源等. 1.对原子光谱,下列说法正确的是( ) A.原子光谱是不连续的 B.原子光谱是连续的 C.由于原子都是由原子核和电子组成的,所以各种原子的原子光谱是相同的 D.各种原子的原子结构不同,所以各种原子的原子光谱也不相同 E.分析物质发光的光谱,可以鉴别物质中含哪些元素 【解析】原子光谱为线状谱,A正确,B错误;各种原子都有自己的特征谱线,故C 错误,D正确;据各种原子的特征谱线进行光谱分析可鉴别物质组成,E正确.故A、D、E. 【答案】ADE 2.关于光谱和光谱分析,下列说法正确的是( ) A.太阳光谱和白炽灯光谱是线状谱 B.霓虹灯和煤气灯火焰中燃烧的钠蒸气产生的光谱是线状谱 C.进行光谱分析时,可以利用线状谱,不能用连续谱

原子吸收光谱仪技术参数

原子吸收光谱仪技术参数 一、仪器系统 原子吸收光谱分析系统,包括火焰分析系统和石墨炉分析系统,可进行火焰发射、火焰吸收光谱分析和石墨炉原子吸收光谱分析。 二、操作环境 电源:AC 220V +/- 10%, 50/60Hz 环境温度:10-35℃ 环境湿度:20% - 80% 三、光谱仪主机系统 1、主机 ※火焰-塞曼石墨炉一体机,火焰-石墨炉无需机械切换,切换时无需拆卸自动进样器。 2、光学系统 1) ※光路结构:单光束/双光束自动切换,通过软件自动切换; 2) 波长范围:190-900nm; 3) ※光栅刻线密度:≥1800条/mm; 4) 光栅有效刻线面积:≥50×50 mm2; 5) 狭缝:0.2,0.5,0.8,1.2nm可调; 6) 波长设定:全自动检索,自动波长扫描; 7) 焦距:≥350mm; 8) 波长重复性:≤ +/- 0.3nm; 9) 仪器光谱分辨能力:Mn 279.5 –279.8之间峰谷与279.5nm 峰高之比≤30%; 10) 灯座:≥ 6灯座(全自动切换); 11) 灯电流设置:0-30mA,计算机自动设定;有下一灯预热和自动关灯功能; 12) 检测器:宽范围光电倍增管。 3、火焰分析系统 1) 燃烧头:10cm缝长,全钛金属材料,耐高盐耐腐蚀,带识别密码; 2) 燃烧头位置调整:高度自动调整,可旋转; 3) ※雾化器:撞击球外部可调,Pt/Rh中心管,耐腐蚀(可使用氢氟酸); 4) 气体控制:全自动计算机控制,流量自动优化; 5) 撞击球:可在点火状态下进行外部调节和优化最佳位置;

6) 安全系统:有完善的安全连锁系统,包括废液瓶液面传感器控制; 7) 点火方式:自动点火; 8) 代表元素检测指标: Cu:特征浓度≤ 0.035 mg/L 检出限≤ 0.005 mg/L RSD ≤ 0.5%。 4、火焰背景校正 1) ※背景校正方法:氘空心阴极灯,电子调谐; 2) 校正频率:300Hz; 3) 背景校正能力:优于2.5Abs。 5、石墨炉分析系统 1) 可升级为直接固体进样分析系统; 2) 系统配置:必须配备石墨炉自动进样器; 3) ※石墨炉加热方式:横向加热方式; 4) ※石墨炉工作温度:室温至3000℃;最大升温速率:≥2900℃/秒,可调; 5) 加热控温方式:全自动,自动温度校正; 6) 升温方式:阶梯升温、斜坡升温; 7) 石墨管:普通管、热解管、平台管和固体分析专用管多种可选; 8) 测定方式:峰高,峰面积任意选择和互换; 9) 代表元素检测指标: Cd:检出限≤ 0.01 ug/L (2ppb)RSD ≤ 2% 10) 保护气控制:计算机自动控制,内外气流分别单独控制; 11) 操作软件:可自动优化最佳灰化和原子化温度; 全自动仪器及附件控制,数据采集和 分析,多重任务,鼠标操作,自动设定菜单数据和校正方法,自动优化石墨炉操作参数,自检和自诊断功能。 6、石墨炉背景校正 1) 石墨炉背景校正方法:两种,交流塞曼效应与氘空心阴极灯背景校正,可切换; 2) ※磁场强度:0.1~1.0T连续可调,步进:0.1T; 3) 校正模式:2-磁场和3-磁场两种模式任意切换。 7、石墨炉自动进样器

拉曼光谱原理及应用简介

拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。(一)含义 光照射到物质上发生弹性散射和非弹性散射.弹性散射的散射光是与激发光波长相 同的成分.非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b.在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧,这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的 能量。

c.一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器3拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。4因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。5共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。 (四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术

PE原子吸收光谱仪原理

原子吸收光譜儀原理 一、 背景 現代科技包括自然科學、醫學、生物科技、環境及工業技術等發展,對物質成份分析的需求較之過去有明顯的改變。對於低濃度金屬的分析,除了所使用的分析儀器是否具有足夠的偵測靈敏度外,若無法有效的控制樣品基質所產生的干擾效應,將造成嚴重的分析誤差。本文將針對原子吸收光譜儀基本原理及PerkinElmer AAnalyst 800型單機多功能的設計(含火焰式及石墨爐式),是具高精準性及方便性的分析儀器。 二、 原理 原子吸收的過程是當基態原子吸收某些特定波長的能量由基態到激發態。根據Beer 定律,吸收值與濃度成正比關係,從標準溶液作出校正曲線後,再讀出未知溶液的濃度。而原子吸收光譜儀即是利用原子化器將樣品(A)原子化器後,吸收某一特定波長光,此光來自(B)燈管,再經過(C)光學系統分光經由單光器過濾僅有要測的波長光進入(D)偵測器,原子收光譜儀的基本構造如圖一所示。 A. 原子化器:原子化器有三種設計,有火焰式、石墨爐式及汞蒸氣氫化裝置。 (1) 火焰式燃燒系統之剖示圖,如圖二所示,在預混系 統內,樣品溶液被吸經霧化器霧化成小水滴進入混 合腔與燃料及氧化用氣體混合後,帶入燃燒頭,而樣品原子化即產生。在燃燒系統內有些重要因素須在霧化器部份考慮,為了提供最有效之霧化,以各種不同之樣品溶液,霧化器須為可調式的,而不鏽鋼為最常用的一種材質,但其缺點是樣品若含有高濃度之酸或其它腐蝕性氣體則會被腐蝕,若須為抗腐蝕之材質可用惰性塑料材質或Pt/Ir 之合金為宜。燃燒頭用鈦金屬組成可提供極高之熱阻抗及防腐蝕性。不之火焰或樣品條件須使用不同之燃燒頭,10公分長是用來做空氣乙炔之燃燒,而5公分長的用手作較高溫的笑氣乙炔燃燒。 (2) 石墨爐原子化器其基本構造如圖三所示,基本構造包含有金屬室、石墨爐及石墨管三部份。金屬室的功能在於提供高電流加熱裝置,石墨爐的功能為固定石墨管,而石墨管則為樣品的原子化裝置。石墨材質具有高電阻的特性,當瞬間通入大量電流時,藉由電熱的原理使得石墨管溫度迅速提昇,達到使樣品中待測元素原子化的高溫。為避免原子化器在加熱升溫的過程中,石墨材質與空氣中氧氣起氧化 Monochromator Detector Reference Beam Sample Beam Hollow Cathode Lamp Burner Rotating Chopper 圖一 原子吸收光譜儀的基本構造 預混式混合腔 霧化器 燃燒頭 Flow Spoiler Impack Bead 圖二 火焰式燃燒系統

相关主题
文本预览
相关文档 最新文档